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Abstract 10 
While the interest of the transport research community and automotive industry is increasingly 11 
turning towards developments and improvements in the field of autonomous vehicles, there is 12 
a need for a better understanding of the end users’ preferences regarding perceived passenger 13 
comfort, in order to improve acceptance and intention to use. The present study is based on a 14 
driving simulator experiment conducted at the University of Leeds Driving Simulator (UoLDS) 15 
and approaches the issue of comfort via observed speed choice behaviour. Participants drove a 16 
series of driving simulator scenarios composed of road segments of different road type, road 17 
geometry, risk level at the road edge, and oncoming traffic. They also completed a series of 18 
self-report questionnaires, including Arnett’s Inventory of Sensation-seeking. A set of models, 19 
was developed in order to investigate the effects of road environment and sensation-seeking on 20 
speed behaviour. The initial model only considered explanatory variables related to the road 21 
environment and accounted for individual unobserved heterogeneity. Past behaviour, serial 22 
correlation and heterogeneity in road environment were then introduced in the model 23 
specification. The autoregressive disturbance term that accounted for serial correlation was also 24 
applied in the form of a random variable and significantly improved model fit. Finally, 25 
sensation-seeking was incorporated in the model as a latent variable. The results showed a 26 
significant impact of most of the road elements as road type, curvature, risk type at the road 27 
edge on observed behaviour, implying a future need for the development of autonomous 28 
vehicle controllers that adapt their performance based on the road environment. Moreover, 29 
sensation-seeking had a significant and positive effect on speed, which indicates a potential 30 
future demand for personalised controllers to meet the users’ individual preferences. 31 
 32 
Keywords: Speed choice; Latent variable; Sensation-seeking; Random autoregressive 33 
disturbance; Driving simulator; Perceived comfort 34 
 35 
 36 
1. Introduction 37 
Following the technological advances over the past decade, autonomous vehicles (AVs) have 38 
been a major topic of discussion and debate in the automotive industry and transportation 39 
research community. The active involvement of many large automakers in AVs testing (Gandia 40 
et al., 2019) is an indication that the operation of current transportation systems is at the brink 41 
of immense changes caused by the on-road presence of this new technology. The mass 42 
deployment of AVs is expected to have multiple benefits: crash rate reduction, decrease of gas 43 
emissions, fuel savings and improvement of mobility opportunities (Zhang et al., 2019). 44 
However, their successful integration highly depends on user trust, acceptance and intention to 45 
use. Other issues range from willingness to purchase (Daziano et al., 2017; Menon et al., 2020) 46 
or share (Webb et al., 2019) to safety perception of vulnerable road users about AVs (Merat et 47 
al., 2018) and morality issues (Bonnefon et al., 2016). From a passenger perspective (i.e. a 48 
driver ceding control to the vehicle or a passenger in the back seat), intention to use AVs has 49 
been found to be influenced by their attitudes towards this technology and psychosocial factors 50 
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(Buckley et al., 2018) but other streams of research have focused on the impacts of perceived 1 
comfort (or discomfort) and safety that emerge from the performance and driving styles of 2 
autonomous vehicles. 3 
 4 
The notion of comfort in autonomous vehicles has not been clearly defined in existing 5 
literature; however, it has been linked to research related to the development of accepted AV 6 
driving styles (Bellem et al., 2018). Elbanhawi et al. (2015) defined AV-related comfort as a 7 
framework related to issues both relevant to conventional vehicles (i.e. ergonomic factors) and 8 
specific issues, such as natural manoeuvring, apparent safety, disturbances that arise from the 9 
road-vehicle interaction leading to vibrations and finally, motion sickness. The concept of 10 
comfort has been approximated from various perspectives. For instance, Basu et al. (2016) 11 
conducted a simulator study where participants had to evaluate different autonomous driving 12 
styles in terms of comfort, safety, preference for every-day use and similarity to own driving, 13 
using self-report questionnaires. This approach is differentiated from the framework of 14 
Elbanhawi et al. (2015), where comfort and safety were treated as two different components. 15 
Towards the same direction, Yusof et al., (2016) considered comfort together with safety and 16 
pleasantness, to evaluate drivers’ preference regarding acceleration-deceleration, speed hump 17 
and cornering, in a naturalistic study. The aforementioned studies based their outcomes on 18 
single responses after the end of a drive/scenario. In a different approach, Hartwich et al. (2018) 19 
investigated comfort in a simulator study via similar responses to questionnaires, but 20 
participants also used a handset controller to assess discomfort in real time. A similar device 21 
for the evaluation of discomfort was also used by Telpaz et al. (2018) in a naturalistic 22 
environment context. Finally, Bellem et al. (2016) approximated comfort based on 23 
manoeuvring behaviour in manual driving, to derive different driving styles. To that end, they 24 
analysed acceleration, jerk, lane-change and headway in rural/urban and motorway scenarios. 25 
 26 
Existing literature on AV comfort and safety usually focuses on different driving styles and 27 
behaviour overall, omitting, however, the impact of the road environment on drivers’ 28 
perception. The latter has been investigated in the context of manual driving. Goralzik & 29 
Vollrath (2017) found in a simulator study that decrease of lane width and road radius 30 
significantly affect speed choice for a speed limit of 50kmh, however, the effect of these road 31 
factors was irrelevant at lower speed limits (30kmh). Also, Bella (2013) conducted a driving 32 
simulator study and reported a significant drop of speed at high-curvature road segments. 33 
Moreover, Ben-Bassat & Shinar (2011) found similar effects of road curvature on speed but, 34 
they also mentioned a positive impact of shoulder presence, yet no impact of guardrails. Van 35 
Der Horst & De Ridder (2007) investigated the effects of road infrastructure on speed and 36 
lateral offset. Amongst their most interesting findings is the negative effect of trees on speed, 37 
unless they are placed closer to the road edge (2m). In another simulator study, Calvi (2015) 38 
also concluded that the presence of trees is related to significant speed reduction, when they 39 
are close to the road edge (1.5m). Similar effects, with respect to the presence of vegetation 40 
were also reported in other studies (Antonson et al., 2009; Fitzpatrick et al., 2014; Stamatiadis 41 
et al., 2010). Although these findings were not directly related to comfort, the changes in 42 
behaviour reported might still be an indication of how drivers would prefer to be driven in 43 
specific road environments and contexts. 44 
 45 
The current paper presents the results of an analysis conducted within the context of the UK-46 
funded HumanDrive project, which focuses on the development of natural, human-like 47 
controllers for autonomous vehicles. This type of controller is employed in an effort to improve 48 
perceived comfort, safety and, thus, acceptance and intention to use autonomous vehicles. The 49 
study gradually builds knowledge and understanding with an ultimate goal to implement 50 
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elements of observed manual driving behaviour into autonomous vehicles. The results 1 
presented in this paper are part of the initial data collection based on manual driving 2 
observations at the University of Leeds Driving Simulator (UoLDS). The driving simulator 3 
scenarios were fundamentally designed to identify characteristics of natural driving, by 4 
exposing participants to scenarios containing varying hazards related to road type, road 5 
geometry, oncoming traffic, lane width, and lateral risk elements, such as presence of parked 6 
cars and roadworks. The study aims to contribute to the existing knowledge and investigate 7 
how these factors should be considered in the development of future AV controllers. Although 8 
various driving behaviour indicators of longitudinal and latitudinal control can be considered, 9 
the present analysis explicitly focuses on the development of a model to investigate speed 10 
choice behaviour. 11 
 12 
The use of driving simulators is gaining popularity as a tool for the estimation of mathematical 13 
driving behaviour models. Existing applications include traditional types of driving behaviour 14 
models such as car-following (Hoogendoorn et al. 2010) or overtaking (Farah et al., 2009) but 15 
also extend to and incorporating other aspects of driving behaviour related to risk-taking and 16 
human factors. For instance, Danaf et al. (2015) developed models of intersection crossing, 17 
considering the effects of anger, and aggressive driving behaviour, while Tran et al. (2015) 18 
modelled yellow light crossing, and time spent at the junction during the red phase via a two-19 
part regression model. Finally, Sarwar et al. (2017) and Fountas et al. (2019) developed models 20 
to compare perceived and observed aggressive driving behaviour, using driving simulator data. 21 
 22 
In terms of modelling, the issue of unobserved heterogeneity has been addressed in many 23 
studies related to road safety and driving behaviour. Anastopoulos & Mannering (2016) used 24 
random parameters to investigate stated speed choice and compliance with speed limit, using 25 
survey data. Moreover, Mannering et al. (2016) highlighted the importance of accounting for 26 
unobserved heterogeneity on statistical analysis of accident data. Guo et al. (2018) 27 
approximated cyclists’ red-light running via Bayesian random parameters for the explanatory 28 
variables of a logistic regression. Yasmin et al. (2014) incorporated heterogeneity in pedestrian 29 
injury severity via discrete latent classes in an ordered logit model. In the same study, the 30 
authors considered random thresholds for the various levels of their model. The concept of 31 
random thresholds was also used in the context of an ordered probit model by Fountas & 32 
Anastopoulos (2017) to model the severity of accident injury severity. With respect to the same 33 
issue, Islam and Mannering (2020) approximated injury severity assuming heterogeneity both 34 
in the means and the variances of the random parameters. Finally, on a different topic, Eker et 35 
al. (2020), addressed the issue of unobserved heterogeneity to model perception about flying 36 
cars.  37 
 38 
The current analysis is revolving around the specification and estimation of a speed choice 39 
model, considering the effects of road environment. At the same time, the effects of unobserved 40 
heterogeneity and individual traits are also considered in the analysis. The remainder of the 41 
paper is organised as follows: Section 2 presents the experimental design and data collection 42 
process, Section 3 describes the methodological approach followed, including the specification 43 
of the various models, while the results are presented in Section 4. The paper concludes with a 44 
summary and directions for future research. 45 
 46 
 47 
  48 
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2. Data collection 1 
 2 
2.1 The University of Leeds Driving Simulator (UoLDS) 3 
The University of Leeds Driving Simulator (UoLDS, Figure 1) was used to record driving 4 
performance. The simulator’s vehicle cab is based around a 2006 Jaguar S-type, housed within 5 
a 4m diameter, spherical projection dome. Eight visual channels are rendered at 60 frames/s, 6 
predominantly at a resolution of 1920×1200. The five forward channels are front-projected 7 
providing a horizontal field of view of 270°. The three rear channels can be seen through the 8 
vehicle’s central view and side mirrors, the latter both physically modified to accommodate 9 
800x480 LCD panels. The simulator also incorporates an eight degree-of-freedom electrical 10 
motion system. This consists of a 500mm stroke-length hexapod motion platform that is 11 
mounted on a railed gantry providing a further 5m of effective travel in surge and sway. The 12 
simulator system collects data relating to driver behaviour (vehicle controls), the vehicle 13 
(position, speed, accelerations, etc.) and other autonomous vehicles in the scene (e.g. identity, 14 
position and speed) at a rate of 60Hz. 15 
  16 

 17 
2.2 Experimental design and procedure 18 
One of the main objectives of the study was to investigate the impacts of perceived risk on 19 
driving behaviour. Variability in vehicle control was examined around a steady state, via a set 20 
of repeatable conditions, environmental factors and levels of contextual risk that had the 21 
potential to shape the perception of a driving environment, resulting in definable behaviours. 22 
The initial experimental design consisted of two 80km roads from 32 different 250m road 23 
segments (tiles), each with an associated contextual risk, and repeated 10 times to facilitate 24 
multiple exposures to that risk. The rationale for selecting multiple repetitions of 250m 25 
segments was to vary the entry speed and lateral position into a particular segment, by 26 
preceding it with different segments of varying demand. Drivers were thereby encouraged to 27 
adopt behaviours that they felt were suitable to an ever-changing environmental context of risk. 28 
Both drives were identical, except that one included oncoming vehicles (to further increase risk 29 
level), whilst the other did not. The order of these two drives was counterbalanced across 30 
participants. The various components of the risk profiles are presented in Table 1. 31 
 32 
This original experimental design resulted in a number of dropouts (5 participants out of 12 33 
initially recruited), which was caused by the discomfort associated with the long exposure to 34 
the simulator. The road was, thus, redesigned to reduce simulator exposure. The new design 35 
was composed of four shorter 15-minute drives, three of which contained oncoming cars. 36 
Further time reductions were achieved by removing some of the more extreme contextual risk 37 
road segments, to provide a more comfortable, and less demanding, simulator experience for 38 
participants. As in the early phase of the trial, the experiment was counterbalanced, so 39 
participants experienced oncoming vehicles in different orders. 40 
 41 

Figure 1: The University of Leeds Driving Simulator (UoLDS) 
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Each data collection session was scheduled for 2½ hours. On arrival, each participant was 1 
greeted by a member of UoLDS research staff and provided with an experimental briefing to 2 
read through. The researcher then verbally explained the key elements of the data collection 3 
period, described the simulator and gave a safety briefing. Once the associated experimental 4 
requirements and associated risks had been understood, and any participant queries answered, 5 
the researcher asked the participant to sign an informed consent to participate. 6 
 7 
 8 

Table 1: Risk profiles used in the study 9 

Risk Context Factor Levels Description 

Environment Rural, Urban 
Open rural road (60 mph speed limit) and built-up urban areas (speed 
limit 40mph), representative of a real-world route in Cranfield, UK. 

Oncoming 

vehicles 
Oncoming, Non-oncoming 

On-oncoming vehicles were included to induce predictable, but high 
energy, safety threats. 

Road 

curvature 
Straight, 100m,170m, 
250m, 750m 

In the rural environment, both straight and curved sections were 
modelled, with curves varying in radius between 100m and 250m. In 
the urban environment, a 750 m radius curve was chosen. 

Lane width Narrow, Wide 

In the rural areas, sections of roadway were modelled that corresponded 
with existing standards (3.65 m lane width) as well as sub-standard 
elements that more closely matched the Cranfield route (2.9 m lane 
width). 

Levels of 

contextual risk 

Hard, Soft and Raised 
Roadside Areas, Lane 
Markings, Cycle Lanes, 
Pedestrian Refuges, 
Parked Vehicles and 
Roadworks 

In rural areas, risk was varied via the lateral risk profile and 
corresponding availability of the driving lane through permanent (hard, 
soft, raised roadside areas) and temporary narrowing (stationary 
vehicles, roadworks). In urban areas, lateral profile varied with lane 
markings, cycle lanes, pedestrian refuges, parked vehicles and 
roadworks. 

Persistence of 

contextual risk 
20 m risk, 250 m risk 

The perceived risk existed both over the full 250 m road segment and a 
shorter 20m area midway through a segment. This was to explore 
whether drivers were vigilant to adjust their behaviour to more 
unexpected/unpredictable risk factors. 

 10 
Participants’ first drive of the simulator was to familiarise themselves with the operation and 11 
handling of the vehicle in the presence, and under the guidance of, the researcher. The 12 
researcher followed a standard, and established, procedure to ensure the participant was fully 13 
competent and proficient at handling the vehicle over a period of 15-20 minutes, depending on 14 
the confidence of the individual concerned. As well as demonstrating competence, the 15 
familiarisation drive was also used to ensure the participant suffered no ill-effects from 16 
simulator exposure such as nausea, vertigo or visual/vestibular discrepancies. After a safety 17 
demonstration of the simulator emergency evacuation measures, the participant then returned 18 
to the briefing area. This was followed by the main drives of the study. 19 
 20 
2.3 Subjective measures 21 
The data collection process also involved a set of questionnaires that participants completed at 22 
the end of the experiment. Although filling out the questionnaires post-driving might have 23 
some impact on participants’ responses, this has also been the practice in other driving 24 
simulator studies that involved model estimation (e.g. Danaf et al., 2015), as completing 25 
questionnaires before the simulator experiment may affect driving behaviour. Another 26 
approach could be to repeat the questionnaires before and after the experiment and control for 27 
differences, however, as most of them revolved around personality traits, we did not expect to 28 
see major differences before and after the drive. The questionnaires included the Arnett 29 
Inventory of Sensation Seeking (AISS) questionnaire (Arnett, 1994), the Traffic Locus of 30 
Control (T-LOC) questionnaire (Őzkan & Lajunen, 2005), and the Driver Style Questionnaire 31 
(DSQ; West et al., 1992). Based on findings of previous analysis of the data (Louw et al., 2019), 32 
only the AISS was considered in the present paper. The model specification, including the 33 
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AISS items, is presented in Section 3.1. while further details about the results, including 1 
indicators of sensation-seeking are included in Sections 4.3 and 4.4. 2 
 3 
2.4 Sample characteristics 4 
It total, 34 individuals (16 female and 18 male) were considered for the analysis, of which 5 
seven completed the two main roads of the initial experimental design while the rest of the 6 
participants completed the modified design composed of four shorter roads. Participants were 7 
recruited via the University of Leeds Driving Simulator database. Using crash-based statistics 8 
(Loughran & Seabury, 2007) it was assumed that driving style might be affected by age and 9 
experience. Thus, participants were recruited from different age groups in order to collect data 10 
from a wider range of drivers. The detailed distribution of participants in each age group is 11 
presented in Table 2. One of the participants did not report age and thus these details were not 12 
included in the table. The average age of all participants was approximately 37.6 years 13 
(minimum 18 and maximum 64 years) while average driving experience was 20 years, ranging 14 
from 1 to 48 years. Finally, participants reported approximately 6500 miles per year of driving. 15 
 16 

Table 2: Sample characteristics 17 

Age group 
Gender (n) 

Age Years with UK License Annual Mileage 

      
M F M (SD) M (SD) M (SD) 

< 25 yrs(n=8) 2 6 19.75 (2.29) 2.88 (2.10) 4250 (3229.77) 
25-40 yrs(n=11) 7 4 36 (3.41) 15.36 (5.43) 5781.82 (3516.20) 
40-50 yrs (n=10) 7 3 43.90 (3) 26.90 (3.78) 7900 (2766.87) 

Over 60  yrs(n=4) 1 3 62.25 (1.5) 44.50 (3.42) 8000 (4966.56) 

 18 
 19 
3. Methodological framework 20 
 21 
3.1 Model specification 22 
The present work is focusing on the development of a model to approximate speed choice 23 
behaviour. Given the continuous nature of the dependent variable, a linear regression might 24 
have seemed as an appropriate choice for the model specification. However, because of the 25 
panel nature of the data i.e. multiple observations per participant, several of the linear 26 
regression assumptions are expected to be violated. For instance, the disturbances of the model 27 
are likely to be correlated for the same individual, due to unobserved characteristics or can be 28 
time-related, since the structure of the data is in essence a time series. Moreover, differences 29 
in the characteristics of the road environment (e.g. urban and rural) can also affect the variance 30 
of the disturbances, leading to heteroskedasticity. Thus, an extension of linear regression was 31 
considered for the model specification to account for the effects of the aforementioned issues. 32 
These additions included a disturbance term to capture unobserved heterogeneity (Section 33 
3.1.1), the use of an autoregressive disturbance and lagged dependent variable to account for 34 
time correlations (Section 3.1.2) and the use of a heteroskedastic scale term to investigate the 35 
effects of road environment on the i.i.d. disturbance term of the model (3.1.3). Given that the 36 
model estimation included different drivers, individual specific serial correlation was 37 
introduced in Section 3.1.4. Ultimately, the model specification was modified to incorporate 38 
sensation-seeking as a latent variable (3.1.5). 39 
 40 
3.1.1 Basic structure – The “random heterogeneity” model 41 
If it is assumed that – ignoring time correlation - average speed in each tile of a given road is a 42 
linear function of the road environment and unobserved drivers’ heterogeneity (that also 43 
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accounts for the fact that each series of data has been derived from the same individual), this 1 
relationship can be represented as shown in Eq. 1: 2 
 3 

 Ynit=μnit+εnit=bo+bXnit+aυn+εnit (1) 
 4 
where Ynit is average speed of individual n at tile t of road (run) i, Xnit are the explanatory 5 
variables, bo is a constant and b a vector of parameters to be estimated. Also, υn is a standard 6 
normally distributed disturbance with a its parameter to be estimated and finally, εnit is an i.i.d. 7 
normally distributed disturbance term. The aυn term is used to capture the impact of unobserved 8 
drivers’ characteristics and consequently the panel nature of the data. Similar disturbance terms 9 
have been used in literature related to driving behaviour modelling (Ben-Akiva et al., 2006; 10 
Toledo, 2002; Toledo and Katz, 2009; Varotto et al., 2018). Following the assumption of 11 
normality for εnit, the probability density function of average speed observations can be 12 
represented as (Eq. 2): 13 
 14 

 f(Ynit)=
1
σε

φ (Ynit-μnit
σε

) =
1

σε√2π
e

(-12(Ynit-μnit
σε

)2)
 (2) 

 15 
where φ(.) represents the density of standard normal distribution, μnit is the mean and σnit is the 16 
standard deviation of the distribution. Assuming that for each individual there is a series of 17 
observations, the total likelihood is given, conditionally on υ as (Eq. 3):  18 
 19 

 f(Yni2,Yni3,…,YniT|υn)= ∏ ∏ f(Ynit|υn)T

t=2
I

i=1

 (3) 

 20 
The unconditional form of the above distribution can be calculated by integrating over υ (Eq. 21 
4) 22 
 23 

 Ln=f(Yni2,Yni3,…,YniT)= ∫ ∏ ∏ f(Yni2,Yni3,…,YniT|υn)f(υn)T

t=2
I

i=1

 

υ

du (4) 

 24 
 25 
while the total log-likelihood across all individuals is presented in Eq. 5: 26 
 27 

 LL= ∑ ln(Ln)N

n=1

 (5) 

 28 
The rationale for starting the numbering of the product operator that represents the road tiles 29 
from the second observation is later explained in Section 3.1.2. This approach was decided to 30 
ensure that all models in the current paper are estimated using the same observations and thus, 31 
it is feasible to compare them in terms of fit. Moreover, the integral presented in Eq. 4, has 32 
been solved using 1000 standard normally distributed Halon draws (Halton, 1960). For 33 
convenience, this model will be mentioned as the “random heterogeneity” model (or Model 1) 34 
in the remainder of the paper. The estimation of this, and all models presented in the next 35 
sections, was based on an adaptation of the R package ‘Apollo’ (Hess & Palma, 2019) using 36 
the R software (RC Team, 2013). 37 
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 1 
3.1.2 Introduction of time correlation – The “autoregressive” model 2 
 3 
Incorporation of lagged speed 4 
A reasonable expectation with respect to speed choice is related to the correlation of past and 5 
current speed choice behaviour. In the current approach, the average speed of the previous tile 6 
was considered as past speed. The addition of the lagged dependent variable results, as shown 7 
in Eq. 6 in: 8 
  9 

 Ynit=θYnit-1 + μnit+εnit=θYnit-1 + bo+bXnit+aυn+εnit (6) 
 10 
where the model specification is also including Ynit-1 that is the average speed of the previous 11 
tile and θ a parameter to be estimated, in addition to the terms presented in Eq 1. A major issue 12 
that arises from the model specification of Eq. 6 is a potential correlation of the lagged variable 13 
with the disturbance term that is used to captured unobserved drivers’ heterogeneity. To be 14 
more concrete, the model specification assumes that at tile t, average speed is a function of Ynit-15 
1 and υn, but the latter has been also used as an explanatory variable of Ynit-1 in the previous 16 
observation. This model specification is violating the assumption of regression models 17 
regarding the independence among explanatory variables, as the lagged dependent variable and 18 
the random heterogeneity term are endogenous. To address the issue of endogeneity, it is 19 
required to make an assumption about the initial observation of an individual and the 20 
individual-specific term. In the existing literature, Heckman (1987) suggested the estimation 21 
of a reduced model for the initial observation of individuals, using a different set of parameters 22 
for the explanatory variables. Another approach is the Conditional Maximum Likelihood 23 
(CML) estimation suggested by Wooldridge (2005). The latter has been applied in the current 24 
paper.  Following this approach, the unobserved heterogeneity is expressed as a function of the 25 
initial value of the dependent variable and exogenous time-variant variables, as shown in Eq. 26 
7: 27 
  28 

 znit=γ+α0Y0nit+βΧnit' +aυn (7) 
 29 
where Y0ni is the initial observation of the dependent variable, Χnit'   represents the exogenous 30 
explanatory variables as: Χnit' =Χni1' ,…,ΧniT' , and α0, β, γ are parameters to be estimated. In 31 
relevant existing literature (Drakos & Konstantinou, 2013; Elliot et al., 2019; Michaud & 32 
Tatsiramos, 2011) the explanatory variables are replaced by the average values of the time-33 
dependent explanatory variables, to capture the correlation between the former and the random 34 
heterogeneity term υn. However, in the current work all time-variant explanatory variables are 35 
related to the road environment and are not expected to correlate with the unobserved 36 
heterogeneity term, which is primarily used to capture the effects of unobserved drivers’ 37 
characteristics. Therefore, this term been dropped from Eq. 7. Moreover, it should be 38 
mentioned that, for model identification reasons, γ cannot be estimated separately from bo and 39 
thus this term is also dropped. Thus, the model specification after incorporating the effects of 40 
lagged speed is (Eq. 8): 41 
 42 

 Ynit=α0Y0nit+θYnit-1+bo+bXnit+aυn+εnit (8) 
 43 
for t=2,3,…,T of each run i=1,2,…,I of an individual. 44 
 45 
Serially correlated disturbance term 46 
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Thus far, εnit has been treated as an i.i.d. disturbance term. However, in panel data, the 1 
disturbances are likely to be correlated across time. In the present paper, serial correlation with 2 
the previous periods (tiles) was captured via a first-order autoregressive disturbance term thus 3 
εnit can be expanded as εnit = ρεnit-1 + νnit, where ρ is a correlation parameter and νnit is an i.i.d 4 
normal disturbance term with variance δν

2. The value of the lagged disturbance term can be 5 
obtained as εnit-1=Ynit-1-Ỹnit-1, where Ỹnit-1 is the predicted value of the dependent variable at 6 
tile t-1.  7 
 8 
Following this modification, the model specification is (Eq. 9): 9 
 10 

 Ynit=α0Y0nit+θYnit-1+bo+bXnit+aυn+ρεnit-1+νnit (9) 
 11 
Given that the model is solved conditionally on the initial observation (at tile t=1) of each run, 12 
there is no estimate for this speed value, as it is always used as an explanatory variable only. 13 
Therefore, the second tile observation of each run should have been also dropped from the 14 
estimation, since, in Eq. 9, it is not feasible to include the εnit-1 term in the specification for the 15 
first tile, as it is not available. However, with reference to Davidson and MacKinnon (2004), 16 

εni2 is normally distributed as: εni2 ~ N[0, σν
2/ (1/(1-ρ2))]. Hence, when formulating the 17 

likelihood function for the second observation of each run (based on Eq. 2) the standard 18 
deviation term can be modified following the abovementioned specification of εni2 and 19 
normally include this speed observation in the model estimation. The model presented in the 20 
current section will be reported as the “autoregressive” model (or Model 2) for the remainder 21 
of the paper. 22 
 23 
3.1.3 Heteroskedastic variance structure – The “autoregressive-heteroskedastic” model 24 
As described in Section 2.2, the road environment included both rural and urban/village areas 25 
with different speed limits. The average effect of speed limit on speed can be captured using 26 
different parameters for both road types. However, the variance of the i.i.d. disturbance term 27 
νn is also expected to vary between the two road types. Thus, the density of a single speed 28 
observation can be expanded as (Eq. 14): 29 
 30 

 f(Ynit)=
1

σν,rural𝜎𝜈,𝑢𝑟𝑏𝑎𝑛(𝑢𝑟𝑏𝑎𝑛==1) φ ( Ynit-μnit
σν,rural𝜎𝜈,𝑢𝑟𝑏𝑎𝑛(𝑢𝑟𝑏𝑎𝑛==1)) (14) 

 31 
In Eq. 13, if the estimate of σν,urban is significantly different from 1, then this implies that the 32 
variance between the two road environments is statistically significant. Similar variance 33 
structures are usually applied to deal with heteroskedasticity. It should be mentioned that 34 
parameter estimates are still unbiased under the presence of heteroskedasticity however, the 35 
calculation of standard errors and consequently significance of parameters might be 36 
inconsistent (see Washington et al. 2010). Zuur et al (2009) have presented a series of potential 37 
variance structures that can be applied to account for heterogeneity in residual variance. The 38 
modification presented in the current section was applied in the “autoregressive” model 39 
resulting in the “autoregressive-heteroskedastic” model (or Model 3). 40 
 41 
3.1.4 The “random autoregressive-heteroskedastic” model 42 
Following Eq. 9, the correlation parameter ρ assumes a constant effect of time correlation for 43 
all individuals. However, it is likely that the magnitude of correlation varies across drivers. To 44 
capture this effect, a random correlation parameter is suggested in the present paper. Given that 45 
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|ρ|≤1, it has been assumed that the correlation term follows a truncated normal distribution 1 
bounded between -1 and 1. The density function of such distribution is shown in Eq. 10: 2 
 3 

 f(ρn)=

1
σρ

φ (ρn-μρ
σρ

)
Φ (1-μρ

σρ
) -Φ (-1-μρ

σρ
) (10) 

 4 
where Φ[.] is a cumulative normal distribution and μρ, σρ are the mean and standard deviation 5 
of the correlation term ρ that need to be estimated. Following the assumption of a random 6 
autoregressive term, the likelihood function is conditional both on υn and ρn as (Eq. 11): 7 
 8 

 f(Yni2,Yni3,…,YniT|υn)= ∏ ∏ f(Ynit|υn,ρn)T

t=2
I

i=1

 (11) 

  9 
and the unconditional form is (Eq. 12): 10 
 11 

 Ln=f(Yni2,Yni3,…,YniT)= ∫ ∫ ∏ ∏ f(Yni2,Yni3,…,YniT|υn, ρn)f(υn)T
t=2 f(ρn)𝐼

𝑖=1
 

υ

dudρ
 

ρ

 (12) 

 12 
To solve the integral in Eq. 12, 1000 draws were again used. However, the draws related to the 13 
correlation term should only produce values within the (-1,1) range. A draw from a truncated 14 
normal distribution can be obtained as shown in Eq. 13: 15 
 16 

 ρ=Φ-1 (Φ (-1-μρ

σρ
) +U∙ (Φ (1-μρ

σρ
) -Φ (-1-μρ

σρ
))) σρ+μρ (13) 

 17 
where Φ-1 is the inverse of a normal cumulative, and U are uniform draws from the (0,1) range 18 
(Train, 2009). The approach presented in this section was applied as an extension of the 19 
“autoregressive-heteroskedastic” model. The new model will be mentioned as “random 20 
autoregressive-heteroskedastic” for the rest of the paper (or Model 4). It should be mentioned 21 
that this model specification assumes that time correlation varies across drivers but remains 22 
unchanged within the various drives of the same individual. Studies related to advances in 23 
unobserved heterogeneity (Pantangi et al., 2019; Jordan et al., 2019; Heydari et al., 2018; 24 
Fountas et al., 2018) have also suggested the estimation of different parameters (grouped 25 
random heterogeneity) for subsets of data i.e. for the different drives of an individual in the 26 
current case, however, this second level of heterogeneity has not been considered. 27 
 28 
3.1.5 Incorporation of sensation-seeking – The “latent variable” model 29 
Sensation-seeking was investigated via the AISS questionnaire. Hence, the incorporation of the 30 
AISS responses as direct explanatory variables would seem a reasonable approach, as it is also 31 
easy to implement while it may also produce expected and reasonable results. However, 32 
research in the field of econometrics and choice modelling (Ben-Akiva et al., 1999; Ben-Akiva 33 
et al., 2002; Bolduc and Daziano, 2010 to name a few) has shown that similar model 34 
specifications would be theoretically erroneous and could also lead to biased estimates. To be 35 
more concrete, the responses to the AISS statements are underlying indications of sensation-36 
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seeking rather than a direct measure of it. Thus, it is likely that the responses suffer from 1 
measurement errors, which can be magnified owing to the categorical-ordered format of the 2 
scale (Mariel et al., 2014), since they represent unitless values without a specific measurement 3 
unit. Moreover, the responses may be correlated with other unobserved factors which can lead 4 
to endogeneity between them and the disturbance terms of the model. To address the previous 5 
issues, sensation-seeking was introduced in the model specification as a latent variable using 6 
the sensation-seeking items as indicators. 7 
 8 
Following the theoretical framework of the studies mentioned in the previous paragraph, a 9 
latent variable can be represented as (Eq. 15): 10 
 11 

 LVn=h(Zn,δ)+ωn (15) 
 12 
where h(Zn,δ) is a linear function of explanatory variables Zn and δ their parameters to be 13 
estimated while ωn is a normally distributed disturbance. In the current work however, no 14 
explanatory variables were used in the latent variable specification. Moreover, it should be 15 
mentioned that for model identification purposes (Vij & Walker, 2014), the variance of the 16 
disturbance term was fixed equal to unity. After including sensation-seeking in the sets of 17 
explanatory variables, the model specification is taking the following form (Eq. 16): 18 
 19 

 Ynit=α0Y0nit+θYnit-1+bo+bXnit + ξLVn+ aυn+ ρεnit-1 + νnit (16) 
 20 
where ξ is a parameter to be estimated and represents the effect of the latent variable on the 21 
dependent variable. 22 
 23 
As explained in previous paragraph, the responses to AISS were used as indicators of sensation-24 
seeking. Given the ordered nature of the responses, the specification presented in Daly at al. 25 
(2012b) was used (see Eq. 17), rather than considering them as continuous variables with a 26 
normal disturbance term. Thus, the measurement equation of a K-level indicator, with levels 27 
i1, i2, …, iK are specified as a function of τl,1, τl,2, …, τl,K thresholds that need to be estimated: 28 
 29 

Iln= { i1 if     -∞<LVn≤τl,1
i2 if      τl,1<LVn≤τl,2⋮
ik if τl,(Κ-1)<LVn<∞

 30 

 31 
The likelihood of an observed indicator value is given as (Eq. 17): 32 
 33 

 
LIln=I(Iln=i1) [ exp(τl,i1-ζlLVn)

1+exp(τl,i1-ζlLVn)]+k=2KI(Iln=ik) [ exp(τl,k-ζlLVn)
1+exp(τl,k-ζlLVn) -

exp(τl,(k-1)-ζlLVn)
1+exp(τl,(k-1)-ζlLVn)] + 

I(Iln=iK) [1-
exp(τl,(K-1)-ζlLVn)

1+exp(τl,(K-1)-ζlLVn)] 

(17) 

 34 
where ζl measures the effect of the latent variable on indicator Iln. If Eq. 16 is combined with 35 
Eq. 10 and 15, then the likelihood function of the model is given as (Eq. 18): 36 
 37 

 Ln=f(Yni2,Yni3,…,YniT)= ∫ ∫ ∫ ∏ ∏ f(Yni1,Yni2,Yni3,…,YniT|υn,ρn,ωn) ∏ LIln

K

l=1

f(υn)T

t=2

f(ρn)f(ωn)I

i=1

 

υ

dudρdω
 

ρ

 

ω

 (18) 

 38 
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In previous research (Hoyos et al., 2012; Hess et al., 2018), factor analysis approaches have 1 
been applied to investigate whether the indicators used are representative of the latent variables 2 
they should reflect. With reference to Arnett (1994), the AISS is decomposed in two subscales 3 
namely, “intensity” and “novelty”. The original decomposition of the scale is presented in 4 
Table A.1 of the Appendix. In the current work, the items of these two subscales were not 5 
directly used as indicators of sensation-seeking because they might not be representative of the 6 
sample (especially given the small sample size). Therefore, factor analysis approaches were 7 
used in order to identify the most representative items of sensation-seeking for the current 8 
sample. The results of this analysis are presented in Section 4.2. The model specification 9 
presented in this section will be reported as the “latent variable” model for the remainder of the 10 
paper (or Model 5). 11 
 12 
3.2 Significance of additive shift parameters 13 
The driving simulator scenario included two different road types (rural and urban) with 14 
different levels of road curvature and lateral furniture thus, different parameters were estimated 15 
for these variables based on the road type. In the model specification, some generic parameters 16 
were considered for both cases however, when a separate parameter needed to be introduced 17 
for the urban road, this was included as an additive shift to the generic respective parameter. 18 
In brief, the aforementioned specification can be generally described as (Eq. 19): 19 
 20 

 ω = ωg + ωu· (road type == urban) (19) 
 21 
where ωg is the generic parameter which in this case captures the common effect value of both 22 
road types and ωu is an additive shift to the generic parameter that differentiates the effect of 23 
urban road type from rural. This can be also seen similar to the interaction effect of some 24 
parameters with the road environment. Based on this model specification, the significance level 25 
of ω can be directly evaluated for rural roads however, this is not the case for urban roads as 26 
the significance level is the sum of two separate parameters. To address this issue and calculate 27 
the levels of significance for combination of parameters, the Delta method was applied, as 28 
described in Daly et al. (2012a). Based on this approach, the standard errors and thus the t-29 
ratios for a series of parameters of interest can be calculated as a function of the parameter 30 
values and the covariance matrix of the estimates. The approach is based on Cramer’s (1986) 31 
theorem. For further details, the reader is advised to read the work of Daly et al. (2012a). The 32 
authors provide a series of formulae for deriving standard errors for several cases including 33 
sum, difference, ratio and product however, the technique can be extended to further 34 
relationships among parameters. 35 
 36 
3.3 Individual-level parameters for residual analysis 37 
As shown in Eq. 15, the model specification assumes an i.i.d. normal disturbance term. This 38 
assumption can be confirmed by residual analysis i.e. by taking the difference between each 39 
observed and each predicted speed value. However, the model specification includes a series 40 
of random parameters which are the individual-level disturbance term, sensation-seeking and 41 
the random autoregressive disturbance. The parameter estimates related to these terms 42 
represent a set of distributions however, it is not known in which part of the distribution each 43 
individual lies. With reference to Thai et al. (2013) these individual values can be calculated 44 
based on the mean of the posterior distribution of each random variable. Following Train 45 
(2009) and according the Bayes’ rule, individual level values are calculated as (Eq. 20): 46 
 47 
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 υ̂n(θ)=E[υn|yn,xn,θ]= ∫ υh(υ|yn,xn,θ) dυ=
∫ υP(yn|xn,θ)g(υ|θ) dυ∫ P(yn|xn,θ)g(υ|θ) dυ

 (20) 

 1 
The quantity in the denominator is simply the value of the model likelihood. The numerator 2 
part is the integral of the density of υ in the sample, times the probability of observing a 3 
sequence of dependent variables yn under conditions xn if an individual’s parameter values 4 
were υ. The integrals in Eq. 19 do not have an analytical solution but can be simulated by 5 
drawing from the density of υ.  6 

 7 
4. Estimation results 8 
 9 
4.1 Explanatory variables 10 
The explanatory variables used for model estimation were already introduced in Section 2.2. 11 
The current section presents the frequency table (Table 3) of the main independent variables 12 
and the reference category used in each case, given their categorical nature. In addition to the 13 
previously mentioned variables, a variable named “Transition tile” dummy variable was 14 
included. These tiles were used in the experiment for a smoother transition between urban to 15 
rural areas and vice versa.   16 
 17 

Table 3: Explanatory variables frequency and reference categories 18 

Variable Values Frequency Min Max Mean Sd 

Mean speed per tile (m/s) - - 6.45 40.19 20.88 3.89 

Road type 
Rural (reference) 9632     

Urban 3414     

Radius Straight (reference) 2932 
    

(Rural) 252m 572     
 170m 5000     
 100m 1128     

Radius Straight (reference) 1956     
(Urban) 750m 1458     

Lateral furniture Asphalt (reference) 884     
(Rural) Grass 1420     

 Kerb 3116     
 Hedge 3146     
 Blockage 1066     

Lateral furniture Kerb 1836     
(Urban) Centre hatch 189     

 Edge hatch 600     
 Blockage (reference) 789     

Lane width 
Wide (reference) 6322     

Narrow 6724     

Direction of curvature 
Left (reference) 3984     

Centre 4888     
Right 4174     

Risk persistence 

Persistent – 250m 
(reference) 

8618 
    

Non-persistent – 20m 4428 
    

Oncoming traffic 
No (reference) 5510     

Yes 7536     

Transition tile 
No (reference) 12294     

Yes 752         

 19 
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4.2 Indicators of sensation-seeking latent variable 1 
Based on the methodology described in Section 3.1.4, sensation-seeking was considered as a 2 
latent variable in the model specification, using the responses from AISS as indicators. 3 
Following similar approaches of latent variable models (Hoyos et al., 2012; Hess et al., 2018) 4 
an initial principal component analysis was applied to investigate whether the main constructs 5 
of novelty and intensity components of the AISS rise from the data, and consequently decide 6 
which indicators to include in the model specification. The results for eigenvalues greater than 7 
0.9 indicated a 7-factor solution that each explained at least 5% of the variance however, these 8 
were not informative with respect to the indicators of sensation-seeking, since there was high 9 
dispersion of the questionnaire items, resulting in few of them in each factor. This finding can 10 
be an outcome of insufficient sample size. 11 
 12 
The approach described in the previous paragraph did not yield satisfactory results thus, an 13 
exploratory factor analysis (EFA) with varimax rotation was applied forcing the number of 14 
factors to two, given that the original AISS is decomposed in two main sub-scales. The detailed 15 
results of the factor loadings are presented in Table A.2 of the Appendix. The resulted factors 16 
did not follow the original decomposition of the scale but the questionnaire items of both 17 
novelty and intensity were mixed in Factor 1. Moreover, the loadings of Factor 2 showed some 18 
inconsistencies with respect to the expected direction of the signs which could be another 19 
indication of small sample size. Thus, items with parameters above 0.5 in Factor 1 were 20 
selected as indicators of the sensation-seeking latent variables. Similar approaches to derive 21 
the most representative survey items can be also found in other studies related to driving 22 
behaviour (e.g. Danaf et al., 2015). It should be mentioned that in order to reduce computational 23 
time of the latent variable models, only items with all 4 possible answers being chosen in the 24 
sample were considered. The selected items together with their original sub-scale are outlined 25 
in Table 4. 26 
 27 

Table 4: Selected sensation-seeking latent variable items 28 

 Item AISS sub-scale 

1 I can see how it would be interesting to marry someone from a foreign country Novelty 

2 I think it’s fun and exciting to perform or speak before a group Novelty 

3 If I were to go to an amusement park, I would prefer to ride the rollercoaster or other fast rides Intensity 

4 I would have enjoyed being one of the first explorers of an unknown land Novelty 
5 It would be interesting to see a car accident happen Intensity 
6 I like the feeling of standing next to the edge on a high place and looking down. Intensity 

7 
If it were possible to visit another planet or the moon for free, I would be among the first in line 
to sign up 

Novelty 

[Source: Arnett, 1994] 29 
 30 
4.3 Model evaluation and interpretation of parameter estimates 31 
The current section presents the model estimation results. A series of models was initially 32 
estimated based on the specifications presented in Section 3.1. The results of this process are 33 
outlined in Table 6. The models were then compared via the likelihood ratio test to investigate 34 
whether the stepwise addition of new terms significantly improved model fit (Section 4.3.1). 35 
Finally, the model with the best fit was augmented with the sensation-seeking latent variable. 36 
The interpretation of this model is presented in Section 4.3.2. 37 
 38 
4.3.1 Model evaluation 39 
A set of different specifications was investigated in order to determine the most appropriate 40 
model to approximate speed choice decisions. The sequence of model estimation followed the 41 
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formulations presented in Section 3.1 starting from the random heterogeneity and concluding 1 
at the latent variable model. With reference to Table 6, the gradual addition of extra terms 2 
resulted in the improvement of the log-likelihood (LL) scores. The significance of these 3 
improvements was evaluated via the likelihood ratio test. (e.g. Ben-Akiva and Lerman, 1985). 4 
In brief, the test can be defined as: 5 
 6 

LR= -2(LLR - LLU) 7 
 8 
where LR is the LL value of the restricted model (the one with fewer variables) and LU is the 9 
LL of the unrestricted model (the model that includes the extra variables). The resulting 10 
likelihood ratio (LR) statistic is asymptotically χ2-distributed and is compared with a critical 11 
value that depends on the degrees of freedom (difference in estimated parameters). If the LR 12 
statistic exceeds that threshold value, then the null hypothesis that both models perform equally 13 
is rejected. 14 
 15 
It is worth mentioning that the latent variable model was not included in the LR analysis as the 16 
inclusion of latent variables is not expected to result in any improvement in the model fit. To 17 
better illustrate this, two different LL scores were calculated for the latent variable model 18 
(Table 6), including and excluding the contribution of the indicators to the final LL value. The 19 
results show that the LL of the speed model component only, is almost the same for both the 20 
random autoregressive-heteroskedastic and the latent variable model. This has been the case 21 
also in other studies that used similar latent variable specifications (Kløjgaard & Hess, 2014; 22 
Sanko et al., 2014). In brief, the inclusion of sensation-seeking in the model provides 23 
behavioural insights regarding its effect of speed without however further increasing model fit. 24 
Further details regarding this issue are provided by Vij & Walker (2016). 25 
 26 
The results of the various likelihood ratio tests are presented in Table 5. In all cases, the null 27 
hypothesis is rejected at 99% level which implies that the newly added variables resulted in a 28 
significant improvement of goodness-of-fit. In particular, the improvement of model fit 29 
between the autoregressive (Model 2) and the random heterogeneity (Model 1) models implies 30 
a significant effect of past behaviour (i.e. mean speed at the previous tile) and correlation of 31 
disturbances across observations. This finding is expected given the time-series nature of the 32 
data and the short time distance between observation periods. The autoregressive model (Model 33 
2) was then compared with the autoregressive-heteroskedastic (Model 3) model. The 34 
significant improvement that stemmed from the inclusion of the scale parameter in the standard 35 
deviation of the density function (see Eq. 14) is an indication of heteroskedasticity in the model 36 
residuals between urban and rural areas. Finally, the treatment of the autoregressive disturbance 37 
as a random parameter (Model 4) significantly improved model fit. This outcome suggests that 38 
residual correlation varies across individuals and should be considered to capture more 39 
accurately the dependency between the disturbance terms and hence obtain more accurate 40 
parameter estimate and standard errors. 41 
 42 

Table 5: Likelihood ratio tests’ results 43 

Models LR Degrees of freedom (df) χ2(99%,df) 
Null 

hypothesis 
Model 2 vs Model 1 9660.28 3 11.34 Rejected 
Model 3 vs Model 2 125.32 1 6.63 Rejected 
Model 4 vs Model 3 454.42 1 6.63 Rejected 

 44 
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Based on the results presented this section, the random autoregressive-heteroskedastic was 1 
considered as the most preferred model for the analysis of speed choices. Thus, this model was 2 
re-estimated, including sensation-seeking via the process described in Sections 3.1.5 and 4.2, 3 
resulting in the latent variable model. The results of the latter were considered as the most 4 
representative and presented more detailed in Section 4.3.2.  5 
 6 
4.3.2 Interpretation of parameter estimates 7 
This section presents the interpretation of parameter estimates. Significance levels were 8 
examined with respect to the robust t-ratio values rather than the classical t-ratios. The rationale 9 
for this approach is explained in Section 4.4, where model validation is discussed. 10 
 11 
Most of the parameter estimates were significant at the 0.05 level (|Robust t-ratio|≥1.96) and 12 
had expected signs. In particular, the parameter of the urban environment dummy variable had 13 
a strong negative effect on speed which is consistent with the speed limit decrease in those 14 
areas, compared to the rural roads. Also, the parameter of narrow lane yielded a negative impact 15 
on speed while segments with non-persistent risk were related to significant speed increase. 16 
The presence of oncoming traffic had a negative effect on speed however, this was not 17 
statistically significant. 18 
 19 
The road radius and risk type parameters can be directly interpreted for the rural road 20 
environment based on the values in Table 6 however, this is not the case for the same 21 
parameters when they are related to the urban road areas, as they in fact represent the value of 22 
an additive shift to the respective parameters of the former (see Section 3.2). The actual values 23 
and significance of the latter parameter estimates were calculated via the Delta method and 24 
summarised in Table 7. The same table also includes all pairwise comparisons of radius and 25 
risk type parameters, together with the significance levels, as in the initial model estimation 26 
these values have been calculated with respect to a fixed reference category only. 27 
 28 
On rural roads, the radius had a gradually higher negative effect as its value decreased. Based 29 
on the results of the Delta method (Table 7), the reduction of speed was always significant 30 
when a radius category was compared to the immediate smaller one (for instance 170m to 31 
100m). The effect of road curvature for urban roads was also derived via the Delta method. 32 
More specifically, radius of 750m had a significant negative impact on speed, compared to 33 
straight road segments. 34 
 35 
The interpretation of the lateral risk type parameters follows the same approach as the road 36 
radius case. In particular, on rural road areas, all risk types had a negative impact on speed, 37 
compared to the asphalt reference category. However, the parameters of grass and kerb were 38 
not significantly different from asphalt which may imply that drivers do not observe distinct 39 
differences for these three types of risk. On the other hand, the presence of hedge and lane 40 
blockage had a significantly negative impact on speed. It is worth mentioning that the lane 41 
blockage was related to an approximate decrease of 2m/s in speed, compared to asphalt 42 
condition. With respect to the urban environment, in areas with centre hatch speed was 43 
significantly higher, compared to kerb, however, cycle lane and lane blockage had a negative 44 
and significant impact compared to the latter. Moreover, the impact of the two aforementioned 45 
risk types was negative and significant also compared to centre hatch. Finally, areas with lane 46 
blockage resulted in significant speed decrease compared to areas with cycle lane. 47 
 48 
Focusing on the non-road environment related parameters, a significant impact of the random 49 
heterogeneity term was found, which implies that apart from road and traffic characteristics, 50 
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Table 6: Parameter estimates of all speed choice models 1 

 2 
  Model1 Model2 Model3 Model 4 Model 5 

  Random heterogeneity model Autoregressive model 
Autoregressive-heteroskedastic 

model 
Random autoregressive-
heteroskedastic model 

Latent variable model 

  
Estimate t-ratio 

Rob. t-
ratio 

Estimate t-ratio 
Rob. t-
ratio 

Estimate t-ratio 
Rob. t-
ratio 

Estimate t-ratio 
Rob. t-
ratio 

Estimate t-ratio 
Rob. t-
ratio 

Initial observation speed - - - 0.1093 12.91 7.80 0.1016 11.56 6.85 0.0938 9.60 4.18 0.0987 14.04 6.28 
Intercept 25.234 161.69 203.08 11.1423 37.24 16.52 11.4038 48.07 30.70 12.7423 53.35 29.26 12.7303 122.27 45.30 
Transition area dummy 0.637 4.53 3.89 0.0858 0.92 0.75 0.0841 1.04 0.79 0.2101 2.76 2.17 0.2087 2.75 2.31 
Urban road dummy -4.1896 -28.58 -8.87 -2.5446 -23.06 -9.52 -2.5469 -23.84 -9.97 -2.831 -26.61 -12.27 -2.8202 -26.75 -13.20 
Narrow lane dummy -0.5395 -8.54 -5.33 -0.2536 -4.64 -4.43 -0.248 -4.36 -4.65 -0.2818 -5.00 -4.73 -0.2802 -4.94 -4.13 
Radius 1: 252m -2.3943 -19.42 -12.25 -2.388 -24.59 -14.85 -2.3573 -23.15 -14.18 -2.3038 -22.87 -13.27 -2.3 -22.24 -10.66 
Radius 2: 170m -3.6828 -56.16 -18.96 -3.1304 -66.24 -17.52 -3.1099 -63.59 -17.19 -3.0637 -62.73 -16.43 -3.0585 -61.43 -14.82 
Radius 3: 100m -5.7495 -60.38 -23.55 -3.9898 -53.92 -19.37 -3.9687 -51.27 -19.83 -3.9657 -52.14 -20.41 -3.964 -52.04 -20.10 
Radius urban dummy 
(750m) 

1.9963 12.79 10.56 1.8669 16.37 12.49 1.84 16.23 11.85 1.7737 16.06 11.06 1.7718 15.80 9.09 

Right curve dummy 0.1316 2.25 2.46 0.1771 4.11 4.07 0.1689 3.92 3.88 0.1661 4.01 3.78 0.1657 4.01 3.82 
Risk 1 grass - rural -0.3419 -3.14 -3.89 -0.1037 -1.25 -1.73 -0.1061 -1.23 -1.62 -0.2008 -2.33 -2.25 -0.1991 -2.13 -1.22 
Risk 2 kerb - rural -0.1613 -1.68 -1.95 -0.1774 -2.39 -3.10 -0.1704 -2.19 -2.72 -0.2119 -2.71 -2.50 -0.2114 -2.37 -1.28 
Risk 3 hedge - rural -0.8344 -8.73 -8.94 -0.6621 -9.13 -8.34 -0.6418 -8.42 -8.00 -0.6703 -8.77 -6.68 -0.6669 -7.53 -3.66 
Risk 4 blockage - rural -2.524 -19.66 -11.44 -1.9069 -19.83 -9.41 -1.896 -18.99 -9.87 -1.9229 -19.45 -9.25 -1.9228 -17.46 -7.43 
Risk 1 kerb - urban -1.0725 -6.36 -5.26 -0.9904 -8.45 -5.73 -0.9726 -8.65 -5.50 -0.898 -8.32 -4.72 -0.9007 -8.25 -4.23 
Risk 2 centre hatch - urban -1.1284 -5.01 -5.16 -0.4779 -3.15 -2.32 -0.4933 -3.60 -2.43 -0.5029 -3.90 -2.33 -0.507 -3.96 -2.49 
Risk 3 cycle lane - urban -0.8627 -5.05 -3.66 -0.7239 -6.31 -3.54 -0.736 -6.87 -3.64 -0.723 -7.13 -3.50 -0.7295 -7.19 -3.60 
Mid area dummy 0.1979 3.21 2.47 0.2134 4.15 4.36 0.2028 3.97 4.28 0.1529 3.06 2.73 0.1485 2.94 2.36 
Oncoming traffic dummy -0.5957 -12.50 -2.31 -0.0364 -0.77 -0.34 -0.0274 -0.57 -0.26 -0.1596 -3.09 -1.31 -0.1508 -3.15 -1.35 
Previous tile speed - - - 0.4953 51.83 20.79 0.4905 55.43 28.08 0.444 44.13 18.56 0.4427 55.82 19.04 
α -1.7067 -35.53 -25.96 -0.818 -7.35 -5.87 -0.8575 -9.27 -10.03 -1.068 -7.69 -4.16 -0.8286 -18.66 -8.14 
ρ - - - 0.2307 15.56 8.09 0.2559 17.75 7.65 - - - - - - 

σ 2.5331 161.30 19.47 1.7527 161.31 22.32 1.8299 133.77 20.86 1.8136 134.66 20.91 1.813 135.55 21.17 

σurb - - - - - - 0.8323 
-

12.59(1) 
-

3.76(1) 
0.7941 -16.55 -5.54 0.7949 -16.86 -5.71 

Sensation-seeking - - - - - - - - - - - - 0.2354 8.98 10.88 
ρμ - - - - - - - - - 0.2539 8.47 8.14 0.3081 16.66 9.10 
ρσ - - - - - - - - - 0.1867 12.79 14.20 0.1703 17.92 12.38 

LL - overall 
-

30731.94   
-25901.8 

  
-25839.14 

  
-25611.93 

  
-25873.62 

  

LL - speed component 
-

30731.94     
-25901.8 

    
-25839.14 

    
-25611.93 

    
-25610.59 

    

3 
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speed choice is also influenced by unobserved individual heterogeneity. To this, it should be 1 
also added the significant impact of the sensation-seeking latent variable that indicates a 2 
positive correlation with speed choice; increased sensation-seeking is related to driving at 3 
higher speeds. This finding suggests that psychological traits may be able to provide insights 4 
with respect to observed driving behaviour in a modelling context that can be also extended to 5 
future autonomous vehicle controller preferences. Some potential implications of this outcome 6 
are discussed in the Conclusion section. Moreover, it should be mentioned that the parameter 7 
estimates of the measurement model (Table A.3), had expected positive signs and almost all of 8 
them significant at the 0.05 level (apart from item 5). This finding supports the use of the items 9 
presented in Section 4.2 as indicators of sensation-seeking.   10 
 11 
Regarding the dynamic aspect of the model, the parameter of lagged speed had a positive 12 
impact which shows a correlation between past and current speed observation. Moreover, both 13 
the mean and the variance of the autoregressive disturbance were statistically significant which 14 
shows that i) the observations were serially correlated and ii) the level of serial correlation 15 
varies across individuals. 16 
 17 

 Table 7: Pairwise parameter comparisons and significance levels 18 

    Risk0 rural Risk1 rural Risk2 rural Risk3 rural Risk4 rural 

Risk 0 asphalt 
rural 

Estimate 0     
Rob. t-ratio -     

Risk 1 grass 
rural 

Estimate -0.1991 0    
Rob. t-ratio -1.22 -    

Risk 2 kerb rural 
Estimate -0.2114 -0.0124 0   

Rob. t-ratio -1.28 -0.29 -   

Risk 3 hedge 
rural 

Estimate -0.6669 -0.4678 -0.4555 0  

Rob. t-ratio -3.66 -6.34 -9.26 -  

Risk 4 blockage 
rural 

Estimate -1.9228 -1.7237 -1.7113 -1.2559 0 
Rob. t-ratio -7.43 -7.70 -8.28 -6.39 - 

    Risk1 urban Risk2 urban Risk3 urban Risk4 urban   

Risk 1 kerb 
urban 

Estimate 0     
Rob. t-ratio -     

Risk 2 centre 
hatch urban 

Estimate 0.3813 0    
Rob. t-ratio 3.27 -    

Risk 3 cycle lane 
hatch urban 

Estimate -0.2966 -0.6779 0   
Rob. t-ratio -5.05 -5.68 -   

Risk 4 blockage 
urban 

Estimate -0.823 -1.2043 -0.5264 0  

Rob. t-ratio -7.14 -6.97 -4.18 -   
    Radius0 rural Radius1 rural Radius2 rural Radius3 rural   

Radius 0 
Straight rural 

Estimate 0     
Rob. t-ratio -     

Radius 1 252m 
rural 

Estimate -2.3 0    
Rob. t-ratio -10.66 -    

Radius 2 170m 
rural 

Estimate -3.0585 -0.7586 0   
Rob. t-ratio -14.82 -8.03 -   

Radius 3 100m 
rural 

Estimate -3.964 -1.664 -0.9054 0  

Rob. t-ratio -20.10 -12.49 -9.00 -   

    Radius0 urban Radius1 urban       

Radius 0 
Straight urban 

Rob. t-ratio 0     
Estimate -  

   
Radius 1 750m 

urban 
Rob. t-ratio -0.5281 0    
Rob. t-ratio -6.00 -       

 19 
4.4 Model validation 20 
The assumption regarding the disturbance term of the speed model is that it is independent and 21 
identically normally distributed with a zero mean. Within an effort to ensure that these 22 
assumptions were met, the disturbance structure was decomposed introducing heterogeneity 23 
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across individuals, autoregressive and heteroscedastic disturbance which all had a significant 1 
effect. Although the assumption of normality is not essential to be tested in mixed effects 2 
models (Gelman & Hill, 2006), heteroscedasticity needs to be considered as it may lead to 3 
inconsistent standard errors and thus significance levels of parameters. 4 
 5 
The model specification included a series of random parameters that lead to the estimation of 6 
respective distributions. Thus, individual-level values were calculated from each distribution 7 
as described in Section 3.3. Residuals were then calculated as in Thai et al. (2013) as the 8 
difference between observed and fitted values. Heteroskedasticity was already considered in 9 
the model specification via the introduction of different variances of the i.i.d. disturbance for 10 
rural and urban environments that showed a significance difference between the two cases. 11 
Although the results in Table 6 did not always show large changes in the standard errors after 12 
the introduction of the scale term (as specified in Section 3.1.3), it was retained in the model 13 
specification as it significantly improved the overall model fit. The issue of heteroscedasticity 14 
was further investigated visually for these two road type cases, by plotting fitted values vs 15 
standardised residuals of the models (Figure 2). As shown in Figure 2 there is some indication 16 
of unequal spread of residuals across the fitted values and potentially heteroskedasticity. To 17 
that end, significance levels of parameters in all models were considered based on the robust 18 
(sandwich) standard errors (Freedman, 2006) that can also account for the effect of the panel 19 
nature of the data (Daly & Hess, 2010). 20 

 21 
Figure 2: Standardised residuals vs fitted values plots 22 

 23 
5. Conclusion 24 
The results presented in this paper were a part of a comprehensive study that aims in 25 
investigating drivers’ comfort within the context of autonomous vehicles. The development of 26 
human-like autonomous vehicle controllers, in terms of longitudinal and latitudinal behaviour, 27 
could increase drivers’ comfort levels and consequently their trust, acceptance and intention to 28 
use. The current approach focused on deriving indications about comfort related to speed via 29 
the observation of driving behaviour in a driving simulator environment. Speed choices were 30 
investigated in various contexts, including different road types, road geometry, lateral risk 31 
context, and oncoming traffic. Moreover, sensation-seeking was considered as a factor that 32 
explains observed speed choice behaviour. The analysis included the development of a series 33 
of models, where speed was treated as the response variable, while different levels of 34 
heterogeneity and correlation were gradually included in order to obtain more insights 35 
regarding their effects. Every new model was compared with the previous via the likelihood 36 
ration test to investigate improvements of model fit. Model fit could be further improved via 37 
the introduction of more random parameters in the explanatory variables, and also allowing for 38 
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the correlation among them. However, owing to specification complexity and computational 1 
cost, we decided to account for random heterogeneity only in the disturbance terms of the 2 
model, and no more random parameters were considered. This approach is possibly 3 
significantly limiting the capability of the model to capture unobserved heterogeneity and 4 
reducing the overall fit, however, in terms of model interpretation, the fixed parameters are still 5 
showing significance, and are consistent with expected results that provide useful insights. 6 
 7 
With respect to the main findings, road environment had, as expected, a negative impact on 8 
speed, given that speed limit is lower in urban areas. Moreover, a significant impact of road 9 
radius was found; decrease of radius resulted in speed reduction in both rural and urban road 10 
environments. Also, narrower lanes had a negative impact on speed. Regarding the effects of 11 
lateral risk in rural roads, the negative effect of grass was very similar, and not significantly 12 
different from asphalt. However, the presence of hedge, and any type of partial lane blockage, 13 
resulted in gradual, and significant speed reduction. Similarly, in the urban environment, cycle 14 
lanes and partial lane blockage had the most negative, and significant, impact on speed. Finally, 15 
in areas where the lateral risk was not persistent (i.e. risk element covered only 20m out of the 16 
250m of a tile), parameter estimates indicate a significant increase in speed, compared to the 17 
segments with persistent risk. 18 
 19 
Given the panel nature of the data, the effects of several types of correlation and heterogeneity 20 
was considered, on top of the impact of the road environment. The results of the latent variable 21 
model (Model 5) suggested that there is a part of variance in speed that is related to unobserved 22 
drivers’ characteristics. Moreover, average speed in the previous road segment and the 23 
autoregressive disturbance term also had a significant impact on speed. With respect to the 24 
latter, the introduction of a normally distributed autoregressive term improved model fit 25 
suggesting that time correlation varies across individuals. Finally, a part of the individual 26 
unobserved heterogeneity was explained via the sensation-seeking latent variable that had a 27 
significant and positive impact on speed. This finding implies that participants who determined 28 
themselves as higher sensation-seekers also drove faster in the driving simulator scenarios.  29 
 30 
When summarising the findings of the current analysis, it becomes evident that comfort, as 31 
expressed through observed behaviour, is a function both of the road environment and 32 
individual preferences. This finding suggests that future autonomous vehicle controllers may 33 
need to adapt their behaviour based on the road context, in order to improve perceived comfort 34 
to the maximum feasible extent. Moreover, the significant impact of sensation-seeking and 35 
unobserved driver heterogeneity implies the potential need for personalised autonomous 36 
vehicle controllers in order to match vehicle behaviour with the preferences of the end user. 37 
For instance, high sensation-seekers may prefer or feel comfortable when using faster 38 
controllers, compared to other users. This approach is in line with findings in the existing 39 
relevant literature that show a preference of drivers for autonomous driving styles similar or 40 
close to what they perceive as their own (Basu et al., 2016; Hartwich et al., 2018; Yusof et al., 41 
2016). However, the feasibility, practicality and necessity of the latter, together with its 42 
implications on the road networks, is yet to be investigated in future research. 43 
 44 
Despite the promising and significant results, the driving simulator nature of the data needs to 45 
be considered before deriving any outcomes as secure and robust, as there might be 46 
fundamental incongruence in behaviour, compared to the real world. Some steps towards the 47 
future validation of the outcomes involve the development of dynamic driving simulator 48 
scenarios, with higher variance in the road environment and risk levels, and also the 49 
comparison of driving behaviour between a driving simulator and the real road. Another aspect 50 
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that can be investigated is evaluation of the performance of autonomous vehicles with 1 
controllers developed as variants of the driving behaviour observed in the current study. These 2 
issues have since been investigated in the HumanDrive project, and will hopefully provide 3 
valuable insights, and a better understanding of users’ preferences, that could assist the 4 
automotive industry in the design of autonomous vehicles in the future. 5 
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Appendix 1 
 2 

Table A.1: The original AISS decomposition 3 

Novelty subscale 
1 I can see how it would be interesting to marry someone from a foreign country. 
3 If I have to wait in a long line, I'm usually patient about it.(-) 
5 When taking a trip, I think it is best to make as few plans as possible and just take it as it comes. 
7 I think it's fun and exciting to perform or speak before a group. 
9 I would like to travel to places that are strange and far away. 

11 I would have enjoyed being one of the first explorers of an unknown land. 
13 I don't like extremely hot and spicy foods. (-) 
15 I often like to have the radio or TV on while I'm doing something else, such as reading or cleaning up. 
17 I think it's best to order something familiar when eating in a restaurant. (-) 
19 If it were possible to visit another planet or the moon for free, I would be among the first in line to sign up. 

Intensity subscale 
2 When the water is very cold, I prefer not to swim even if it is a hot day. (-) 
4 When I listen to music, I like it to be loud. 
6 I stay away from movies that are said to be frightening or highly suspenseful. (-) 
8 If I were to go to an amusement park, I would prefer to ride the rollercoaster or other fast rides. 

10 I would never like to gamble with money, even if I could afford it.(-) 
12 I like a movie where there are a lot of explosions and car chases. 
14 In general, I work better when I'm under pressure. 
16 It would be interesting to see a car accident happen. 
18 I like the feeling of standing next to the edge on a high place and looking down. 
20 I can see how it must be exciting to be in a battle during a war. 

[Source: Arnett, 1994] 4 
 5 

Table A.2: Rotated Component Matrix of 2-factor EFA solution 6 

 

Factor 
1 2 

I can see how it would be interesting to marry someone from a foreign country 0.522 -0.609 

When the water is very cold, I prefer not to swim even if it is a hot day     

If I have to wait in a long line, I’m usually patient about it   0.617 
When I listen to music, I like it to be loud     
When taking a trip, I think it is best to make as few plans as possible and just take it as it 
comes 

  0.607 

I stay away from movies that are said to be frightening or highly suspenseful     
I think it’s fun and exciting to perform or speak before a group 0.594   
If I were to go to an amusement park, I would prefer to ride the rollercoaster or other fast 
rides 

0.637   

I would like to travel to places that are strange and far away 0.751   
I would never like to gamble with money, even if I could afford it     
I would have enjoyed being one of the first explorers of an unknown land 0.722   
I like a movie where there are a lot of explosions and car chases     
I don’t like extremely hot and spicy foods     
In general, I work better when I’m under pressure     
I often like to have the radio or TV on while I’m doing something else, such as reading or 
cleaning up 

    

It would be interesting to see a car accident happen 0.594   
I think it’s best to order something familiar when eating in a restaurant     
I like the feeling of standing next to the edge on a high place and looking down. 0.629   
If it were possible to visit another planet or the moon for free, I would be among the first in 
line to sign up 

0.762   

I can see how it must be exciting to be in a battle during a war 0.685   
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Table A.3: Measurement equations estimates with random autoregressive disturbance 1 

 Estimate t-ratio Rob. t-ratio 

Impact of the latent variable    

ζ1 0.9259 2.34 2.13 
ζ2 1.0439 2.53 2.41 
ζ3 1.1361 2.81 2.92 
ζ4 1.9595 2.99 3.88 
ζ5 0.5687 1.60 1.58 
ζ6 1.3674 2.63 2.97 
ζ7 2.4207 2.41 2.31 

 
   

Thresholds estimates    

τ1,1 -3.4933 -3.84 -3.72 
τ1,2 -1.9509 -3.35 -4.40 
τ1,3 0.5272 1.29 1.23 
τ2,1 -1.1107 -2.30 -2.26 
τ2,2 0.6145 1.43 1.49 
τ2,3 1.7339 3.33 3.42 
τ3,1 -2.5976 -3.79 -3.41 
τ3,2 -0.4041 -0.90 -0.99 
τ3,3 0.4588 1.04 1.12 
τ4,1 -5.0969 -3.45 -4.97 
τ4,2 -2.2326 -2.96 -3.44 
τ4,3 0.8044 1.39 1.53 
τ5,1 -0.1417 -0.38 -0.36 
τ5,2 0.9691 2.35 2.46 
τ5,3 3.5912 3.48 3.45 
τ6,1 -0.5224 -1.11 -1.09 
τ6,2 1.2440 2.34 2.55 
τ6,3 2.8512 3.72 3.72 
τ7,1 -5.2138 -2.59 -2.76 
τ7,2 -1.9145 -2.11 -2.28 
τ7,3 1.6997 2.32 2.24 

 2 
 3 


