
This is a repository copy of Performance of Model-Based Network Meta-Analysis 
(MBNMA) of Time-Course Relationships:A Simulation Study.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/162426/

Version: Published Version

Article:

Pedder, Hugo, Boucher, Martin, Dias, Sofia orcid.org/0000-0002-2172-0221 et al. (2 more 
authors) (2020) Performance of Model-Based Network Meta-Analysis (MBNMA) of Time-
Course Relationships:A Simulation Study. Research Synthesis Methods. pp. 678-697. 
ISSN 1759-2887 

https://doi.org/10.1002/jrsm.1432

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



R E S E A R CH AR T I C L E

Performance of model-based network meta-analysis

(MBNMA) of time-course relationships: A simulation study

Hugo Pedder1 | Martin Boucher2 | Sofia Dias1,3 | Margherita Bennetts2 |

Nicky J. Welton1

1Department Population Health Sciences,

Bristol Medical School, University of

Bristol, Bristol, UK

2Pharmacometrics, Pfizer Ltd,

Sandwich, UK

3Centre for Reviews and Dissemination,

University of York, York, UK

Correspondence

Hugo Pedder, Department Population

Health Sciences, Bristol Medical School,

University of Bristol, Bristol, BS8 2PS, UK.

Email: hugo.pedder@bristol.ac.uk

Funding information

Medical Research Council, Grant/Award

Numbers: MR/M005232/1, MR/

M005615/1; NIHR Biomedical Research

Centre at University Hospitals Bristol NHS

Foundation Trust; Pfizer UK; University of

Bristol

Abstract

Time-course model-based network meta-analysis (MBNMA) has been pro-

posed as a framework to combine treatment comparisons from a network of

randomized controlled trials reporting outcomes at multiple time-points. This

can explain heterogeneity/inconsistency that arises by pooling studies with dif-

ferent follow-up times and allow inclusion of studies from earlier in drug

development. The aim of this study is to explore using simulation: (a) how

MBNMA model parameters are affected by the quantity/location of observed

time-points across studies/comparisons, (b) how reliably an appropriate

MBNMA model can be identified, (c) the robustness of model estimates and

predictions under different dataset characteristics. Our results indicate that

model parameters for a given treatment comparison are estimated with low

mean bias even when no direct evidence was available, provided there was suf-

ficient indirect evidence to estimate the time-course. A staged model selection

strategy that selects time-course function, then heterogeneity, then covariance

structure, identified the true model most reliably and efficiently. Predictions

and parameter estimates from selected models had low mean bias even in the

presence of high heterogeneity/correlation between time-points. However, fail-

ure to properly account for heterogeneity/correlation could lead to high error

in precision of the estimates. Time-course MBNMA provides a statistically

robust framework for synthesizing direct and indirect evidence to estimate rel-

ative effects and predicted mean responses whilst accounting for time-course

and incorporating correlation and heterogeneity. This supports the use of

MBNMA in evidence synthesis, particularly when additional studies are avail-

able with follow-up times that would otherwise prohibit their inclusion by con-

ventional meta-analysis.
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1 | BACKGROUND

Network meta-analysis (NMA)1,2 is commonly used to

synthesize evidence from multiple studies on multiple

treatments simultaneously. NMA pools evidence from all

studies that form a connected network of treatment com-

parisons, so that inference on relative treatment effects is

strengthened by combining direct head-to-head evidence

with indirect evidence from the rest of the network.

NMA can increase precision of estimates compared with

standard pairwise meta-analysis, but it relies on the con-

sistency assumption that there are no differences

between direct and indirect treatment effects.3,4 One rea-

son the consistency assumption may not hold is if differ-

ent studies report results at different follow-up times, and

this is not accounted for in the analysis. Furthermore, the

relationship between treatment efficacy and time may be

of interest in itself, for example the characterization of a

treatment's onset and offset of action.

A number of different methods for incorporating lon-

gitudinal data into NMA have been proposed. Riley et al5

and Ishak et al6 used multivariate methods to incorporate

multiple follow-up times, whereas Dakin et al7 presents a

hierarchical model. Both approaches can capture differ-

ences between treatment effects at different follow-up

times, but do not deliver an estimated time-course for rel-

ative treatment efficacy. To obtain an estimated time-

course relationship requires a parametric model. Frac-

tional polynomials8 and exponential time-course func-

tions9 have been proposed, and more recently, model-

based network meta-analysis (MBNMA), a general frame-

work for NMA that incorporates parametric models of

time-course relationships has been developed.10

By pooling relative effects within studies, time-course

MBNMA preserves randomization and allows for testing

of consistency between direct and indirect evidence in the

network, whilst making use of all the available evidence at

different time points. The benefit of this approach com-

pared with NMA is that it allows inclusion of studies with

a range of follow-up times, and therefore provides the pos-

sibility of including clinical trials from earlier in clinical

development which may contribute valuable information

on treatment efficacy. The method can be used with any

parametric time-course relationship, (including exponen-

tial, Emax, and fractional polynomials), although because

MBNMA is typically based on aggregate data only,

identifiability may be an issue for models using time-

course functions with two or more parameters.10

MBNMA was developed using a dataset of studies

investigating pain relief in osteoarthritis10 which con-

sisted of 30 RCTs comparing 29 treatments for pain relief,

measured on the Western Ontario and McMaster Univer-

sities Arthritis Index (WOMAC) scale11 and recorded at

multiple time points up to a maximum of 24 weeks (Fig-

ure S1). Following a model selection strategy, the time-

course that most closely fitted the data was an Emax func-

tion. By modeling the time-course in this dataset using

MBNMA, it was possible to include all studies and all

treatments in the dataset, despite studies reporting out-

comes at a range of different follow-up times. This

explained significant heterogeneity and inconsistency

that was present when using a single, latest follow-up

time from each study, an improper approach that is

sometimes used in meta-analysis.

However, this analysis raised several questions as to

the statistical properties of the method. Model fit statis-

tics were used to compare between different models, yet

we were unclear of the extent to which measures such as

the deviance information criterion (DIC) could be mean-

ingfully used. MBNMA allows a range of different time-

course models to be fitted, and results may be sensitive to

misspecification of the underlying time-course function.

What is already known?

MBNMA is a new technique for evidence

synthesis that allows incorporation of parametric

time-course into NMA, which allows inclusion of

studies with different follow-up times in a man-

ner that can explain heterogeneity/inconsistency.

What is new?

This study highlights the robustness of the time-

course MBNMA framework and the selection

strategy that can be used to identify an appropri-

ate model. In particular, it identifies under which

conditions results from MBNMA models are

likely to be of value, and in which there may be

limitations.

Potential impact for RSM readers
outside the authors' field

By demonstrating that time-course can be

included in NMA in a statistically robust manner,

we hope that this will allow the inclusion of trials

from drug development into reimbursement

agency decision-making. Doing so can help

bridge the gap in evidence synthesis techniques

that currently exist between pharmacometrics

and Health Technology Appraisal.
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Furthermore, results at multiple follow-up times from

the same study will be correlated, with different choices

for how this can be modeled. It is therefore important to

assess how sensitive model results are to misspecification

of the time-course function and correlation structure, and

how best to select between different models.

Comparisons within the network also contained vary-

ing numbers of observations with which to inform the

time-course. When estimating time-course parameters for

a given non-linear function (eg, exponential, Emax), we

expect that the number and location of observed follow-

up times across studies and comparisons in the network

are likely to be a critical factor in determining

identifiability and the precision with which parameters

can be estimated. In practice, as in the pain relief in oste-

oarthritis example, study follow-up times are likely to be

picked to fit with a reasonable visit schedule for patients,

along with the main landmark time point(s) of interest.

Therefore, it is necessary to understand what impact the

presence of different follow-up times will have in the esti-

mation of the parameters in the network.

In this paper, we aim to investigate the performance

of MBNMA time-course models applied to datasets gen-

erated with varying characteristics. We divide this paper

into two related simulation studies which aim to answer:

1. How are MBNMA model parameters affected by the

quantity and location of observed time points across

studies and comparisons in the network?

2. How reliably is an appropriate time-course MBNMA

model identified?

3. How robust are model estimates and predictions

under different dataset characteristics?

The results from these studies can help identify in

which circumstances these models can be expected to

perform well, and in which they might perform poorly,

allowing the robustness of conclusions drawn from

time-course MBNMA to be considered in light of the

number/location of observations reported in the data,

the assumptions made within the modeling process,

and the purpose for which the model will be used (ie,

whether time-course parameters or predicted means

are of interest). We begin by describing the time-

course MBNMA model. We then describe the methods

used for the two simulation studies, before presenting

results and conclusions.

2 | TIME-COURSE MODEL-BASED
NETWORK META-ANALYSIS

We briefly explain methods for time-course MBNMA. A

more detailed explanation can be found in Pedder et al.10

2.1 | Likelihood

We assume we have a summary outcome, such as mean

outcome or log-odds of response, yi, k, m, together with

standard errors, sei, k, m, reported for each study i, arm

k = 1, …, Ki, and at time point m = 1, …, Mi, where study

i has Ki arms and reports outcomes at Mi time points. We

let si, m be the actual time at which the mth time point in

study i was observed. The treatment given in study i, arm

k, is indicated by ti, k.

We assume the summary outcome has been trans-

formed onto a scale where a Normal likelihood is

appropriate:

yi,k,m �N θi,k,m,sei,k,mð Þ

in which θi,k,m is the modeled outcome (eg, predicted

mean on the relevant scale) at time point m in arm k of

study i.

However, when we have repeated measures from the

same individuals within each study, the observations

may be correlated, which can be captured with a multi-

variate Normal likelihood:

yi,k �MVN θi,k,Σi,kð Þ

where yi, k is a vector of the observed summary measures

across the time points measured in that trial, θi, k is a vector

of modeled outcomes, and Σi,k is an Mi × Mi covariance

matrix:

Σi,k =

se2i,k,1 ρi,k,1,2sei,k,1sei,k,2 � � � ρi,k,1,Mi
sei,k,1sei,k,Mi

ρi,k,1,2sei,k,1sei,k,2 se2i,k,2 � � � ρi,k,2,Mi
sei,k,2sei,k,Mi

.
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where ρi,k,m1,m2
is the within-study correlation between sum-

mary measures at time pointsm1 andm2 for study i arm k.

Common correlation parameters across arms and stud-

ies are typically assumed in order to improve identifiability.

Furthermore, some constraints on the covariance structure

are required, such as assuming a compound symmetry

(CS) or autoregressive (AR1) covariance structure.10

2.2 | Time-course model

We put the time-course model on the aggregate-level means:

θi,k,m = f si,m,λi,kð Þ

where f defines a functional relationship over time si,m, and

λi, k = (λ0,i,k,λ1,i,k,λ2,i,k, …) are a set of parameters that

describe the relationship in mean outcomes over time.10 In

all time-course models there will be a “nuisance parameter”

λ0,i,k which represents the “intercept” at time s = 0. We put

our modeling assumptions on the remaining parameters, λ1,

i,k, λ2,i,k, …, leaving the λ0,i,k unconstrained (achieved in a

Bayesian analysis by giving independent vague prior distri-

butions to the λ0,i,k parameters).

For example, for a two-parameter Emax time-course

function there are two time-course parameters, and a

baseline response (λ0,i,k = E0,i,k - the mean response at

baseline in arm k of study i):

f si,m,λi,kð Þ=E0,i,k +
Emax,i,k × si,m

ET50,i,k + si,m
ð1Þ

Emax, i, k (equivalent to λ1,i,k) is the maximum mean

difference from baseline in arm k of study i and ET50,i,k

(equivalent to λ2,i,k) is the time at which 50% of the maxi-

mal effect has been reached in arm k of study i.

2.3 | Network meta-analysis

The network meta-analysis (NMA) model describes the

impact of treatments on one or more of the parameters of

the time-course model, λ1,i,k, λ2,i,k, …. If the NMA model

is given for a single time-model parameter, λ1,i,k, we have:

g λ1,i,kð Þ= μ1,i + δ1,i,k

for a given link function g which transforms the outcome

to a scale where relative treatment effects may be

expected to be additive. μ1,i is the time-course model

parameter (on the transformed scale) for arm 1 of study i,

and δ1,i,k the study-specific relative effect for the treat-

ment used in arm k relative to arm 1 of study i.

For a two-parameter time-course function such as the

Emax model we put the NMA model for the Emax parame-

ter, λ1,i,k, on the natural scale and the NMA model for the

ET50 parameter, λ2,i,k, on the log-scale to ensure that it

can only take positive values:

λ1,i,k = μ1,i + δ1,i,k

log λ2,i,kð Þ= μ2,i + δ2,i,k

RCTs provide comparative evidence between treat-

ments and so our focus is on the estimation of relative

effects between treatments. In these circumstances μ1, i

and μ2, i are handled as nuisance parameters and given

independent vague prior distributions in a Bayesian anal-

ysis to allow them to be unconstrained.1,2

Treatment effects on each time-course parameter can be

either assumed “common” (often called “fixed” in meta-anal-

ysis literature) or “random” (sometimes referred to as

“exchangeable”) across studies. For the random effects model,

study-specific treatment effects are assumed to be normally

distributed around a mean treatment effect that adheres to

the consistency relationships, with common between-studies

variance τ
2 across treatment comparison. For a two-parame-

ter time-course function with random effects on both time-

course parameters this would be as follows:

δ1,i,k �N d1,ti,k −d1,ti,1 ,τ
2
1

� �

δ2,i,k �N d2,ti,k −d2,ti,1 ,τ
2
2

� � ð2Þ

The consistency relationships reflect the comparison

made between the treatment ti,k used on arm k and the

treatment ti,1 used on arm 1 of each study. The common

effect model for each time-course parameter is obtained

by setting τ21 =0 or τ22 =0 respectively.

The model estimates “basic parameters” d1,1,k and d2,1,k,

the pooled mean relative effect for treatment k relative to

treatment 1 (the reference treatment for the NMA) for each

time-course parameter. All other relative effects for treat-

ment k relative to treatment c, d1,c,k and d2,c,k, can then be

derived from the consistency relationships2,12:

d1,c,k = d1,1,k−d1,1,c

d2,c,k = d2,1,k−d2,1,c
ð3Þ

2.4 | Simulation study methods

Simulation scenarios were motivated by a time-course

MBNMA used to analyze a dataset of pain relief in osteo-

arthritis.10 We conducted two separate simulation studies

to evaluate our research questions:

4 PEDDER ET AL.



1. Simulation Study I

i. How are MBNMA model parameters affected by

the quantity and location of observed time points

across studies and comparisons in the network?

2. Simulation Study II

i. How reliably is an appropriate time-course

MBNMA model identified and how robust are

model estimates and predictions when different

model selection strategies are used, under different:

a. Covariance structures

b. Levels of correlation between observations

c. Levels of heterogeneity

In Study I we explore the data requirements to fit

an Emax MBNMA model to studies forming a closed

network of three treatments by varying quantity and

location of time points within studies. The results of

this were then used to define scenarios with different

time points in Study II with which to explore the per-

formance of different model selection strategies on data

with different covariance structures and different

degrees of correlation between observations and hetero-

geneity (Figure 1).

Simulation protocols for each study were developed

following the Aims, Data-generating mechanisms,

Methods, Estimands, Performance measures (ADMEP)

approach.13 In this section we first describe the data-gen-

erating mechanisms used for all simulations, before

describing aspects specific to the two simulation studies.

We then describe the different models fitted in the two

simulation studies, the performance measures that were

computed, and the implementation.

FIGURE 1 Illustrates how datasets were generated with observations present at different time points. Within each matrix, each row

represents a different treatment comparison (one for each of the three in the network), and each column represents a different time point

(calculated as ET, the time at which a percentage of the maximum response is achieved). Within a particular time point pattern, shaded cells

represent observations that are present and white cells represent observations that are not present. If an entire row is white, this indicates

studies have been removed for that treatment comparison. Time point removal patterns have been numbered to aid reference in the paper.

In patterns 2 to 10, time points are removed from only a single treatment comparison, whilst in patterns 11-18 time points are

simultaneously removed from two treatment comparisons. The arrow between the two studies indicates that results from Study I helped

inform the design of Study II, and led to the selection of patterns 1, 5, 9 and 10 for further comparison when investigating the impact of

different degrees of heterogeneity and correlation between time points [Colour figure can be viewed at wileyonlinelibrary.com]

PEDDER ET AL. 5



2.5 | Dataset-generating mechanisms for
all simulations

All generated datasets contained multiple two-arm studies

that together formed a closed loop of three treatments, A

(the network reference treatment), B and C. Four studies

compared each treatment pair (A vs B, B vs C and A vs C),

giving a total of 12 studies. For each study, the aggregate-

level means from each arm were generated at six time-

points (Supplementary Figures and Tables) based on a two-

parameter Emax time-course function (1). The Emax model

was used to generate all datasets as it is a flexible family of

curves, commonly used for modeling time-course in

pharmacometrics and clinical pharmacology, with clearly

interpretable parameters. Since it contains more than one

time-course parameter, it also allows investigation of the

relationship between multiple time-course parameters. We

specify relative treatment effects on both ET50,i,k and Emax,i,

k that adhere to consistency relationships (3).

Values of each parameter used in the simulation are

given in Table 1. Treatment effects for ET50 are given on

the natural logarithmic scale to ensure absolute ET50
values are positive.

In preliminary work, we investigated varying the SE

for study means. We found that results from datasets gen-

erated with higher SEs (lower precision) typically followed

a similar pattern to results from datasets generated with

lower SEs (higher precision), but with more uncertainty in

estimates and higher Markov chain Monte Carlo (MCMC)

convergence failure. We calculated SEs based on a coeffi-

cient of variation,
SEi,k,m

θi,k,m
× 100

� �

=0.5%. This was slightly

lower than the coefficient of variation found in the pain

relief in osteoarthritis dataset10 (median: 3.14%; range:

1.32%-8.55% across all observations), yet we wanted to

obtain a low level of MCMC convergence failure in order

to be able to evaluate performance measures.

2.5.1 | Study I

For Study I observations were generated from an Emax time-

course function with common effects on both Emax and

ET50 parameters and no residual correlation between

time points. In order to investigate how the presence of

observed data at different follow-up times may affect esti-

mation of a time-course MBNMA model, observations

were removed from studies in different comparisons in

the following patterns to generate different datasets.

These patterns were designed to illustrate cases when we

have limited or no direct evidence, but some indirect evi-

dence on different time-course parameters. We have

referred to the patterns within figures pictorially using a

grid system (Figure 1).

Based on an expected empirical SE of 0.5 for dEmax
and

0.05 for dET50
, we calculated that 5000 simulations would

result in a Monte Carlo SE (MCSE) of 0.005 for dEmax
and

0.0005 for dET50
, which was more than sufficient for our

investigations.

2.5.2 | Study II

In order to investigate the impact of fitting different time-

course MBNMA models and using different strategies to

select between them, datasets were generated using dif-

ferent combinations of the following characteristics to

produce 15 different data-generating models:

• Different covariance structures

� Compound symmetry (CS)

� Autoregressive (AR1)

TABLE 1 Parameters and their values used in all datasets and

the interpretation of those parameter values

Parameter value Interpretation

dEmaxA,B = −5 The maximum effect for

treatment B is 5 points less than

for treatment A

dEmaxA,C = −15 The maximum effect for

treatment C is 15 points less

than for treatment A

dET50A,B = −0:2 The effect of treatment B is to

reduce the time at which 50% of

the maximum effect is observed

by exp(−0.2) = 0.819 when

compared with treatment A

dET50A,C = −0:5 The effect of treatment C is to

reduce the time at which 50% of

the maximum effect is observed

by exp(−0.5) = 0.607 when

compared with treatment A

μEmax ,i �N −40,1ð Þ The mean maximum response for

the treatment in arm 1 of each

study is normally distributed

around a mean of −40 and

variance of 1.

μET50 ,i
�N log 2:5ð Þ,0:0001ð Þ The mean time at which 50% of the

maximum response for the

treatment in arm 1 of each study

is observed is normally distributed

around a mean of log(2.5) = 0.916

and variance of 0.0001.

Note: Under the consistency assumption, dEmaxB,C = dEmaxA,C−

dEmaxA,B = −10 and dET50B,C = dET50A,C−dET50A,B = −0:3 , which

implies that for treatment C the time at which 50% of the maximum

effect is observed is reduced by exp(−0.3) = 0.741 when compared

with treatment B.

6 PEDDER ET AL.



• Different degrees of correlation between observations.

As the interpretation of correlation coefficients

changes depending on the covariance structure, we

selected values for ρAR1 that had a mean correlation

coefficient for all time points equal to ρCS.

� High correlation (ρCS = 0.7, ρAR1 = 0.924)

� Moderate correlation (ρCS = 0.2, ρAR1 = 0.699)

� No correlation

• Between-study SD (τ)

� Common treatment effects on Emax and ET50

(τEmax
=0 and τET50

=0)

� Random treatment effects on Emax with moderate

heterogeneity (τEmax
=1 ) and common treatment

effects on ET50 (τET50
=0)

� Random treatment effects on Emax with high hetero-

geneity (τEmax
=5) and common treatment effects on

ET50 (τET50
=0)

These models were then applied to four different sets

of included studies, selected based on results from Study

I (Figure 1).

In total this produced 60 different datasets for Study II.

Given that there were many more datasets gener-

ated for Study II than for Study I, we examined using

fewer simulations to decrease computational time.

Based on an expected empirical SE of 0.5 for dEmax
and

0.05 for dET50
, 742 simulations would be expected to

result in a Monte Carlo SE (MCSE) of 0.013 for dEmax

and 0.0013 for dET50
, which was sufficient for our

investigations.

2.6 | Analysis for all simulations

The following estimands were used in both studies:

• The relative treatment effects of treatments B and C

compared to the network reference treatment (A) for

the different time-course parameters for Emax models

(ET50 and Emax): dEmaxA,B, dEmaxA,C, dET50A,B and dET50A,C

• The predicted mean responses at 2, 6 and 12 weeks fol-

low up for treatments B and C (θ

_

B,2 , θ

_

B,6 , θ

_

B,12 , θ

_

C,2 ,

θ

_

C,6, and θ

_

C,12), were derived by applying the estimated

relative effects to the following assumed absolute

parameter values on reference treatment A10,14: E0

=100, Emax = − 40 and ET50 = log(2.5). This allowed

for comparison of performance measures between

models with different time-course functions.

The posterior median was used as the central mea-

sure for each parameter, and the posterior SD as an indi-

cator of precision.

2.6.1 | Study I

For Study I, the focus was on identifying how the estima-

tion of time-course parameters was affected by the

removal of different time points, given correct model

specification. We therefore used the same model for anal-

ysis as was used to generate the data.

2.6.2 | Study II

For Study II, 15 different models were used for analysis

(Table 2). The following model fit statistics were calcu-

lated for each analysis model, and are described in more

detail in Supplementary Methodology:

• The posterior mean of the residual deviance (�Dres)

• The posterior mean of the deviance (�D)

� The effective number of parameters, calculated

using either the plug-in method (pD),
15 or an

approximation to the effective number of parame-

ters (pv).
16

• The Deviance Information Criterion (DIC), calculated

using two different approaches to compare their per-

formance for model selection:

DICD = �Dres + pD

DICv = �D+ pv

2.7 | Performance measures for all
simulations

For each parameter of interest, we calculated three mea-

sures of performance. Bias was calculated to establish how

reliably the posterior median targets the true parameter

value. It can be expressed either as an absolute value or as

a % of the true parameter value, thereby facilitating com-

parisons between parameters on different scales. Model SE

is the mean of the posterior SDs for a parameter over all

the simulations and was calculated to reflect the precision

of the model. % error in model SE vs empirical SE (subse-

quently referred to as “% error in SE”) was calculated

to identify how reliably the posterior SD targets the long-

run SD of the posterior median and it is therefore a mea-

sure of how reliably a model captures the “true” degree of

precision in the data. Positive values reflect an underesti-

mation of precision, whilst negative values reflect an

PEDDER ET AL. 7



overestimation of precision. For details of their calcula-

tion, see Supplementary Methodology.

MCMC convergence failure was evaluated as an addi-

tional measure of performance, as this reflects the

identifiability of parameters in the different scenarios.

When presenting the performance measures from

multiple datasets simultaneously, we report the median

and range across the different datasets, as these are

highly skewed and we aim to show the limits of the

results we have found in these datasets.

2.7.1 | Study I

Performance measures were only calculated for datasets

in which >90% of the simulations successfully converged.

Results for datasets with <90% convergence are likely to

suffer from excessive selection bias since results can only

be reported for simulations that converge successfully.

2.7.2 | Study II

Performance measures were estimated for the selected

model across all simulations within a particular dataset,

as evaluated by different model selection strategies, using

both DICD and DICv. To select a model in each simula-

tion, DIC between different analysis models were

compared, excluding those that failed to converge. The

DIC for all converged models were ordered and the

model with the lowest DIC was selected. However, if sev-

eral models were within 3 DIC points from the model

with the lowest DIC, a specific model selection strategy

was used to select between these models (Table S2). We

examined how results differed depending on which of

three different model selection strategies was used:

1. “Best fit”: Choose the model with the best fit (lowest

deviance)

2. “Simplest”: Choose the simplest model that is, the one

with the lowest effective number of parameters (pD or

pv depending on whether DICD or DICv respectively

was being used to compare models)

3. “Staged strategy”: Pedder et al10 proposed a staged

model selection process, where at each stage the sim-

pler model is preferred over a more complex model

from a subsequent stage unless the difference in DIC

to the more complex model is >3. This approach

involves the following stages:

a. Fit common effect models with different time-

course functions

b. Compare random vs common treatment effects

models for the selected time-course function from (a)

c. Compare univariate vs multivariate (with different

correlation structures) likelihoods for the model

selected from (b)

TABLE 2 Different models used for analysis of datasets generated for Study II

Likelihood Time-course λ1, i, k treatment effects λ2, i, k treatment effects

Univariate Emax Common Common

Univariate Emax Random Common

Univariate Emax Common Random

Multivariate (CS) Emax Common Common

Multivariate (CS) Emax Random Common

Multivariate (CS) Emax Common Random

Multivariate (AR1) Emax Common Common

Multivariate (AR1) Emax Random Common

Multivariate (AR1) Emax Common Random

Univariate Exponential Common -

Univariate Exponential Random -

Multivariate (CS) Exponential Common -

Multivariate (CS) Exponential Random -

Multivariate (AR1) Exponential Common -

Multivariate (AR1) Exponential Random -

Note: For Emax time-course, λ1,i,k and λ2,i,k correspond to Emax and ET50 parameters respectively. For exponential time-course

f si,m,λ1,i,kð Þ=E0,i,k + eλ1,i,k × si,m , such that λ1,i,k corresponds to the rate of growth/decay. CS and AR1 indicate compound symmetry and auto-

regressive AR1 covariance structures respectively for models with multivariate likelihoods. The following model characteristics are defined

in equations: Emax time-course function (1), Random treatment effects (2), Common treatment effects (2) (with τ
2 = 0).
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An advantage of the “staged strategy” selection is that

fewer models need to be evaluated.

Performance measures were also calculated sepa-

rately for each analysis model to demonstrate the impor-

tance of model selection and the impact of failing to

properly account for important modeling characteristics

such as heterogeneity or correlation. However, many of

these models are of limited interest since they would

never be selected by any model selection strategy. Results

for these are available in the appendix (Supplementary

Figures - Extended) but are also commented on briefly in

the manuscript.

2.8 | Implementation

Data were simulated in R version 3.5.117 using the 64-bit

Mersenne twister algorithm for random number

generation,18 with input seeds of 15 432, 25 432, 35 432,

45 432, 55 432, 65 432, 75 432 and 85 432 (one for each of

eight different nodes of the cluster computer used for

analysis).

Analysis was carried out in a Bayesian framework

using JAGS19 implemented using a development version

of the MBNMAtime20 package in R (now available on

CRAN). Scripts were multi-threaded to allow simulations

to take place in parallel on 8 nodes of a cluster computer

(Lenovo nx360 m5 compute nodes with two 14 core

2.4 GHz Intel E5-2680 v4 [Broadwell] CPUs and 128 GiB

of RAM), with each of the three MCMC chains of the anal-

ysis being run in parallel on different processors of the

nodes. Different numbers of iterations were used for differ-

ent time-course models depending on their complexity:

• Emax time-course models: 50 000 burn-in iterations;

100 000 monitored iterations

• Exponential time-course models: 30 000 burn-in itera-

tions; 30 000 monitored iterations

Alternative MCMC algorithms can also be used for

Bayesian inference, and it is likely several of these would

result in more rapid convergence. We use Gibbs sampling

here as it is the algorithm used in JAGS,19 the software in

which the MBNMAtime20 package has been developed.

Whilst other MCMC samplers/algorithms, such as Hamil-

tonian Monte Carlo,21 can be more efficient we do not

expect them to result in different numbers of successfully

converged simulations since the number of sampled itera-

tions was large, ensuring that convergence failure arose

due to identifiability (eg, sparse data) rather than sam-

pling issues.

Models were considered to have “failed” to converge

if any of the parameters had ~R>1:2 ,
22 where ~R is the

ratio of the average variance of draws within each

MCMC chain to the variance of the pooled draws across

all chains. Values close to one therefore indicate good

mixing of MCMC chains.

Vague normal prior distributions (N(0, 1000)) were

given to the basic parameters dET50,A,k , dEmax ,A,k , dλ, A, k

(where k can take either B or C) and nuisance parameters

μEmax ,i
, μET50,i

and μλ,i. For μET50,i
it was necessary to ensure

that they only took positive values so priors for these

were specified on the log-scale. Between-study SDs were

given wide uniform prior distributions (U(0, 100)). In

models with a multivariate likelihood, ρCS and ρAR1 were

given a uniform prior distribution (U(−1, 1)).

3 | RESULTS

3.1 | Study I

3.1.1 | Convergence

A very small proportion of analyzes failed to converge for

the majority of datasets in Study I (<1.46% in Grids 1-4,

6-8, 10, 11-13 & 15-17). However, when both direct evi-

dence for the AvB comparison and indirect evidence aris-

ing from AvC and BvC were limited (Grids 14 & 18),

there was insufficient information to identify the models,

leading to failure to converge in all simulations. When

there was insufficient direct evidence for AvB to identify

parameters this comparison, indirect evidence arising

from AvC and BvC was able to help inform them,

resulting in low convergence failure (3.28% in Grid 5 and

5.66% in Grid 9).

As convergence failure was much greater than 10% in

Grids 14 & 18, performance measures have not been cal-

culated for these datasets as this would introduce selec-

tion bias on estimation of the performance measures.

3.2 | Performance measures

3.2.1 | Bias

Mean bias (reported as a proportion of the true parameter

values) on time-course parameters dEmax ,A,B and dET50 ,A,B

was higher in datasets in which there was insufficient direct

evidence for AvB to independently estimate the time-course

function but where indirect evidence arising from AvC and

BvC was still available (Figure 2A; Grids 5 & 9).

In all other datasets in which time points were

removed, % mean bias on all time-course parameters was

very low (range: −1.78% to 1.79%) in Grids 1-4 & 6-8 (Fig-

ure 2A), even when time points were simultaneously
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removed from studies in two comparisons in the network

(Grids 11-13 & 15-17).

Although mean bias for predicted means followed a very

similar trend to the mean bias for time-course parameters as

time points were removed, mean bias as a % of the true

value was much smaller, and the range of bias in simula-

tions much lower (Supplementary Figures - Extended).

3.2.2 | Model SE vs empirical SE

Model SE increased for parameters relating to the com-

parison from which the time points were removed. When

removing time points from studies comparing treatment

B to treatment A (Grids 2-10), model SE only increased

markedly for dEmax ,A,B and dET50 ,A,B (though there was also

a very slight increase for dEmax ,A,C and dET50,A,C ) (Figures

S3 and S4). However, for dEmax ,A,B , there was also a very

clear decrease in model SE when direct information on

the time-course for AvB was very limited (Grids 5 & 9),

which increased again when studies comparing AvB were

completely removed (Grid 10).

As with mean bias the effect on model SE of remov-

ing time points for predicted means followed a very simi-

lar trend to time-course treatment effects (Supplementary

Figures - Extended).

% error in SE was generally low for all parameters in all

datasets and remained stable regardless of which time

points were removed from particular parts of the time-

course curve in studies for any particular comparison

FIGURE 2 Mean bias as a % of

true parameter value A, and % error

in SE B, for treatment effect

parameters in datasets in Study I

with different patterns of study/time

point removal (see Figure 1). Error

bars extend symmetrically beyond y-

axis limits for some points and are

not visible for others where 95% CrIs

are too narrow [Colour figure can be

viewed at wileyonlinelibrary.com]
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(range: −2.59% to 2.60%) (Figure 2B). Parameters that

started with a lower error relative to other parameters con-

tinued to have a relatively lower error as time points were

removed. This indicated that so long as parameters could be

identified and convergence was successful, the models reli-

ably captured the true degree of precision in the data.

3.3 | Study II

3.3.1 | Convergence

Failure to converge was low in most datasets, though fail-

ing to correctly model heterogeneity on Emax in datasets

in which heterogeneity was present led to an increased %

of simulations that failed to converge when there was

limited direct evidence on one comparison (Figure S5;

Grids 5 & 9). Correctly modeling this heterogeneity

reduced the % of simulations that failed to converge to

almost 0%. A smaller, yet opposite, effect was found in

datasets in which correlation was present, where model-

ing correlation in the MBNMA model led to slightly

higher failure to converge in Grids 5 & 9.

3.3.2 | Model selection

Where applicable, model selection methods frequently

identified the different structural components of the true

model from which the data were generated (Figure 3). In

datasets with no residual correlation between time

points, DICv model selection methods typically identified

the true model in 91.8% (range: 7.80% to 100%) of simula-

tions across all methods, compared with 58.3% (range:

4.44% to 100%) for DICD. This difference was particularly

evident in datasets in which time points/studies had been

removed (Supplementary Figures - Extended). However,

in datasets generated with moderate heterogeneity the

results were more similar, and DICD identified the true

model in a higher % of simulations (median: 61.0%) than

DICv (median: 47.7).

When using DICv as a model selection statistic, “sim-

plest” and “staged strategy” selection methods produced very

similar results. Across all datasets, they selected the same

analysis model in 94.8% of simulations. These two methods

often failed to select a model that accounted for heterogene-

ity correctly, preferring models with common treatment

effects (Figure 3, in addition to figures in Supplementary Fig-

ures - Extended). For datasets generated with moderate het-

erogeneity, “simplest” and “staged strategy” methods with

DICv correctly selected random treatment effects on Emax in

59.3% of simulations, compared to 85.6% for the “fit”

method, which resulted in lower precision of estimates.

As mentioned in the Supplementary Methodology,

DICD cannot be calculated for multivariate models which

account for correlation between observations. However,

DICv was able to select the same covariance structure as

was used to generate the data in 77.1% of simulations

(Figure 3, in addition to figures in Supplementary Figures

- Extended), suggesting that this is a reliable statistic for

comparing multivariate models in many scenarios, pro-

vided the correlation is of sufficient strength. However,

in datasets generated with moderate CS covariance, DICv

only selected a multivariate model with the correct

covariance structure in 6.07% of simulations.

Selected models in all datasets and model selection

methods had an Emax time-course function. An exponen-

tial time-course was never selected, and results of perfor-

mance measures for these models are therefore not

shown.

FIGURE 3 % of simulations in

which different model selection

strategies identified the “true”

structural components (time-course

function, treatment effects,

covariance structure) of the model

from which the data were generated

with varying degrees of

heterogeneity and correlation.

Results are shown for DICD and

DICv used as model selection

statistics, with models selected based

on best fit, simplest, or staged

selection strategies. Results are

shown for datasets in which all

studies/time points are included

(Grid 1) [Colour figure can be

viewed at wileyonlinelibrary.com]
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3.3.3 | Performance measures

We only present performance measures for the final

model from each simulation here as selected by the

“staged strategy” model selection method using DICv,

since it identified an appropriate model reliably and was

computationally the most efficient. Across all datasets it

required fewer models to be fitted when compared with

either “best fit” or “simplest” selection methods. In

datasets with no heterogeneity or residual correlation

between time points, as many as eight fewer models

needed to be run for each simulation. Results for other

model selection methods are not shown here but are

available on request.

FIGURE 4 Mean bias as a % of true parameter value A, and % error in SE B, for time-course parameters from MBNMA models selected

as the best using DICv “staged strategy” model selection in Study II. Results are presented by dataset with different heterogeneity, correlation

specification and patterns of study/time point removal (see Figure 1). Error bars extend symmetrically beyond y-axis limits for some points

and are not visible for others where 95% CrIs are too narrow [Colour figure can be viewed at wileyonlinelibrary.com]
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Bias

Mean bias as a % of true parameter values on time-

course parameters was low (range: −0.8% to 0.9%) in

datasets with none or moderate heterogeneity and

information at all time points (Figure 4A; Grid 1). This

increased (range: −0.3% to 5.6%) in datasets with high

heterogeneity (Grid 1). Removing studies/time points

from the observed data led to increased % mean bias

(Grids 5, 9 & 10). As in Study I, % mean bias was typi-

cally higher when there was limited direct evidence

for AvB (Grid 9) than when these studies were

removed, and time-course parameters were only

informed by indirect evidence arising from AvC and

BvC (Grid 10).

FIGURE 5 Mean bias as a % of true parameter value A, and % error in SE B, for predicted mean responses on treatments B and C, at 2,

6 and 12 weeks follow-up from MBNMA models selected as the best using DICv “staged strategy” model selection in Study II. Results are

presented by dataset with different heterogeneity, correlation specification and patterns of study/time point removal (see Figure 1). Error

bars extend symmetrically beyond y-axis limits for some points and are not visible for others where 95% CrIs are too narrow [Colour figure

can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Mean bias as a % of true parameter value A, and % error in SE B, for predicted mean responses on treatments B and C, at 2, 6

and 12 weeks follow-up from different MBNMA models in datasets in which all studies/time points are present. Results are presented by

dataset with different heterogeneity and correlation specification. Within the MBNMA analysis model name, the first “ce” or “re” represents

common or random treatment effects respectively on Emax and the second represents common or random treatment effects on ET50. For

exponential there is only a single time-course parameter and “ce” or “re” represents common or random treatment effects on that

parameter. AR1 or CS indicate that correlation has been accounted for using the respective covariance matrix structure. The true model from

which the data were generated in each panel is indicated by the vertical black dashed line. High heterogeneity datasets have been excluded

from results as they have high % convergence failure and so would exhibit extreme selection bias. Error bars extend symmetrically beyond y-

axis limits for some points and are not visible for others where 95% CrIs are too narrow [Colour figure can be viewed at

wileyonlinelibrary.com]
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Results from datasets with moderate heterogeneity

showed a very similar pattern of bias to those from

datasets with no heterogeneity. The exception to this was

in datasets with high correlation, in which case % mean

bias was slightly attenuated in datasets with moderate

heterogeneity compared to those with no heterogeneity

in Grids 5 & 9.

The impact of heterogeneity, correlation, and the

removal of studies or time points on bias followed a very

similar pattern for predicted means as for time-course

parameters. However, as in Study I % mean bias was sub-

stantially lower (range in % mean bias: −0.01% to 0.44%

in Grid 1 datasets), and the 95%CrIs substantially

narrower, implying less variability in bias (Figure 5A).

Model SE vs empirical SE

For time-course parameters and predicted means, model

SE was higher in datasets with heterogeneity, and

increased as time points/studies were removed from the

datasets (Supplementary Figures - Extended).

% error in SE followed very similar patterns in all

datasets for time-course parameters and predicted means.

The results for predicted means for treatment B (θ

_

B,2, θ

_

B,6

and θ

_

B,12) followed an almost identical pattern to dEmax ,A,B

and the results for predicted means for treatment C (θ

_

C,2 ,

θ

_

C,6 and θ

_

C,12 ) followed an almost identical pattern to

dEmax ,A,C , highlighting the importance of Emax parameter

estimation on % error in SE for making predictions.

% error in SE was always positive except in datasets

generated with AR1 covariance structure when limited

direct evidence on AvB was available (Grids 5 & 9). As

the model SE targets the empirical SE, this suggests that

these models are more likely in general to “underesti-

mate” the precision, leading to more conservative 95%

CrIs for parameters of interest. Within datasets generated

with AR1 covariance structure in Grids 5 & 9 the % error

in SE was more extreme for the time-course parameter

for which there was more information available, and this

had a corresponding effect on predicted means in the

case of Emax parameters.

As would be expected given previous results, reduced

information in the generated data (either due to removal

of time points/studies for a given comparison or higher

heterogeneity/correlation) led to more extreme % error in

SE. However, unlike results for bias, removing studies for

a comparison (Grid 10) frequently resulted in poorer per-

formance in terms of % error in SE than when removing

time points (Grids 5 and 9).

Impact of ignoring heterogeneity/correlation

Failure to properly model heterogeneity or correlation

that was present in the generated data did not lead to

substantial bias in either the time-course parameters or

predicted means, unless an exponential time-course func-

tion was used (Figure 6A). However, there was a signifi-

cant impact of ignoring either heterogeneity or

correlation on % error in SE (Figure 6B).

In datasets generated with no heterogeneity, using a

model for analysis with the same covariance structure as

that used to generate the data led to the % error in SE

being very close to zero, even when time points or studies

were removed from the data. However, failing either to

model the correlation, or to use the correct covariance

structure, led to substantial % error in SE, particularly

when the correlation was high. In datasets in which there

was heterogeneity, the impact on % error in SE of failing

to account correlation between observations appeared

less than in datasets with no heterogeneity.

Failing to account for heterogeneity in the analysis

when it was present in the generated data also had a con-

siderable impact on % error in SE, even when the degree

of true heterogeneity was only moderate. Using a com-

mon treatment effects model when a random effects

model that accounted for heterogeneity on Emax was

more appropriate led to negative error, a substantial

“overestimation” of precision that led to 95% CrIs appe-

aring tighter than they should be given the variability in

the data. This effect was also exacerbated by the impact

of removing studies/time points from the data (Supple-

mentary Figures - Extended).

4 | DISCUSSION

This paper describes two studies evaluating the perfor-

mance of time-course MBNMA in a series of simulated

datasets of aggregate RCT responses. Study I investigated

how MBNMA model parameters are affected by the

quantity and location of observed time points within the

dataset, whilst Study II investigated how reliably an

appropriate model can be identified and how robustly the

outputs can be estimated from the selected model.

4.1 | Study I

Study I illustrates that it is important to consider the

quantity and location of observed follow-up times within

studies in an MBNMA. We found that when there was

insufficient direct evidence to be able to independently

estimate the Emax time-course function parameters for a

particular treatment comparison, it resulted in greater

bias and convergence failure in the corresponding time-

course parameter estimates. This was due to the difficul-

ties of reconciling the two time-course models - a pre-

cisely estimated indirect model and a very imprecisely
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estimated direct one, even though the data were simu-

lated under the assumption of consistency between direct

and indirect evidence. However, bias remained low in all

scenarios for predicted means. If the objective of the syn-

thesis is to predict the results of a potential future study

or to estimate clinical results to be used in a cost-effec-

tiveness analysis, the predicted responses are most likely

to be of interest, and bias in the time-course parameters

may not be of concern. On the other hand, for consulta-

tions with clinicians in which relative effects may be of

greater interest, time-course parameters may be the focus

of the analysis and potential bias of more concern.

The implications of our findings are that whilst we

can reliably make use of indirect evidence to inform rela-

tive effects between treatments for which there is no

direct evidence available, caution may have to be used if

there is direct evidence available for a particular compari-

son that is only provided by studies that include limited

time-course information.

In such a scenario, the choice of modeling approach

should again depend on the objective of the analysis. If

modeling the time-course is of particular importance (eg,

in drug development) and there is a subset of focal treat-

ments on which there is sufficient data, then one option

may be to exclude treatments with limited data that are

less crucial to decision-making. Alternatively, if estimat-

ing efficacy of all treatments simultaneously at a single

time point is a priority then, provided data are available

at that time point, a simple NMA should be a preferred

approach as no assumption regarding the time-course

relationship is required (although making this assump-

tion can also provide additional precision even if only a

single time point is of interest). However, there may be

no time points at which data are available on all treat-

ments, and we advise against “lumping” together data at

different follow-up times for the purposes of synthesis, as

this can introduce heterogeneity.23

A final option would be to model the time-course

using MBNMA but to allow for sharing of information

on a particular time-course parameter across treatments

in the network, which may improve parameter

identifiability and allow models to converge. In a time-

course MBNMA of pain relief in osteoarthritis,10 there

was only direct evidence available at two observations for

two treatments in the network, and for many other treat-

ments there was limited information at earlier time

points, meaning that there was insufficient evidence to

inform both parameters of the Emax time-course model

that was used. Information on the ET50 parameter was

therefore shared across different treatments in the net-

work to allow its estimation. Whilst this allowed for esti-

mation of an Emax function, it is likely to have induced

some bias in relative effects for these treatments.

The Emax relationship has previously been investi-

gated in a dose-response simulation study.24 In contrast

to our results, Dutta et al24 found that even with a wide

spread of data over the Emax relationship, bias on Emax

and EC50 (analogous to ET50 for dose-response relation-

ships) was high (>15%), and it increased as the range of

observations decreased. Despite this, Dutta et al24 found

similarly to our study that predicted values from the

models were accurate, provided predictions were within

the observed concentration range. The lower bias on Emax

parameters found in MBNMA may be due to the added

benefit of using indirect evidence and, were this evidence

also to be removed from the network, convergence issues

would likely be a problem before the extent of bias found

by Dutta et al24 was reached.

Understanding how the quantity of observed data and

the follow-up times at which data are reported may affect

estimation of time-course treatment effects also depends

on which time-course parameter(s) are of interest. For an

Emax relationship the maximum achievable response rela-

tive to competitor treatments (dEmax ,c,k ) might be consid-

ered to be the desired “target,” in which case studies

(contributing either direct or indirect evidence) that can

provide most information to dEmax ,c,k will report outcomes

at later follow-up times. On the other hand, for condi-

tions in which speed of onset relative to other treatments

might be more of an issue, such as migraine or illnesses

in which current treatments take a long time to act (eg,

psychiatric), precision and reliability in estimating

dET50,c,k may be more important. In these cases, studies

that report time points closer to ET50 are invaluable.

When considering the impact of reported follow-up times

in a MBNMA, it may also be useful to consider the design

of the included studies. With regards to an Emax time-

course function, earlier phase studies are typically shorter

in duration but can often include more observations.

Whether Emax is reached in these shorter studies will

depend on the onset of action of the drug and type of dis-

ease being investigated. For example, pain drugs typically

have a quick onset of action and it is likely Emax can be

well estimated in a short duration study but conversely,

for drugs aimed at losing weight, Emax might not be well

characterized in these early patient trials.

Within pharmacometrics, optimal experimental

design theory seeks to identify the most important mea-

surements required to reliably characterize a dose-

response or time-course function.25 Whilst these

approaches are used when designing a study and may

inform the choice of follow-up times used in the study

analysis, it may be possible that the number of follow-up

times collected within the study are not the same as those

reported in the aggregate data, which greatly reduces

their applicability in MBNMA. We urge researchers not
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only to use such methods when designing a study, but

also to report aggregate results at all recorded time

points, as well as the correlations across these time

points, to facilitate estimation of all time-course parame-

ters in MBNMA.

4.2 | Study II

Study II makes contributions to two main areas. It firstly

demonstrates the reliability of our “staged strategy” model

selection method in identifying an appropriate time-course

MBNMA model. This method correctly selected the model

used to generate the data in a high proportion of simula-

tions and was often able to reliably identify the time-course

function, heterogeneity and covariance structure between

time points. Whilst the “simplest” method was also an

effective method for model selection, the benefits of the

“staged strategy” method are that it considerably reduces

the number of potential models that need to be fitted to

identify a final model. Particularly in the case of data with

no heterogeneity or residual correlation between time

points, it negates the need to fit computationally intensive

multivariate models and, in the case of a two-parameter

time-course function, this could lead to up to eight fewer

models being fitted than the “simplest” selection method

without even accounting for the multitude of models that

can be fitted when comparing different time-course func-

tions. The wide range of potential MBNMA models that

can typically be fitted and the computational time required

to run them, particularly when using multi-parameter

time-course functions and multivariate likelihoods, means

that this strategy significantly facilitates the process of iden-

tifying an appropriate time-course MBNMA model.

The evaluation of different model fit statistics in

Study II showed that DICv (calculated using pv
16) per-

forms similarly to DICD (calculated using pD via the plu-

gin method15) for comparing random vs common

treatment effect models, but has the added benefit of

being calculable for multivariate likelihood models,

thereby allowing comparison between univariate and

multivariate models that account for correlation between

time points. Whilst calculation of pD is not possible for

multivariate likelihood models due to the covariance

matrix being estimated from the data, we show that pv
used in DICv is a reliable alternative for comparison of

multivariate likelihood models with different covariance

matrix structures. We therefore would recommend using

DICv with the “staged strategy” selection method for

identifying the appropriate time-course MBNMA model.

This selection method was used for MBNMA of the

pain relief in osteoarthritis dataset,10 for which there had

been a question regarding whether DICv with the “staged

strategy” was able to reliably select between univariate

and multivariate likelihood models. Results from Study II

confirm that this approach is likely to have selected an

appropriate choice of likelihood that will have avoided

substantial bias or increase in % error in SE. Even though

some non-zero correlation was identified when fitting a

multivariate likelihood model in this dataset, it was low,

and the impact on 95% CrIs of relative treatment effects

was negligible, which supported the selection of a univar-

iate likelihood model when using the “staged strategy.”

A second major contribution of Study II is that it

demonstrates the robustness of model predictions and,

though to a slightly lesser extent, estimation of time-

course parameters. As in Study I, we found that very lim-

ited direct evidence led to greater bias on time-course

parameters than in datasets in which only indirect evi-

dence was available. Convergence was an issue in these

datasets, and we suspect that this may have affected a

selective sample of simulations (e.g., those with higher/

lower observed values), which would therefore result in

biased parameter estimates in the remaining converged

simulations.

In particular, Study II highlights the importance of

correctly accounting for heterogeneity and correlation

between observations in MBNMA models, even when the

time-course has been correctly characterized through use

of an appropriate time-course function.

Previous research in meta-analysis has highlighted

the importance of accounting for within-study correla-

tions, such as when analyzing repeated measures,26 and

has also shown that ignoring correlation in model-based

meta-analysis led to inflated residual variance.27 Study II

provides empirical evidence to further support this by

showing that failing to account for substantial correlation

present in the generated data led to increased %

error in SE.

In addition, we demonstrate that the choice of covari-

ance structure can have a considerable impact on % error

in SE. Modeling using a CS covariance structure when

data were generated with an AR1 structure can lead to

considerable % error in SE, and vice versa. It may there-

fore be important to consider a variety of different covari-

ance structure types commonly used to account for

correlation between time points (eg, ARMA, Toeplitz),28

though there may be problems with convergence for

more complex covariance structures if estimation of mul-

tiple correlation coefficients is required.

Model selection methods may also struggle to select

between models with different covariance structures, par-

ticularly if the true correlation is not strong. We found

that in datasets with moderate CS correlation, models

were typically selected that did not account for correla-

tion between time points, and this led to slightly higher
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% error in SE for predicted means and time-course

parameters. It is unclear why this might be the case, why

the same was not found in datasets with AR1 correlation,

and how often this degree of correlation in aggregate data

may occur in practice. One explanation could be due to

the limitations of using DICv for comparison of multivari-

ate models. An alternative approach when comparing

univariate and multivariate models may be to more

closely inspect the correlation parameter (if estimated

from the data) to check for non-zero values.

Failing to account for heterogeneity when it was pre-

sent in the generated data also led to positive % error in

SE, as would be expected when modeling heterogeneous

data using common treatment effects models. Yet in

datasets with heterogeneity on Emax, even when it was

modeled correctly, there was some positive % error in SE

on time-course parameters and predicted means. This

was most likely caused by the upwards bias in τEmax

(Figure S6), which is a common feature when estimating

heterogeneity in meta-analyses.29,30 In this study, our

choice of a conservative U(0, 100) prior distribution for

τEmax
may explain the % error in SE identified in datasets

with high heterogeneity.

Heterogeneity parameters are known to be sensitive

to the prior distributions chosen in a Bayesian analysis,

and the use of more realistic distributions such as half-

normal or inverse-gamma priors may reduce bias in their

estimation.30 However, this also highlights a clear benefit

of MBNMA over standard NMA in that by modeling

time-course it reduces heterogeneity that might arise due

to pooling of studies with different follow-up times,

thereby limiting the need to estimate heterogeneity

parameters and the resulting bias from doing so.

4.3 | Limitations

We have only looked at data generated from an Emax rela-

tionship, and one might reasonably ask whether it is fair

to generalize findings from this to other time-course

functions. Whilst we have not approached this in any

detail (primarily due to the potentially vast number of

non-linear relationships), some conclusions are likely to

be more generalisable than others.

When considering the two time-course functions used

for analysis in Study II, the exponential function as we

defined it (Table 2) fitted the data very poorly and was

never selected in any simulation. Whilst this illustrates

clearly that these model selection approaches can reliably

choose between different time-course functions, we

would not expect to encounter this form of an exponen-

tial relationship in a pharmacometric context. We have

since updated the MBNMAtime R package used for

analysis in this study to incorporate a pharmacometric-

specific form of the exponential function which is more

generalisable to longitudinal datasets.31

In terms of the impact of correlation and heterogene-

ity, as well as the performance of model selection

methods, we believe that results from this paper are

generalisable to other time-course functions. However,

when considering the impact of different follow-up times

present in the data, the underlying time-course may lead

to different conclusions.

There are also several factors that we have not consid-

ered here that are likely to be important in time-course

MBNMA which could impact the external validity of the

study. When analyzing longitudinal data, patient drop-out

is often an important consideration. Within the modeling

framework we assume either that there has been no drop-

out, or if there is drop-out then either that it is missing

completely at random, or that any adjustment for dropout

has been accounted for already in the results reported by

included studies. This approach is commonly practiced in

meta-analysis due to only aggregate level data being avail-

able. An alternative approach is to restrict the inclusion

criteria to studies using a specified method of imputation

(eg, Last Observation Carried Forward). Whilst we have

made the simplifying assumption of no drop-out in our

simulations, this has allowed us to focus on the perfor-

mance of the method in the ideal situation with no drop-

out. Methods for investigating different missingness mech-

anisms have been previously described in NMA,32,33 and

these could be extended to MBNMA in future work and

investigated in more detail in simulation.

We have only considered a three-treatment network,

which does not provide information on the effects of

“second order” indirect evidence which may add strength

to improve model estimation.34 More complex network

structures/geometry (ie, the connections between treat-

ments within the network) have been addressed previ-

ously in NMA,35-38 and whilst this is certainly an

important consideration for MBNMA, we expect that

similar approaches and conclusions could be drawn.

Finally, we have not addressed the issue of inconsis-

tency here, the potential discrepancy between direct and

indirect evidence that can arise in networks of evi-

dence.39 Methods for identifying inconsistency in time-

course MBNMA have been proposed,10 but the potential

for testing for inconsistency in network of drug develop-

ment trials may be limited. In early phase studies, active

treatments are all often compared to a common compara-

tor (eg, placebo), and as trials must be internally consis-

tent, differences between trials will manifest as

heterogeneity rather than inconsistency. We hope that

inconsistency in MBNMA is something that can be exam-

ined in future work using simulation, with consideration
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of how model characteristics such as sharing time-course

parameters across treatment comparisons may impact

the ability to detect inconsistency.

5 | CONCLUSIONS

In this paper, we have demonstrated through simulation

that indirect evidence can help estimate time-course

parameters by providing additional information, either

when limited direct evidence is available or in the

absence of head-to-head trials.

We have highlighted the value of a model selection

strategy for identifying an appropriate MBNMA model,

and shown that DIC is a reasonable model selection statis-

tic to use for comparison, even when it is calculated using

pv for the effective number of parameters. It also empha-

sizes the importance of correctly accounting for correlation

between time points through the use of a multivariate like-

lihood with an appropriate covariance structure, and of

modeling any heterogeneity present in the data.

We find that although there are some scenarios in which

time-course parameter estimates may be biased, predicted

responses can still be estimated reliably, which helps indicate

the circumstances in which time-course MBNMA can be

most useful. The true degree of precision is typically well esti-

mated by the models provided that any heterogeneity in the

data has been modeled and that correlation between time

points has been appropriately accounted for.

This work demonstrates the validity of time-course

MBNMA methodology and lends support to the wider

application of MBNMA in evidence synthesis.
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