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• A method for deriving distance-based
(g/km) emission factors from vehicle
emissions remote sensing has been de-
veloped.

• The method has been comprehensively
evaluated against independent PEMS
data.

• Applications to several remote sensing
campaigns are demonstrated.

• While demonstrated for CO2 and NOx,
the method is applicable to any pollut-
ant species
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Vehicle emission remote sensinghas the potential to provide detailed emissions information at a highly disaggre-
gated level owing to the ability tomeasure thousands of vehicles in a single day. Fundamentally, vehicle emission
remote sensing provides a direct measure of themolar volume ratio of a pollutant to carbon dioxide, fromwhich
fuel-based emissions factors can readily be calculated. However, vehicle emissions are more commonly
expressed in emission per unit distance travelled e.g. grams per km or mile. To express vehicle emission remote
sensing data in this way requires an estimate of the fuel consumption at the time of the emission measurement.
In this paper, an approach is developed based on vehicle specific power that uses commonly measured or easily
obtainable vehicle information such as vehicle speed, acceleration andmass. We test the approach against 55 in-
dependent comprehensive PEMS measurements for Euro 5 and 6 gasoline and diesel vehicles over a wide range
of driving conditions and find good agreement between themethod and PEMS data. Themethod is applied to in-
dividual vehiclemodel types to quantify distance-based emission factors. Themethodwill be appropriate for ap-
plication to larger vehicle emission remote sensing databases, thus extending real-world distance-based vehicle
emissions information.
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1. Introduction

Road vehicle emissions contribute significantly to a wide range of air
pollution problems, particularly in urban areas. The European Environ-
ment Agency estimates that in 2017 86% of its monitoring stations
which reportedNO2 concentrations above theWorldHealth Organisation
Air Quality Guidelines were traffic stations (EEA, 2019). Important pri-
mary combustion products from vehicles include NOx (NO + NO2) and
particulate matter (PM). Additionally, emissions of NOx act as an ozone
precursor and are an important contributor to secondary particulate for-
mation. Emissions of these species have been shown to have considerable
deleterious effects on humanhealth (Mannucci et al., 2015; Kar Kurt et al.,
2016; An et al., 2018), with premature deaths in Europe having been at-
tributed to poor air quality owing to exceedances of road transport type
approval tests (Jonson et al., 2017; Chossière et al., 2017, 2018). Recently,
Schraufnagel et al. (2019) suggested that air pollution could deal chronic
damage to potentially every organ in the human body.

Robust emissions data are required to ensure that policies aiming to
mitigate air pollution are effective. In the case of road vehicle emissions,
robust quantification poses considerable challenges. Vehicle emissions
vary by manufacturer, vehicle model, emission standard, engine size
and fuel type — and many other factors. Even nominally identical vehi-
cles which share all these characteristics can vary in their mileage, their
levels of maintenance, driver behaviour, the added weight of their pas-
sengers and cargo, the auxiliary systems being employed, and the ambi-
ent conditions in which they are driven. With tens of millions of road
vehicles in theUnited Kingdomalone, it is challenging to robustly quan-
tify the contribution of road transport to air quality.

In recent years there has been an increased focus on emissions under
“real-world” conditions in addition to laboratory-based quantification.
Historically, testing vehicles for Type Approval regulations has been
solely conducted under controlled laboratory conditions on chassis dy-
namometers over drive cycles such as the New European Driving Cycle
(NEDC). Originally introduced in 1996, the NEDC is criticised for poorly
reflecting real driving conditions. To replace the NEDC, the Worldwide
Harmonised Light Vehicles Test Procedure (WLTP) was introduced in
Europe starting in 2017, which is more representative of real-world
driving, alongside the Real Drive Emissions (RDE) test. The RDE test is
conducted on roads in real traffic, with vehicles being measured with
Portable Emission Measuring Systems (PEMS) undergoing a specified
variety of driving conditions (urban, rural, and motorway) (Mock,
2017).

Remote sensing is inmanyways complementary to PEMS. PEMS has
some clear benefits: the full journey of a single vehicle can bemeasured
under almost any driving condition— idling in traffic through tomotor-
way driving. However, it can be expensive and time consuming tomea-
sure a large number of vehicles in this way and capture important
variationsdue to ambient conditions, vehicle age profiles and thepoten-
tial effects of vehicle deterioration. Moreover, it is also challenging to
measure a broad range of vehicle types, including urban buses and the
wide range of heavy duty diesel vehicles (HDV) that exist. The growing
databases of PEMS measurements are strongly dominated by measure-
ments of passenger cars.

On the other hand, vehicle emission remote sensing cannotmeasure
an entire drive cycle; only measuring a snapshot (typically 0.5 s) of a
given vehicle's journey. Nevertheless, an important advantage of re-
mote sensing comes from the much larger sample size measured in a
short space of time, full fleet coverage with little selection bias, and
the unobtrusive nature of remote sensing. Applications of the technique
have included the instantaneous identification of potential high-
emitters (Huang et al., 2018; OPUS, 2019) and investigations into longer
term trends in fleet emissions (Bishop and Stedman, 2015; Carslaw
et al., 2016). Remote sensing data has also been used to analyse real-
world conditions which can influence vehicle emissions, two examples
being altitude (Bishop et al., 2001) and ambient temperature (Grange
et al., 2019).

A key limitation of remote sensing in terms of emission factor devel-
opment, however, is that only amolar ratio of a pollutant to CO2 is mea-
sured. This is a consequence of measuring in a dispersing plume in the
atmosphere rather than measuring emissions directly at the tailpipe.
The concentrations of pollutants in a plume may change as it dilutes,
but their ratios to CO2 should remain the same for unreactive pollutants
(Bishop and Stedman, 1996). With a few basic assumptions about the
combustion of hydrocarbon fuels, it is straightforward to calculate
fuel-based emission factors, most commonly expressed as grams of
emission per kg of fuel burnt (Burgard et al., 2006).

Fuel-based emission factors have been argued to vary less with en-
gine load than distance-based equivalents (Stedman et al., 1994;
Singer and Harley, 1996). Lee and Frey (2012) went as far to suggest
that remote sensing site-specific fuel-based emission factors could be
representative of area-wide emission rates if the distribution of vehicle
specific power (VSP) values were similar between the measurement
site and routes in the area of interest. However, the vehicle emissions
type approval process and emission factors used in the development
of emissions inventories instead express emissions as distance-based
factors i.e. grams per mile or kilometre.

Previous studies have already attempted to generate distance-based
emission factors from remote sensing data. Carslaw et al. (2011) used
UK emission factor estimates of CO2 in g km−1 and measured NOx:
CO2 ratios to generate NOx g km−1 emission factors; a major assump-
tion being the accuracy and representativeness of the CO2 estimates.
Similarly, Bernard et al. (2018) combined average fuel-based emission
factors, the carbon content of fuel, and distance-based CO2 emission fac-
tors estimated based on type-approval information contained in num-
ber plate information, augmented by the reported consumer fuel
economy average experience in real-world conditions. The authors
note that this method is to be used with caution due to the real-world
variance of CO2 g km

−1 values not reflected in the type-approval values.
More commonly, fuel consumption is used directly to transform

fuel-based emission factors into speed-based ones. In some cases, the
approach relies on preexisting measurements of fuel consumption.
Aguilar-Gómez et al. (2009) estimated fuel consumption based on fuel
economy databases available from maintenance programs in Mexico
where their study took place, and Zhou et al. (2014) relied on fuel con-
sumption information derived from an earlier PEMS study by Wang
et al. (2014). A natural drawback ofmethods such as these is the restric-
tion of remote sensing to locations where these external data sets exist
and are publicly available.

Other studies have chosen to model fuel consumption based on
roadside measurements. For example, Chan and Ning (2005) used
work presented by Tong et al. (2000) to model fuel consumption
based on instantaneous vehicle speed. Later, Zhou et al. (2007)
modelled fuel consumption based on both binned vehicle specific
power (VSP) and vehicle speed to better reflect real-world driving con-
ditions, with each binned fuel consumption value adjusted by vehicle
mass. Only four vehicles were used in the fuel economy testing to feed
into this model, however, limiting its applicability.

The primary focus of this work is the development and validation of
a method to estimate the instantaneous fuel consumption of a vehicle
measured using remote sensing, which can then be used to estimate
distance-based emission factors. To estimate fuel consumption, vehicle
specific power (VSP) is first estimated using kerbside measurements
and vehicle technical data, and is then used to model fuel consumption
through relationships established using the Passenger Car and Heavy
Duty Emission Model (PHEM). The derived distance-based emission
factors are compared to PEMS data of 55 Euro 5 and 6 passenger cars
and light duty vans. The comparison is made between the emissions
of NOx measured over a real-world driving test (similar to an RDE
test) and emissions derived using the emissionsmodel based on remote
sensing data.

In order to demonstrate the methods in this work, certain assump-
tions have been made — for example relating to the power demands
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on vehicle engines, or the molecular formula of fuel. The methods are
sufficiently modular such that if more specific values are known or if al-
ternative assumptions are preferred, they can be used in the place of
those assumptions presented here.

2. Materials and methods

2.1. Calculation of vehicle power

The aim of the emissionsmodel is to estimate the instantaneous fuel
consumption of a vehicle at the time the remote sensing measurement
is made. The approach is based on the estimate of the vehicle power de-
mand at a particular point in time coinciding with when a remote sens-
ing measurement is made. To calculate the VSP (Jimenez-Palacios,
1998), it is necessary to sum the power demands for a vehicle, given
in Eq. 1. These include the power to accelerate the vehicle (Paccel), to
overcome rolling resistance from the road (Proll), to overcome air resis-
tance (Pair), to climb the road gradient (Pgrad) and to operate auxiliary
devices (Paux), accounting for power losses in the transmission (Ptrans).

Ptotal ¼ Paccel þ Proll þ Pair þ Pgrad þ Ptrans þ Paux ð1Þ

The total vehicle power demand (in Watts) is given by Eq. 2. The
terms used in Eq. 2 and subsequent equations are defined in Table 1.

Ptotal ¼ m� a� 1:04
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Paccel

þR0 þ R1 � v
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

Proll

þ0:5� Cd � A� ρ� v2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pair

þm� g � Grad
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

Pgrad
2

6
4

3

7
5

� 1:08
|ffl{zffl}

Ptrans

�vþ 2500
zfflffl}|fflffl{
Paux

ð2Þ

To arrive at Eq. 2, the following assumptions were made: the power
to accelerate rotational accelerated mass is equivalent to 4% of the
power for translational acceleratedmass; the power losses in the trans-
mission are equal to 8% of the power at the driven wheels; and the
power demand of auxiliaries is taken to be a fixed value of 2.5 kW
(Borken-Kleefeld et al., 2018; Hausberger, 2003). g is taken to be
9.81 m s−2 and ρ to be 1.2 kg m−3, the density of air at 20 ∘C and
1 atm of pressure.

To calculate VSP in kW t−1, Eq. 2 is divided bymass to arrive at Eq. 3.

VSP ¼
2500þ R0 � vþ R1 � v2 þ Cd � A� 0:5� ρ� v3

� �
� 1:08

m� 1000

þv� 1:08� 1:04� aþ g � Gradð Þ

ð3Þ

Coefficients R0, R1 and CdA are provided in Table 2 on a per-vehicle
segment basis, as well as for average cars, vans and both cars and vans.
The segmentation used is that of the European Commission (1999),
with vehicle segments defined to group vehicles with similar character-
istics together and make the analysis tractable. Vehicle segments are
each given letters and names, with A corresponding to minis, B small
cars, C medium-sized cars, D large cars, E executive cars, F luxury cars
and J sports utility vehicles. VanI-III refer to increasing sizes of van. Seg-
mentation is inexact, being based on factors such as price and accesso-
ries as well as vehicle size and shape; in principle, no segmentation is
required, but it is especially useful for grouping vehicles with similar
drag coefficients, where there is an absence of individual vehicle mea-
sured values of Cd.

2.2. Modelling instantaneous fuel consumption

The Passenger Car and Heavy Duty Emission Model (PHEM), simu-
lates fuel consumption and emissions from vehicles in any driving situ-
ation based on engine maps and vehicle longitudinal dynamics
simulation (Hausberger, 2003). PHEM is able to model fuel consump-
tion values over a range of driving conditions. For the purposes of esti-
mating the fuel consumption of vehicles measured by remote sensing,
it provides relationships between fuel consumption and engine
power. This relationship can be normalised by dividing through both
variables by vehicle mass, effectively creating a relationship between
normalised fuel consumption in (g h−1) t−1 and VSP. VSP can therefore
be converted to fuel consumption using Eq. 4, whereM and C are the di-
mensionless parameters of the linear relationship. These parameters are
provided in Table 2 on a per-vehicle segment basis, aswell as for average
cars, vans and both cars and vans.

FCgh ¼ M � VSP þ Cð Þ �m ð4Þ

A consequence of using a linear equation such as Eq. 4 to model fuel
consumption are negativemodelled fuel consumption values,which are
set to zero due to having no physical basis. Using Eq. 5 fuel consumption
can be converted from grams per hour driven to grams per kilometre
travelled through division by vehicle speed in kilometres per hour.

FCgkm ¼
FCgh

v� 3:6
ð5Þ

With access to modelled instantaneous fuel consumption from
Eqs. 4 and 5, Eqs. 6, 7 and 8 allow for the creation of emission factors
by combination with remote sensing data. First, fuel-based emission
factors are generated using pollutant ratios through Eq. 6, where P

Table 1

Definitions of terms, including units.

Term Definition Unit

VSP Vehicle Specific Power kW t−1

FCgx Fuel Consumption g x−1 (x = h, km)
EFgx Emission Factor g x−1 (x = kg, s, km)
m Vehicle Mass, including loading t
a Vehicle Acceleration m s−2

v Vehicle Speed m s−1

Cd Aerodynamic Drag Coefficient –

A Frontal Surface Area m2

ρ Density of Air kg m−3

R0, R1 Road Load Coefficients N, N (m s−1)−1

g Acceleration due to Gravity m s−2

Grad Altitude/Distance Travelled –

rx Ratio of Species “x” to CO2 –

MWx Molecular Weight of Species “x” g mol−1

Q Exhaust Flow Rate L s−1

Vm Molar Volume of Gas L
nx Amount of Gas “x” mol

Table 2

Generic coefficients (R0, R1, CdA) and dimensionless parameters (M, C) to be used in Eqs. 3
and 4. The coefficients are average values taken from the test data base used for the Hand-
book Emission Factors for Road Transport (HBEFA) v3.3. The parameterswere determined
from characteristic fuel flow curves for different engines calculated using PHEM, again
using the HBEFA 3.3 test data base and the Common Artemis Driving Cycle (CADC)
(Hausberger, 2003; Keller et al., 2017; Borken-Kleefeld et al., 2018). Fuel flow curves all
showed excellent linearity (R2 N 0.99).

Segment Diesel Petrol

R0 R1 CdA M C R0 R1 CdA M C

A+B 120 0.77 0.537 208 159 106 0.67 0.538 236 545
C 151 0.93 0.617 206 217 139 0.85 0.618 225 554
D 166 1.02 0.665 200 208 154 0.94 0.689 219 558
E+F+J 204 1.18 0.915 199 272 175 1.01 0.810 217 601
VanI 122 0.73 0.529 216 92 106 0.67 0.538 236 545
VanII 152 0.89 0.765 217 81 145 0.84 0.853 236 327
VanIII 213 1.24 1.307 220 85 198 1.14 1.158 234 209
Avg Car 157 0.95 0.660 204 221 127 0.78 0.598 229 552
Avg Van 174 1.02 0.965 218 87 114 0.71 0.601 236 501
Avg All 158 0.96 0.690 206 199 127 0.78 0.598 229 550
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corresponds to the pollutant being measured (NOx, CO2, HC, etc.). The
molecular formula of petroleum-derived fuel, MWfuel, is taken to be
the molecular weight of CH2 (14 g mol−1).

EFgkg ¼
rP �MWP

1þ rCO þ 6rHCð Þ � MW fuel=1000
� � ð6Þ

The fuel-based emission factors from Eq. 6 can then finally be com-
bined with the modelled fuel consumption from Eqs. 4 and 5 to create
duration and distance-based emission factors using Eqs. 7 and 8.

EFgs ¼ EFgkg �
FCgh

3;600;000
ð7Þ

EFgkm ¼ EFgkg �
FCgkm

1000
ð8Þ

Modelling fuel consumption is not necessary for PEMS data. As PEMS
instruments report the flow rate of the exhaust, it is straightforward to
calculate emission factors. Eq. 9 demonstrates a method to calculate a
duration-based emission factor, and Eq. 10 a transformation from
duration- to distance-based emission factors. Vm is taken to be 24.1 L
(molar volume at a temperature of 20 ∘C and pressure of 1 atm).

EFgs ¼
Q

Vm
� nP �MWP ð9Þ

EFgkm ¼
EFgs � 1000

v
ð10Þ

2.3. Journey average emission factors

For a vehicle completing a drive cycle of a known distance, the aver-
age distance-based emission factor can be determined from a 1 Hz
PEMS data set via the sumof all duration-based emission factors divided
by the distance covered in the journey in kilometres, shown in Eq. 11.

EFgkm ¼

P
EFgs

total distance
ð11Þ

While Eq. 8 is a simple way to transform remote sensing g s−1 emis-
sion factors into g km−1 ones, there are potential issues with these g
km−1 factors being biased due to remote sensing typically measuring
vehicles under load. Large parts of journeys taken by vehicles, particu-
larly in urban centres, may involve idling and braking — conditions in
which remote sensing is not suited to measure.

To overcome this issue, relationships between snapshot g s−1 emis-
sion factors and VSPmay be determined from remote sensing and then,
in principle, used to predict emissions over any drive cycle where VSP
can be estimated. Generalised Additive Models (GAMs) can be used
for this purpose. GAMs offer several advantages in this respect in that
they are ‘data-driven’ and handle non-linear relationships between var-
iables. GAMs relating NOx g s−1 to VSP were fitted using the gam func-
tion in the mgcv R package (Wood, 2017) using remote sensing data
constrained to positive i.e. non-zero NOx g s−1 values. The default pa-
rameters of the gam function were used throughout. In this study the
drive cycle used to predict emissions over is taken from a PEMS test, de-
scribed further in Section 2.4.

Predicting g s−1 factors for VSP values outside of the range of mea-
sured VSPs requires extrapolation of the GAM, which can lead to unre-
liable predictions. For these reasons, GAMs are only fitted using a VSP
range between 0 and the 99th percentile of remote sensing VSPs, and
then only used to predict over elements of the on-road drive cycle
within the same VSP ranges. For elements of the drive cycle above the
99th percentile of the remote sensing data, the emissions and distance
covered were disregarded in calculations, effectively truncating the
drive cycle as a whole, to ensure a like-for-like comparison. With larger

remote sensing data sets that cover a greater range of VSPs, truncating
drive cycles should not be necessary.

2.4. Portable Emissions Measurement System (PEMS) data

The UK Department for Transport, prompted by the Volkswagen
emissions scandal, started an investigation into commonly used diesel
vehicles in 2015 (DfT, 2016). The Vehicle Emissions Testing Programme

focused on three different types of measurements. First, in-lab testing
using variations of the New European Driving Cycle (NEDC). Second,
track testing using PEMS instrumentation, attempting to replicate the
NEDC as close as possible, and third, on-road testing on a test route ap-
proximating the then-not fully defined Real Driving Emissions (RDE)
test, including urban, rural and motorway driving. The third data set is
used in this study.

After being augmented with the similar Vehicle Market Surveillance

Unit Programme in 2017, the full PEMS data set contained 19 Euro 5 die-
sel cars, 17 Euro 6 diesel cars, 14 Euro 6 petrol cars, 4 Euro 5 diesel vans
and a single Euro 6 diesel van, for a total of 55 vehicles in all (DVSA,
2017). Vehicles were each tested only once for an average of 95 min,
with the shortest test being 90 min and the longest 106 min. The
PEMS equipment was validated against a laboratory emissions mea-
surement system. More detailed information about the ways the
PEMS tests were conducted is available from the Department for Trans-
port and Department web pages (DfT, 2016; DVSA, 2017).

We considered the effect of applying a time offset to the PEMS data
to check whether any time synchronisation between variables such as
CO2, NOx, vehicle speed and acceleration was necessary. A range of
time offsets were applied to seek the best agreement between the
PEMS CO2 and that predicted by the developedmethod. The agreement
between PEMS and modelled data was judged using the correlation co-
efficient, r, and the root mean squared error (RMSE); seeking maxima
and minima, respectively. Additionally, we also considered applying a
rolling mean of 3 to 5 s to the data to reduce the effect of any time off-
sets. However, the best overall agreement was found by not applying
time offsets for the data sets considered.

The DfT route can be split into urban, rural andmotorway driving by
changes in the speed profile of the vehicle as it continues through its
journey, mainly changes in maximum speeds and frequency of braking.
Each vehicle is driven over a similar trip, so an example for just one is
provided in Fig. 1.

The PEMS data sets already include the majority of required vari-
ables for the calculation of instantaneous fuel consumption, but some
required additional processing. Vehicle speed was estimated based on
the measured distance throughout the test. An on-board GPS provided
second-by-second altitude in metres. A cubic smoothing spline was
fitted using the default parameters of the smooth.spline function of the
R stats package (R Core Team, 2019) to remove noise from the GPS alti-
tude signal, and was divided by the second-to-second difference in dis-
tance to derive the road gradient. Acceleration was taken to be the
second-by-second difference in the speed of the vehicle. Ratios of pol-
lutants to CO2 required for Eq. 6were calculated using the instantaneous
measured concentrations of each in %/ppm.

The PEMS data set provided measurements of carbon monoxide,
CO2, water vapour, and NOx, as well as the individual components nitric
oxide and dioxide) but did not provide measurements for total hydro-
carbons. This means that the HC: CO2 ratio in Eq. 6 is omitted from the
final calculations. This omission is likely to have a negligible effect on
calculated emissions for diesel vehicles due to their low emissions of hy-
drocarbons (Reşitoʇlu et al., 2015), and studies have shown that even
the newest petrol vehicles emit little HC relative to other carbon-
containing pollutants (Wang et al., 2014).

The only variables that could not be estimated from data within the
PEMS data sets were the masses of the vehicles, their vehicle segments
and the road load and aerodynamic drag coefficients. Masses and vehi-
cle segments were found using online research tools intended for car
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buyers, such as the Parker's Car Guides, with each mass having 150 kg
added to approximate the added weight of the driver and PEMS instru-
mentation. The coefficients, alongside the M and C parameters, were
taken from the data outlined in Table 2 on a per-segment basis.

Two sets of emission factors were then calculated. First, Eqs. 3–8
were applied to the PEMS data set to generate emission factors through
modelling fuel consumption. Second, Eqs. 9 & 10were applied to gener-
ate emission factors including the fuel consumption data contained
within the PEMS data set. These two sets of emission factors facilitate
comparisons and therefore validations of the fuel consumption model.
To do so, GAMswere fit to create smooth trends in CO2 emission factors
according to both the PEMS and modelled fuel consumption values
through both speed and VSP values. Owing to the additional asymptotic
effect of low speed values on distance-based emission factors (i.e. as
speed tends towards 0, fuel consumption per unit distance and there-
fore emissions per unit distance tend towards infinity) very low speeds
are filtered out for the g km−1

figure. In practice this meant that these
models used data which corresponded to VSP values of 0 to 30 kW
t−1 for both GAMs, speeds of 0 to 111 km h−1 for the g s−1 GAM and
speeds of 5 to 111 km h−1 for the g km−1 GAM.

Eq. 11was also applied to each vehicle in the PEMS data set for com-
parisons with distance-based emission factors calculated from the re-
mote sensing data set. These g km−1 factors were calculated for the
journey as a whole as well as the individual urban, rural and motorway
components.

2.5. Remote sensing data

To demonstrate an application of the duration and distance-based
emission factor generationmethod outlined in Eqs. 3–8, remote sensing
data were used. The data was acquired using the Fuel Efficiency Auto-
mobile Test (FEAT) instrument, the remote sensing (RS) device devel-
oped by the University of Denver. Its principles of operation have been
described in detail elsewhere (Bishop and Stedman, 1996; Burgard
et al., 2006), but a brief overview is provided here.

The FEAT instrument consists of a UV/IR light source and detector for
themeasurement of exhaust gases, a set of laser-based speed bars for the
measurement of speed and acceleration, a camera for photographing
number plates, and a control computer. On the kerbside is positioned
the UV/IR detector and the detecting speed bar, with the light source
and emitting speed bar positioned directly opposite across a single lane
carriageway. Pollutants in the exhaust plumes of passing vehicles interact
with the collinear beam of non-dispersive IR and dispersive UV light pro-
duced by the source, permitting the measurement of CO, CO2, hydrocar-
bons (HC), SO2, NH3, NO, NO2 and a background reference. Based on the

blocking and unblocking of the two parallel lasers, the speed bars allow
for the speed and acceleration of the vehicle to be calculated. Number
plate photographs are cross referenced with vehicle databases to obtain
further vehicle technical information, in this case obtained from a com-
mercial supplier (CDL Vehicle Information Services Limited).

The remote sensing data set combines data frommeasurement cam-
paigns in two UK cities, York and London, conducted in 2017 and early
2018, with earlier measurements made in 2012/2013 (Carslaw and
Rhys-Tyler, 2013; Carslaw et al., 2018). The data set consists of 37,421
measurements of Euro 5 and 6 light duty vehicles. The number of rele-
vant measurements contained within the remote sensing data set are
summarised in Table 3 alongside some statistical information pertaining
to VSP, speed and road gradients.

Eqs. 3–8 were applied to the remote sensing data set to generate
emission factors. As themodel is designed to be used with remote sens-
ingdata, its application is straightforward asmost of the variables are al-
ready present in the data set. The mass of vehicles measured using
remote sensing is also unknown but is estimated by adding 150 kg to
the unladenweight of the vehicle, which is provided in the vehicle tech-
nical data. This uncertainty is explored further in Section 3.2.

Oneomission in the remote sensingdata used is a lack ofmarket seg-
ment information, which was overcome with simple regression tree
modelling based on the manually assigned market segments of the ve-
hicles in the PEMS data set. Fig. 2 shows the distributions of the vehicle
frontal surface area (approximated simply through multiplying vehicle

Fig. 1. The speed profile of one of the passenger cars undergoing the Department for Transport's on-road test. The journey has been partitioned into motorway, urban and rural based on
clear changes in the speed profile, including maximum speeds and frequency of braking.

Table 3

Thenumbers ofmeasurements (n) in the remote sensing data set by vehicle type, fuel type
and Euro classification, alongside somemeasurement statistics. Thedata set containsmea-
surements of vehicleswith different Euro classifications, different vehicle types (e.g. HDVs
and hybrid vehicles), which are not used in this study so were not included when gener-
ating these statistics.

Vehicle Fuel Type Euro Class n

Passenger car Diesel 5 12,808
6 3805

Petrol 5 7488
6 3244

Van Diesel 5 8652
6 1306

Statistic Unit Value

Mean VSP kW t−1 4.7
Mean speed km h−1 22.2
Speed range km h−1 0–110.1
Accel. range m s−2

−5.5–6.3
Gradient range % −0.9–3.2
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height times width) and mass for each vehicle segment in the UK De-
partment for Transport PEMS data set. While vehicle dimensions are
commonly available in remote sensing data sets, in this case the same
online research tools used to find the vehicle segments and masses
were used to determine width and height. Also shown is a simple deci-
sion tree for the segmentation of vehicles generated through the rpart R
package, which utilises the Classification and Regression Trees (CART) al-
gorithm to generate trees (Therneau and Atkinson, 2019).

The decision tree presented in Fig. 2 is based on a relatively small set
of vehicles, albeit vehicles chosen for their highmarket share, somay be
further refined by the addition of more vehicle data. However, it does
demonstrate that partitioning vehicles into market segments is viable
with a relatively simplistic method and, as discussed previously, the
availability of aerodynamic drag coefficients for individual vehicles
would largely avoid the need to consider vehicle segments anyway.

One of the benefits of using vehicle emissions remote sensing data
for estimating aggregate (e.g. Euro class, fuel type, vehicle model) emis-
sions is that an uncertainty can be calculated. When aggregating the g
kg−1 emissions derived directly from individual vehicle emission mea-
surements, the 95% confidence interval in the mean can be calculated.
To account for the non-normal nature of vehicle emissions distributions,
the 95% confidence interval is robustly estimated using bootstrap re-
sampling approaches using the openair R package (Carslaw and
Ropkins, 2012). The calculated uncertainties encompass many sources
of variation including the uncertainty of the measurement itself but
also issues related to the sampling conditions, such as sample size, am-
bient conditions and variation in vehicle dynamics remain.

The estimated uncertainties also provide a guide to whether two
populations are statistically different from one another. For example,
when considering the differences between individual vehicle manufac-
turer or vehicle models, the uncertainty helps to determine whether
there is evidence or not for clear differences in the emission perfor-
mance of vehicles. Such information is difficult to determine using
PEMS and uncertainty information is rarely provided.

Uncertainty estimates can also be derived through GAM models re-
lating the VSP to the emissions of NOx. In this case, the estimated uncer-
tainty in the GAM itself can be used to express an emissions uncertainty
when applied to drive cycles overwhich predictions aremade. The ben-
efit of this approach is that where the original data have poor coverage
e.g. owing to a lack of measurements over high VSP conditions, the cor-
responding uncertainty estimated as part of the GAM development will
also be higher. Consequently, the uncertainty in the prediction of emis-
sions over different drive cycles will reflect the coverage of the original
measurement data.

While our analysis does not explicitly includehybrid vehicles, the re-
mote sensing measurements do provide insight into their operation. A
vehicle plume is only considered valid if there is a measurement of
CO2. The absence of valid CO2 plumes provides some indication of

whether a hybrid vehicle was using an internal combustion engine or
not. The data suggest that for all hybrid passenger cars, 27% of themea-
surements do not have a valid CO2 plume, compared with only 2% of
conventional vehicle measurements of CO2. The data suggests that hy-
brid vehicles operate in battery mode approximately 25% of the time
based on the remote sensing measurements. In principle it would be
possible therefore to apply the methods developed in this study to a
proportion of hybrid vehicle measurements only where there is a
valid plume measurement and assume zero emission otherwise.

3. Results

3.1. Validation with a PEMS data set

Vehicle emission factors are typically not expressed at an individual
vehicle model level but are aggregated in some way. For example,
COPERT's emission factors separate passenger cars by Euro standard,
fuel type and broad engine size. For simplicity, the vehicles studied
were aggregated into three categories: Euro 5 diesel, Euro 6 diesel and
Euro 6 petrol (there being no Euro 5 petrol vehicles in the PEMS data
set). GAMs of the two sets of emission factors calculated using the
PEMS data set are overlaid in Fig. 3, with the lines labelled “PEMS”
showing the factors calculated using Eqs. 9 & 10 and “Modelled” show-
ing the factors calculated using modelled fuel consumption detailed in
Eqs. 3–8.

CO2 emissions in g km−1 are shown as a speed-emission curve. In
general, the emission factors generated from the modelled fuel con-
sumption data correspond well with those generated from the PEMS
fuel consumption, particularly in the case of the Euro 6 diesel vehicles.
When using both curves to predict over a sequence of speeds from 5
to 110 km h−1, the RMSE values between the two sets of predicted
values was 28.2 (Euro 5 Diesel), 11.6 (Euro 6 Diesel) and 50.4 (Euro 6
Petrol). Themodelled values in the Euro 5 diesel and Euro 6 petrol vehi-
cles show some underestimation at lower speeds, though the gap rap-
idly shrinks and is closed by around 15 km h−1 in both cases; indeed
the RMSE values drop to 18.5 and 14.3 respectively when only 15 to
110 km h−1 values are predicted over. There is slight underestimation
at higher speeds seen in the Euro 5 diesel also.

CO2 emissions in g s−1 are shown as a linear power-emission
relationship, which demonstrates the overall concurrence between
modelled and PEMS fuel consumption. A shared characteristic in all
three of these curves is some deviation between the methods at higher
engine powers, around 40 kW. There are fewer data at higher engine
powers which may explain this observation. The curves were used to
predict a sequence of engine powers from 1 to 70 kW (diesel vehicles)
and from 1 to 50 kW (petrol), giving RMSE values of 0.293 (Euro 5 Die-
sel), 0.579 (Euro 6 Diesel) and 0.514 (Euro 6 Petrol).

Fig. 2.Box plots showing the range of surface areas andmasses for each vehicle segmentpresent in theUKDepartment for Transport PEMSdata set,with a simple decision treewhich could
be used for the segmentation of vehicles based on kerb weights (mass, in tonnes), frontal surface areas (area, in m2) and UNECE type approval categories (type, for which passenger cars
belong to theM1 classification and vansN1). Note that there are no E- or F-Segment vehicles in the PEMS data set, reflective of their niche status in the UK fleet, so these segments are not
featured.
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3.2. Model sensitivity

In practice, the application of themethods outlined in Sections 2.1 &
2.2 depend on several assumptions concerning the vehicles measured
using remote sensing. There are variables needed by the model for
which direct measurements are not available. The mass of an unladen
vehicle is obtainable from vehicle databases, but the true laden mass
of a vehicle is unknown and will depend on factors such as number of
passengers and cargo. The auxiliary power component is entirely esti-
mated. While vehicle and acceleration can be measured accurately
with speed bars, there will be some uncertainty over the location that
is best suited to make the measurements (Jimenez-Palacios, 1998;
Rushton et al., 2018).

To examine the sensitivity in emission factors related to the uncer-
tainty in individual model parameters, a single vehicle was taken from
the UK Department for Transport PEMS data set. A single vehicle was
judged to be sufficient for this analysis as it is expected that the sensitiv-
ity of the model will be roughly consistent regardless of the vehicle to
which it is being applied. The chosen vehicle was a D-Segment Euro 6
diesel passenger car, chosen for having a very good agreement between
measured andmodelled journey average CO2 g km

−1 values (calculated
using Eq. 11). Themodel outlined in Eqs. 3–7was applied to this vehicle
repeatedly to produce 1 Hz CO2 g s−1 emission factors, with variations
in the following parameters: CdA, R0 /R1, auxiliary power, acceleration,
speed, road gradient and mass. The impact on journey average CO2 g
km−1 values for the vehicle is visualised in Fig. 4.

Auxiliary power has been shown to vary considerably in on-road
driving (Carlson et al., 2016). The range of auxiliary powers investigated
here (0.25 to 3 kW) induces a large change in estimated emissions of
CO2, particularly in urban driving. This behaviour is expected for
urban driving conditions where there is a greater proportion of driving

in lower power conditions, meaning that the auxiliary power accounts
for a greater proportion of the total power consumption of the engine.

Uncertainty in vehicle mass also has a greater effect under urban
driving conditions, which can be understood by the greater amount of
acceleration and deceleration in urban driving. The opposite trend is
seen in the air resistance parameter (Cd), with very little change ob-
served in urban driving conditions. This behaviour is expected owing
to the lower vehicle speeds under urban driving conditions, with Pair
being proportional to the cube of vehicle speed. A similar but less ex-
treme trend is seen for R0 /R1.

A different trend is seen when varying the road gradient — little
change is seen in bothurban andmotorway conditions, but a large effect
is seen in hillier rural driving. The overall influence of gradient uncer-
tainty in this analysis is relatively small compared to other parameters,
but it would likely be greater and therefore more important for vehicle
emission measurements taken in hillier regions.

Focusing on urban-type driving conditions — where vehicle emis-
sions remote sensing measurements are most commonly made — the
variables to which estimated CO2 emissions are most sensitive are
seen to be vehicle mass, speed, acceleration, and auxiliary power
demand.

An alternative way to consider uncertainty rather than the uncer-
tainty of individual parameters is the misattribution of vehicle seg-
ments. Assuming inaccessibility of market segment information and
the use of a decision tree similar to that which is described in
Section 2.5, there will be unavoidable misattribution for vehicles that
are uncharacteristically heavy or light for their market segment, or
have an atypical frontal area. On an aggregate level this is not be a
cause for concern; conversely this may be of benefit — an atypically
shaped vehicle's ‘true’ CdA, R0 and R1 values may be closer to those
given for the segment to which it has been incorrectly assigned.

Fig. 3. Generalised additive models (GAM) of CO2 emissions (g s−1 and g km−1) taken from the PEMS data set as functions of both power demand and speed. “PEMS” refers to emission
factors calculated using Eqs. 9 & 10 and “Modelled” the factors calculated using modelled fuel consumption detailed in Eqs. 3–8.

7J. Davison et al. / Science of the Total Environment 739 (2020) 139688



Table 4 summarises the effect of both misattributing the segments
and applying the ‘average car’ parameters to the D-Segment vehicle.
The greatest difference is seen when attributing the vehicle an E, F or J
Segment, corresponding to an increase of 22 CO2 g km−1 relative to a
correct D-Segment attribution.

3.3. Method application to remote sensing data

These methods can be used to estimate emission factors in g s−1

based on remote sensing data, which can be then directly compared
with those of other measurement techniques, such as PEMS. Fig. 5 illus-
trates that similar relationships betweenNOx g s

−1 emission factors and
VSP are seen in both remote sensing and PEMS, for example both show-
ing increasing NOx emissions with engine load.

Fig. 6 shows truncated journey average g km−1 emission factors
from remote sensing determined using the GAM fitting methods
outlined in Section 2.3, and truncated journey average g km−1 emission
factors determined using PEMS. To ensure a fair comparison, only vehi-
cles present in both the PEMSand remote sensing data setswere used in
GAMfitting (43 vehicles— 14Euro 5 diesel cars, 11 Euro 6 diesel cars, 12
Euro 6 petrol cars, and 4 Euro 5 diesel vans). This corresponds to 7939
remote sensing measurements. For this purpose, a ‘vehicle’ is defined
by its make, engine size, fuel type, Euro classification and type approval

category. Note that, for fairer comparison, the PEMS data set was
constrained to the same VSP range over which the GAMs were fitted.

Overall, there is good agreement between the emission factors from
PEMS and remote sensing for the passenger cars. Note also, that the
error bars showing 95% confidence intervals overlap for all columns in
Fig. 6. There is a much larger disparity seen in the emissions of the
vans, however, particularly in urban driving. This disparity may be a
consequence of having relatively few vans in the PEMS data set, as
well as vans likely being more laden in real-world use as opposed to
the PEMS RDE test. There are instances in which the relative order of
the driving conditions differs also — in Euro 6 diesel cars, for example,
remote sensing suggests thatmotorwaydriving has the lowest emission
factor whereas PEMS suggests that it is rural driving.

Journey average NOx g km−1 values can also be calculated for indi-
vidual vehicle models, shown in Fig. 7. In this instance only urban and
rural driving conditions were considered i.e. similar conditions to
those experienced for the remote sensing measurements. However,
the Emission Detection And Reporting system (Edar) (HEAT, 2017)
shows promise for use in motorway conditions (Ropkins et al., 2017).
Of the diesel vehicles, the root mean square error (RMSE) between
the PEMS and remote sensing (RS) emission factors varies from 0.230
(Euro 6 cars) to 0.616 (Euro 5 vans). A low RMSE is not necessarily ex-
pected; each RS emission factor reflects over a hundred individual vehi-
cles whereas the PEMS data represents single vehicle measurements
over a single drive cycle. Other work has shown significant variance in
PEMS emission measurements for single vehicles tested multiple
times, partly due to variance in testing conditions and procedures
(Baldino et al., 2017).

A strength of remote sensing is its ability to measure large numbers
of vehicles non-obtrusively in a short space of time. In practice this
means that even in a relatively modest remote sensing data set there
is likely a sufficient range of measurements over a large enough range
of VSPs for GAMs to be fitted on an individual manufacturer or vehicle
basis. Fig. 8 shows urban-rural journey average g km−1 values from
the remote sensing data set for individual vehicles, with a vehicle de-
fined in the same way as in Figs. 6 and 7. Only vehicles with at least
100 measurements were used to ensure sufficient data to fit a GAM re-
lating the NOx emission and VSP.

Fig. 4. The percentage uncertainty in theD-Segment Euro 6 diesel passenger car CO2 g km
−1 induced by changes inmodel parameters. CdA, R0 and R1were changed by±10%, acceleration

by± 5%, gradient by ± 20% and speed by± 2 km h−1. The range in mass is the kerb weight (lower) to the kerb weight plus 400 kg (higher). The range in Paux is 250W (lower) to 3 kW
(higher). Percentage changes are relative to the base case, defined as the g km−1 factor determined using correct generic parameters for a D-segment diesel vehicle, unaltered speed,
acceleration and gradient, kerb weight plus 150 kg, and a Paux of 2.5 kW.

Table 4

Journey average CO2 g km−1 values for a chosen Euro 6 diesel D-Segment passenger car
depending on Euro Segment attribution, including deviation from the correct D-Segment
attribution.

Attributed
segment

Journey average CO2

g
km−1

Absolute
difference

Percentage
change

A/B 123 −12 −8.9%
C 136 +1 +0.7%
D 135 – –

E/F/J 157 +22 +16.3%
Average
Car

136 +1 +0.7%
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Fig. 8 demonstrates the wide variation in individual vehicle emis-
sions even within a single Euro class. In the Euro 5 diesel cars category,
for example, the cleanest vehicle is associated with a 0.55 g km−1 emis-
sion, 0.79 g km−1 lower than the highest at 1.34 g km−1. Similarly for
the Diesel Euro 6 Cars category, the cleanest vehicle is at 0.17 g km−1

and the highest at 0.80 g km−1, a range of 0.63 g km−1. The vans
show similar variation, both for Euro 5 (0.69 to 1.93 g km−1) and Euro
6 (0.23 to 1.32 g km−1). The variation shown in NOx emissions provides
an indication of the extent to which emissions could be reduced if ‘best
in class’ emissions performance was achieved. Furthermore, the differ-
ences observed between vehicle manufacturer and model provides in-
formation that is useful for understanding the expected variation in
NOx emissions resulting from different vehicle fleet compositions.

4. Conclusions

Remote sensing data offers large data sets of road vehicle emis-
sion measurements with good fleet coverage and little selection
bias. However, without a measurement of instantaneous fuel con-
sumption it is difficult to transform fuel-based to distance-based
emission factors. As the vehicle type approval process and emission
inventory development both rely on distance-based emission
factors, this difficulty presents a limitation for the use of remote
sensing data. Furthermore, comparisons with other commonly
used road transport emission measurement techniques (chassis
dynamometers, PEMS, etc.) are more limited without expressing
emissions in this way.

Fig. 5.Trends inNOx g s
−1 emission factors as a function of vehicle specific power taken from thewhole PEMS and remote sensing (RS) data sets. The g s−1 factors fromPEMSare calculated

from 1 Hzmeasurements, and those from RS are taken from individual snapshot measurements. A normalised VSP density of a VSP-based Urban-Rural RDE drive cycle is shown in grey,
used later in Fig. 8.

Fig. 6. Truncated journey average NOx g km−1 values for different categories of vehicle. The remote sensing (RS) factors are taken from the predictions of GAMs relating NOx g s−1 to VSP
over a VSP-based drive cycle taken from a real driving emissions (RDE) test. The PEMS factors are themean truncated journey average emission factors from all vehicles in each of the given
categories. Error bars show the 95% confidence interval.
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A method to model fuel consumption from kerbside measurements
and vehicle technical data was developed, and is sufficiently general to
be applied to any emission species measured using remote sensing and
indeed any point-sampling measurement method that provides a pol-
lutant to CO2 ratio. In the current work, a relatively modest data set of
remote sensing data was used to develop and demonstrate themethod.
However, there has been a considerable increase in the number of vehi-
cle emission remote sensing data campaigns in recent years (The Real
Urban Emissions Initiative, 2014; Bernard et al., 2019; Ropkins et al.,
2017). Large databases such as these would enable the methods
outlined in this study to be used to calculate g km−1 emissions for a
large range of vehicle models and driving conditions.

Arguably themain benefit of the approach is that it can in principle be
applied to any vehicle drive cycle. This development is of importance for
the analysis of vehicle emission remote sensing data where measure-
ments tend to be made of vehicles mostly (but not always) under load.
The potential to re-calculate emissions for more representative full drive
cycles therefore addresses the potential issue of remote sensing site selec-
tion bias, where measured emissions would on average be higher than a
typical full drive cycle. Indeed, with the increasing amounts of drive cycle
data available, there is the potential to apply the method to large data-
bases of actual vehicle activity over a large range of conditions.

A common shortcoming of current remote sensing data sets is a lack
of measurements under high speed and VSP conditions, making its

Diesel PetrolDiesel Petrol

Fig. 7.A comparison between truncated journey averageNOx g km
−1 values derived from remote sensing (RS) and PEMSdata. Eachpoint represents an individual vehicle, defined as being

a unique manufacturer-engine size combination with at least 100 measurements in the remote sensing data set. The solid grey line shows the 1:1 relationship. The remote sensing (RS)
factors are taken from thepredictions ofGAMs relatingNOx g s

−1 toVSP over a VSP-baseddrive cycle taken fromanUrban-Rural real driving emissions (RDE) test. The PEMS factors are the
truncated journey average emission factors for the corresponding vehicle. The error bars show the 95% confidence interval of the mean for the remote sensing emission predictions.

*

Fig. 8.NOx g km−1 values generated from the predictions of remote sensing (RS) fitted GAMs over a truncated urban-rural on-road drive cycle on a per-vehicle basis. Vehicles have been
anonymised, but each is taken to be a uniquemanufacturer-engine size combinationwith at least 100measurements. Error bars show the 95% confidence interval. Blue dashed lines show
the mean NOx g km−1 values in each vehicle category. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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application to motorway portions of vehicle drive cycles inappropriate.
As remote sensing technology advances, however, this gap in measure-
ments should decrease and allow for emissions to bemodelled over full
drive cycles.
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