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Abstract

The fossil record provides an invaluable insight into the temporal origins of extant lineages

of organisms. However, establishing the relationships between fossils and extant lineages

can be difficult in groups with low rates of morphological change over time. Molecular dating

can potentially circumvent this issue by allowing distant fossils to act as calibration points,

but rate variation across large evolutionary scales can bias such analyses. In this study, we

apply multiple dating methods to genome-wide datasets to infer the origin of extant species

of Isoetes, a group of mostly aquatic and semi-aquatic isoetalean lycopsids, which closely

resemble fossil forms dating back to the Triassic. Rate variation observed in chloroplast

genomes hampers accurate dating, but genome-wide nuclear markers place the origin of

extant diversity within this group in the mid-Paleogene, 45–60 million years ago. Our geno-

mic analyses coupled with a careful evaluation of the fossil record indicate that despite

resembling forms from the Triassic, extant Isoetes species do not represent the remnants of

an ancient and widespread group, but instead have spread around the globe in the relatively

recent past.

Introduction

Determining the evolutionary relationships and divergence times between lineages is crucial

for understanding the processes that generate diversity and evolutionary novelty [1–3]. Fossils

provide a glimpse of the past, by preserving the anatomical features of organisms that existed

millions or hundreds of millions of years ago. The fossil record is however very incomplete

and often needs to be combined with analyses of extant diversity to infer periods of diversifica-

tion and extinction of different lineages [4]. A fossil assigned to a lineage of organisms based

on shared morphology provides a minimal age for the group, and can therefore help date evo-

lutionary events. Putative causal factors can then be inferred for these events, such as the Chic-

xulub meteorite impact and the disappearance of the non-avian dinosaurs [5], or the co-

incident radiation of angiosperm and insect lineages [6]. In many cases, however, fossils
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assignable to particular extant lineages of organisms are unavailable, because of a lack of read-

ily fossilisable tissues (e.g. jellyfish) or because the organisms live in environments that do not

favour fossilization (e.g. cacti). In addition, morphological traits preserved in fossils may not

vary sufficiently to distinguish multiple extant lineages, preventing a precise assignment of the

fossils [7–9]. When this pattern of conservation concerns a large number of morphological

traits, the extant species are referred to as “living fossils”, a category that includes the coela-

canth, cycads, sturgeons, platypus and lungfish that closely resemble fossils from the Mesozoic

[10–14]. Clearly a lack of morphological change does not preclude changes in traits poorly rep-

resented in the fossil record, such as biochemical or behavioural changes–nevertheless, their

unusually conserved morphology through time has long attracted the interest of biologists [15,

16]. This morphological stasis is often associated with decline–with current distributions of

“living fossil” taxa interpreted as the remnants of larger ancestral ranges [17, 18], and extant

species being the last members of ancient lineages diverging long in the past [19, 20]. However,

this morphological uniformity and the resulting difficulties in fossil assignment mean that

these hypotheses are difficult to test from the fossil record alone.

Analyses of DNA sequences over the last few decades have resolved the phylogenetic rela-

tionships between many extant lineages, and large numbers of selectively neutral changes in

the genomes allowed inferring accurate phylogenies even for the most morphologically uni-

form organisms [21, 22]. Molecular divergence in parts of the tree with informative fossils can

then be used to time-calibrate molecular changes in the rest of the tree, allowing inference of

divergence times of groups of organisms lacking an appropriate fossil record [23–26]. This

molecular dating technique, alongside other methods, has been used to investigate the evolu-

tionary dynamics of some “living fossil” groups. In some cases, some of the expected features

of “living fossil” groups are found, such as ancient within-group divergence, extant distribu-

tions resulting from continental drift tens of millions of years ago, low levels of genetic diver-

sity and small ranges (e.g. coelacanths, the Cupressaceae, horshoe crabs [17, 27, 28]). In other

groups such as birchirs [29], tadpole shrimp [30], cycads [13], bryophytes [31] and Ginkgo

[26], however, extant diversity originated more recently than their conserved morphology

would suggest, indicating complex evolutionary dynamics for some “living fossil” taxa. Age

estimates frommolecular dating techniques remain however sensitive to the treatment of fossil

data, variability in the rates of nucleotide substitutions between molecular markers and spe-

cies, and the correct alignment of nucleotide markers [24, 32–37]. These problems are exacer-

bated when the only available calibration points are distant from the group of interest, as is by

definition the case for “living fossils” [28, 38–41]. Each possible source of error therefore needs

to be isolated and carefully considered.

The lycopod genus Isoetes exemplifies many of the problems of “living fossil” taxa. The

genus has long been of interest due to its status as the last lineage of the isoetalean lycopods.

This group, known from at least the late Devonian, dominated terrestrial floras in the Carbon-

iferous [42]. The extant Isoetes genus is a small herbaceous aquatic or semi-aquatic plant, gen-

erally lacking a stem and consisting of a number of stiff leaves atop a woody corm [43]. It

demonstrates a number of unusual features such as roots comparable to fossil stigmarian root-

lets [44] and aquatic Crassulacean Acid Metabolism (CAM) [45]. Fossils resembling the Isoetes

growth form are found in the Triassic onwards, although their exact affinities and relationships

to Isoetes are unclear [46–48]. A variety of morphological features (such as sunken sporangia,

an elaboration of the basal part of the ligule into a glossopodium, and a velum or labium cover-

ing the sporangium) that characterise extant Isoetes appear at this time, although no single fos-

sil displays all of these features [49]. The appearance of Isoetites rolandii in the Jurassic

represents the earliest clear example of a isoetalean lycopsid containing all the major features

uniting modern Isoetes, including the loss of both vegetative leaves and an elongating stem [49,
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50], although elongated-stem forms such as Nathorstiana persisted until the Early Cretaceous

[51]. Fossils of plants presenting the modern Isoetes growth form (e.g. I. horridus) are subse-

quently found from the Early Cretaceous and into the Tertiary [46, 48]. Within extant Isoetes

lineages, a number of reductions from three to two lobed corms have occurred [52], along

with transitions to a variety of habitats from ephemeral pools to oligotrophic lakes [43]. In

summary, the overall morphology of Isoetes appears to have persisted virtually unchanged

since at least the Jurassic, and the general growth habit in the lineage is potentially as old as the

Triassic.

The close resemblance of fossil taxa to modern Isoetes suggests the extant species could be

the remnants of a very ancient genus. However, establishing the relationship between these

fossils and modern Isoetes has proven difficult due to the highly conserved morphology of the

genus [18, 42, 48, 50]. The more than 200 extant Isoetes species have a global distribution, yet

display very little morphological variation–features such as spore morphology, corm lobation

and habitat are currently used to distinguish extant species, but many of these features are

homoplastic or variable within species [43, 50, 52–54]. Morphology and the fossil record alone

therefore provide limited insights into the relationships among extant and fossil species of Iso-

etes, restricting our ability to understand the temporal origins of extant Isoetes species

diversity.

The relationships between extant species of Isoetes have been inferred using molecular phy-

logenetics [18, 55, 56], but attempts at linking fossils and extant species have not always been

successful. Taylor and Hickey [43] hypothesised based on shared leaf morphology that a small

group of South American species and fossil Isoetes represented the earliest split within the

genus, but molecular phylogenetics falsified this hypothesis for extant species [18, 55]. Recent

molecular dating studies suggest an origin of extant Isoetes species diversity in the Triassic to

Jurassic, with species distributions consistent with the breakup of the Gondwana superconti-

nent [18, 57, 58]. These studies were, however, based on a limited number of markers, mainly

from chloroplast genomes, where high rate variation can make dating estimates especially

dependent on molecular clock model assumptions [24]. This is a potentially significant source

of error given the ancient divergence between Isoetes and its sister group Selaginella, resulting

in a large genetic distance between the nearest calibration point and our node of interest [48,

59]. We therefore decided to re-evaluate the divergence times within Isoetes using a combina-

tion of phylogenomic methods capturing markers spread across the genomes of numerous

land plants.

In this study, we generate transcriptomes and genomic datasets for multiple Isoetes species

and apply multiple molecular dating approaches to estimate the time to the most recent com-

mon ancestor of extant Isoetes based on nuclear and plastid genomes. Our results shed new

light on the age and evolutionary dynamics of this “living fossil” lineage, and show how careful

integration of large genomic datasets can help analyses of groups with a poorly informative

fossil record.

Materials andmethods

Ethics statement

Live plants were collected from Cwm Idwal, UK, with permission from Natural Resources

Wales, the Snowdonia National Park Authority, and the landowners (National Trust). No per-

mit was required for this collection and no protected species were sampled. DNA was acquired

from preserved modern specimens permanently deposited at Kew Gardens, UK–specimen

numbers are available in S1 Table.
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General approach

In this study, we selected six Isoetes for generating genome-wide DNA datasets–I. coromande-

lina (this specimen is referred to as I. coromandelina sensu lato to reflect the taxonomic com-

plexity of this species–see Pantil and Rajput [60]), I. humilor, I. elatior, I. nuttallii, I. lacustris

and I. andicola. These were selected to capture the deeper divergence events within this group

based on previous molecular studies [18]. Analyses of nuclear ribosomal DNA available for a

large number of Isoetes confirmed that the last common ancestor of the selected species likely

corresponds to the last common ancestor of extant Isoetes, and the low branch length variabil-

ity throughout the genus suggests the sequenced species represent a good sample of evolution-

ary rates within the genus (Fig 1). Sparse taxon sampling has been shown to significantly affect

Fig 1. Maximum likelihood phylogram of Isoetes nuclear ribosomal internal transcribed spacer. Branch lengths are
proportional to the expected number of substitutions per site, with scale bar representing 0.05 substitutions per site. Branches
in bold have bootstrap support values greater than 90. Species in bold represent data generated in this study; nuclear
ribosomal internal transcribed spacers for other Isoetes are from those used in Larsén and Rydin [18].

https://doi.org/10.1371/journal.pone.0227525.g001
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estimated dates in some molecular dating studies [61, 62], although not in every case [63, 64].

Rate heterogeneity likely plays an important role in the effect of sparse taxon sampling on the

accuracy of molecular dating, with high levels of rate heterogeneity demanding more sampling

[62]. The relatively low levels of rate heterogeneity within Isoetes (Fig 1) suggest it is a suitable

group to perform molecular dating with a relatively small number of taxa. To further investi-

gate the impact of our sampling scheme, we reanalysed the dataset of Larsén and Rydin [18],

which contains 45 Isoetes species including all the major clades identified by previous studies

of Isoetes [56, 65]. This dataset was reanalysed using the same constraints and BEAST settings

as Larsén and Rydin [18], but with the 45 Isoetes species used reduced to the 6 closest relatives

of our chosen species (I. asiatica, I. coromandelina sensu lato, I. drummondii, I. echinospora, I.

kirkii and I. storkii). This resulted in an estimated crown date of Isoetes of 153.4 Ma (53.9–

277.3 95% CI), only a 7% increase compared to the full species sampling. This indicates limited

taxon sampling should not substantially alter the estimation of the Isoetes crown node date.

DNA from these species was then used to generate genome-wide datasets, and different

genome partitions were analysed in isolation to get accurate estimates of divergence times.

Herbarium specimens represent a useful source of DNA, particularly for globally distributed,

hard-to-access groups such as Isoetes [66, 67]. Low-coverage whole-genome scans can be

applied to these samples, and will yield high coverage for genomic fractions present as multiple

copies, such as the organellar genomes [68]. However, highly variable evolutionary rates in

chloroplast markers have been reported from seed plants [69, 70], which potentially affect the

results of dating methods that differ in their assumptions of rate heterogeneity [24].

Previous studies of the chloroplast marker rbcL indicate much higher rates of sequence evo-

lution in Selaginella than in Isoetes [18, 70, 71]. Nuclear markers can be more useful for molec-

ular dating if they show less variation in rates among branches [24] as suggested from large

scale embryophyte phylotranscriptomics [72, 73]. Genome skimming can provide nuclear

sequences, but low coverage makes de novo assembly difficult. However, the sequencing reads

can be mapped to a reference dataset, providing phylogenetically informative characters [74,

75]. A reference genome is available for Selaginella, but it is too distant to allow accurate map-

ping of reads from Isoetes. Transcriptomes provide high coverage of expressed protein-encod-

ing genes, which represent regions of the genome allowing read mapping across distinct

species [74, 75]. We consequently decided to generate and assemble a transcriptome for a sin-

gle Isoetes species, which was used as a reference to map reads from low-coverage whole-

genome sequencing datasets obtained from the other Isoetes species sampled from herbarium

collections. The sequencing data were used to obtain chloroplast and nuclear alignments for

five Isoetes species as well as a number of other land plants (mosses, ferns, lycopods, gymno-

sperms and angiosperms) sequenced in other studies. The phylogenetic breadth of the datasets

allowed the incorporation of fossil evidence providing calibration points spread across the

tree.

Sequence acquisition

Live Isoetes lacustris were sampled from Cwm Idwal, Wales and maintained at the University

of Sheffield in 40 x 30 x 25 cm transparent plastic containers, with a substrate of sand to a

depth of 5 cm, and the containers filled to the top with deionised water. These were placed in a

Conviron growth chamber with a 12-h day/night cycle, 495 μmol m2s-1 light, temperature at

20˚C during the day and 18˚C at night, and CO2 at 400 ppm for six days. To maximise the

number of transcripts retrieved, leaves from three individuals were sampled 3 hours after dark

and 3 hours after light and stored immediately in liquid nitrogen. We also generated a tran-

scriptome for Littorella uniflora (Plantaginaceae), another species of aquatic plant that shares
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aquatic CAM photosynthesis [76]. Individuals from this species were also sampled from Cwm

Idwal and were grown under a variety of conditions before sampling their leaves as described

above. Dried specimens were deposited in the Sheffield University Herbarium (I. lacustris–

DW1, L. uniflora–DW2).

RNA was extracted from the sampled leaves using the RNeasy1 Plant Mini Kit (Qiagen),

following the manufacturer protocol, with the addition of on-column DNase I digestion (Qia-

gen RNase-Free DNase Set). We then added 2.5 μl SUPERase-InTM RNase inhibitor (Invitro-

gen) to 50 μl of extracted RNA to stabilise it. RNA was quantified using a gel electrophoresis,

RNA 6000 Nano chips (Aligent) in an Aligent 2100 Bioanalyser, and a Nanodrop 8000. Sam-

ples were then prepared for Illumina sequencing using the TruSeq1 RNA Sample Prep Kit v2

(Illumina). Paired-end sequencing was performed on an Illumina HiSeq 2500 platform avail-

able at Sheffield Diagnostic Genetics Service in rapid mode for 100 cycles, with 24 libraries

pooled per lane of flow cell (other samples were from the same or different projects).

DNA from herbarium specimens of five Isoetes species were acquired from the DNA Bank

from the Royal Botanical Gardens, Kew (S1 Table). This was supplemented with one silica gel

dried leaf each of I. lacustris and L. uniflora collected from the field as described previously.

Whole genome sequencing of these seven samples was performed at the Genotoul from the

University of Toulouse, using previously described protocols [74, 77]. Each sample was

sequenced on a 24th of a lane of a flow cell, with other samples from various projects. Raw

sequencing reads were cleaned using NGS QC toolkit v2.3.3 [78] by removing adapter

sequences, reads with ambiguous bases and reads with less than 80% of positions with a quality

score above 20. Low quality bases (q<20) were removed from the 3’ end of remaining reads.

Species identity and branch length variability within the genus were assessed by assembling

the nuclear ribosomal internal transcribed spacer (nrITS) using NOVOPlasty 2.5.9 [79]. The

assembled sequences were aligned to nrITS sequences used in Larsén and Rydin (2015) [18]

using MAFFT v7.164 [80]. A phylogeny for this marker was then produced using RAxML

v8.2.11 [81], with a GTR + G + I substitution model, identified as the best-fit substitution

model through hierarchical likelihood ratio tests (Fig 1).

Chloroplast data matrix

Cleaned reads from Isoetes and Littorella corresponding to the chloroplast genomes were

assembled using NOVOPlasty, with a 39-bp kmer and a seed sequence of the I. flaccida chloro-

plast genome [71]. In cases where a circular chloroplast genome was not produced, contigs

were aligned to the I. flaccida chloroplast genome using blastalign [82], and reads correspond-

ing to regions of the reference chloroplast genome not covered by the contigs were used as

seed sequences to assemble new contigs. All contigs were subsequently realigned to the refer-

ence genome, and overlapping contigs were merged. Chloroplast genome assemblies from 24

additional species representing the major embryophyte taxa, including two Selaginella species,

were downloaded from NCBI database [83–101] (S2 Table).

Chloroplast protein-coding genes were identified from all chloroplast genomes using

DOGMA [102] and coding sequences were extracted using TransDecoder v2.1.0 [103]. A total

of 64 genes were identified and aligned by predicted amino acids using t-coffee [104] and

MAFFT. Gene alignments were manually inspected and trimmed using AliView [105]. Twelve

of them (clpP, cysaA, psi_psbT, rpl16, rpl21, rps15, ycf1, ycf2, ycf3, ycf10, ycf66, ycf68) were dis-

carded either due to poor homology or alignment difficulties, or because sequences were

obtained from less than 10 of the 33 chloroplast genomes analysed. The remaining 52 chloro-

plast genes were concatenated, producing a 55,542 bp matrix, with 33,582 polymorphic and

25,501 parsimony informative sites. A maximum likelihood phylogeny was generated using
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RAxML, with a GTR + G + I model of sequence evolution, determined to be the best-fit model

using hierarchical likelihood ratio tests. The same matrix was later used for molecular dating.

Nuclear data matrices

Cleaned RNAseq reads of I. lacustris were assembled using Trinity v2.3.2 [103], resulting in

285,613 contigs with an average length of 689 bp. A similar procedure yielded 159,920 contigs

for L. uniflora, with an average length of 769bp. For each species, the longest open reading

frames (ORFs) were extracted using TransDecoder, and for each unigene the contig with the

longest ORF was used to build a reference dataset. Cleaned reads from the whole-genome

sequencing for each of the Isoetes species were then separately mapped to this reference dataset

using bowtie2 v2.3.2 [106] in local mode to avoid excluding reads overlapping exon/intron

boundaries. Alignments with MAPQ quality below 20 were excluded using SAMtools v1.5

[107]. The SAMtools mpileup utility was then used to generate for each species consensus

sequences from the reads mapping to each I. lacustris transcript.

Gene duplication and losses are common in nuclear genomes–polyploidy is common in

Isoetes, including in I. lacustris which has previously been identified as a decaploid [53]. There-

fore, a combined reciprocal best blast and phylogenetic approach was adopted to identify

groups of co-orthologs covering I. lacustris and the other land plants. Families of homologous

ORFs generated by the method of Vilella et al. [108] were downloaded from EnsemblPlants. In

total, 4,516 homolog families highly conserved among land plants (containing at least one

sequence from Physcomitrella patens, Selaginella moellendorffii, Amborella trichopoda, Oryza

sativa, Arabidopsis thaliana and Theobroma cacao) were used for subsequent ortholog

identification.

Transcriptome and coding sequence data from seven additional species representing differ-

ent embryophyte groups were retrieved from the literature [109–115] (S3 Table) and ORFs

were extracted. Reciprocal best protein BLAST searches assigned ORFs of I. lacustris, L. uni-

flora and the additional embryophyte species to homolog families, with a minimummatch

length of 50 amino acids and e-value of 10−7. The expanded homolog families were then

aligned according to their protein sequences using MAFFT, and phylogenies were constructed

using RAxML and the GTR + G + I model, which fits most genes and is therefore appropriate

for constructing large numbers of gene trees [116–118]. The longest sequence of each mono-

specific clade of sequences belonging to the same species was identified using custom scripts to

remove transcripts representing the same gene or genes that duplicated after the divergence

from all other species. These sequences were then realigned and a new phylogeny was inferred.

Sets of 1:1 orthologs were then identified as clades containing exactly one gene per species,

resulting in 30,258 groups of co-orthologs. Of these, 2,165 contained more than nine species,

including I. lacustris, S.moellendorffii and either P. patens or Ceratodon purpurea, which were

needed to use some of the fossil calibration points. By restricting our analysis to these 1:1

orthologs, we eliminate the possibility of non-orthologous genes resulting from gene or

genome duplications being considered as orthologs. These 2,165 orthogroups were realigned,

and consensus sequences of the genome skimming data were added to the alignments. Only

the 782 orthogroups containing sequences for I. coromandelina sensu lato, which is necessary

to capture the earliest split among extant species of Isoetes [18] (Fig 1), were considered fur-

ther. New phylogenetic trees were inferred from these datasets, and genes failing to recover the

monophyly of the vascular plants, Isoetopsida (Isoetes plus Selaginella, [119]) or Isoetes were

considered phylogenetically uninformative and excluded. The remaining 292 datasets were

deemed suitable for the phylogenetic problem addressed here, and were used for molecular

dating. A phylogenetic tree was inferred separately for each of these markers, and a maximum

PLOS ONE Molecular dating of Isoetes using phylogenomics

PLOSONE | https://doi.org/10.1371/journal.pone.0227525 June 18, 2020 7 / 28

https://doi.org/10.1371/journal.pone.0227525


likelihood phylogeny was also inferred using the 694,437 bp concatenated alignment, which

was 41.14% complete with 443,864 polymorphic and 316,350 parsimony informative sites.

Calibration points

Time-calibrated trees were inferred from the different markers using the same set of calibration

points. To date the crown node of extant Isoetes, a fossil constraining the crown node of extant

Isoetes would be ideal–such a constraint would require a fossil containing a synapomorphy

from one of the two descendant branches of this node. Previous studies have identified a geo-

graphically diverse group of Isoetes including I. coromandelina sensu lato as the outgroup to the

rest of the Isoetes [18, 56, 65]. Whilst the I. coromandelina complex itself contains a number of

features initially thought to identify this as diverging earliest from other extant members of the

group, its presence within “Clade A” identifies these features as derived [18, 55]. No morpholog-

ical features reliably distinguishing Clade A and the rest of the Isoetes appear to exist [18, 55].

Therefore, no fossil will contain features distinguishing these two groups, so fossils cannot pro-

vide a hard minimum age for this node. Within the Isoetes crown group, no morphological fea-

tures clearly divide different clades [18, 42, 58]. A number of features vary between taxa and

clades, such as corm lobation and glossopodium structure, but these are either not widely char-

acterised across the genus or show multiple transitions within clades [52, 120]. The fossil record

therefore does not allow implementing hard minimum ages for nodes within Isoetes.

The nearest node to the Isoetes crown node for which reliable synapomorphies are available

is the crown node of the Isoetopsida (Isoetes plus Selaginella). The Isoeptopsida are a well sup-

ported clade appearing in the Devonian, containing synapomorphies such as a heterospory

and a ligule [119, 121]. Isoetalean lycopsid trees are considered to form a clade within the Isoe-

tales, being more closely related to Isoetes than Selaginella. This assessment is based on shared

synapomorphies including bipolar growth from a shoot like “rhizomorph” structure and sec-

ondary woody tissue [48]. Arborescent lycopsids are known from the Frasnian [122, 123]

(382.7–372.2 Ma), although the rhizomorph root structure could not be identified in these

early fossils. However, discovery of a putatively homosporous arborescent lycopsid (the Isoe-

tales are heterosporous) suggests that arborescence could be a convergent phenotype within

the lycopods [124]. As multiple examples of isoetalean arborescent lycopsids, including rhizo-

morphs, are known from Famennian strata [125, 126] (358.9 to 372.2 Ma), a minimal age of

358 Ma was implemented using a uniform distribution between 358 and 485 Ma.

A maximum age constraint of the crown node of all land plants was set based on the

appearance of cryptospores in the fossil record. These abundant spores are considered a likely

synapomorphy of early land plants [127]. Their appearance in the fossil record is therefore

likely to occur soon after the origins of land plants, making them appropriate for setting a

maximum age for land plants [18, 128]. The earliest unequivocal cryptospores are found in the

early Middle Ordovician [129] (473–471 Ma). However, pre-Middle Ordovician terrestrial

sediments are rare [130], and as no unequivocal cryptospores are found in pre-Ordovician

rocks [128, 131], the beginning of the Ordovician (485 Ma) was used as a conservative upper

limit for the age of land plants. Whilst other molecular dating studies have estimated the age

for this node to be comparable or older than this date (e.g.[132–134]), these are based on com-

parable fossil evidence but with soft maxima assigned to this node, allowing older age estimates

than the hard maximum approach used in the present study. This maximum age was used to

constrain the crown node of the liverworts plus the rest of vascular plants in the chloroplast

dataset, and the crown node of the bryophytes plus vascular plants in the nuclear dataset. The

minimum age of the same node in both cases was constrained by the early vascular plant mac-

rofossil, Baragwanathia longifolia from the Ludlow epoch in the Silurian at 421 Ma [135–137].

PLOS ONE Molecular dating of Isoetes using phylogenomics

PLOSONE | https://doi.org/10.1371/journal.pone.0227525 June 18, 2020 8 / 28

https://doi.org/10.1371/journal.pone.0227525


This is of a similar age to other putative vascular plant fossils such as Cooksonia in the Wenlock

epoch [138–140].

For the chloroplast dataset, trees were rooted by constraining each of the liverworts and the

rest of the land plants to be monophyletic [136]. For the nuclear dataset, which only contained

bryophytes and vascular plants, the tree was rooted by enforcing the monophyly of each of

these two groups. Details of fossil calibrations as outlined in Parham et al. [141] are outlined in

S4 Table.

Molecular dating software

Molecular dating was performed using r8s [142] and BEAST [143], two commonly used

relaxed-clock methods that differ in their general approach and the strategy used to assign

rates to internal branches of the phylogeny. r8s implements a semiparametric method that

uses a penalised likelihood approach to assign rates among branches [144]. The smoothing

parameter, which determines the extent to which rates vary among branches, is determined

for each dataset using an empirical approach [142]. The method takes a phylogram as input,

assumes no uncertainty in topology, and uses a simplified model of nucleotide substitution.

BEAST implements a highly parametrised Bayesian method that samples trees generated from

nucleotide data using an explicit model of sequence evolution [145]. When using the relaxed

molecular clocks implemented in BEAST, rates are uncorrelated across the tree, but an overall

distribution of rates is assumed, with the mean and standard deviation inferred from the data.

For r8s, version 1.81 was used, with the “TN” algorithm and additive penalty function.

Cross validation was performed for a range of smoothing parameters from 10−2 to 106, increas-

ing by a power of 100.5 each time, and the best smoothing parameter was used for molecular

dating. Confidence intervals were obtained by generating 100 bootstrap pseudo-replicates

using seqboot [146] and obtaining branch lengths for each of these using RaxML (GTR+G+I)

while constraining the trees to the topology generated by the original dataset. These trees were

then individually dated using r8s, providing a distribution of ages across the pseudo-replicates.

This approach was used to date the chloroplast dataset, the concatenated nuclear dataset, as

well as individual nuclear markers.

For BEAST, version v1.8.4 was used. A lognormal relaxed clock was adopted with a GTR

+ G + I model of nucleotide substitution with four rate categories and a birth-death speciation

prior. For the concatenated chloroplast markers, four independent analyses were run for at

least 20,000,000 generations and appropriate burn-in periods (at least 10%) were assigned by

inspection of the traces using Tracer v1.6 [143]. For individual nuclear genes, BEAST was run

for 3,000,000 generations (based on observing convergence times with a subset of genes) with

a burn-in period of 50%. Dating the concatenated nuclear dataset was computationally too

intensive with this approach. We therefore randomly subsampled 55,743bp (approximately

the length of the chloroplast alignment) from the 694,437bp nuclear alignment eight times,

and analysed these subsamples with BEAST. The same parameters as the individual nuclear

genes were used, with the exception that BEAST was run twice for 10,000,000 generations for

each alignment, with a burn-in period of 10%, with convergence verified using Tracer. These

were combined using logcombiner and treeannotator to produce a maximum clade credibility

tree. For comparison we performed r8s on these alignments as described previously.

Results

Phylogenetic reconstruction using Isoetes nrITS sequences

The maximum likelihood phylogeny based on nrITS broadly agrees with phylogenies previ-

ously inferred for the group (Fig 1) [18], and confirms that the species sampled for genomic
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analyses encapsulate the first divergence within the Isoetes species for which molecular data is

available (Fig 1). These six samples are moreover representative of the group in terms of

branch lengths, and therefore evolutionary rates (Fig 1). The samples sequenced in this study

generally cluster with other individuals from the same species sequenced previously, with the

exception of Isoetes nuttallii. The newly sequenced sample of I. nuttallii groups with I. asiatica

and I. echinospora, disagreeing with the topologies found in other studies [18, 55]. The sample

in this study was collected on Knight Island in the Prince William Sound, Alaska, USA, outside

the known range of I. nuttallii which extends up to British Columbia at its northernmost

[147]. I. asiatica, I. echinospora and I. occidentalis and their interspecific hybrids occur

throughout Alaska [148]. The underwater growth habit and large megaspores in this specimen

are inconsistent with previously identified I. nuttallii specimens that are typically emergent

[148, 149]. These features are consistent with the hexaploid I. occidentalis, a close relative of I.

asiatica that has large megaspores, an underwater growth habit and is native to the area [43,

56, 149]. Furthermore, two duplicates of this collection have been subsequently redesignated

as I. occidentalis. We therefore refer to this specimen as I. occidentalis throughout the remain-

der of this manuscript and associated data files.

Phylogenetic reconstruction and dating based on the chloroplast genome

The maximum likelihood phylogeny based on chloroplast markers recapitulated major land plant

relationships and expected relationships within the Isoetes clade, with I. coromandelina sensu lato

being sister to the rest of samples (Fig 2A). The tree was well resolved, with only the Ceratophyl-

lum/eudicot split receiving less than 95% bootstrap support. Branch lengths were highly variable,

particularly between Isoetes and Selaginella, with the latter having accumulated approximately 4.5

times more substitutions than Isoetes since their most recent common ancestor (Fig 2A).

Based on chloroplast markers, r8s estimated the age of the crown group of Isoetes at 24.2

Ma with an optimum smoothing parameter of 1000 identified by cross validation, and a 95%

bootstrap confidence interval of 22.8–25.9 Ma (near the Oligocene-Miocene boundary;

Table 1). Decreasing the value of the smoothing parameter resulted in an increased age of the

Isoetes crown group, with a smoothing value of 0.01 giving a crown age of Isoetes of 219 Ma

(Late Triassic; Fig 3). Whilst low smoothing values result in over-fitted models that perform

poorly in cross validation, high levels of smoothing may produce rates that are nevertheless

poor predictors of branch lengths in particular parts of the tree. For high smoothing values,

the ratio of the effective rate (the branch length divided by the estimated time elapsed) to the

rate assigned by the model was 0.33 for the stem branch of Isoetes (Fig 4), showing that the

branch is significantly shorter than would be expected for the assigned rate and divergence

time. On the other hand, the average ratio for the crown branch lengths remains near 1 for all

smoothing values, indicating that the crown branches are close to the expected values for the

assigned rates and divergence times (Fig 4).

For the same chloroplast markers, BEAST estimated the crown age of Isoetes at 23.2 Ma

(95% HPD = 6.4–46.8 –; middle Oligocene; Table 1), similar to the value obtained with the

optimum level of smoothing in r8s. Unlike in r8s, rates in BEAST can vary throughout the

tree, but their distribution is assigned a priori–in this case a lognormal distribution. Rates in

the maximum clade credibility tree accordingly follow a lognormal distribution—the log-

transformed rates following a straight line on a quantile-quantile plot, indicating the rates are

distributed lognormally (Fig 5). Notably, the Isoetes stem branch is assigned the lowest rate in

the tree and the crown branches assigned rates closer to the average rates in the rest of the tree

(Fig 5). While these rate assignments lead to a lognormal distribution that satisfies the priors,

they result in a lower rate in the Isoetes stem branch compared to the crown branches.
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For both r8s and BEAST, a date of 23–29 Ma (Oligocene) is obtained via the implicit or

explicit inference of a decrease in the rate of evolution along the stem branch, with rates in the

crown branches being more similar to those in the rest of the tree. This assumption results

from the model, and is not necessarily correct, urging for independent evidence.

Phylogenetic reconstruction and dating based on nuclear markers

The concatenated nuclear phylogram also recapitulated major land plant relationships (Fig

2B). The topology of the Isoetes clade was consistent with that of the chloroplast phylogeny,

with I. coromandelina again being sister to all other species. Despite overall longer branch

lengths in the concatenated nuclear phylogeny, variation among groups was reduced. Particu-

larly, the total branch lengths from the common ancestor of Isoetes and Selaginella were much

more similar than in the chloroplast phylogeny, with Selaginella having accumulated approxi-

mately 1.25 times more mutations than Isoetes since their last common ancestor (Fig 2B).

However, the ratio of the average crown branch length to stem length in the Isoetes lineage was

very similar between the nuclear and chloroplast markers; approximately 5.8 for the chloro-

plast dataset and 5.6 for the nuclear dataset (Fig 2).

Dating of the concatenated matrix of nuclear markers in r8s gave an estimated crown node

age of Isoetes at 58.9 Ma (Table 1), with an estimated stem node age of 358 Ma, at an optimum

smoothing value of 0.1. Unlike with the chloroplast markers, the date of the Isoetes crown

node was similar across all smoothing values tested (Fig 3). Increased smoothing values led to

increases in the disparity between effective and assigned stem rates (Fig 4), although this was

low compared with the concatenated chloroplast alignment (0.82 vs 0.33 for the stem branch

for a smoothing value of 106). As with the chloroplast markers, the disparity between effective

and assigned rates in crown branches was low across the range of smoothing values (Fig 4).

The conservation of the effective rates in the stem and crown branches of Isoetes across a range

of smoothing parameters indicates that the average rates predicted across the entire nuclear

tree are a relatively good fit to both stem and crown branches of Isoetes (Fig 4). This suggests

that stem and crown branches of Isoetes have similar rates, which is consistent with their highly

similar length ratios between the chloroplast and nuclear trees (Fig 2).

Dating individual nuclear genes in r8s resulted in a wide range of optimum smoothing val-

ues (S1 Fig). Low smoothing values frequently resulted in gradient check failures, indicating a

single optimum solution is not reached (S1 Fig). For genes reaching a single optimum, the

median estimated crown date for Isoetes was 46.4 Ma with 95% of estimates between 16.1 and

85.8 Ma and 50% of results between 31.9 and 58.3 Ma (Table 1). Overall, the estimated dates

form a unimodal distribution (S2 Fig). While low values of the smoothing parameter increased

Fig 2. Maximum likelihood phylograms of concatenated chloroplast and nuclear markers. Phylograms are shown for a)
concatenated chloroplast markers and b) concatenated nuclear markers. Branch lengths are proportional to the number of
expected substitutions per site, with scale bar representing a) 0.07 and b) 0.2 substitutions per site. All bootstraps support values
are 100 with the exception of the branch separating Ananas comosus from the clade containing Ceratophylum demersum in b),
which has a support value of 85.

https://doi.org/10.1371/journal.pone.0227525.g002

Table 1. Estimates of Isoetes crown date.

Analysis Isoetes crown age—BEAST (95% CI) Isoetes crown age—r8s (95% CI)

Chloroplast concatenated markers 23.2 (6.4–46.8) 24.2 (22.8–25.9)

Nuclear concatenated markers - 58.9 (57.3–60.1)

Nuclear individual markers 47.6 (24.1–90.8) 46.4 (16.1–85.8)

Nuclear concatenated subset 54.5 (27.9–85.2) 62.9 (54.0–62.9)

https://doi.org/10.1371/journal.pone.0227525.t001
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the age estimates, all values above 10 yielded estimates centred around 50 Ma, similar to those

based on the optimum smoothing values (S2 Fig). As with the chloroplast datasets, increasing

smoothing values resulted in a decreased effective/assigned stem rate (S3 Fig). The disparities

for the optimum smoothing values were again reduced compared to the chloroplast data (S3

Fig), indicating the globally optimum smoothing values for the individual nuclear markers fit

the stem and crown branches of the Isoetes better than in the chloroplast dataset.

Dating individual genes using BEAST gave a median estimate of 47.6 Ma for the crown of

Isoetes, with 95% of estimates between 24.1 and 90.1 Ma, and 50% between 39.2 and 58.6 Ma.

The ages obtained for individual genes were highly correlated between r8s and BEAST (linear

model, slope = 0.94, p-value< 0.001; R2 = 0.64; Fig 6). Linear modelling suggested a significant

Fig 3. Effect of different smoothing factors on Isoetes crown date estimation in r8s. Estimated crown dates for Isoetes produced by r8s for
concatenated chloroplast (green) and nuclear (blue) datasets are shown for a range of smoothing factors. The best fitting smoothing factor, as
identified by cross validation, is highlighted for each dataset by a filled circle.

https://doi.org/10.1371/journal.pone.0227525.g003
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but small effect of the percent completeness of the alignments on the estimate for the crown

age of Isoetes, with a larger effect from the average completeness of Isoetes sequences (S5

Table). However, the adjusted R2 for this latter effect was 0.059 for values obtained with r8s

and 0.042 for those obtained with BEAST, indicating that the completeness of the alignment

has relatively little impact on the estimated dates. BEAST dating of 55,743bp subsamples of the

concatenated dataset gave a mean crown date for Isoetes as 54.5 Ma (mean 95% HPD 27.9–

85.2Ma; Table 1; Fig 7). The eight individual subsamples gave very similar estimates of the

mean crown date, with a standard deviation of 2.8Ma between the different subsamples. r8s

gave a slightly older estimate, 62.9 Ma (mean 95% HPD 54.0–62.9; Table 1) with a standard

deviation of 2.9Ma between the mean estimates of the different subsamples.

Fig 4. Rate assignment on crown and stem branches of Isoetes in r8s. The ratio of effective vs. assigned rates is shown for different smoothing
factors in r8s for the stem branch of Isoetes (solid lines) and for the Isoetes crown branches (average; dashed lines), for the concatenated
chloroplast (green) and nuclear (blue) datasets. Solid black line represents effective/assigned rate ratio of 1, for reference.

https://doi.org/10.1371/journal.pone.0227525.g004
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Discussion

Nuclear analysis supports a recent origin of extant Isoetes

In this study, we used phylogenomics to estimate the age of Isoetes, a group of lycopods often

interpreted as “living fossils”. Using molecular dating with calibration points on deep branches

of the land plant phylogeny, we found very different dates for the crown of Isoetes using the

chloroplast and nuclear datasets, at 23–24 Ma (Oligocene) and 45–60 Ma (Paleocene and

Eocene), respectively (Table 1). These differences are unlikely to be caused by the dating meth-

ods employed, since BEAST and r8s produced almost identical dates (Table 1; Fig 6), despite

the very distinct ways in which these two programs deal with rate variation among branches.

Subsets of 55,743bp (approximately the same size as the chloroplast alignment) of the

concatenated nuclear alignment gave dates consistent with the other nuclear datasets,

Fig 5. Quantile-quantile plot of BEAST rates for concatenated chloroplast markers. The quantile-quantile plot of log10 transformed branch rates
is shown for the concatenated chloroplast dataset in BEAST. The values for the Isoetes stem branch (blue) and crown branches (red) are highlighted.

https://doi.org/10.1371/journal.pone.0227525.g005
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indicating alignment size was not the cause of this disparity either (Table 1). Instead, the

incompatibilities between estimates based on nuclear and chloroplast datasets probably arise

from differences in rate variation among branches. Branch lengths varied widely between

Selaginella and Isoetes chloroplast markers, and throughout the chloroplast tree (Fig 2A), as

previously reported [18, 69–71]. These high levels of variability make low levels of smoothing

in r8s relatively poor fits to the data, as rates are poorly correlated between nearby branches on

the tree, resulting in poor cross-validation scores. This results in a high smoothing value being

identified as optimum for the chloroplast tree, effectively forcing a uniform rate on the tree

that is determined by the average root-to-tip branch length. That, in turn, results in a high rate

fitted to the Isoetes branch that is a poor match to its relatively short branch lengths overall

(Fig 2A, Fig 4). The overall model likelihood in r8s is calculated as the sum of the log likelihood

of each branch [142], meaning a date for the crown node will be assigned primarily to optimise

the fit for the numerous crown branches as opposed to the single stem branch. For higher rates

as smoothing values increase, younger Isoetes crown dates are therefore assigned. This results

in a good fit for the short crown branches, but an increasingly worse fit for the stem branch

(Fig 4), where the high rate and long temporal duration predict a long branch, which is not

observed in the data. Similarly, in BEAST, the lognormal prior distribution results in a rela-

tively low rate assignment on the stem branch compared to the crown branches, which leads

to a better fit to the lognormal distribution across branches than if all crown branches had a

low rate (Fig 5). We conclude that the high rate variability hampers accurate molecular dating

Fig 6. r8s versus BEAST Isoetes crown estimates for individual nuclear genes. The scatterplot shows the estimates of
the Isoetes crown date in r8s and BEAST for each individual nuclear gene. Line represents output of linear model using
lm() function in R v3.5.2.

https://doi.org/10.1371/journal.pone.0227525.g006
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using the chloroplast data. By contrast, the individual and concatenated nuclear datasets have

a small disparity between estimated and effective rates, and the crown age estimate for Isoetes

is consistent across genes (Figs 4 and S2), both in the concatenated versus individual datasets

(Table 1) and between BEAST and r8s (Fig 6). The more consistent rates make the nuclear

dataset more appropriate for estimating divergence times.

We conclude, based on our nuclear genome-wide analyses, that the diversity of extant Iso-

etesmost likely originated during the Paleogene, between 45 and 60 Ma (Paleocene-Eocene;

Table 1), although an origin from the Late Cretaceous to the Micoene is within the 95% confi-

dence interval (16–86Ma; Table 1). This conclusion sharply contrasts with previous estimates

of the crown group Isoetes of 147–251 Ma (Triassic to Jurassic) [18, 57, 58]. Kim and Choi [57]

used Triassic I. beestonii to provide a narrow lognormal prior with an offset of 245.5, a mean

of 1.5 and standard deviation of 0.5Ma for the age of crown Isoetes, resulting in an estimate of

the crown age at 251Ma. Pereira et al. [58] used Jurassic I. rolandii to provide a minimum age

for the crown node of 145 Ma, resulting in an estimate of the crown age at 147Ma (145–154

95% CI). In both these studies, fossils are used to a priori strongly constrain the crown node of

Isoetes to old ages. However, these fossils do not provide evidence that the split between “clade

A” and the rest of Isoetes had occurred, as no synapomorphies are known from the extant

Fig 7. Maximum clade credibility tree for combined nuclear subsamples in BEAST.Node labels represent ages (Ma), blue bars represent 95%mean HPD intervals.

https://doi.org/10.1371/journal.pone.0227525.g007
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members of these clades that could be preserved in fossils. The differences between these previ-

ous studies and our own emphasise the impact of fossil calibrations on date estimates. The

study of Lars00E9n and Rydin (2015) [18] used fossil calibrations consistent with those used in

the present study, but nevertheless estimated a crown age of 147Ma [96–215 95% CI]. Their

study was based on three markers, with only rbcL aligning with sequences outside of the

genus. The markers that do not align outside Isoetes should not affect the crown node age esti-

mate as they do not inform the ratio of crown to stem substitutions. However, including non-

coding markers such as nrITS with much higher levels of substitution than rbcLmay result in

a young Isoetes crown node giving a poor model fit for a single partition. Indeed, maximum

likelihood phylogenies of the full dataset have Isoetes crown branch lengths that are five times

longer when compared to the same taxa only with rbcL (S6 Table). To investigate the effects of

this imbalance, we reanalysed the dataset using BEAST with the same parameters as Larsén

and Rydin (2015) using only Isoetes species for which all three markers were available, finding

a similar crown age of 145.8 Ma [88–208.7 95% CI]. Removal of the non-coding markers avail-

able solely for Isoetes species results in a crown estimate for Isoetes of 40.5 [22.6–61.6 95% CI]

Ma, comparable with the results of the present study (S7 Table; BEAST files used for reanalysis

available as File S6). We conclude that calibration points and molecular data both strongly

impact age estimates in the case of Isoetes.

The number of taxa sampled in this study is however lower than in these previous studies.

Reduced taxon sampling has been shown to have an impact in some [61, 62], but not all [63,

64], cases, with high levels of rate heterogeneity likely requiring increased taxon sampling [62].

The relatively low levels of rate heterogeneity in Isoetes (Fig 1) indicate this is unlikely to affect

our age estimates, and reduction of the taxon sampling in the comprehensive Larsén and

Rydin [18] dataset by 87% only resulted in a 7% change in the estimated age of the Isoetes

crown date (see Materials andMethods). Reanalysis of the entire Larsén and Rydin [18] dataset

only with markers alignable outside Isoetes resulted in a similar age estimate to the present

study, despite the significant differences in taxon sampling (S7 Table). These considerations

suggest that rather than taxon sampling, the distribution of nucleotide data among groups

explain the differences between our study and that of Larsén and Rydin [18]. Therefore, while

using appropriate fossil calibrations is always critical, the choice of molecular data can also

have a large impact on estimated dates.

Despite our improved molecular dataset and careful assignment of fossils, the long gap

between the Isoetes crown node and the nearest available calibration points presents a chal-

lenge in appropriate rate assignment for any node-based dating approach. Total-evidence

based approaches [150] may be able to leverage the rich Isoetalean lycopsid fossil record [42,

48] to inform estimates of the rate along this branch. Nevertheless, groups such as Isoetes rep-

resent a particular challenge for molecular dating, necessitating careful treatment of fossil and

molecular data, and the modelling approaches that use these datasets to produce age estimates.

Our approach generated nucleotide data that are homogeneously distributed among taxo-

nomic groups, and the fossil evidence is used cautiously, even though this results in a great dis-

tance between the calibrated nodes and our node of interest, the crown node of Isoetes. These

considerations allow disentangling the significant effects of methodological variation, rates of

molecular evolution, and treatment of fossils on the molecular dating of a group of “living

fossils”.

Despite morphological stasis, Isoetes recently expanded

The relatively young age of the Isoetes crown node indicates that despite morphologically simi-

lar forms appearing in the Triassic [46–48], all modern Isoetes are descended from a single
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lineage in the early Cenozoic. This indicates that the fossil Isoetites from the Jurassic, and mor-

phologically similar plants from earlier epochs, are likely stem relatives of extant Isoetes. The

results contrast with the expectation for “living fossil” taxa, that extant species members are

the last members of once diverse lineages, diverging long in the past [19, 20]. This is consistent

with a number of studies in some “living fossil” plant groups such as cycads [13], bryophytes

[31] and Ginkgo [26] showing relatively recent origins of extant species of these groups, despite

long periods of morphological stasis. It is important to note, however, that other groups fit

with the traditional expectations for”living fossils” [17, 27, 28]. When compared to other

spore-producing plants, the pattern identified in this study is similar to the high levels of diver-

sification seen in ferns and Lycopodiaceae since the Cretaceous [132, 151, 152], but contrasts

with steady patterns of diversification over time in Selaginella [153]. Within both “living fossil”

taxa and spore-producing plants, there appears to be a variety of patterns of lineage-diversifi-

cation through time.

The global distribution of extant Isoetes indicates that this lineage was able to successfully

colonise the globe in a relatively short amount of time. This contradicts the conclusions of pre-

vious studies that, based on older estimates for the age of the Isoetes crown node, explain cur-

rent distributions by vicariance due to continental drift [18, 57, 58]. Based on our age

estimates, geographic disparities within several subclades of Isoetes–such as Larsen and Rydin’s

[18] Clade B containing Mediterranean, North American and Indian species–indicate that

long distance dispersal events have been relatively common Cenozoic Isoetes. It is important to

note that numerous geographic disparities would remain with older age estimates. For exam-

ple, the closely related Indian and Australian clades in Larsen and Rydin’s Clade E diverged

less than 15 Ma despite the separation of these continents during the Jurassic [154]. Further

studies of Isoetes dispersal rates and mechanisms, which are poorly understood, are required

[18, 155–157]. It should however be noted that many relationships within the Isoetes are

poorly supported, and rely on a small number of genetic markers and taxon samples–and

indeed many additional cryptic species within current taxa may exist [158]. Further studies

will be required to fully explain extant distributions of Isoetes species.

The rapid global spread of extant Isoetes strongly contrasts with the expectation that the dis-

tribution of “living fossil” taxa are the remnants of potentially larger ancestral ranges [17, 18].

Our results show that despite having undergone little morphological change for hundreds of

millions of years, rather than being the declining remnants of a bygone era, the modern Isoetes

species instead represent recent arrivals onto the world stage.

Conclusions

Using molecular dating based on genome-wide datasets and a careful evaluation of the fossil

record, we estimated the origins of extant species diversity in Isoetes, showing that this group

of plants probably diversified in the last 45–60 million years. These results suggest that Isoetes-

like fossils dating back to the Triassic are stem relatives of extant Isoetes species, and that extant

Isoetes distribution cannot be explained by vicariance from the breakup of Gondwana. Despite

their morphological conservatism over hundreds of millions of years, extant Isoetes diversified

and spread around the world in the relatively recent past, This indicates the morphological sta-

sis of “living fossil” taxa does not preclude lineages of these taxa from diversifying and spread-

ing all around the world.
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