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Abstract

Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding
dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers,
inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is
increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is
blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with
extracellular ATP signaling. Acute exposure to nifedipine (10 mM) decreased [Ca2+]r, NF-kB activity and iNOS expression in
mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg
for 1 week. This treatment lowered the [Ca2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that
extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1
week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that
completely degrades extracellular ATP to AMP, reduced [Ca2+]r to a similar extent as was seen in FDB fibers after 1-week of
nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/
nitrosative (iNOS and gp91phox/p47phox NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and
lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the
inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that
nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca2+]r in mdx
skeletal muscle cells. The results in this work open new perspectives towards possible targets for pharmacological
approaches to treat DMD.
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Introduction

Duchenne muscular dystrophy (DMD) is a severe neuromus-

cular disorder characterized by the absence of the dystrophin

protein and is the most common form of muscular dystrophy with

a frequency of 1 in 3500 male births [1]. DMD is caused by a

recessive X-linked mutation in dystrophin gene located to Xp21

[2]. Usually patients lose the ability to walk between 6–12 years

old due to severe muscle damage and contractures that results in

wheelchair dependence [1]. Since DMD is a progressive disease,

most patients die in their twenties due either to respiratory failure

or cardiac dysfunction [3].

Resting intracellular calcium concentration ([Ca2+]r) is elevated

in myotubes from mdx mice, a murine model for DMD [4]. This

increased [Ca2+]r depends on sarcolemmal Ca2+ entry, as well as

Ca2+ leak from sarcoplasmatic reticulum (SR), through type 1

ryanodine receptors (RyR1) and inositol tri-phosphate receptors

(IP3R). In turn, elevated [Ca2+]r modulates NF-kB activation,

leading to an up-regulation of inducible nitric oxide synthase

(iNOS) in dystrophic myotubes [4].
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The L-type voltage gated Ca2+ channels (Dihydropyridine

receptors, DHPRs) are also implicated in DMD pathology [5–7].

Their roles as voltage sensors for both excitation-contraction and

excitation-transcription coupling, and as their role as L-type Ca2+

channels in skeletal muscle cells, make them key regulators of

intracellular [Ca2+] [8–10]. The DHPR is also an important

modulator of ATP release through Pannexin1 channels in skeletal

muscle fibers [9,10]. ATP release elicited by electrical stimuli is

blocked with the DHPR antagonist nifedipine as well as with the

agonist (2)S-BayK 8644 in FDB fibers [10], suggesting that

DHPR could directly control ATP release and that this event is

independent of L-type current. An interaction between dystrophin

and DHPR has been proposed in transverse tubular system of

skeletal muscle fibers [6,11], suggesting that there is DHPR

dysregulation in dystrophic skeletal muscle cells. More recently, we

showed that basal levels of ATP release are importantly increased

in mdx muscle fibers [12]. In dystrophic fibers, extracellular ATP

stimulation was pro-apoptotic, inducing the transcription of Bax,

BIM and PUMA and increasing the levels of activated Bax and

cytosolic cytochrome C [12]. These data suggest the potential for

involvement of the ATP pathway in the activation of mechanisms

related with cell death in muscular dystrophy, opening new

perspectives towards possible targets for pharmacological thera-

pies.

A double-blinded controlled clinical trial with nifedipine was

carried out in 1987, and showed that there was no significant

beneficial effect of nifedipine treatment [13]. In this study, patient

selection was restricted to semiology and classical human genetics,

since dystrophin was not cloned until 1987 [2]. DMD has been

considered stereotyped in its clinical presentation, evolution and

severity [14]. However, an inverse correlation between severity of

disease and residual amount of dystrophin (related to different

mutations) has been found [15]. More recently, a retrospective,

single institution, long-term (.10 years) study was done in 75

DMD patients with a complete lack of dystrophin (determined by

western blot) and genotyping, showed that DMD can be divided

into 4 sub-phenotypes with different cognitive and motor

outcomes [16], showing the complexity and heterogeneity of

DMD.

Based on our previous results showing that extracellular ATP

levels are elevated in mdx fibers and that ATP stimulation is pro-

apoptotic, here we revisited the potential therapeutic effect of this

drug in the mdx mouse model. In the present study, we found that

acute treatment of mdx myotubes with nifedipine reduced [Ca2+]r,

NF-kB activity and iNOS expression. Likewise, intraperitoneal

injections of nifedipine for 1 week, reduced in vivo [Ca2+]r in vastus

lateralis muscles, decreased serum creatine kinase levels and

increased in vivo muscle strength in mdx mice. In FDB muscle

fibers isolated from the same nifedipine treated mdx mice, basal

ATP release was reduced and the gene expression of pro-oxidative

and pro-apoptotic genes in diaphragm (the most seriously affected

muscle) were down-regulated. The present findings demonstrate

that nifedipine treatment can effectively modify the observed

changes associated with muscle pathology in mdx mice and opens a

new pharmacologic approach for treatment of patients with

DMD.

Materials and Methods

Myotube Cultures
Primary myoblasts were isolated from 5–6 week old male wild

type C57BL/6 and mdx mice and myotubes were differentiated as

described previously [4,17].

Adult FDB Fiber Isolation
Flexor digitorum brevis (FDB) muscles were dissected from 5–6

week old male mice and intact muscle fibers were obtained by

enzymatic digestion of the whole muscle with collagenase type 4

(Worthington, Lakewood, NJ) for 90 min at 37uC followed by

mechanical dissociation with fire polished Pasteur pipettes.

Isolated fibers were seeded in matrigel-coated dishes in DMEM

supplemented with 10% horse serum and used for experimenta-

tion 20–24 hours after isolation.

Drug Treatment Protocol
Male 5–6 week-old wt and mdx mice were injected daily for 1

week with either nifedipine solution (1 mg/Kg body weight) or

saline intraperitoneally. Nifedipine (Sigma-Aldrich) solution was

prepared in dark at 17 mg/mL in absolute ethanol and then was

diluted in sterile saline solution (0.9% NaCl) at 0.2 mg/mL for

injections.

Determination of [Ca2+]r

Double-barreled Ca2+-selective microelectrodes were prepared

and calibrated as previously described [4]. Pulled microelectrodes

were backfilled with the neutral carrier ETH 129 (Fluka-Sigma-

Aldrich) and then with pCa7 solution. Only those electrodes with a

linear relationship between pCa3 and pCa7 (Nernstian response,

29.5 mV and 30 mV per pCa unit at 23uC and 37uC, respectively)

were used experimentally.

Myotubes or muscle fibers were impaled with the double-

barreled Ca2+ selective microelectrodes and potentials were

recorded via high impedance amplifier (WPI Duo-773) [18].

[Ca2+]r measurements in myotubes were made with or without

nifedipine (10 mM) in Krebs-Ringer solution (in mM: 140 NaCl,

5 KCl, 2.5 CaCl2, 1 MgSO4, 5 glucose, and 10 Hepes/Tris,

pH 7.4) at 23uC, as previously described [4].

The measurements of [Ca2+]r in muscle fibers were done in vivo in

the vastus lateralis. Mice were anesthetized with ketamine 100 mg/

Kg and xylazine 5 mg/Kg and kept euthermic with a feedback-

heating pad (ATC-1000 Temperature controller, WPI, Sarasota,

FL). A small incision was made in the skin in the anterior part of

the left leg, the vastus lateralis muscle was identified and fascia was

partially removed. The superficial fibers were exposed and locally

perfused with Krebs Ringer solution.

Measurements of [Ca2+]r in isolated adult FDB fibers were done

after fibers were incubated in Krebs Ringer solution with or

without apyrase 2 U/mL (grade VII from potato, Sigma-Aldrich)

for 10 min at room temperature.

NF-kB Luciferase Reporter Activity
Both wt and mdx myoblasts were transduced with a lentivirus

containing 5 tandem NF-kB binding site repeats cloned upstream

of a luciferase reporter gene and populations that stably expressed

the transgene were selected using G418, as described previously

[4]. Myoblasts stably expressing this reporter were completely

normal and differentiated into myotubes after 3–4 days similar to

untransduced cells. Myotubes were treated with or without

nifedipine for 6 h in differentiation media. Luciferase activity

was determined using a dual-luciferase reporter assay system

(Promega) according to the manufacturer’s instructions, and light

detection was carried out in a Berthold F12 luminometer. Results

were normalized with total protein and the relations ‘‘luciferase

activity/mg protein’’ were shown.

Nifedipine Improves Muscle Function in mdx Mice
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mRNA Quantitation
Total RNA was isolated from myotubes or diaphragm muscles

from both the nifedipine- or saline-treated groups with TRIzolH
reagent (Invitrogen) according to the manufacturer’s protocol.

cDNA was prepared by reverse transcription (RT) reaction of 1 mg

of total RNA using random primers. Real time PCR was

performed as previously described [4] using the following primers:

bax 59-GCTGACATGTTTGCTGATGG-39 and 59-GAT-

CAGCTCGGGCACTTTAG-39 bim 59-CGACAGTCTCAG-

GAGGAACC-39 and 59-CATTTGCAAACACCCTCCTT-39

gp91phox 59-TCACATCCTCTACCAAAACC-39 and 59-

CCTTTATTTTTCCCCATTCT-39 p47phox 59-AGAACA-

GAGTCATCCCACAC-39 and 59-GCTACGTTATTCTTGC-

CATC-39 iNOS 59-CAGCTCAAGAGCCAGAAACG-39 and 59-

TTACTCAGTGCCAGAAGCTG-39 gapdh 59-CTCATGACCA-

CAGTCCATGC-39 and 59-TTCAGCTCTGGGATGACCTT-

39 18S rRNA 59-GGGCCCGAAGCGTTTACTTT-39 and 59-

TTGCGCCGGTCCAAGAATTT-39.

ATP Detection Using a Luciferin/Luciferase Assay
FDB fibers from nifedipine- and saline-treated mice were

prepared as described above. Because media replacement causes a

mechanical stimulus that itself induces ATP release [19,20], we

measured ATP release for up to 9 min beginning 30 min after

media change. ATP concentrations were measured with the

CellTiter-GloH Luminescent Cell Viability Assay (Promega,

Madison, WI, USA) as reported [9]. Data were calculated as

pmol extracellular ATP/mg total RNA. Normalization by total

RNA instead of total protein was chosen because fibers were

seeded on a Matrigel-coated dish (containing a large amount of

protein), which may affect the protein determination associated

only to fibers.

Serum Creatine Kinase Determinations
Blood samples were obtained by cardiac puncture in anesthe-

tized mice. Blood was collected in a sterile test tube, allowed to clot

on ice for 30 min and then centrifuged at 3000 rpm for 10

minutes. Creatine kinase (CK) levels were determined using the

UV-kinetic method (Teco Diagnostics) according to the manufac-

turer instructions. DAbs/min were used to calculate CK enzymatic

activity and the results were expressed as International Kilo Units

per liter (KUI/L).

Inverted Grid-hanging Test
Muscle strength of mouse limbs was tested with an inverted

grid-hanging test [21]. Mice were placed individually on the center

of a 21621 cm wire grid (wire width <0.1 cm and spacing

0.5 cm), mounted 35 cm above a table. After gently inverting the

grid, the mouse hanging time was recorded (grip latency). This

procedure was repeated three times and the average hanging time

values were calculated for each mouse.

Forced Swimming Test
A 1-liter beaker (11 cm diameter and 15 cm height) filled with

water (23uC) was used as swimming pool to assess the exercise

tolerance of saline- and nifedipine-treated mice [22]. First, a

weight (10% of their body weight) was attached to the tail of a

mouse, which was then gently placed in the water, and the time at

which the mouse was unable to maintain complete buoyancy was

recorded. At this time the mice were immediately removed from

the swimming pool, dried gently with paper towels and returned to

their cages.

Statistical Analysis
Data of n experiments were expressed as mean 6 S.E.M. The

significance of difference among treatments was evaluated using a

two-tailed t test for unpaired data or ANOVA- followed by Tukey’s t-

test. A P value ,0.05 was considered statistically significant.

Ethics Approval
All procedures for animal experimentation were done in

accordance with guidelines approved by the Bioethical Committee

at the Facultad de Medicina, Universidad de Chile and the

IACUCs at Harvard Medical School and University of California

at Davis.

Results

Nifedipine Reduces [Ca2+]r in Dystrophic mdx Myotubes
Myotubes were incubated in Krebs Ringer solution with or

without nifedipine (10 mM) for 10 min and [Ca2+]r was measured

with Ca2+ selective microelectrodes, in both wt and mdx myotubes.

[Ca2+]r observed in mdx myotubes was significantly higher

compared to wt myotubes (31568 vs 11262 nM P,0.001)

(Figure 1). There was a significant reduction in the [Ca2+]r in

nifedipine-treated mdx myotubes compared with untreated mdx

myotubes (254612, P,0.001). Nifedipine treatment did not

modify [Ca2+]r in wt myotubes (11961 nM, P.0.05).

NF-kB Activity and iNOS Expression were Reduced After
Nifedipine Incubation

We previously reported that the increases in NF-kB activity and

iNOS expression are modulated by [Ca2+]r in mdx myotubes [4].

To study the effect of nifedipine treatment in NF-kB activity and

iNOS expression, we used a NF-kB luciferase reporter and real

Figure 1. Nifedipine incubation reduces [Ca2+]r in mdx myo-
tubes. Myotubes were incubated with 10 mM Nifedipine for 10 min at
room temperature in Krebs Ringer solution and [Ca2+]r was measured
using double-barreled Ca2+ selective microelectrodes. Data are ex-
pressed as mean 6 S.E.M. Wt (n = 10), mdx (n = 27), Wt+Nife (n = 10) and
mdx+Nife (n = 10). ***P,0.001, ANOVA-Tukey’s.
doi:10.1371/journal.pone.0081222.g001
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time PCR, respectively (see Materials and Methods). After incubation

with nifedipine (10 mM, 6 h) NF-kB activity was reduced by 33%

(P,0.05) and iNOS mRNA levels were diminished by 61%

(P,0.01) in mdx myotubes, without any significant effect in wt

myotubes (P.0.05) (Figure 2).

Nifedipine Decreases the [Ca2+]r in vivo in mdx Muscles
To establish if nifedipine can reduce [Ca2+]r in vivo, both wt and

mdx mice were injected intraperitoneally daily for 1 week with

either 1 mg/Kg nifedipine solution or saline. [Ca2+]r measured

in vivo in the superficial fibers of vastus lateralis muscles was

significantly higher in mdx muscles compared with wt muscles in

the saline treated group (Figure 3, 320613 vs 11163 nM,

P,0.001). Nifedipine treatment was able to significantly reduce

[Ca2+]r in mdx mice (23668 nM, P,0.001), but had no effect in wt

muscles (10861 nM, P.0.05).

Nifedipine Treatment Reduces ATP Release in Adult
Fibers

Recently, we reported that depolarization-induced ATP release

is modulated by DHPR activity and can be blocked in skeletal

muscle cells by nifedipine [10]. Moreover, extracellular ATP levels

are higher at resting conditions in mdx skeletal muscle fibers [12]. It

is very well established that extracellular ATP can signal through

purinergic receptors and modulate the intracellular Ca2+ concen-

tration [23]. In order to establish a correlation between

extracellular ATP and the alterations in the [Ca2+]r, we measured

ATP release in isolated FDB fibers from both wt and mdx mice

after 1-week of nifedipine or saline treatment. Because media

replacement causes a mechanical stimulus that itself induces ATP

release [19,20], we measured ATP release after 30 min of media

change and then up to 9 min. ATP release from mdx fibers was

higher compared to wt fibers at every studied time point

(Figure 4A). Nifedipine treatment reduced ATP release in both

wt and mdx fibers, with a more pronounced effect in mdx fibers. At

t = 30 min after media change average extracellular ATP in fibers

from saline-treated mdx mice was higher than in saline-treated wt

fibers (1031622 vs 540693 pmol ATP/mg RNA), P,0.01)

(Figure 4B). ATP release was significantly decreased in fibers

isolated from nifedipine-treated mdx (442618 pmol ATP/mg

RNA, P,0.001) compared to untreated mdx fibers. Similar results

were observed after 9 min (Figure 4C), showing that extracellular

ATP levels were higher in mdx fibers but can be diminished near to

wt levels after 1-week of nifedipine treatment.

Degradation of Extracellular ATP Reduces [Ca2+]r in mdx
Adult Fibers

In order to determine the participation of extracellular ATP on

[Ca2+]r in adult mdx fibers, we treated isolated FDB fibers with

apyrase (2 U/mL) in Krebs Ringer solution for 10 min. Apyrase is

an enzyme that rapidly metabolizes extracellular ATP to AMP [9].

Apyrase treatment significantly reduced [Ca2+]r from 296611 to

19568 nM (P,0.001) in mdx fibers, without any significant effect

in wt fibers (11266 to 10062 nM, P.0.05) (Figure 5).

NADPH Oxidase Subunits and iNOS Expression in mdx
Mice

Dystrophic muscles are characterized by an increase in pro-

oxidative gene expression, such as iNOS and NADPH oxidase

subunits (gp91phox, p67phox and rac1) [4,24,25]. Because the

diaphragm has been described as the most severely affected muscle

in the mdx mouse [26] it was used to determine the antioxidant

effects of nifedipine treatment. For these studies we determined

mRNA levels of iNOS and the NADPH oxidase subunits gp91phox

and p47phox, from whole diaphragm lysates using real time PCR.

We found that iNOS mRNA levels were 2.4-fold and gp91phox

were 3.9-fold higher in mdx diaphragms compared to wt, with no

significant difference in the expression of p47phox between the two

groups (Figure 6). Nifedipine treatment reduced the mRNA levels

of iNOS, gp91phox and p47phox in mdx diaphragms by 86%

Figure 2. NF-kB activity and iNOS expression in both wt and mdx myotubes. A. NF-kB activity was studied with a luciferase reporter.
Nifedipine treatment (10 mM for 6 h) reduced NF-kB activity in mdx, without any significant effect in wt myotubes (n = 6–12). B. mRNA levels of iNOS
were determined by real time PCR after 6 h of nifedipine treatment (10 mM) (n = 6–7). Data are expressed as mean 6 S.E.M., *P,0.05, **P,0.01,
***P,0.001, ANOVA-Tukey’s.
doi:10.1371/journal.pone.0081222.g002
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(P,0.001), 91% (P,0.01) and 80% (P,0.05), respectively, with no

significant effect in wt muscles.

Nifedipine Treatment Normalizes Pro-apoptotic Genes
Expression in mdx Mice

Necrosis is probably one of the major contributors to DMD

pathology [27]. However, there is some evidence that suggests that

apoptotic pathways could also be important [28,29]. To determine

if nifedipine can modify pro-apoptotic gene expression, we

determined mRNA levels of both Bax and BIM in diaphragm

muscles using real-time PCR. Bax mRNA levels were higher in

mdx compared with wt mice (2.0-fold, P,0.05) (Figure 7) and

nifedipine administration significantly diminished mRNA levels of

Bax in mdx diaphragm by 73% (P,0.001) with no significant effect

in wt diaphragm. We did not find any differences in BIM mRNA

levels between any of the studied groups.

Nifedipine Treatment Diminishes Serum CK Levels and
Improves Muscle Strength in mdx Mice

To elucidate whether nifedipine treatment could reduce muscle

damage, we measured serum CK levels in both wt and mdx mice

after 1 week of either saline or nifedipine treatment. CK levels

were significantly higher in saline treated mdx mice relative to

saline treated wt mice (15.962.6 vs 0.760.3 KUI/L, P,0.001)

(Figure 8A). Nifedipine reduced CK levels in mdx mice

(6.862.5 KUI/L, P,0.05), without any significant effect in wt

mice (1.560.2 KUI/L, P.0.05).

In order to determine whether nifedipine treatment might

increase muscle strength we used the inverted grid-hanging test

Figure 3. Nifedipine treatment reduces muscle [Ca2+]r in vivo in mdx mice. Mice were treated with daily intraperitoneal injections of
nifedipine 1 mg/Kg for 1-week or saline. A. Experimental setup to measure [Ca2+]r in vivo with Ca2+ selective microelectrodes in vastus lateralis
muscle. B. Averaged data from [Ca2+]r determinations with or without nifedipine treatment. Data are expressed as mean 6 S.E.M. from n fibers in N
mice, ***P,0.001, ANOVA-Tukey’s.
doi:10.1371/journal.pone.0081222.g003

Figure 4. Extracellular ATP concentration in FDB fibers isolated from either nifedipine- or saline-treated wt and mdx mice. A. Time
course of extracellular ATP levels after media change. ATP concentration was measured with CellTiter-GloH Luminescent Cell Viability Assay. Average
extracellular ATP at 30 min (B) and at 39 min (C) after media change are shown in the figure. Data are expressed as mean 6 S.E.M. FDB fibers were
cultured from n = mice are indicated in the figure. **P,0.01, ***P,0.001, ANOVA-Tukey’s.
doi:10.1371/journal.pone.0081222.g004

Nifedipine Improves Muscle Function in mdx Mice
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and the forced swimming test. Mice were treated daily with

nifedipine (1 mg/Kg) or saline for 1 week, and the functional test

was performed one day after cessation of treatment. Saline treated

mdx mice had a significantly shorter hanging time compared to wt

mice (2363 s vs 4461 s, P,0.01 Figure 8B). Nifedipine treatment

increased the mdx hanging time by 61% (3763 s, P,0.05

compared to saline-treated mice (Figure 8B).

Similar results were observed using the forced swimming test.

Under this experimental condition, wt swimming time was

significantly higher compared to saline-treated mdx mice

(550625 s vs 398615 s, P,0.05, Figure 8C). In this case

nifedipine treatment for 1 week normalized the swimming time

in mdx mice increasing it to 594664 s (P,0.01 compared to saline-

treated mice, Figure 8C).

Discussion

Our data show that [Ca2+]r was elevated in mdx myotubes and

to a similar extent in adult skeletal muscle fibers from mdx mice.

Acute exposure of mdx myotubes to nifedipine decreased [Ca2+]r,

NF-kB activity and iNOS expression. Likewise, in mdx mice,

nifedipine treatment for 1-week lowered in vivo [Ca2+]r in the vastus

lateralis, reduced ATP release in FDB fibers, diminished mRNA

levels of pro-oxidative/apoptotic genes in the diaphragm, lowered

serum CK levels and improved muscle function as assessed by

both inverted grid-hanging test and forced swimming test.

Although still controversial, it is generally accepted that

dystrophic skeletal muscle cells have elevated [Ca2+]r [4,30–32].

Our data support these findings showing that [Ca2+]r was elevated

in mdx myotubes and to a similar extent in skeletal muscles from

mdx mice, measured either in isolated FDB fibers or determined

in vivo, in anesthetized mice. Moreover, we showed that either

acute nifedipine treatment of myotubes or chronic nifedipine

treatment of mice for 1-week reduced [Ca2+]r. Nifedipine is known

as specific inhibitor of the DHPR [33]. In addition to its role as an

L-type Ca2+ channel the DHPR operates as voltage sensor for

both excitation-contraction and excitation-transcription coupling

in adult muscle fibers [8–10]. Dystrophic mdx skeletal muscle cells

have a dysregulated excitation-contraction coupling as evidenced

by reduced calcium transients evoked by single action potentials

compared with wt fibers [34,35]. This has been used to explain the

muscle weakness observed in DMD patients. On the other hand,

there is a controversy related to whether there are alterations of L-

type Ca2+ currents in mdx muscles, with some studies showing

normal maximum currents [5] while others show decreased

maximum current [6,7]. No differences have been found in charge

movement between normal and dystrophic skeletal muscle fibers

[5,36]. In addition, a leftward-shift of the voltage dependence of L-

type Ca2+ current has been described [5].

Our data showed that extracellular ATP levels were higher in

mdx fibers compared to wt fibers. Chronic nifedipine treatment

reduces ATP release in adult mdx FDB fibers to a level similar to wt

fibers. Moreover, acute enzymatic ablation of extracellular ATP-

Figure 5. Apyrase treatment reduces [Ca2+]r in FDB adult fibers.
Adult fibers were isolated from wt and mdx mice and incubated in
Krebs Ringer solution with or without apyrase (2 U/mL) for 10 min at
room temperature. [Ca2+]r was determined by double-barreled Ca2+

selective microelectrodes. Data are expressed as mean 6 S.E.M. from n
fibers (indicated in the figure) from three different cultures. n.s, no
significant difference, ***P,0.001, ANOVA-Tukey’s.
doi:10.1371/journal.pone.0081222.g005

Figure 6. iNOS and NADPH oxidase subunits gene expression in diaphragm muscles. Diaphragms were dissected from nifedipine- and
saline-treated mice and mRNA levels were assessed by real time PCR. A. iNOS, B., gp91phox and C. p47phox expression. Data are expressed as mean 6
S.E.M. Diaphragms were obtained from n = mice as indicated in the figure. *P,0.05, **P,0.01, ***P,0.001, ANOVA-Tukey’s.
doi:10.1371/journal.pone.0081222.g006
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ADP with apyrase treatment reduces the [Ca2+]r in mdx fibers from

296 nM to 195 nM, showing that elevated extracellular ATP is an

important modulator of [Ca2+]r in mdx skeletal muscle fibers.

Extracellular ATP can signal through P2X (inotropic) and P2Y

(metabotropic) purinergic receptors [23,37], the latter pathway

leading to Ca2+ release through inositol tri-phosphate receptors

(IP3R). We previously reported that IP3 levels were higher in both

human DMD and mdx cell lines [38] and that either phospholipase

C (U-73122) or IP3R (Xestospongin C) inhibition could signifi-

cantly reduce [Ca2+]r in mdx myotubes [4].

Pannexin-1 channels are involved in ATP release after

depolarization in myotubes and adult muscle fibers [9,10]. Based

on co-immunoprecipitation and a proximity ligation assay [10], an

interaction between DHPR and Pannexin-1 channels has been

proposed. Recently, we have shown that the DHPR is an

important modulator of ATP release, and that it is necessary for

fast-to-slow phenotype transition in FDB adult muscle fibers

stimulated at 20 Hz [10]. ATP release through pannexin-1

channels observed after 20 Hz electrical stimulation of adult

muscle fibers is inhibited by nifedipine [10], suggesting that the

DHPR could directly control ATP release via Pannexin-1

channels.

Due to a chronic state of fiber injury, dystrophic muscle would

be expected to contain high levels of extracellular ATP. In

addition, ATP release to the extracellular medium was shown to

be elevated in muscle fibers isolated from mdx mice [12]. Several

Figure 7. Bax and BIM gene expression in diaphragm muscles. Diaphragms were dissected from nifedipine- and saline-treated mice and
mRNA levels were assessed by real time PCR. A. Bax, B. BIM mRNA levels. Data are expressed as mean 6 S.E.M. Diaphragms were obtained from
n = mice as indicated in the figure, *P,0.05, ***P,0.001, ANOVA-Tukey’s.
doi:10.1371/journal.pone.0081222.g007

Figure 8. Nifedipine treatment reduced serum CK and increases muscle function in mdx mice. A. Blood samples were collected by
cardiac puncture under anesthesia from both nifedipine- or saline-treated mice. CK activities were determined by the UV kinetic method. B. Averaged
hanging time obtained in the inverted grid-hanging test in saline- and nifedipine treated mice. C. Averaged swimming time obtained in the forced
swimming test in nifedipine- or saline- treated mdx mice. Data are expressed as mean 6 S.E.M. n = mice is indicated in the figure, *P,0.05, **P,0.01,
***P,0.001 ANOVA-Tukey’s.
doi:10.1371/journal.pone.0081222.g008
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alterations have been found in ATP signaling in dystrophic skeletal

muscle cells. In an immortalized myoblast cell line derived from

mdx mouse, addition of exogenous ATP to the media induced a

large increase in cytosolic Ca2+ concentration compared with its wt

counterpart [39]. This increased susceptibility to ATP was

associated with changes in expression and function of P2X

channels and to pathogenic Ca2+ entry in dystrophic muscles.

Furthermore, enhanced expression of the P2X4 and P2X7

receptors have been related to macrophage invasion in mdx mice

[40].

Here we determined the expression of iNOS and NADPH

oxidase subunits in diaphragm, because this muscle has been

described as the most severely affected muscle in the mdx mouse

[26]. Nifedipine reduced iNOS, gp91phox and p47phox mRNA

levels in mdx diaphragm after 1-week of treatment. We previously

demonstrated that iNOS expression was higher in mdx myotubes

which we attributed to an up-regulated NF-kB activity mediated

by the elevated [Ca2+]r [4]. Nifedipine treatment reduced iNOS

expression in diaphragm, likely due to the same mechanism.

Recently, it has been shown that dihydropyridines have anti-

inflammatory and anti-oxidant effects. Nifedipine caused concen-

tration-dependent inhibitory effects on sarcolemmal lipid perox-

idation in vitro [41]. Toma et al, 2011 suggest that amlodipine, a

third generation dihydropyridine L-type calcium channel blocker,

may improve endothelial dysfunction in diabetics through anti-

oxidant and anti-inflammatory mechanisms. The authors stimu-

lated human endothelial cells with irreversible glycated low-density

lipoproteins (AGE-LDL), as an in vitro model mimicking the

diabetic condition. Their results show that amlodipine reduced the

expression of NADPH oxidase subunits (p22phox and NOX4) and

iNOS, and diminished oxidative/nitrosative stress. Moreover,

amlodipine had anti-inflammatory effects reducing the activation

of MCP-1, VCAM-1, p38 MAPK and NF-kB [42]. In another

study, it has been shown that amlodipine (3 mg/kg/day) decrease

the expression of NADPH subunits (p47phox and rac1), NADPH

activity and the expression of inflammatory factor in atheroscle-

rotic lesions [43].

Necrosis is probably the major contributor to DMD pathology

[27]. However, there is some evidence that suggests that apoptotic

pathways could also be important [28,29]. We observed that

nifedipine reduced significantly Bax expression in mdx diaphragms,

suggestive of a protective anti-apoptotic effect. Bax was abun-

dantly expressed in the mdx masseter muscles compared to wt

muscles at 3 weeks after birth [29]. We have demonstrated that

exogenous ATP increases mRNA levels of several pro-apoptotic

genes in skeletal muscle fibers, including Bax, BIM and PUMA.

Moreover, ATP induced Bax activation and cytochrome C release

in mdx fibers, which is related with apoptotic cell death [12].

A previous double-blind controlled clinical trial with nifedipine

did not demonstrate a beneficial therapeutic response on mean

muscle strength, joint contractures, time-functional tests, pulmo-

nary function, or creatine kinase levels in 105 patients between 3–

Figure 9. Proposed model for ATP-mediated effects in dystrophic skeletal muscle. In dystrophic skeletal muscle fibers there is an increase
in basal ATP release, through Pannexin1 channels that is modulated by the DHPR [12]. Extracellular ATP increases the [Ca2+]r in dystrophic muscle
fibers through the activation of purinergic receptors (P2X, inotropic and P2Y, metabotropic). This leads to the expression of pro-apoptotic and pro-
inflammatory genes, increasing the muscle damage observed in dystrophic skeletal muscle cells. Nifedipine treatment reduces the basal ATP release
and reduces [Ca2+]r, resulting in less pro-inflammatory and pro-apoptotic gene expression and subsequently reduces muscle damage as indicated by
a decrease in blood CK and an increase in muscle function assessed by the inverted grid-hanging test and the force swimming test.
doi:10.1371/journal.pone.0081222.g009
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27 years of age at the end of the study who were presumed to have

DMD [13]. Patients were given nifedipine 0.75 mg/kg/day in

three divided oral doses for 6 months and then 1.5–2 mg/Kg/day

for the final 12 months of the study [13]. A total of 97 patients

completed the trial. The power of the study to detect a difference

between groups was calculated using the decrease of average

muscle strength over time as the primary outcome measure.

Average muscle strength score were calculated with a modified

manual testing scale (MMT) [14] and the study had a power

greater that 0.99 to detect a slowing of the illness to 25% of its

original progression. The diagnostic criteria were based on

semiology and classical human genetics, however three patients

classified as Becker dystrophy were included in the study.

Moreover the one patient aged 27 years old was considered to

be unusual for DMD [44]. The data presented showed that the

average muscle strength score as slightly improved without any

significant difference. The trial used an unpaired analysis and it

may have been more appropriate to use a paired analysis so that

before and after changes in individuals could be compared [44].

As we mentioned before, there is an inverse correlation between

severity of disease and dystrophin expression [15] and even

patients with a complete lack of dystrophin DMD can be divided

into 4 sub-phenotypes with different cognitive and motor

outcomes [16]. This shows the high variability in the natural

history of DMD. Phenotypic variations have shown to compro-

mise results of clinical trials [45]. Desguerre et al, suggest that

trials, which are in danger of being inconclusive due to lack of

precise knowledge of DMD’s natural history, would strongly

benefit from accurate selection of clinically homogeneous patient

subsets [16].

High CK levels observed in DMD patients are attributed to an

enhanced membrane permeability and muscle damage [46]. In

our study, nifedipine treatment significantly reduced CK levels in

mdx mice after 1-week, but did not normalize it. These data are

supported by a study using verapamil, another L-type calcium

channel blocker, which showed a significant reduction in the

release of CK and LDH from diaphragm and gastrocnemius

muscles [47]. In the previous nifedipine clinical trial, authors did

not observe any significant difference in averaged CK levels after

treatment, reporting that patients from nifedipine group had an

average CK level of 2681 U/liter at the start and a value of

2045 U/liter at the end [13]. High levels of CK in DMD are well-

known, and after a rise in infancy, they remain at high levels with

an abrupt decrease at around 10 years old due to loss of muscle

mass [48]. Thus averaged data from a broad age group could

easily miss a significant difference when and if one existed.

Reduction of [Ca2+]r and in the expression of pro-oxidative/

apoptotic proteins, could be beneficial to dystrophic muscles and

may explain a reduction in muscle damage that a decrease in

serum CK would indicate. Moreover, an increase in the hanging

time and normalization of the forced swimming test were observed

in nifedipine-treated mdx mice, demonstrating an increase in

motor function, probably due to reduced muscle damage or

increased regeneration. In summary, these results provide further

evidence that [Ca2+]r is elevated in mdx muscles and this can be

modulated in vivo by nifedipine administration through a reduction

in basal ATP release from dystrophic fibers. Moreover, nifedipine

treatment reduced pro-oxidative/apoptotic gene expression with

the end result being less muscle damage as evidenced by a

significant reduction of serum CK and an increased muscle

strength in mdx mice (Figure 9). Our study used daily intraper-

itoneally doses of nifedipine (1 mg/Kg) for 1 week as compared to

the clinical study, which used it for a longer time period via the

oral route of administration. Moreover, our study was carried out

in 5–6 week old mdx mice (necrosis/regeneration stage) compared

to the clinical study that included patients at different stages of the

disease (3–27 years old). Longer studies need to be carried out to

assess the positive effects and pitfalls of nifedipine treatment studies

in mdx mice. However, our results strongly suggest that blockers of

the ATP signaling pathway should be tested in DMD patients, as

they might be promising in palliating the disease and prolonging

muscle function.
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