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ABSTRACT A range of diazonium salts and their corresponding triazenes have been prepared in order to 

directly compare their relative thermal stabilities (via initial decomposition temperature) from differential 

scanning calorimetry (DSC) data. A structure-stability relationship (SSR) has been explored to investigate 

trends in stability, depending on the aromatic substituent and the structure of the secondary amine component of 

the diazonium salts and triazenes. All triazenes investigated show significantly greater stability (in many cases 

stable above 200 °C) compared to the corresponding diazonium salts, which show varying stabilities.  

 

KEYWORDS triazene, diazonium salt, thermal stability, DSC, continuous processing 

 

INTRODUCTION Diazonium salts are important intermediates in synthetic chemistry as they permit 

functionalization or transformation at the attached aromatic carbon. Consequently, many transformations 

utilizing diazonium salts have been developed.1-3 However, variability in the stability of diazonium salts renders 

their use at large scale problematic.4, 5 The stability of diazonium salts ranges from excellent to explosive, 

though very few are in the latter category. Nonetheless, the existence of some explosive compounds raises 

caution and concern, which provides motivation for the development of alternative synthetic route design to 

avoid diazonium salt chemistry. The isolation of some diazonium salts can be especially hazardous as they are 

shock sensitive and decompose readily, while aryl diazonium tetrafluoroborate, tosylate, disulfonimide or 

carboxylate salts are often deemed stable for isolation, depending on the substituents on the aromatic ring.6-10 

The thermal instability of diazonium salts and the evolution of large volumes of nitrogen gas upon 

decomposition is a particular issue for industrial scale syntheses and it is important to understand and control 

these reactive intermediates.11 This issue has led to the development of a number of continuous flow procedures 

in which diazonium salts are made and consumed in situ.12, 13 The increased temperature control and presence of 

only small amounts of reactive diazonium salt at any one time makes this way of processing inherently safer.  



 3 

 

Figure 1 Overview of the reactivity of diazonium salts and triazenes and the structure-stability relationship project design 

 

Another tactic for manipulating diazonium salts is to protect them in the form of a triazene (Figure 1).14-20 

Triazenes can be prepared by protecting diazonium salts with a secondary amine, leading to products which 

exhibit very similar reactivity to diazonium salts.21 Typically, under acidic conditions, triazenes re-establish the 

reactivity exhibited by the parent diazonium salt through an on-off equilibrium. While the diazonium compound 

is still present in this situation, it is never isolated in dry form and thus no shock sensitivity is encountered. 

Hence, triazenes participate in much of the reactivity already established for diazonium salts, as long as a Lewis 

or Brønsted acid is present, but with reduced risk and hence greater safety. Triazenes have also been used as 

directing groups for metalation reactions and as linkers in solid-phase synthesis as they are usually stable 

towards alkylating agents, strong bases, oxidation and reduction. Furthermore, most importantly, they are bench 

stable.8, 15, 17, 18, 22-29 

Whilst it is widely accepted that triazenes offer improved thermal and shock sensitivity compared to the 

corresponding diazonium salts, we have been unable to find any systematic studies of structure-stability 
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relationship trends between these two species. Herein, we report a preliminary study towards establishing such 

structure-stability relationships. Our project design features the preparation of a set of tetrafluoroborate 

diazonium salts bearing electron rich, electron poor and ortho, meta and para-substituents, together with the 

corresponding triazenes. In the triazene series, the secondary amine component could also impact the stability 

of these materials, so a range of secondary amines has been designed, encompassing examples that are cyclic 

(with different ring sizes), acyclic, and with different symmetries. A few reports have measured decomposition 

energies and decomposition temperatures of triazenes but have not compared them directly to those of the 

corresponding diazonium salts in a systematic manner. Lippert et al. showed that the decomposition 

temperature of triazenes decreases with the electron withdrawing capacity of the substituents on the aromatic 

ring, whereas the steric properties of the amine do not have a strong influence.30 Döbele et al. used triazenes for 

the formation of aryl fluorides via the Wallach reaction and measured DSC data for one of their triazene 

precursors to demonstrate the high stability of triazenes.31 Although the stability of triazenes compared to their 

diazonium salts is mentioned in most publications, no direct comparison of their relative stabilities has been 

established.  

 

RESULTS AND DISCUSSION The designed compounds were synthesized using known methods. The 

diazonium salts (2a to 8a) were prepared on small scale in batch by first treating the corresponding anilines to 

boron trifluoride diethyletherate followed by addition of isoamyl nitrite. Diazonium salt 1a, derived from 

anthranilic acid, was not prepared as it is known to be a contact explosive.32-38 The triazene compound series 

was prepared using a telescoped continuous flow process optimized to generate and consume the diazonium salt 

in situ while avoiding precipitation of the intermediate diazonium salt (Figure 3).39-41 

The degradation temperature of each compound has been assessed using Differential Scanning Calorimetry 

(DSC). DSC is a thermo-analytical technique in which a sample and a reference (typically an empty sample 

holder) are heated or cooled at constant rate. The mode of operation differs for different types of DSC 

instrument (e.g., power-compensated DSC or heat-flux DSC), but the basic principle is that the instrument 
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attempts to maintain the sample and reference at the same temperature throughout the heating/cooling process 

by varying the amount of heat that the instrument exchanges with the sample and with the reference, or by 

allowing heat exchange to occur between the sample and the reference. As the present work is focused on 

studying sample degradation at high temperature, the DSC experiments involved heating the sample (and 

reference) from 20 °C to a temperature in the range of 160 - 250 °C at a rate of 20 °C min–1. If an endothermic 

or exothermic process occurs in the sample, the amount of energy required to heat the sample differs from the 

amount of energy required to heat the reference. For example, during an endothermic process in the sample 

(e.g., melting), the energy supplied to the sample must increase in order to maintain the sample and reference at 

the same temperature; conversely, during an exothermic process in the sample (e.g., decomposition), the energy 

supplied to the sample must decrease in order to maintain the sample and the reference at the same temperature. 

In the DSC data shown here and in Supporting Information, endothermic processes appear as negative peaks 

(increased heat flow to the sample) while exothermic processes appear as positive peaks (decreased heat flow to 

the sample). In the present work, significant exothermic events are assigned as compound degradation.30, 42 For 

some of the samples studied, the DSC data exhibit overlapping peaks due to the occurrence of different thermal 

events, which complicates the extraction of peak onset temperatures. For this reason, our analysis of exothermic 

peaks assigned as decomposition is focused on the initial decomposition temperature rather than the onset 

temperature (see Figure 2). It is important to note that, for a given sample, the initial decomposition temperature 

will vary depending on the heating rate used in the DSC measurement. However, as the DSC data for all 

samples studied here were recorded at the same heating rate (20 °C min–1), differences in the initial 

decomposition temperature between different samples provide a reliable qualitative indication of their relative 

thermal stabilities. 
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Figure 2 Representative DSC data for the anthranilic acid derived triazene 1b 

Our 13C NMR data for the triazene series suggest that these molecules undergo restricted rotation, as previously 

reported for such materials (i.e., variable temperature 13C NMR experiments demonstrate temperature-

dependent coalescence behaviour).30, 43-50 There is inconsistency in the manner in which this issue is reported in 

the literature – in some cases, the observation of fewer 13C environments than expected is not even addressed, 

while other cases simply note that the NMR data are inconsistent with the proposed structure (with reference to 

the restricted rotation phenomenon). To address this issue more rigorously, the present paper reports 13C NMR 

data at three different temperatures for each triazene studied (see Supporting Information), and we also 

demonstrate how these temperature-dependent 13C NMR data can be used to calculate the rotational energy 

barrier in the case of triazene 8b. 

Initial decomposition temperatures derived from the DSC measurements are presented in Figure 3 (with further 

analysis discussed in the Supporting Information), revealing some key observations both within and between 

the different compound series. To aid interpretation, the results in Figure 3 are colour coded on a scale from red 
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(low decomposition temperatures or explosive behaviour) via blue to green (higher decomposition 

temperatures). We note that, instead of degradation, the diazonium salts may undergo a Balz-Schiemann 

reaction with the release of nitrogen gas, boron trifluoride and formation of the corresponding aryl fluoride.51 In 

the present study, the occurrence of the Balz-Schiemann transformation is regarded as a decomposition 

pathway. Among the seven diazonium salts studied by DSC analysis, the results in two cases (2a and 8a) are 

considered as potentially indicative of Balz-Schiemann processes; on heating these materials, a melting 

endotherm is followed by an exothermic or an endothermic Balz-Schiemann reaction, which is followed by an 

endothermic phase change (boiling) of the product aryl fluoride at higher temperature (we note that the boiling 

points of the corresponding aryl fluorides are below the temperatures at which the Balz-Schiemann process 

occurs, congruent with this interpretation). Three of the other five diazonium salts (3a, 4a and 6a) undergo a 

melting endotherm, which is quickly followed by an exothermic decomposition; this sequence of thermal events 

is consistent with the melting behaviour of those previously studied, which are reported to exhibit 

"decomposition on melting".52 Of the remaining two diazonium salts, one (5a) does not decompose below 200 

°C and the other (7a) decomposes in a manner congruent with a "thermal runaway". 

Some general observations can also be made with regard to the triazene series. The triazenes that are solid at 

room temperature all exhibit a melting endotherm below 100 °C, and in most cases below 60 °C; in contrast, the 

triazenes that are liquids at room temperature do not show this endothermic transition in the DSC data. 

Typically, the triazenes do not decompose below 200 °C. However, some of the triazenes exhibit broad 

exotherms below 200 °C that are assigned as degradation, including compound 1b (initial decomposition 

temperature ca. 100 °C) and compounds 3c and 3f (initial decomposition temperatures ca. 150 °C). The actual 

decomposition pathways for these triazenes are not yet assigned; however, the Balz-Schiemann reaction can be 

ruled out as no fluoride source is present in the preparation of these materials. For five of the triazenes (2b, 4b, 

5b, 6b and 3e) a broad endothermic event is observed, which is consistent with evaporation of a liquid phase. In 

three of these cases (2b, 4b and 6b), the material is a solid at room temperature; on heating the solid, a sharp 

endotherm is observed due to melting, followed by the broad endothermic event. In the other two cases (5b and 
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3e), the material is already a liquid/oil at room temperature, and the broad endotherm is the only thermal event 

observed below 200 °C. 

Comparison between the whole diazonium salt series and the whole triazene series highlights that the triazenes 

are more stable than the corresponding diazonium salts with respect to thermally induced degradation (i.e. more 

compounds in the triazene series are colour coded green). This difference is particularly notable between 1a and 

1b, for which the anthranilic acid derived triazene (1b) is isolable and not shock sensitive, and degrades in a 

controlled exothermic process with initial decomposition temperature ca. 100 °C; in contrast, the corresponding 

diazonium salt (1a) is explosive, as noted above. Direct comparison between the set of ‘a’ compounds 

(diazonium salts) and the corresponding ‘b’ compounds (triazenes) highlights the greater stability of the triazene 

molecules.  
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Figure 3 Synthesis and initial decomposition temperature (assigned from DSC data) for the diazonium salt (‘a’) series and the triazene (‘b’) series. Accuracy of 

temperature = ±5°C 
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With regard to aromatic substituents, the sample set is too small to draw firm conclusions, but comparison of 

the results for the three mono-chloro anilines (para-, ortho- and meta-; 3a, 4a and 5a, respectively) points 

towards increased stability within the diazonium series for meta-substitution, with thermal stability above 200 

°C for 5a. The corresponding triazenes (3b, 4b and 5b respectively; with piperidine as secondary amine) show 

increased stabilities (decomposition >200 °C). The same trend in relative stability is observed for the para-

bromo substituted diazonium salt (6a, initial decomposition temperature of 140 °C) versus the corresponding 

piperidine triazene (6b, decomposition temperature above 200 °C). The electron rich para-methoxy substituted 

diazonium salt (8a) degrades at a lower temperature (140 °C) than its triazene congener, although in this case it 

appears that the para-electron donating group present in 8b leads to increased instability leading to a broad 

exothermic decomposition with an initial temperature of 150 °C. The electron poor para-nitro substituted 

diazonium salt 7a is rendered significantly more thermally stable in its piperidine triazene form, 7b. In the case 

of 7a, the initial decomposition temperature is 150 °C (Figure 4); however, the exothermic peak in the DSC data 

in this case is sharp and leans towards higher temperatures, indicative of an uncontrollable exothermic event 

corresponding to thermal runaway during decomposition. Although a different DSC heating ramp may mask 

this behaviour, for ease of comparison, all compounds in this study were assessed using an identical DSC ramp 

protocol (with heating at 20 °C/min) and 7a was the only compound to show such behaviour. Notably, the 

corresponding triazene (7b) exhibits two endothermic events (Figure 4), probably arising from residual solvent 

evaporation followed by a phase transition (melting), with no decomposition exotherm observed up to the 

highest temperature (200 °C) studied. For the triazene series bearing different secondary amines (3b-3g; Figure 

3), pyrrolidines (3c and 3f) appear to have reduced stability compared to other secondary amines, including both 

acyclic and cyclic examples. Nonetheless, when compared to the parent diazonium salts, the triazenes have 

greater stability. Clearly, a larger data set would allow the dependence of stability on the specific nature of the 

substituents to be explored in greater depth. 
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Figure 4 DSC data for the para-nitrodiazonium salt (7a) and the para-nitrotriazene (7b) 

 

 

 

BF4N2

O2N

N
N

N

O2N

sudden release in energy
mismatched to DSC heating ramp

thermal runaway

residual solvent 
evaporation melting phase transition

7a

7b

A   -  para-nitrodiazonium salt

B   -  para-nitrotriazene



 12 

 

CONCLUSION The structure-stability relationship study reported here has compared the decomposition of a 

series of diazonium salts versus the decomposition of the corresponding triazenes. We have demonstrated that 

triazenes derived from treatment of their diazonium salt congeners with piperidine leads to materials with 

enhanced stability, although preliminary studies suggest that this may not be true for electron-rich systems. 

Moreover, the improved stability appears applicable to a range of secondary amines, with those based on a 

pyrrolidine motif exhibiting reduced stability in comparison to other triazene systems. However, the number of 

materials studied here is insufficient to allow more precise conclusions on structure-stability relationships to be 

derived. The continuous flow method used to prepare the triazenes in this work obviates the requirement for 

large scale preparation of diazonium salts and thus delivers triazenes as worthy candidates when planning 

synthetic routes requiring functionalization at the carbon of an aromatic C-N bond. Future work will investigate 

a larger matrix of compounds with regard to both the aromatic substituents and the secondary amine 

components. 

ASSOCIATED CONTENT 

Supporting Information. Supporting Information Electronic Supplementary Material (ESM), including 

compound characterization and copies of NMR spectra, is available in the online version at doi: XX. 

Corresponding Author 

duncan.browne@ucl.ac.uk  

Present Addresses 

†If an author’s address is different than the one given in the affiliation line, this information may be included 

here.  

CS: School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT 

DLB: School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX 

mailto:duncan.browne@ucl.ac.uk


 13 

 

AUTHOR CONTRIBUTIONS 

The manuscript was written through contributions of all authors. All authors have given approval to the final 

version of the manuscript. 

ACKNOWLEDGMENT 

We thank Cardiff University and the Royal Society (DLB, award number RG150376) for financial support and 

EPSRC UK National Mass Spectrometry Facility at Swansea University for MS measurements. 

ORCID 

DLB – 0000-0002-8604-229X 

KDMH – 0000–0001–7855–8598 

REFERENCES  

1. Wulfman, D. S., Synthetic applications of diazonium ions. In Diazonium and Diazo Groups, Part 1, 
Patai, S., Ed. John Wiley & Sons, Ltd.1978; pp 247-339. 
2. Hegarty, A. F., Kinetics and mechanisms of reactions involving diazonium and diazo groups. In 
Diazonium and Diazo Groups, Part 2, Patai, S., Ed. John Wiley & Sons, Ltd.1978; pp 511-591. 
3. Mo, F.; Dong, G.; Zhang, Y.; Wang, J., Recent applications of arene diazonium salts in organic 
synthesis. Org. Biomol. Chem. 2013, 11, 1582-1593. 
4. Oger, N.; Le Grognec, E.; Felpin, F.-X., Handling diazonium salts in flow for organic and material 
chemistry. Organic Chemistry Frontiers 2015, 2, 590-614. 
5. Oger, N.; d’Halluin, M.; Le Grognec, E.; Felpin, F.-X., Using Aryl Diazonium Salts in Palladium-
Catalyzed Reactions under Safer Conditions. Org. Process Res. Dev. 2014, 18, 1786-1801. 
6. Barbero, M.; Crisma, M.; Degani, I.; Fochi, R.; Perracino, P., New Dry Arenediazonium Salts, 
Stabilized to an Exceptionally High Degree by the Anion of o-Benzenedisulfonimide. Synthesis 1998, 1998, 
1171-1175. 
7. Filimonov, V. D.; Trusova, M.; Postnikov, P.; Krasnokutskaya, E. A.; Lee, Y. M.; Hwang, H. Y.; Kim, 
H.; Chi, K.-W., Unusually Stable, Versatile, and Pure Arenediazonium Tosylates: Their Preparation, Structures, 
and Synthetic Applicability. Org. Lett. 2008, 10, 3961-3964. 
8. Zarei, A.; Khazdooz, L.; Aghaei, H.; Azizi, G.; Chermahini, A. N.; Hajipour, A. R., Synthesis of 
triazenes by using aryl diazonium silica sulfates under mild conditions. Dyes Pigm. 2014, 101, 295-302. 
9. Sheng, M.; Frurip, D.; Gorman, D., Reactive chemical hazards of diazonium salts. Journal of Loss 

Prevention in the Process Industries 2015, 38, 114-118. 
10. Shukla, C. A.; Kulkarni, A. A.; Ranade, V. V., Selectivity engineering of the diazotization reaction in a 
continuous flow reactor. React. Chem. Eng. 2016, 1, 387-396. 
11. Green, S. P.; Wheelhouse, K. M.; Payne, A. D.; Hallett, J. P.; Miller, P. W.; Bull, J. A., Thermal 
Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Org. Process 

Res. Dev. 2019. 



 14 

12. Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.; Battilocchio, C.; Ley, S. V.; Stevens, C. V., 
Taming hazardous chemistry by continuous flow technology. Chem. Soc. Rev. 2016, 45, 4892-4928. 
13. Deadman, B. J.; Collins, S. G.; Maguire, A. R., Taming Hazardous Chemistry in Flow: The Continuous 
Processing of Diazo and Diazonium Compounds. Chem. Eur. J. 2015, 21, 2298-2308. 
14. Lazny, R.; Poplawski, J.; Köbberling, J.; Enders, D.; Bräse, S., Triazenes: A Useful Protecting Strategy 
for Sensitive Secondary Amines. Synlett 1999, 1999, 1304-1306. 
15. Bräse, S.; Köbberling, J.; Enders, D.; Lazny, R.; Wang, M.; Brandtner, S., Triazenes as robust and 
simple linkers for amines in solid-phase organic synthesis. Tetrahedron Lett. 1999, 40, 2105-2108. 
16. Lazny, R.; Sienkiewicz, M.; Bräse, S., Application of triazenes for protection of secondary amines. 
Tetrahedron 2001, 57, 5825-5832. 
17. Chen, B.; Flatt, A. K.; Jian, H.; Hudson, J. L.; Tour, J. M., Molecular Grafting to Silicon Surfaces in Air 
Using Organic Triazenes as Stable Diazonium Sources and HF as a Constant Hydride-Passivation Source. 
Chem. Mater. 2005, 17, 4832-4836. 
18. Hudson, J. L.; Jian, H.; Leonard, A. D.; Stephenson, J. J.; Tour, J. M., Triazenes as a Stable Diazonium 
Source for Use in Functionalizing Carbon Nanotubes in Aqueous Suspensions. Chem. Mater. 2006, 18, 2766-
2770. 
19. Bhattacharya, S.; Majee, S.; Mukherjee, R.; Sengupta, S., Heck Reaction of 1-Aryltriazenes. Synth. 

Commun. 1995, 25, 651-657. 
20. Sengupta, S.; Kumar Sadhukhan, S.; Bhattacharyya, S., Probing the effect of gegenions in Heck 
reactions of arenediazonium salts: Arenediazonium perchlorates and fluorides as new Heck-substrates. 
Tetrahedron 1997, 53, 2213-2218. 
21. Schotten, C.; Aldmairi, A. H.; Sagatov, Y.; Shepherd, M.; Browne, D. L., Protected diazonium salts: A 
continuous-flow preparation of triazenes including the anticancer compounds dacarbazine and mitozolomide. J. 

Flow Chem. 2016, 6, 218-225. 
22. Nelson, J. C.; Young, J. K.; Moore, J. S., Solid-Phase Synthesis of Phenylacetylene Oligomers Utilizing 
a Novel 3-Propyl-3-(benzyl-supported) Triazene Linkage. J. Org. Chem. 1996, 61, 8160-8168. 
23. Jones, L.; Schumm, J. S.; Tour, J. M., Rapid Solution and Solid Phase Syntheses of Oligo(1,4-phenylene 
ethynylene)s with Thioester Termini:  Molecular Scale Wires with Alligator Clips. Derivation of Iterative 
Reaction Efficiencies on a Polymer Support. J. Org. Chem. 1997, 62, 1388-1410. 
24. Bräse, S.; Enders, D.; Köbberling, J.; Avemaria, F., A Surprising Solid-Phase Effect: Development of a 
Recyclable “Traceless” Linker System for Reactions on Solid Support. Angew. Chem. Int. Ed. 1998, 37, 3413-
3415. 
25. Bräse, S.; Schroen, M., Efficient Cleavage–Cross-Coupling Strategy for Solid-Phase Synthesis—A 
Modular Building System for Combinatorial Chemistry. Angew. Chem. Int. Ed. 1999, 38, 1071-1073. 
26. Bräse, S.; Dahmen, S.; Pfefferkorn, M., Solid-Phase Synthesis of Urea and Amide Libraries Using the 
T2 Triazene Linker. J. Comb. Chem. 2000, 2, 710-715. 
27. Bräse, S.; Dahmen, S., Traceless Linkers-Only Disappearing Links in Solid-Phase Organic Synthesis? 
Chem. Eur. J. 2000, 6, 1899-1905. 
28. Avemaria, F.; Zimmermann, V.; Bräse, S., Synthesis of Aryl Azides via Post-Cleavage Modification of 
Polymer-Bound Triazenes. Synlett 2004, 2004, 1163-1166. 
29. Bräse, S., The Virtue of the Multifunctional Triazene Linkers in the Efficient Solid-Phase Synthesis of 
Heterocycle Libraries. Acc. Chem. Res. 2004, 37, 805-816. 
30. Lippert, T.; Wokaun, A.; Dauth, J.; Nuyken, O., NMR studies of hindered rotation and thermal 
decomposition of novel 1-aryl-3,3-dialkyltriazenes. Magn. Reson. Chem. 1992, 30, 1178-1185. 
31. Döbele, M.; Vanderheiden, S.; Jung, N.; Bräse, S., Synthesis of Aryl Fluorides on a Solid Support and in 
Solution by Utilizing a Fluorinated Solvent. Angew. Chem. Int. Ed. 2010, 49, 5986-5988. 
32. Hantzsch, A.; Davidson, W. B., Ueber Diazophenole. Ber. Dtsch. Chem. Ges. 1896, 29, 1522-1536. 
33. Stiles, M.; Miller, R. G., Decomposition of Benzenediazonium-2-carboxylate. J. Am. Chem. Soc. 1960, 
82, 3802-3802. 
34. Friedman, L.; Logullo, F. M., Benzynes via Aprotic Diazotization of Anthranilic Acids: A Convenient 
Synthesis of Triptycene and Derivatives. J. Am. Chem. Soc. 1963, 85, 1549-1549. 



 15 

35. Friedman, L.; Logullo, F. M., Arynes via aprotic diazotization of anthranilic acids. J. Org. Chem. 1969, 
34, 3089-3092. 
36. Logullo, F. M.; Seitz, A. H.; Friedman, L., Benzenediazonium‐2‐Carboxylate and Biphenylene. Org. 

Synth. 1973, 12-12. 
37. Sullivan, J. M., Letters. Chemical & Engineering News Archive 1971, 49, 5-7. 
38. Mich, T. F.; Nienhouse, E. J.; Farino, T. E.; Tufariello, J. J., The generation of benzyne - A warning. J. 

Chem. Educ. 1968, 45, 272. 
39. Poh, J.-S.; Browne, D. L.; Ley, S. V., A multistep continuous flow synthesis machine for the preparation 
of pyrazoles via a metal-free amine-redox process. React. Chem. Eng. 2016, 1, 101-105. 
40. Groves, L. M.; Schotten, C.; Beames, J.; Platts, J. A.; Coles, S. J.; Horton, P. N.; Browne, D. L.; Pope, 
S. J. A., From Ligand to Phosphor: Rapid, Machine-Assisted Synthesis of Substituted Iridium(III) Pyrazolate 
Complexes with Tuneable Luminescence. Chem. Eur. J. 2017, 23, 9407-9418. 
41. Schotten, C.; Leist, L. G. T.; Semrau, A. L.; Browne, D. L., A machine-assisted approach for the 
preparation of follow-on pharmaceutical compound libraries. React. Chem. Eng. 2018, 3, 210-215. 
42. Although the aluminium pans used for the DSC analysis in this work were hermetically sealed, it is still 
possible for these to leak sample during decomposition, leading to inaccurate measurements of the later heat 
flow. In the event that leakage did occur, one would expect erratic heat flow traces that tended towards zero as 
sample was lost. That a pan leaks does not affect the thermal stability measurement, i.e., the initial 
decomposition temperatures are accurate but whether or not a material degrades with a ’thermal runaway’ 
cannot be deduced conclusively by this technique only - TGA, shock, hammer and friction testing should also 
be used to fully assess and classify the energy of a decomposition. 
43. Akhtar, M. H.; McDaniel, R. S.; Feser, M.; Oehlschlager, A. C., NMR study of hindered rotation in 1-
aryl-3,3-dimethyltriazenes. Tetrahedron 1968, 24, 3899-3906. 
44. Marullo, N. P.; Mayfield, C. B.; Wagener, E. H., Restricted rotation about the N-N single bond Linear 
correlation of rate with substituent. J. Am. Chem. Soc. 1968, 90, 510-511. 
45. Axenrod, T.; Mangiaracina, P.; Pregosin, P. S., A 13C- and 15N-NMR. Study of Some 1-Aryl-3, 3-
dimethyl Triazene Derivatives. Helv. Chim. Acta 1976, 59, 1655-1660. 
46. Lunazzi, L.; Cerioni, G.; Foresti, E.; Macciantelli, D., Conformational studies by dynamic nuclear 
magnetic resonance. Part X. Stereodynamics and conformations of hindered triazenes. Journal of the Chemical 

Society, Perkin Transactions 2 1978, 686-691. 
47. Sieh, D. H.; Wilbur, D. J.; Michejda, C. J., Preparation of trialkyltriazenes. A comparison of the 
nitrogen-nitrogen bond rotation in trialkyltriazenes and aryldialkyltriazenes by variable temperature carbon-13 
NMR. J. Am. Chem. Soc. 1980, 102, 3883-3887. 
48. Foster, N.; Pestel, B., Dynamic 13C NMR: A study of aryl-substituted 1-phenyl-3,3-
tetramethylenetriazenes. Magn. Reson. Chem. 1985, 23, 83-85. 
49. Nguyen, M.-T.; Hoesch, L., Triazene: An ab initio Molecular-Orbital Study of Structure, Properties, and 
Hydrogen-Transfer Reaction Pathways. Helv. Chim. Acta 1986, 69, 1627-1637. 
50. Hooper, D. L.; Pottie, I. R.; Vacheresse, M.; Vaughan, K., 1,2-Bis(1-aryl-3-alkyltriazen-3-yl)ethanes 
and related compounds. Can. J. Chem. 1998, 76, 125-135. 
51. Balz, G.; Schiemann, G., Über aromatische Fluorverbindungen, I.: Ein neues Verfahren zu ihrer 
Darstellung. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1927, 60, 1186-1190. 
52. SigmaAldrich https://www.sigmaaldrich.com/catalog/product/aldrich/280895?lang=en&region=GB 
(06/04/2020). 

 

 


