
Received March 5, 2021, accepted April 8, 2021, date of publication April 28, 2021, date of current version May 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3074962

Decentralized Edge-to-Cloud Load Balancing:
Service Placement for the Internet of Things
ZEINAB NEZAMI 1, KAMRAN ZAMANIFAR 1, KARIM DJEMAME 2, (Member, IEEE),
AND EVANGELOS POURNARAS 2
1Faculty of Computer Engineering, University of Isfahan, Isfahan 81746-73441, Iran
2School of Computing, University of Leeds, Leeds LS2 9JT, U.K.

Corresponding author: Kamran Zamanifar (zamanifar@eng.ui.ac.ir)

This work was supported in part by the Government Ministry of Science, Research and Technology of the Islamic Republic
of Iran, in part by the Swiss Federal Institute of Technology in Lausanne (EPFL), and in part by Swiss Federal Institute of
Technology (ETH) in Zürich.

ABSTRACT The Internet of Things (IoT) requires a new processing paradigm that inherits the scalability
of the cloud while minimizing network latency using resources closer to the network edge. On the one
hand, building up such flexibility within the edge-to-cloud continuum consisting of a distributed networked
ecosystem of heterogeneous computing resources is challenging. On the other hand, IoT traffic dynamics and
the rising demand for low-latency services foster the need for minimizing the response time and a balanced
service placement. Load-balancing for fog computing becomes a cornerstone for cost-effective system
management and operations. This paper studies two optimization objectives and formulates a decentralized
load-balancing problem for IoT service placement: (global) IoT workload balance and (local) quality of
service (QoS), in terms of minimizing the cost of deadline violation, service deployment, and unhosted
services. The proposed solution, EPOS Fog, introduces a decentralized multi-agent system for collective
learning that utilizes edge-to-cloud nodes to jointly balance the input workload across the network and
minimize the costs involved in service execution. The agents locally generate possible assignments of
requests to resources and then cooperatively select an assignment such that their combination maximizes
edge utilization while minimizes service execution cost. Extensive experimental evaluation with realistic
Google cluster workloads on various networks demonstrates the superior performance of EPOS Fog in terms
of workload balance and QoS, compared to approaches such as First Fit and exclusively Cloud-based. The
results confirm that EPOS Fog reduces service execution delay up to 25% and the load-balance of network
nodes up to 90%. The findings also demonstrate how distributed computational resources on the edge can
be utilized more cost-effectively by harvesting collective intelligence.

INDEX TERMS Agent, cloud computing, collective learning, distributed optimization, edge computing, fog
computing, Internet of Things (IoT), load-balancing, service placement.

I. INTRODUCTION
The Internet of Things (IoT) has unprecedented impact on
how data are shared and processed. IHS Markit1 estimates
the number of IoT-connected devices reaches 125 billion
in 2030. These devices generate a large volume of data and
transmit it to cloud data centers for processing, which results
in the overloading of data centers and networks. However,

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyhab Al-Masri .
1Available at: https://ihsmarkit.com/industry/telecommunications.html

(last accessed: Jan 2021).

despite several advantages of cloud computing as a shared
pool of resources and services, some emerging IoT appli-
cations cannot work efficiently on the cloud. Applications,
such as wind farms and smart traffic light systems, have
particular characteristics (e.g., large-scale, geo-distribution)
and requirements (e.g., very low and predictable latency) [1].

Running applications in distant cloud centers results in
a large and unpredictable latency. In addition, privacy and
security concerns prohibit transferring sensitive data to a
remote data center across the public Internet. Furthermore,
due to low bandwidth, it is not efficient or even feasible to
quickly transmit the high-frequency traffic generated at the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 64983

https://orcid.org/0000-0002-5962-5908
https://orcid.org/0000-0001-5417-0177
https://orcid.org/0000-0001-5811-5263
https://orcid.org/0000-0003-3900-2057
https://orcid.org/0000-0002-5163-6792

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

network edges across the Internet. Nevertheless, compared
to centralized cloud centers [2], there is a large number of
distributed edge nodes with unexploited resources that can
be utilized to bring low latency and reduced bandwidth to
IoT networks.Edge computing (e.g., fog computing) has been
recently introduced to address the mentioned challenges by
bringing the computation, storage, and networking close to
the network edges where the data is being generated [2]–[7].
The introduction of recent edge computing frameworks by
major cloud computing companies such as Google Cloud IoT
Edge2 and Amazon AWS Greengrass3 clearly demonstrate
their computation movement towards bringing cloud services
closer to the edge networks.

Fog computing is a system architecture that utilizes the
resources along an edge-to-cloud hierarchy (i.e., fog contin-
uum [1], [8]) to reduce traffic on the network and enhance the
quality of service (QoS) [8] for delay-sensitive applications.
Although the federation from edge to cloud leads to new
opportunities, it also raises new challenges [3], [6]. Distri-
bution of IoT services on available edge-to-cloud resources,
which is the subject of this paper, is one of the most critical
challenges concerning the federation.

IoT service placement is a middleware service that aims at
finding one or more eligible deployments that adhere to the
QoS4 expectations of the services. Placement of IoT services
is a multi-constrained NP-hard problem [9]. It has a signif-
icant impact on network utilization and end-to-end delay.
As a result of the dynamic nature of IoT workload [9]–[11],
inefficient service placement and load-imbalance5 result in
degradation in QoS [13], [14]. A balanced distribution of
workload over the network ensures the high availability of
nodes to reliably forward requests to appropriate nodes [14],
which reduces the probability of late response to emergencies
[14]–[16]. It is also evident that the distribution of edge-
to-cloud nodes, the demand for emerging distributed appli-
cations (such as smart traffic light systems [17], [18]), and
the partial view that nodes have of the whole network (no
centralized control) [9], [10], [19] challenge the application
of cloud central management model to this problem. Instead,
this paper studies a fully decentralized management strategy,
in which network nodes cooperate in allocating available
resources.

This research introduces a decentralized load-balancing
placement of IoT services in a distributed edge-to-cloud
infrastructure, taking into consideration two objectives:
achieving a desirable workload balance (global objective) and
minimizing service execution cost (local objective). While
the design of service placement algorithms for fog computing

2Available at: https://cloud.google.com/iot-edge (last accessed: Feb
2021).

3Available at: https://aws.amazon.com/greengrass (last accessed: Feb
2021).

4This paper considers QoS in terms of service execution delay and delay
threshold.

5Load-balancing refers to the distribution of workload uniformly across
network resources to enhance resource utilization and network effi-
ciency [12].

has received considerable attention in recent years [20]–[22],
agent-based cooperative service placement, aimed at decen-
tralized load-balancing, is an emerging timely topic.

The contributions of this work to addressing the service
placement problem are as follows: (i) The introduction of
a model that formalizes the IoT service placement prob-
lem in a fog computing (i.e., edge-to-cloud) infrastructure,
and two objectives that aim at balancing workload over
the network and minimizing the cost of service execution.
(ii) The introduction of a new methodology to locally and
autonomously generate eligible deployments for IoT requests
by reasoning based on local network context (i.e., system
view) and the characteristics of the received requests (i.e.,
service view). (iii) The applicability of I-EPOS, the Itera-
tive Economic Planning and Optimized Selections [23], as a
general-purpose decentralized learning algorithm, in solving
the IoT service placement problem. (iv) A comprehensive
understanding of how several parameters, e.g., workload dis-
tribution method, the allowed workload redistribution level in
the network (hop count) for service deployment, and network
size, influence the optimization objectives. (v) New quan-
titative insights about the comparison of three IoT service
placement approaches in terms of QoS metrics and workload
distribution. (vi) New insights and quantitative findings on
performance trade-offs. They can be used to design effective
incentive mechanisms that reward a more altruistic agent
behavior required for system-wide optimization. (vii) A new
open dataset6 for the community containing service assign-
ment plans of agents. It can be used to compare different
optimization and learning techniques as well as encourage
further research on edge computing for the Internet of Things.

The remainder of this paper is organized as follows.
Section II outlines the existing related work in the field
of IoT service placement in the edge-to-cloud infrastruc-
ture. Section III formulates the IoT service placement prob-
lem. Section IV introduces our distributed service place-
ment approach called EPOS Fog.7 After this, Section V dis-
cusses evaluation results regarding the proposed approach,
in comparison with Cloud and First Fit approaches. Finally,
Section VI presents a summary, along with some open direc-
tions for future work.

II. RELATED WORK
Resource provisioning and service placement are major
research challenges in the field of cloud computing [24]–[26].
Given the heterogeneity of computational resources on the
edge, cloud service provisioning solutions are not easily
applicable in the fog area [27]. In this section, some of the
most important recent studies on service provisioning at the
edge-to-cloud computing system are discussed.

Souza et al. [28] introduce a QoS-aware service allocation
for fog environment to minimize the latency experienced

6Available at https://figshare.com/articles/Agent-based_Planning_
Portfolio/7806548 (last accessed: Jan 2021).

7Available at: https://github.com/Znbne/EPOS-Fog (last accessed:
April 2021)

64984 VOLUME 9, 2021

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

by services respecting capacity constraints. This objective
is modeled as a multi-dimensional knapsack problem aimed
at co-minimizing overall service execution delay and over-
loaded edge nodes (load in terms of processing capacity
and energy consumption). A two-step resource management
approach is presented by Fadahunsi and Maheswaran [29],
whose goal is to minimize the response time it takes for
services to get served while using as little edge nodes as
possible. First, for each device, a home edge and a pool of
backup edge nodes are chosen. Their objective is to find
the edge nodes such that the latency between them and that
device is minimum. Subsequently, IoT requested services are
hosted on the allocated edge nodes guaranteeing the desired
response time. Another work with the same objective as the
ones above [28], [29], is proposed by Xia et al. [30]. Based
on a backtrack search algorithm and accompanied heuristics,
the proposed mechanism makes placement decisions that fit
the objective.

Skarlat et al. [31] present a conceptual service placement
framework for the edge-to-cloud system. Their objective is
to maximize the utilization of edge nodes taking into account
user constraints and is optimized using a genetic algorithm.
The authors introduce the concept of fog cell: software run-
ning on IoT nodes to exploit them toward executing IoT
services. In addition, an edge-to-cloud control middleware is
introduced, which controls the fog cells. Also, a fog orches-
tration control node manages a number of fog cells or other
control nodes connected to it. The latter enables IoT services
to be executable without any involvement of cloud nodes.
Song et al. [13] focus on maximizing number of services that
are served by edge nodes while granting the QoS require-
ments such as response time. They solve the problem using an
algorithm that relies on relaxation, rounding, and validation.
Similar to the previous works [13], [31], Tran et al. [32]
provide a service placement mechanism that maximizes the
number of services assigned to edge nodes. The proposed
approach leverages context information such as location,
response time, and resource consumption to perform service
distribution on the edge nodes.

Deng et al. [33] formulate workload allocation in an inter-
play between edge-to-cloud nodes. The trade-off between
power consumption and transmission delay in the inter-
play is investigated and solved in approximation. Simulation
and numerical results provide a useful guide for studying
the cooperation between edge-to-cloud nodes. A similar
approach, named Fogplan [11], formulates the trade-off
between monetary cost (cost of processing, deployment, and
communication) and service delay in the IoT platform. Fog-
plan monitors the incoming IoT traffic to the edge nodes
and decides when it is necessary to deploy or release a
service, thereby optimizing the trade-off. Naha et al. [34]
propose a resource allocation method for a three-layer fog-
cloud architecture that consists of the fog device, fog server,
and cloud layers. In order to handle the deadline require-
ments of dynamic user behavior in resource provisioning,
available resources are ranked based on three characteristics

that include the available processing time, the available band-
width, and the response time. Then, these resources are allo-
cated for the received requests in a hierarchical and hybrid
fashion. In another work, Naha and Garg [35] propose a
cluster-based resource allocation algorithm for the edge-to-
cloud environment to achieve the same goals as Fogplan [11]
taking resource mobility and changes in the requirements of
services after submission into consideration.

Kapsalis et al. [36] present a four-layer architecture that
includes the device, hub, fog, and cloud layers to manage
the resources in an IoT ecosystem. The hub layer acts as
a mediator between the device layer and the other layers.
The fog layer is responsible for service management and
load-balancing that applies a score-based function to decide
which host is more suitable for each service. For this pur-
pose, the fog layer profits context information such as nodes’
current utilization, battery level, and latency. Xu et al. [37]
propose another load-balancing resource allocation method
called DRAM. DRAMfirst allocates network resources stati-
cally and then applies service migration to achieve a balanced
workload over edge nodes dynamically. Donassolo et al. [38]
formulate an Integer Linear Programming (ILP) problem for
IoT service provisioning, taking into consideration two objec-
tives: minimizing deployment cost (comprising of the costs
of processing, memory, and data transfer) and increasing
service acceptance rate. The proposed solution uses Greedy
Randomized Adaptive Search procedures [39], which iter-
atively optimize the provisioning cost while load-balancing
networked nodes.

Zhang et al. [40] propose a task offloading architec-
ture in fiber-wireless enhanced vehicular edge computing
networks aiming to minimize the processing delay of com-
putation tasks. To achieve the load-balancing of the com-
putation resources at the edge servers, two schemes are
proposed based on software-defined networking and game
theory. These schemes, i.e., a nearest offloading algorithm
and a predictive offloading algorithm, optimize the offload-
ing decisions for each vehicle to complete its computation
task, i.e., executing locally, offloading to Multi-access Edge
Computing (MEC) server connected to roadside units, and
offloading to remote cloud server. To reduce the processing
time for IoT requests on local servers, Babou et al. [41]
present a hierarchical cluster-based load-balancing system.
The authors propose a three-layer architecture made up of
edge servers, MEC servers, and central cloud. Upon receipt
of a request by a node, the system verifies whether this
node has enough capacity to process the request. Otherwise,
neighboring nodes, neighboring clusters, and finally cloud
centers are considered to distribute the request hierarchically
on the network.

Despite the solid contributions in the aforementioned stud-
ies on IoT service placement, the proposed approach in this
paper is distinguished as highly decentralized (Novelty 1) and
is designed for scalable IoT networks. Furthermore, to the
best of our knowledge [42], most of the existing resource
management schemes [11], [13], [28]–[36], [40], [41] only

VOLUME 9, 2021 64985

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

study one objective (e.g., load-balancing, minimizing mone-
tary cost) in the context of IoT service provisioning. In con-
trast, the present research studies two opposing objectives
(Novelty 2) that can be extended to account for any crite-
ria regarding the preferences of users or service providers
such as energy-saving. Moreover, contrary to this research,
the approaches [37], [38] presented for the purpose of load-
balancing neglect the costs related to the deadline violation
which is critical for delay-sensitive IoT services. Table 1
presents an overall comparison of the related studies and the
proposed work.

TABLE 1. Features of the cited papers in the literature in comparison with
EPOS Fog.

III. PROBLEM FORMULATION
We define the load-balancing IoT service placement prob-
lem, as follows: given a set of IoT service requests
and their requirements (e.g., processing power/CPU, mem-
ory, storage, and deadline) and a set of edge-to-cloud
nodes and their capabilities (e.g., CPU, memory, and stor-
age), find a mapping between the requests and the avail-
able nodes (i.e., service placement plan) considering two
objectives: workload balancing across the edge-to-cloud
nodes and minimizing the cost of service execution with
minimal information about the IoT end-devices in the
network.

Specifically, the load-balancing requirements for IoT ser-
vice placement can be demonstrated via two IoT-based
application scenarios: online video broadcasting [43] and
health-monitoring systems [14]. Online video broadcasting
is intended to provide on-demand and live video content
to end-users, regardless of their location. Any unexpected
peak in service requests might result in a disturbance
in serving the requests and quality of experience (QoE)
deterioration [43]. In this context, the load-balancing ser-
vice placement provides the flexibility to add or remove
servers as demand dictates [44], [45]. Moreover, avoid-
ing overloaded and under-loaded nodes prevents peak load
situations, resulting in better responses to the incom-
ing requests of different requirements and service level
agreement (SLA).

An IoT-based health monitoring system, involving wear-
able devices, wireless body sensor networks, cloud servers,
and terminals, can be used for providing high-quality health
care services [16]. Wearable devices monitor vital signs, such
as blood pressure, and inform responsible agencies of any
abnormality or emergency. In this system, a late notification
may lead to serious consequences, such as a late response
to the emergency. In addition, overburdened servers may
break-down and delay urgent real-time detection [14]–[16].
Other than a reduced service delay, the balanced distribution
of workload over the network ensures high availability and
sufficient capacity of nodes to reliably forward requests to
appropriate nodes [14].

This section provides insights into the problem; first, fog
computing infrastructure and IoT services are defined and
then, the problem formulation is explained.

A. FOG COMPUTING: INFRASTRUCTURE AND SERVICES
Fig. 1 shows the principal architecture for the fog computing
environment. The lowest layer of this architecture is the
Things layer, where the IoT end-devices (such as mobile
phones, sensors, smart wearable devices, and smart home
appliances) are located. These physical devices often have
low computational power and are distributed in different geo-
graphic locations [46]. Hence, they are connected to the upper
layers in order to get their services executed. The next upper
layer serves as the edge computing environment and involves
edge devices such as Wi-Fi access points and home switches.
The top layer represents the cloud computing environment,
which consists of large-scale data centers and third-party
cloud servers usually physically far from the Things layer.
The fog continuum, where fog computing occurs, expands
from the edge network to the cloud layer (i.e., edge-to-cloud)
to expand the computational capabilities of cloud computing
across the fog [1], [7]. As the nodes that reside in the fog con-
tinuum cooperate as a universal system to execute services,
they are referred to in this paper as fog nodes, unless stated
otherwise [8], [47].

An IoT application may be composed of a set of interre-
lated modules, i.e. a service. IoT services such as authen-
tication and encryption are usually implemented as virtual
machines (VMs) and containers that can run in different
locations [11], [27]. Since containers share host operating
system, they offer lower set-up delay compared to VMs [48].
IoT services can be requested from any edge-to-cloud node,
and some are delay-sensitive and have tight delay thresholds
(i.e., deadline), while others are delay-tolerant. Consequently,
to satisfy their QoS requirements, such services may need to
run close to the data sources (e.g., at the edge layer) or may
be deployed further from the data sources (e.g., in the
cloud) [11]. Heterogeneous fog nodes, depending on their
specification and capacity (e.g., processing power and storage
space), could host requested services. In the present work,
it is assumed that IoT services can run independently (i.e.,
single-service application) and are implemented in the form
of containers. How the dependencies within multi-service

64986 VOLUME 9, 2021

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

FIGURE 1. Conceptual architecture for IoT-based fog computing networks.
Fog computing occurs in the fog continuum from edge-to-cloud.

applications affect the performance results is out of the scope
of this paper and part of future work.

B. EDGE-CLOUD SYSTEM MODEL
This section presents the notations and variables used in this
paper. As shown in Fig. 1, a physical network is modeled
as an undirected graph denoted by G = (V; E), where V
indicates the set of network nodes belonging to the different
layers, and E indicates the set of edges between them. It is
worth noting that V = (C∪F), where F corresponds to the
set of fog nodes, and C includes the cloud nodes. Each node
fj is characterized by its available capacity as (i) CPU Pf,j in
MIPS, (ii) memory Rf,j in bytes, (iii) storage Sf,j in bytes. Let
A be a set of IoT services to be executed. Each service aiεA
has to be placed on a computational resource and is defined
by specific requirements in terms of deadline in millisecond
and resource demands as (i) CPU Pa,i in MIPS, (ii) memory
Ra,i in bytes, (iii) storage Sa,i in bytes.
IoT service requests reach the edge layer via a local area

network (LAN). The receivers, i.e. edge nodes, are responsi-
ble for deciding on where to place and execute the requests.
For a requesting node of the IoT network, an edge node is
defined as a switch, router, or server that acts as a gateway
for the requester to connect to and is directly accessible to
that node. The solution to the service placement problem is
a service placement plan that contains placement decisions
(i.e., binary variables), which place each service either on a
fog node or on a cloud node. The binary variables xi,j, xi,j′ ,
and xi,k denote whether service ai is placed on the edge node
fj or the fog node fj′ , i.e. other neighboring nodes, or the
cloud node ck , respectively. x i,j denotes the initial config-
uration of ai on fj, which indicates whether fj currently
hosts the service. These binary variables are input to the
optimization problem to find future placement for requested
services. The notations used in this document are listed
in Table 2.
The EPOS Fog mechanism operates with no assumptions

and with minimal information about IoT end-devices. There
are no assumptions about these nodes, such as any specific
application or protocol, virtualization technology, or hard-
ware characteristics. The only information from IoT nodes
that is required for the purpose of IoT service placement is the
average propagation delay li,j between the IoT end-devices
and their corresponding edge nodes. Firstly, the edge nodes

TABLE 2. An overview of the mathematical notations.

are usually placed near IoT nodes, which means the value of
propagation delay can be omitted as stated in Section III-C1.
Secondly, exact values can be calculated by the average prop-
agation delay that approximates the round-trip delay and can
be measured using a simple ping mechanism.

C. OBJECTIVES AND CONSTRAINTS
This research formulates the load-balancing IoT service
placement problem using two objective functions: MIN-
COST and MIN-VAR. The MIN-COST function aims at
minimizing the cost of accomplishing requested services
arising from deadlines violations, unhosted services (as
the QoS requirements) and generated deployment traffic on
the network. The MIN-VAR function intends to minimize

VOLUME 9, 2021 64987

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

the utilization variance among network nodes as a measure
of workload balance across the fog continuum. The two
functions and the problem constraints are formulated below.

1) COST MINIMIZATION
The service execution cost consists of three elements: number
of deadline violations, number of unhosted services, and
service deployment traffic. The higher the number of deadline
violations and unhosted services, the lower the QoS. The
more traffic imposed on the network, the lower the net-
work performance. Equation (1) formulates the overall cost
involved in executing the service placement plan δ.

Oc,δ = Oτ,δ + Od,δ + Ou,δ (1)

where Oτ,δ , Od,δ , and Ou,δ specify the costs of dead-
line violation, services deployment, and unhosted services,
respectively.

a: COST OF DEADLINE VIOLATION
The response time for an IoT service is defined as the time
span between the moment an end-device sends its request
and the moment it receives the first response for the request.
We need to check if the response time (ei,j) for the service
ai assigned to the fog node fj meets the delay threshold τi
defined in SLA. The expected response time for any service
results from two metrics [11], [27]; waiting time and process-
ing time. Consequently, the binary variable vi,j indicates the
violation of the service deadline as follows:

vi,j =

{
0 if ei,j < τi

1 otherwise
ei,j = wi + pi,j (2)

where wi indicates the waiting time, which accounts for the
time already passed between receiving the service request
ai and deciding on its placement, and pi,j accounts for the
processing time of the request. The processing procedure in
fog node fj for service ai can be viewed as an M/M/1 queuing
system [49], [50]. If the traffic arrival rate (in MIPS) to fog
node fj equals to zf,j and the processing capacity (in MIPS)
of fj equals to Pf,j, the computational delay (waiting time at
the queue plus service time) is as follows:

pi,j =
1

Pf,j − zf,j
zf,j =

|A|∑
i=1

Pa,ixi,j (3)

The queuing system at the fog node fj is stable if the following
constraint is met:

zf,j < Pf,j (4)

It is possible that the processing of a service occurs at a
fog node other than an edge node (i.e., other neighboring
nodes or cloud nodes). Considering Fig. 2, assume the end-
device i is associated with the edge node fj. The service ai is
supposed to be executed on the neighbor fog node fj′ or the
cloud node ck . As a consequence, the required data for pro-
cessing must be transferred from i to the edge node fj, and
then, to fj′ or ck for processing. Hence, we need to account

FIGURE 2. Receiving the service request ai from the end-device i and
forwarding it to another fog/cloud node for placement and execution.

for the communication delay between the end-device and the
destination node. The average propagation delay between the
source node i and the destination node fj is represented by
l(i, j). Note that IoT requests are input to edge nodes, which
are usually located in the vicinity of end-devices, through
a local area network (LAN). On the contrary, the requests
are dispatched from fog nodes to cloud servers through a
wide area network (WAN) that covers a large geographic
area from edge to core network. Thus, the LAN communi-
cation delay could be omitted compared to the WAN [11],
[33]. Accordingly, the response time is formulated as
follows [27], [33].

ei,j = xi,j(
1

Pf,j − zf,j
+ wi)+ xi,j′ (

1
Pf,j′ − zf,j′

+ 2lj,j′ + wi)+ xi,k (
1

Pc,k − zc,k
+ 2lj,k + wi) (5)

Finally, equation (6) counts the cost of deadline violation.

Oτ,δ =
|A|∑
i=1

|C
⋃
F |∑

j=1

vi,j (6)

b: COST OF SERVICE DEPLOYMENT
Deployment cost is the communication cost of service
deployment, from edge to cloud nodes. When the demand
for a deployed service is low, its host node may release
that service to save more space. So, if a fog node accepts
requests for a service not hosted locally, the service must be
downloaded and deployed locally. Note that a cloud center
theoretically has unlimited storage space and can host ser-
vices for a long time. As a result, the communication cost
for service deployment on the cloud is omitted. Equation (7)
calculates this cost [11].

Od,δ =
|A|∑
i=1

|F |∑
j=1

xi,jx i,jSa,i (7)

where xi,j denotes whether service ai has to be placed on the
node fj, the binary variable x i,j indicates if fj currently hosts
ai, and Sa,i is the required amount of storage resource for
deploying ai on fj.

c: COST OF UNHOSTED SERVICES
If a service placement plan cannot serve all of the requests
received by network nodes due to insufficient resources, this
is defined as an SLA violation. To measure this, we count the

64988 VOLUME 9, 2021

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

number of services that have no hosts in (8).

Ou,δ =
|A|∑
i=1

(1−
|C

⋃
F |∑

j=1

xi,j) (8)

2) WORKLOAD BALANCE
The second objective function consists in minimizing utiliza-
tion variance among network nodes to achieve an equitable
load sharing across the network. On the one hand, utiliz-
ing fog nodes can improve resource efficiency at the edge
networks and help the execution of delay-sensitive services.
On the other hand, load-balancing by avoiding bottlenecks
(e.g., overloaded nodes) leads to a flexible network. As a
result, the need for horizontal and vertical scaling up (includ-
ing service migrations) due to system changes (e.g., peak
times, node failures) is reduced [17], [37], [51].

Network nodes have different capacities, and the work-
load allocated to them must not exceed this capacity. Thus,
the workload-to-capacity proportion is applied to formulate
the utilization of the nodes. Equation (9) shows how balanced
the workload distribution (in terms of processing power) is
among all nodes measured with the variance:

σδ =
1

|F | + |C|

|C
⋃
F |∑

j=1

(
zf,j
Pf,j
−

zf,j
Pf,j

)2 (9)

Note that the resource demands for a service placed on a
certain node fj must not exceed the available resources (i.e.,
processing power, memory, and storage) of that node. The
following three conditions ensure the capacity constraints.

|A|∑
i=1

χa,ixi,j < χf,j, ∀fj ε F, χ = {P,R, S} (10)

Finally, the placement of services is constrained so that
each service must be hosted on at most one computational
resource, i.e., the fog node fj, or the cloud node ck . Formally,

0 ≤
|A|∑
i=1

|C
⋃
F |∑

j=1

xi,j ≤ |A| (11)

Note also that the memory and processing costs in the fog
nodes are assumed to be the same as the cloud. Hence, we do
not account for these costs in the objective functions.

3) FINAL OPTIMIZATION FORMULATION
The common way to solve the multi-objective optimization
problem is modeling it as a single objective by getting a sum
of the two objectives andmultiplyingwith weight coefficients
as follows:

min(Oc,δ + σδ) = min(Oτ,δ + Od,δ + Ou,δ + σδ)

Subject to (4), (10)− (11) (12)

The objective function of (12) is the combination of four cost
functions with the same constraints which places IoT services

while minimizing their execution cost and ensuring a satisfac-
tory load-balance among network nodes. For a comprehen-
sive study of the problem, all of the four cost functions are
considered; however, some of them can be omitted in certain
scenarios if needed. Note that, in some cases, minimizing a
particular cost may be of higher priority in this summation.
Therefore, we propose the use of a weighted scheme (i.e., λ)
for modeling various preference scenarios. The next section
introduces a mechanism that controls the trade-off between
the two objectives.

IV. COOPERATIVE SERVICE PLACEMENT FOR IoT
This paper introduces EPOS Fog, an agent-based load-
balancingmechanism for IoT service placement, as themeans
to meet a local (individual) and a global (system-wide) objec-
tive: (i)MIN-COST and (ii)MIN-VAR. The former aims at
reducing the cost of service execution formulated in Subsec-
tion III-C1. Each node minimizes the cost by selecting among
multiple locally generated plans for service placement that
determine how service requests are assigned to the neigh-
boring nodes. The latter minimizes the utilization variance
among network nodes formulated in Subsection III-C2, as a
measure of load uniformity. For this purpose, nodes collab-
orate and exchange information with other nearby nodes to
choose service placement plans that achieve load-balancing.

EPOS Fog is a decentralizedmulti-agent system that solves
the placement problem. Each fog/cloud node is equippedwith
a software agent that autonomously generates a predefined
number of possible service placement plans determining
which service is deployed on which host in the neighborhood
of the agent. Possible plans represent service placement flex-
ibility, and each comes with a cost according to (1). A plan
including distant hosts (proximity in terms of hop count from
source node) costs higher than a plan with closer hosts. This
is because the execution of requests in further hosts imposes
more traffic on the network and may result in more violations
of deadlines.

Agents are structured in a self-organized tree topology
over which they perform collective decision-making. They
make coordinated selections of their possible plans consid-
ering the objectives. The process of generating and selecting
placement plans repeats, agents, self-adapt their choices, and
collectively learn how to optimize the objectives. Finally,
the collective outcome of the choices, i.e., the global service
placement plan, is the aggregation of the selected plans for
each agent.

A. PROPOSED SOLUTION
In the above overview, an overall understanding of the pro-
posed load-balancing strategy has been presented. Subse-
quently, this subsection discusses the strategy in detail in the
view of the two aforementioned objectives.

IoT devices generate service requests and submit them to
the fog nodes for placement decisions and execution. It is
assumed that the receiver nodes/agents know the require-
ments of the received requests and the capabilities of their

VOLUME 9, 2021 64989

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

neighboring nodes. All receiver agents take part in a two-
step procedure consists of (i) generation of local plans and (ii)
plan selection. In the first step, each agent generates a set of
possible plans, and in the second step, the agent selects one of
them. Finally, according to the selected plan, the agents for-
ward the received requests to the selected hosts for execution.
This procedure is repeated for all new requests that enter the
network. Fig. 3 shows the global view of the proposed service
placement mechanism, which is elaborated below.

FIGURE 3. Global system view of EPOS Fog.

1) GENERATION OF LOCAL PLANS
This section illustrates how agents can locally and
autonomously generate service placement plans for requested
IoT services. Agents prefer to minimize their local cost,
which concerns deployment traffic, service deadline viola-
tions, and unhosted services. The motivation here is that if
the nodes closer to data sources (i.e., edge nodes) can be
selected as hosts, deadline violations and imposed traffic on
the network are minimized, resulting in higher QoS.

Each agent, upon receiving IoT requests, locally gener-
ates a certain number of assigning/mapping ‘‘requests to
resources’’ called possible service placement plan, concern-
ing the local cost as equation (1). As shown in Fig. 3, each
agent, for the plan generation, reasons locally based on its
view of the system and requested services. For each agent,
the system view represents a profile of its neighboring nodes
and their features (such as capacity and distance), and the
service view shows a profile of its received requests and
their specifications (such as storage demand and deadline).
Possible plans are the agents’ options, that encode selected
hosts in the form of a binary vector, and resource utilization
in the form of a vector with real values.

The structure of a typical plan is shown in Fig. 4 that
consists of a cost value and two vectors as follows. (i) Binary
vector (Xδ): An n-dimensional vector (n refers to the num-
ber of nodes in the network) of 0-1 values that maps the
requested services to the available nodes in the network. (ii)
Utilization vector (Vδ): A 2n-dimensional real-valued vector
that represents the resource utilization as the ratio of the
assigned load to the capacity for each node. In this manner,
we account for the heterogeneity in the capabilities of these
nodes. Memory and CPU are considered as two metrics for

FIGURE 4. Structure of a service placement plan for a network with five
fog nodes and one cloud node.

the load; One half of the vector is appointed to CPU and the
other half to memory. The vector can be extended to account
for other metrics such as storage and battery power. However,
for simplicity and to keep the size of the vector minimal, it is
omitted as future work.

Algorithm 1 illustrates the plan generation procedure.
Upon receipt of requests, agents run this procedure every
µ second. As a matter of design, this algorithm is a heuris-
tically greedy algorithm that preferentially responds to the
service requests which have spent a high waiting time for
deployment, with respect to their deadline. Considering the
distance between network nodes, we present another heuris-
tic. Intuitively, the larger the distance of computing and com-
munication resources, the larger the value of the local cost
function. Accordingly, we design another simple rule to direct
the resource allocation, i.e., the agentsmake a greedy decision
to select closer fog resources first.

To generate one possible plan, each agent arranges its
received requests, from low to high, in terms of the difference
between the service deadline and its waiting time τi−wi (line
5). Subsequently, the agent randomly chooses the required
number of available neighboring nodes as candidate hosts
(line 6). It then arranges these hosts ascending, according to
their distance (in terms of hop count) from itself (line 7).
After that, the agent assigns one to one the sorted requests
to the sorted hosts while satisfying the placement constraints
and taking the heterogeneity of the hosts into consideration
(lines 10-16). It is assumed that up to 95% of the capacity of
each node is allocated to the requested services, and the rest is
reserved for maintenance. Finally, lines 17-21 determine the
service assignment to the closest cloud node if there is not
enough capacity at the candidate host (line 10). Meanwhile,
utilization and binary vectors are updated accordingly. The
first part of the utilization vector, i.e., CPU criterion, by lines
13 and 19, the second part of the utilization vector, i.e., mem-
ory criterion, by lines 14 and 20, and the binary vector in
lines 15 and 21 are updated. For each node, the resource
utilization is measured as the ratio of the assigned load to
the capacity. Note that the workload accounts for the already
assigned workload (which is indicated with a bar mark in
Algorithm 1) plus the new assigned workload to reach a better
balance over the network. After generating a certain number
of plans (which is controlled by loop for in line 3), the agent
calculates the local cost for them and orders accordingly.

64990 VOLUME 9, 2021

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

Algorithm 1 Local Plans Generation
Input:{a: set of requested services, n: set of network
nodes};
Output:{1: set of possible plans};
for (q = 1 to |1|) do

Initialize δq; Oc,δ ← 0;
5: Sort a in the order of (τi − wi) from low to high;

h← select |a| neighboring nodes from n;
Sort h in terms of proximity from low to high;
i, j← 0;
while (a is not empty) do

10: Select ai from a and fj from h;
if (fj satisfies the constraints according to inequa-

tions (4), (10), (11) then
Update δq:
Vδ[j]← (Pa,i + P̄f,j)/Pf,j;
Vδ[j+ n]← (Ra,i + R̄f,j)/Rf,j;

15: Xδ[i, j]← 1;
Update the capacity for fj;

else if (the cloud node (ck) has enough capacity)
then

Update δq:
Vδ[k]← (Pa,i + P̄c,k)/Pc,k ;

20: Vδ[k + n]← (Ra,i + R̄c,k)/Rc,k ;
Xδ[i, k]← 1;

end if
Calculate Ou,δ according to equation (8);
Remove ai from a and fj from h;

25: i++, j++;
end while
Calculate Od,δ , Oτ,δ according to equations (6), (7);
Calculate Oc,δ according to equation (1);

end for
30: Sort 1 in the order of Oc,δ from low to high;

Return 1

The possible plans are released as open dataset6 for
the broader community to encourage further research on
distributed optimization and learning for edge-to-cloud
computing.

2) PLAN SELECTION
IoT applications with mobility dynamics generate a varied
level of network traffic [9], [10]. This motivates a balanced
service placement throughout the network. As a result, more
flexible assignments can be applied under various future
scenarios (e.g., node failures and peak demand periods) [52],
[53], leading to a higher QoS and a more robust network.
In this perspective, the global objective for optimizing the
placement of IoT services aims at minimizing utilization
variance among the network nodes, as a measure of load-
balancing and peak-shaving. The utilization variance func-
tion, as shown in equation (9), is a quadratic cost function [54]
that requires coordination among agents’ selections. When
the autonomous agents locally generate multiple (alternative)

placement plans, the placement coordination problem turns
out to be a multiple-choice combinatorial optimization prob-
lem, which is NP-hard [55].

EPOS Fog employs the I-EPOS system8 [23], [56], as a
fully decentralized and privacy-preserving learning mecha-
nism for coordinating the planning of IoT requests. I-EPOS
has been studied earlier in load-balancing of bike-sharing
stations [23] and demand-response of residential energy
consumption9 [56]–[58]. This research contributes a new
application of I-EPOS to fog service placement and provides
fundamental insights on how the provisioning of IoT services
can be modeled as a multiple-choice combinatorial optimiza-
tion problem.

As a result of the plan generation step, each agent comes
with a certain number of possible plans and their corre-
sponding cost. In the second step, all agents collaborate to
choose their selected plans from these possible plans in terms
of two objectives; MIN-COST and MIN-VAR. Agents are
self-organized in a tree overlay topology as a way to struc-
ture their interactions with which they perform a coopera-
tive optimization. The optimization is performed by a set
of consecutive learning iterations consisting of two phases,
the bottom-up (leaves to root) and top-down (root to leaves).
At each iteration, agents change their selected plans com-
bining the two objectives in a weighted sum of costs as
equation (13) to reduce the costs compared to the previous
iteration. The weighted summation can be used to make
several trade-offs and provide multiple levels of QoS.

λL t + (1− λ)Gt (13)

where λ ε [0, 1]. The higher the value of the weight,
the stronger the preference towards minimizing the corre-
sponding objective.When λ = 1 agents ignore the global cost
while they maximize the local cost minimization. The cost
functions take as an argument the global plan at the iteration
t−1, which is the sum of all utilization plans of the agents in
the network. The global cost function (MIN-VAR objective)
and the local cost function (MIN-COST objective) with input
all selected plans are formulated as follows:

Gt = σ (gt), L t = min
1
N

N∑
j=1

l(δ(t)j) ,where Gt ,L tε R

(14)

where l(.) extracts the cost of the selected plan δ of the agent
j at iteration t.

Regarding I-EPOS termination criteria, the system run-
time completes when the global cost does not any longer
change, or a certain number of iterations are performed.
After termination, agents propagate their received requests to
the selected hosts based on the selected plans. Accordingly,

8Available at: http://epos-net.org, https://github.com/epournaras/epos
(last accessed: Jan 2021)

9Further elaboration on the I-EPOS algorithm is out of the scope of this
paper and is available on earlier work [23].

VOLUME 9, 2021 64991

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

the hosts execute the requests while receiving new ones and
perform the placement process again.

In terms of performance, earlier work demonstrates the
computational and communication complexity of I-EPOS
as well as its superior cost-effectiveness compared to state-
of-the-art [23]: (i) Low communication cost achieved via
efficient information propagation in a network topology self-
organized in a tree structure. (ii) Monotonic rapid learning
performance in very few learning iterations. In terms of opti-
mality, I-EPOS reaches solutions close to top- 3% and above
in optimization landscapes with over 1M of possible solu-
tions. Recent findings expand the analysis with optimality
profiles in large-scale networks [19].

V. EVALUATION
Studying the proposed solutions in the context of IoT comes
with several significant challenges [59], [60]. The scale and
the complexity of this system make it infeasible to use
a realistic IoT prototype [60], [61], while constructing a
testbed, is complex, costly, and time-intensive. In such a
context, mathematical modeling employs graphs to model
the relationships between data centers [62], fog infrastruc-
ture [63], and load-balancing environments [64]. Hence,
in this research, various network topologies are modeled
through three well-known graph models that consist of
Barabasi-Albert (BA) [65], Watts–Strogatz (WS) [66], and
Erdos-Renyi (ER) [67], [68].

FIGURE 5. Three graph types used to model network topology. These
graphs illustrate a 200-node network. The color of the nodes is based on
the processing capacity and their degree in the graph.

Barabasi-Albert is a model for scale-free10 networks such
as the World Wide Web (w3), characterized by a highly het-
erogeneous degree distribution and high modularity (groups
of the nodes that are more densely connected together than
to the rest of the network). Erdos-Renyi model, known as a
random network, has low heterogeneity, short average paths,
and low clustering [70], [71]. Watts–Strogatz is a model for
small-world11 networks which are very close structurally to
social networks. Fig. 5 shows the network graphs of the
three selected models for a 200-node network. Experimental

10The scale-free phenomenon declares that the degrees in real-world
networks show an enormous amount of variability [69].

11The small-world phenomenon states that distances in real-world net-
works are quite small [72].

evaluation is performed using a Java software that emulates
a network of edge-to-cloud nodes. Besides, graph modeling
and analysis are performed using a Java library, i.e., Graph-
Stream12 [73].

FIGURE 6. 26 profiles of Google workload [74] in the form of 5-minute
profiles. The first 5 profiles are selected as the input workload for the
evaluation. Each profile is defined with four values that consist of: CPU
load, memory load, storage load, and the number of requests.

As the input workload, the Google cluster trace13 [75]
is used, which contains the data collected from a variety
of input workloads on 12500 machines for 30 days. Fig. 6
displays the workload and corresponding requests during the
first 130 minutes of the trace. Each 5-min period is referred
to as a profile. In order to have a comprehensive evaluation,
the profiles 0-4 have been tested, in which the input workload
is highly variable. For the experiments, EPOS Fog execution
time interval equals to profile duration (µ = 5 minutes).
However, it is interesting to examine the performance of
EPOS Fog with different values of these two parameters.

The number of possible plans per agent and number of
iterations are set to 20 and 40, respectively. Each service
request is accompanied by a set of resource requirements
that consist of CPU, memory, and storage demands. Similar
to the Google trace, the exact number of CPU cores and
bytes of memory are unavailable; instead, resource demand
information is provided in normalized units (measurements
are expressed relative to the capacity of the most powerful
machine). The capacity values of the cloud and network nodes
in the form of (CPU, memory, storage) are set to (400, 500,
200) and (704.0, 792.5, 313.5), which are specified in such a
way that there is enough capacity available in the network
to respond to all requests received. Note that because the
Google trace does not contain any value as a service deadline,
22 delay-sensitive services [76], [77] are considered as a vari-
ety of IoT services, and their deadline values are associated
with all input service requests, listed in Table 3.

The conducted experiments analyze the relationships
between the evaluated approaches and several configuration
parameters. (i) Network size (N): To study the scalability of
the proposed work, different numbers of nodes are considered
for the network: 200, 400, 600, 800, 1000. (ii) IoT workload

12Available at: http://graphstream-project.org (last accessed: Jan 2021)
13Available at: https://commondatastorage.googleapis.com/clusterdata-

2011-2 (last accessed: Jan 2021).

64992 VOLUME 9, 2021

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

TABLE 3. IoT services and corresponding deadlines [76], [77].

distribution: The workload distribution parameter determines
the distribution of IoT requests over the network. However,
the availability of openly available datasets about the distribu-
tion of requests in real IoT scenarios is scarce [78]. Therefore,
considering literature [22], [79], this paper explores the effect
of two distributions that consist of a random (denoted as
Rand in the experimental results) [80] and a Beta distri-
bution [81] as Beta (2.0, 5.0) on the performance results.
(iii) Host proximity (H): This parameter investigates the
impact of the distance between sources (i.e., service
requesters) and corresponding destinations (i.e., hosts) on
the evaluated metrics. Different distances in terms of hop
count include 1-hop (direct neighbors), 3-hop, and ∞-hop
(unlimited). Note that the host proximity constraint is applied
in selecting host nodes in the plan generation step (line 6 in
Algorithm 1). (iv) Agent preference (λ): This aspect examines
the impact of different λ values in the interval [0,1] on the
global and local cost reduction.

A. STRATEGIES AND EVALUATION METRICS
Three approaches are considered for evaluation and compar-
isons. (i) Cloud : This approach assumes that the fog infras-
tructure is not available, and all services are sent directly to
the cloud. (ii) First Fit [27], [82]: In this approach, each node
traces the latency of the communication link between itself
and other nodes and sorts the list of its direct neighbor nodes.
Then, upon the receipt of each request, the list is checked,
and if any node in the list meets the request requirements,
it is sent to that node. Otherwise, the request is propagated to
the cloud. (iii) EPOS Fog: The proposed approach outlined in
section IV.

In order to show how the proposed service placement
approach meets the objectives, the following metrics are
evaluated. (i) Utilization variance: It measures the workload
balance among the nodes. To establish precise measurements
for the load-balance, the three parameters of CPU, memory,
and overall (CPU along with memory) load are considered.
(ii) Average utilization of the fog infrastructure: This criterion
shows to what extent fog nodes are utilized and is determined
as a ratio of the workload placed on the network resources
to the capacity of the resources, averaged for all nodes in
the network. (iii) Average deadline violations: This metric
indicates the ratio of the number of services whose deadlines
have been violated. (iv) Average service execution delay: The
difference between service deadline and its response time,
measured as |τi − ei,j|. (v) Utilization variance error: This

metric measures how far the predicted utilization variance
(the results obtained by I-EPOS) is from the realized one
(the results of applying the I-EPOS plans on the network),
as |σδ − σ ′δ|. This error originates from the unhosted services
that cannot be served due to insufficient resources available
in the node allocated. Intuitively, the higher the imbalance
in the network, the higher the error. Consequently, by tuning
EPOS Fog to improve load-balancing, the utilization variance
error can also decrease. To assess this hypothesis, this paper
focuses on the relation between this error and the λ param-
eter that regulates the trade-off between the local and global
objectives based on which the plan selections are performed.
Higher λ values decrease the degree of freedom to choose
the plans with lower variance, while distributing services
mostly across local regions deployed close to data sources.
As a result of increasing the number of high-load nodes,
the likelihood of capacity constraints violation due to future
deployments increases, thereby limiting the load-balancing
potential.

B. RESULTS AND DISCUSSION
This section assesses the execution of service placement plans
provided by EPOS Fog, First Fit, and Cloud approaches.

1) UTILIZATION VARIANCE
This studied aspect examines how well balanced the work-
load is distributed on the network. The Cloud approach does
not perform any load-balancing by design, and therefore, it is
excluded from this evaluation. Fig. 7 illustrates the difference
between the utilization variance (i.e., reduction in utilization
variance) of EPOS Fog and First Fit for a 400-node network.
Figs. 11, 12, and 13 in Appendix present the detailed fig-
ures on utilization variance.

In all scenarios, the utilization variance, i.e. global cost,
in First Fit is between 40% to 90% higher than EPOS Fog.
This is because, for First Fit, services are located on direct
neighboring nodes where possible. Otherwise, they are for-
warded to the cloud. In contrast, for EPOS Fog, the range
of hosts is controlled by a host proximity constraint that can
distribute services to a broader range of nodes. The difference
between the utilization variance of the two approaches is
higher by increasing the host proximity criterion from one
to infinity. Larger proximity value allows hosting services
on a wider number of nodes, which reduces the utilization
variance in EPOS Fog.

With respect to EPOS Fog, the following observations can
be made. In the case of different topologies, the utilization
variance of WS is lower than BA up to 37%, and the utiliza-
tion variance of ER is lower than the other two topologies up
to 45%. This is due to the different characteristics of these
topologies; short path lengths and low clustering measures
support the higher balanced distribution of workload.

In general, for EPOS Fog, increasing the host proximity
parameter from one to infinity decreases the utilization vari-
ance from 2% to 40%; the higher the degree of freedom
to choose host nodes the more uniform the distribution of

VOLUME 9, 2021 64993

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

workload over the network. In around 90% of the scenarios
with random service distribution, the utilization variance is
lower than the same scenarios with Beta distribution. This
is because it is harder to achieve a balanced distribution
when the input workload is not distributed uniformly. Upon
considering the workload distribution and host proximity
together, it is observed that the difference of utilization vari-
ance between a random distribution scenario and the same
scenario with Beta distribution increases with decreasing
host proximity. In the case of 1-hop, the difference reaches
65%. This is because, on the one hand, requests are not
distributed uniformly with a Beta distribution, and on the
other hand, as the host proximity value decreases, the range
of the nodes that can be selected as a host becomes limited.
However, this is not the case when there is no forwarding
constraint (i.e.,∞-hop), which results in hosting the services
on any distant nodes to achieve a higher balance. Note that
these situations are only two cases among 18 configurations
(i.e., 11%).

It is worth noting that the utilization variance does not
change significantly when comparing the results for networks
with 200 and 400 nodes. This indicates that with increas-
ing the number of nodes (with the constant workload and
fixed network capacity), the workload balance remains at
a similar level, indicating the scalability of the proposed
approach given that the utilization variance in bounded
to 0.

FIGURE 7. Difference between overall (CPU along with memory)
utilization variance of EPOS Fog and First Fit under varied parameters
(Profile=1, N=400).

2) UTILIZATION OF THE FOG INFRASTRUCTURE
Fig. 8 shows the utilization of network nodes for several
scenarios. In each scenario, the nodes are sorted in descend-
ing order according to their utilization value. For the Cloud
approach, 100% of placements are in the cloud node, and
the fog resources are not utilized. Concerning First Fit, some
nodes are used extensively (utilization is more than 90%),
while other nodes have very low load (utilization is less than
10%). This is an artifact of the service placement strategy
in First Fit: despite the free capacity in non-neighboring fog
nodes, these available resources are not optimally utilized.
EPOS Fog service placement employs fog resources more
effectively, leading to reduced cloud utilization. For instance,
regarding EPOSFog [H=3, Rand], EPOSFog [H=∞, Rand],
EPOS Fog [H=3, Beta], and EPOS Fog [H=∞, Beta] in
topology ER, almost all fog nodes have the utilization in the

FIGURE 8. Utilization of network resources for different scenarios under
varied parameters (N=200, up: Profile=0, down: Profile=1).

range [30%, 80%], while the utilization of cloud node is less
than 10%.

Given the increasing host proximity parameter in EPOS
Fog, network nodes are allowed to select a broader range
of fog nodes as host, and therefore, the utilization of these
nodes increases while load-balances the network. For exam-
ple, in the case of topology BA and profile 0, the utilization of
nodes for EPOS Fog [H=1, Beta] ranges in [0%, 85%] while
reaches to the range [20%, 80%] for EPOS Fog [H=3, Beta],
and to [40%, 70%] for EPOS Fog [H=∞, Beta]. This higher
balanced distribution confirms the results of the previous
subsection, i.e., variance reduction due to higher flexibility in
host choices. With respect to input profiles, although in both
approaches nodes’ utilization increases with a growing work-
load resulting from subsequent profiles. However, in contrast
to First Fit in which nodes’ utilization varies in the range
[0%, 100%] for both first and second profiles, EPOS Fog
distributes the workload more uniformly, which indicates a
significant potential of EPOS Fog as a load-balancer under
various input profiles. For instance, in EPOS Fog [H=∞,
Beta], nodes’ utilization grows from the range [40%, 65%]
in the first profile to the range [60%, 80%] in the second
profile. It is worth to be noticed that due to its random
nature, ER topology provides a more uniform distribution
of workload compared to other topologies, confirming the
results of Section V-B1, i.e., the topology strongly influences
workload balance.

3) AVERAGE DEADLINE VIOLATIONS AND SERVICE
EXECUTION DELAY
Because of the theoretically infinite resources in the cloud,
requested services are executed immediately after submission
and do not violate deadlines. Therefore, the Cloud approach is
excluded from this evaluation. For the first profile, the aver-
age of deadline violations in First Fit is approximately 0.6,
which is 1% to 3% higher than EPOS Fog. Moreover, this
higher rate increases for the subsequent profiles. Although
different topologies have no considerable effect on this crite-
rion in First Fit, in EPOS Fog the deadline violation for ER
is slightly lower than WS, and for WS is lower than BA.

In order to study the response time of services in more
detail, the average execution delay that services experience
is assessed. While the delay for the EPOS Fog and First Fit

64994 VOLUME 9, 2021

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

FIGURE 9. Difference between service execution delay of EPOS Fog and
First Fit under varied parameters (Profile=1, N=400).

FIGURE 10. Utilization variance error for different scenarios under varied
λ values (Profile=1, N=200).

approaches in the first profile is approximately the same,
in the second profile, this criterion is 1% to 25% higher in
First Fit than in EPOS Fog. This is due to the fact that in
First Fit, with increasing the number of requested services
and decreased capacity in neighboring nodes, the forwarding
of services to the cloud node increases, resulting in higher
delay. In addition, the difference between the service delay
in the two approaches changes across the different network
topologies. For example, in profile 1, the service delay differ-
ence in the ER network is up to 25% while in the BA network
is up to 7%. Increasing the host proximity parameter results
in 2% to 17% lower service delay in EPOS Fog compared
to First Fit. This is because, with a higher load-balance,
the number of overloaded nodes decreases, thereby reducing
the service delay and the probability of deadline violated.
Moreover, it is interesting to know that even in the scenarios

FIGURE 11. Utilization variance for different scenarios under varied
parameters (N=400, Topology=BA).

with a value of one for the proximity parameter (i.e., H=1),
EPOS Fog provides from 1% to 25% lower delay than First
Fit. That is because of the load-balancing strategy of EPOS
Fog, which results in a reduced service delay. The reduction
in service delay from EPOS Fog to First Fit is depicted
in Fig. 9. Detailed results are included in Appendix for more
comprehensive comparisons.

Upon considering service execution delay and utilization
results together, it is concluded that EPOS Fog provides both
better fog utilization and lower service delay than First Fit.
Note that the better performance even enhances in subsequent
profiles. This is because, at the beginning, more resources
are available, which makes the placement of requests easier
for all strategies. However, in subsequent profiles, with the
increasing number of requests, the placement has a higher
impact on the utilization of the nodes.

4) UTILIZATION VARIANCE ERROR
Given the λ values in the range [0, 1], Fig. 10 evaluates
the utilization variance error as the difference between the
predicted utilization variance and the actual one. Note that

VOLUME 9, 2021 64995

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

FIGURE 12. Utilization variance for different scenarios under varied
parameters (N=400, Topology=WS).

the error is provided using the max-min normalized values
and the actual values.

Generally, as λ increases the error experienced increases.
This is because the higher λ values lead to agents preferring
lower local cost plans, which results in a more overloaded
network and a higher probability of high-load nodes. Con-
sequently, the execution of I-EPOS plans in the unbalanced
network increases the probability of capacity constraints vio-
lation in the overloaded nodes, and therefore prevents the
realization of predicted variance. With respect to topology
impact, the BA topology shows the highest error rate, and the
ER topology presents the lowest error value for the same val-
ues of λ. This is because the ER topology, with short average
paths and low clustering coefficients, provides higher load-
balancing (as discussed in Section V-B1) than BA, resulting
in lower error. Fig. 10 confirms the significant increase of
the error rate for the scenarios with Beta service distribution
and 1-host, 3-host proximity values that generally provide the
lowest load-balance in comparison with other scenarios.

It is worth noting that by comparing the results obtained
from the networks with 200 and 400 nodes, it is observed
that by doubling N at a constant network capacity, the error

FIGURE 13. Utilization variance for different scenarios under varied
parameters (N=400, Topology=ER).

rate is reduced up to 80%. This is because the increasing
number of nodes reduces the probability of high-load nodes to
a high extent, and thus the predicted variance is significantly
accurate.

In brief: when agents make plan choices in favor of their
individual (local) objective (high λ values), the collective
(global) objective (i.e., utilization variance) is sacrificed and
the network is more overloaded. As a result, the planned
variance reduction deviates more from the actual one. Reward
mechanisms are means to encourage agents to change the
choices of λ as well as their selected plan in line with a
preferred objective. Employing various incentivizationmech-
anisms with respect to the location of the users generating the
service requests is the subject of future work.

5) SUMMARY OF FINDINGS
A summary of the key findings in the performed experiments
is given below. (i) EPOS Fog outperforms other approaches
in both (i) minimizing the cost of service execution (Fig. 9)
to improve the QoS and (ii) load-balancing of input workload
(Figs. 7, 11, 12, and 13) to enhance resource utilization and
prevent peak load situations. (ii) EPOS Fog better utilizes

64996 VOLUME 9, 2021

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

FIGURE 14. Service execution delay for different scenarios under varied
parameters (N=200).

edge-to-cloud nodes (Fig. 8) to allocate the resources effec-
tively and reduce data traffic over the network. (iii) Even
though the deadlines in EPOS Fog have slightly lower vio-
lated rates than First Fit, the delays in service execution are
lower in the range 1% to 25% in EPOS Fog (Figs. 9, 14,
and 15) compared to First Fit. (iv) For EPOS Fog, an increas-
ing number of agents (i.e., nodes) in a fixed network capacity
decreases global cost and lowers utilization variance error
as well as deadline violation, indicating the scalability of
the proposed approach. The same results are valid for an
increasing proximity of the workload redistribution in terms
of number of hops. (v) Concerning EPOS Fog, workload dis-
tribution and network topology have the potential to improve
the performance even further. Topologies with short paths
and low clustering measures such as ER, and uniform work-
load distributions such as random result in better overall
performance. (vi) Planning the utilization of the network is
more effective (lower utilization variance errors for lower λ
values) when prioritizing system-wide optimization over the
optimization of local objectives (Fig. 10).
In summary, the advantages of EPOS Fog can be observed

under various input workloads and experimental scenarios

FIGURE 15. Service execution delay for different scenarios under varied
parameters (N=400).

due to its flexibility and better exploration of the computation
resources within the fog continuum.

VI. CONCLUSION AND FUTURE WORK
Resource provisioning in the evolving IoT infrastruc-
ture is crucial for tackling the limitations in cloud-based
technologies while meeting a broad range of IoT services
requirements. This paper studies how the optimization of IoT
service placement using MIN-VAR and MIN-COST objec-
tives improves the performance of IoT services, such as
response time, and obtains a balanced distribution of work-
load while utilizing resources on the network edges. The
proposed approach, EPOS Fog, introduces a local plan gener-
ation mechanism, and employees I-EPOS, a cooperative plan
selection methodology, for the IoT service placement. While
the distributed load-balancing resource allocation increases
system robustness, the objectives can be extended, e.g.
energy-saving or monetary costs.

The proposed method demonstrates that a decentralized
management of edge/fog computing is feasible and can be an
enabler for a rich ecosystem of fog applications. The exten-
sive experimental findings using real-world input profiles on

VOLUME 9, 2021 64997

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

various networks confirm that EPOS Fog, via a better utiliza-
tion of edge-to-cloud nodes provides a higher QoS and more
balanced distribution of workload over the network, com-
pared to the First Fit and Cloud approaches. These results,
under several experimental scenarios, confirm the scalability
of EPOS Fog.

Future work includes the mobility of load generators and
an improved QoS using social information, such as users’
profile, in such a context. Another aspect to study is delay-
tolerant IoT services along with delay-sensitive ones.

APPENDIX
EVALUATION RESULTS IN DETAIL
Figs. 11, 12, and 13 illustrate the measurements of utilization
variance and Figs. 14 and 15 show the service execution
delay in detail. Results are illustrated considering the studied
aspects: input profiles, host proximity constraint, network
topology, and network size.

ACKNOWLEDGMENT
The authors would like to thank Professor Dr. Dimitrios
Kyritsis from ICT for Sustainable Manufacturing (ICT4SM)
Group, EPFL, and Professor Dr. Dirk Helbing from Com-
putational Social Science (CSS) Group, ETH Zurich, who
provided simulation facilities and their support on this project
greatly assisted the research. They would also like to thank
Farzam Fanitabasi, Ph.D. Candidate at ETH Zurich, for his
assistance with employing I-EPOS.

REFERENCES
[1] R. Buyya and S. Srirama, Fog and Edge Computing: Principles

and Paradigms (Wiley Series on Parallel and Distributed Com-
puting). Wiley, 2019. [Online]. Available: https://books.google.com/
books?id=cdSvtQEACAAJ

[2] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, ‘‘Fog computing: A plat-
form for Internet of Things and analytics,’’ in Big Data and Internet of
Things: A Roadmap for Smart Environments. Cham, Switzerland: Springer,
2014, pp. 169–186.

[3] Z. Nezami and K. Zamanifar, ‘‘Internet of ThingsInternet of everything:
Structure and ingredients,’’ IEEE Potentials, vol. 38, no. 2, pp. 12–17,
Mar. 2019.

[4] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research opportu-
nities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, Dec. 2016.

[5] M. Verma, N. Bhardwaj, and A. K. Yadav, ‘‘Real time efficient scheduling
algorithm for load balancing in fog computing environment,’’ Int. J. Inf.
Technol. Comput. Sci., vol. 8, no. 4, pp. 1–10, Apr. 2016.

[6] M. Verma and N. B. A. K. Yadav, ‘‘An architecture for load balancing
techniques for fog computing environment,’’ Int. J. Comput. Sci. Commun.,
vol. 8, no. 2, pp. 43–49, 2015.

[7] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,
J. Kong, and J. P. Jue, ‘‘All one needs to know about fog computing and
related edge computing paradigms: A complete survey,’’ J. Syst. Archit.,
vol. 98, pp. 289–330, Sep. 2019.

[8] OpenFog Consortium Architecture Working Group, ‘‘Openfog reference
architecture for fog computing,’’ in Proc. OPFRA001, vol. 20817, 2017,
p. 162.

[9] A. Brogi and S. Forti, ‘‘QoS-aware deployment of IoT applications through
the fog,’’ IEEE Internet Things J., vol. 4, no. 5, pp. 1185–1192, Oct. 2017.

[10] G. Colistra, ‘‘Task allocation in the Internet of Things,’’ Ph.D. dissertation,
Dept. Elect. Electron. Eng., Univ. Cagliari, Cagliari, Italy, 2015.

[11] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya,
Q. Zhang, W. Xie, and J. P. Jue, ‘‘FOGPLAN: A lightweight QoS-aware
dynamic fog service provisioning framework,’’ IEEE Internet Things J.,
vol. 6, no. 3, pp. 5080–5096, Jun. 2019.

[12] N. Kumar, S. Agarwal, T. Zaidi, and V. Saxena, ‘‘A distributed load-
balancing scheme based on a complex network model of cloud servers,’’
ACM SIGSOFT Softw. Eng. Notes, vol. 39, no. 6, pp. 1–6, Dec. 2014.

[13] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, ‘‘An approach to QoS-
based task distribution in edge computing networks for IoT applications,’’
in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jun. 2017, pp. 32–39.

[14] H. A. Khattak, H. Arshad, S. U. Islam, G. Ahmed, S. Jabbar, A. M. Sharif,
and S. Khalid, ‘‘Utilization and load balancing in fog servers for health
applications,’’ EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1,
p. 91, Dec. 2019.

[15] A.-M. Rahmani, N. K. Thanigaivelan, T. Nguyen Gia, J. Granados,
B. Negash, P. Liljeberg, and H. Tenhunen, ‘‘Smart e-Health gateway:
Bringing intelligence to Internet-of-Things based ubiquitous healthcare
systems,’’ in Proc. 12th Annu. IEEE Consum. Commun. Netw. Conf.
(CCNC), Jan. 2015, pp. 826–834.

[16] T. N. Gia and M. Jiang, ‘‘Exploiting fog computing in health monitoring,’’
in Fog and Edge Computing: Principles and Paradigms. Hoboken, NJ,
USA: Wiley, 2019, pp. 291–318.

[17] S. Banerjee and J. P. Hecker, ‘‘A multi-agent system approach to load-
balancing and resource allocation for distributed computing,’’ in Proc. 1st
Complex Syst. Digit. Campus World E-Conf. AZ, USA: Springer, 2017,
pp. 41–54.

[18] M. D’Angelo, ‘‘Decentralized self-adaptive computing at the edge,’’ in
Proc. 13th Int. Conf. Softw. Eng. Adapt. Self-Manag. Syst. (SEAMS),
May 2018, pp. 144–148.

[19] J. Nikolic and E. Pournaras, ‘‘Structural self-adaptation for decentralized
pervasive intelligence,’’ in Proc. 22nd Euromicro Conf. Digit. Syst. Design
(DSD), Aug. 2019, pp. 562–571.

[20] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, ‘‘Resource provision-
ing in fog computing: From theory to practice,’’ Sensors, vol. 19, no. 10,
p. 2238, May 2019.

[21] A. A. Alsaffar, H. P. Pham, C.-S. Hong, E.-N. Huh, and M. Aazam,
‘‘An architecture of IoT service delegation and resource allocation based
on collaboration between fog and cloud computing,’’ Mobile Inf. Syst.,
vol. 2016, pp. 1–15, Aug. 2016.

[22] Q. Fan and N. Ansari, ‘‘Application aware workload allocation for
edge computing-based IoT,’’ IEEE Internet Things J., vol. 5, no. 3,
pp. 2146–2153, Jun. 2018.

[23] E. Pournaras, P. Pilgerstorfer, and T. Asikis, ‘‘Decentralized collective
learning for self-managed sharing economies,’’ ACM Trans. Auto. Adapt.
Syst., vol. 13, no. 2, p. 10, 2018.

[24] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, ‘‘Optimal operator
placement for distributed stream processing applications,’’ in Proc. 10th
ACM Int. Conf. Distrib. Event-Based Syst., Jun. 2016, pp. 69–80.

[25] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li,
‘‘Cloud computing resource scheduling and a survey of its evolutionary
approaches,’’ ACM Comput. Surveys, vol. 47, pp. 63:1–63:33, Jul. 2015.

[26] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar, ‘‘Cost-
efficient and application SLA-aware client side request scheduling in an
Infrastructure-as-a-Service cloud,’’ in Proc. IEEE 5th Int. Conf. Cloud
Comput., Jun. 2012, pp. 213–220.

[27] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, ‘‘Opti-
mized IoT service placement in the fog,’’ Service Oriented Comput. Appl.,
vol. 11, no. 4, pp. 427–443, Dec. 2017.

[28] V. B. C. Souza, W. Ramírez, X. Masip-Bruin, E. Marín-Tordera, G. Ren,
and G. Tashakor, ‘‘Handling service allocation in combined fog-cloud
scenarios,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–5.

[29] O. Fadahunsi andM. Maheswaran, ‘‘Locality sensitive request distribution
for fog and cloud servers,’’ Service Oriented Comput. Appl., vol. 13, no. 2,
pp. 1–14, Jun. 2019.

[30] Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye, and F. Desprez, ‘‘Com-
bining hardware nodes and software components ordering-based heuristics
for optimizing the placement of distributed IoT applications in the fog,’’ in
Proc. 33rd Annu. ACM Symp. Appl. Comput., Apr. 2018, pp. 751–760.

[31] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, ‘‘Towards QoS-aware
fog service placement,’’ in Proc. IEEE 1st Int. Conf. Fog Edge Comput.
(ICFEC), May 2017, pp. 89–96.

[32] M.-Q. Tran, D. T. Nguyen, V. A. Le, D. H. Nguyen, and T. V. Pham, ‘‘Task
placement on fog computing made efficient for IoT application provision,’’
Wireless Commun. Mobile Comput., vol. 2019, pp. 1–17, Jan. 2019.

[33] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, ‘‘Optimal work-
load allocation in fog-cloud computing toward balanced delay and power
consumption,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016.

64998 VOLUME 9, 2021

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

[34] R. K. Naha, S. Garg, A. Chan, and S. K. Battula, ‘‘Deadline-based dynamic
resource allocation and provisioning algorithms in fog-cloud environ-
ment,’’ Future Gener. Comput. Syst., vol. 104, pp. 131–141, Mar. 2020.

[35] R. K. Naha and S. Garg, ‘‘Multi-criteria-based dynamic user behaviour-
aware resource allocation in fog computing,’’ ACM Trans. Internet Things,
vol. 2, no. 1, pp. 1–31, Feb. 2021.

[36] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and
C. Z. Patrikakis, ‘‘A cooperative fog approach for effective workload bal-
ancing,’’ IEEE Cloud Comput., vol. 4, no. 2, pp. 36–45, Mar. 2017.

[37] X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, X. Sun, and A. X. Liu,
‘‘Dynamic resource allocation for load balancing in fog environment,’’
Wireless Commun. Mobile Comput., vol. 2018, pp. 1–15, Apr. 2018.

[38] B. Donassolo, I. Fajjari, A. Legrand, and P. Mertikopoulos, ‘‘Load aware
provisioning of IoT services on fog computing platform,’’ in Proc. IEEE
Int. Conf. Commun. (ICC), May 2019, pp. 1–7.

[39] T. A. Feo and M. G. C. Resende, ‘‘Greedy randomized adaptive search
procedures,’’ J. Global Optim., vol. 6, no. 2, pp. 109–133, Mar. 1995.

[40] J. Zhang, H. Guo, J. Liu, and Y. Zhang, ‘‘Task offloading in vehicular
edge computing networks: A load-balancing solution,’’ IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2092–2104, Feb. 2020.

[41] C. S. M. Babou, D. Fall, S. Kashihara, Y. Taenaka, M. H. Bhuyan,
I. Niang, and Y. Kadobayashi, ‘‘Hierarchical load balancing and clus-
tering technique for home edge computing,’’ IEEE Access, vol. 8,
pp. 127593–127607, 2020.

[42] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-
Art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416–464, 1st Quart., 2018.

[43] U. Bulkan, T. Dagiuklas, M. Iqbal, K. M. S. Huq, A. Al-Dulaimi, and
J. Rodriguez, ‘‘On the load balancing of edge computing resources for on-
line video delivery,’’ IEEE Access, vol. 6, pp. 73916–73927, 2018.

[44] R. G. Rajan and V. Jeyakrishnan, ‘‘A survey on load balancing in cloud
computing environments,’’ Int. J. Adv. Res. Comput. Commun. Eng., vol. 2,
no. 12, pp. 4726–4728, 2013.

[45] Y. Deng and R. W. H. Lau, ‘‘Heat diffusion based dynamic load balancing
for distributed virtual environments,’’ in Proc. 17th ACM Symp. Virtual
Reality Softw. Technol. (VRST), 2010, pp. 203–210.

[46] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘IFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, edge and fog computing environments,’’ Softw., Pract.
Exper., vol. 47, no. 9, pp. 1275–1296, Sep. 2017.

[47] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and
C. Mahmoudi, ‘‘Fog computing conceptual model,’’ Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, Tech. Rep. SP 500-325, 2018.

[48] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, ‘‘Container-as-a-service at
the edge: Trade-off between energy efficiency and service availability at
fog nano data centers,’’ IEEEWireless Commun., vol. 24, no. 3, pp. 48–56,
Jun. 2017.

[49] Y. Xiao and M. Krunz, ‘‘QoE and power efficiency tradeoff for fog com-
puting networks with fog node cooperation,’’ in Proc. IEEE Conf. Comput.
Commun. (IEEE INFOCOM), May 2017, pp. 1–9.

[50] R. F. Serfozo, ‘‘Little laws for utility processes and waiting times in
queues,’’ Queueing Syst., vol. 17, nos. 1–2, pp. 137–181, Mar. 1994, doi:
10.1007/BF01158693.

[51] S. Ningning, G. Chao, A. Xingshuo, and Z. Qiang, ‘‘Fog computing
dynamic load balancing mechanism based on graph repartitioning,’’ China
Commun., vol. 13, no. 3, pp. 156–164, Mar. 2016.

[52] Z. Liu, A.Wierman, Y. Chen, B. Razon, andN. Chen, ‘‘Data center demand
response: Avoiding the coincident peak via workload shifting and local
generation,’’ Perform. Eval., vol. 70, no. 10, pp. 770–791, Oct. 2013.

[53] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, ‘‘Resilient
datacenter load balancing in the wild,’’ in Proc. Conf. ACM Special Interest
Group Data Commun., Aug. 2017, pp. 253–266.

[54] R. T. Rockafellar and S. Uryasev, ‘‘Optimization of conditional value-at-
risk,’’ J. Risk, vol. 2, pp. 21–42, Feb. 2000.

[55] E. Pournaras, S. Jung, S. Yadhunathan, H. Zhang, and X. Fang,
‘‘Socio-technical smart grid optimization via decentralized charge con-
trol of electric vehicles,’’ Appl. Soft Comput., vol. 82, Sep. 2019,
Art. no. 105573.

[56] E. Pournaras, M. Yao, and D. Helbing, ‘‘Self-regulating supply–
demand systems,’’ Future Gener. Comput. Syst., vol. 76, pp. 73–91,
Nov. 2017.

[57] E. Pournaras, M. Vasirani, R. E. Kooij, and K. Aberer, ‘‘Measuring and
controlling unfairness in decentralized planning of energy demand,’’ in
Proc. IEEE Int. Energy Conf. (ENERGYCON), May 2014, pp. 1255–1262.

[58] E. Pournaras,M.Vasirani, R. E. Kooij, andK.Aberer, ‘‘Decentralized plan-
ning of energy demand for the management of robustness and discomfort,’’
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2280–2289, Nov. 2014.

[59] A. V. Dastjerdi and R. Buyya, ‘‘Fog computing: Helping the Internet
of Things realize its potential,’’ Computer, vol. 49, no. 8, pp. 112–116,
Aug. 2016.

[60] S. Svorobej, P. Takako Endo, M. Bendechache, C. Filelis-Papadopoulos,
K. Giannoutakis, G. Gravvanis, D. Tzovaras, J. Byrne, and T. Lynn,
‘‘Simulating fog and edge computing scenarios: An overview and research
challenges,’’ Future Internet, vol. 11, no. 3, p. 55, Feb. 2019.

[61] M. Ficco, C. Esposito, Y. Xiang, and F. Palmieri, ‘‘Pseudo-dynamic testing
of realistic edge-fog cloud ecosystems,’’ IEEE Commun. Mag., vol. 55,
no. 11, pp. 98–104, Nov. 2017.

[62] S. Filiposka and C. Juiz, ‘‘Complex cloud datacenters,’’ IERI Procedia,
vol. 7, pp. 8–14, Jan. 2014.

[63] I. Lera, C. Guerrero, and C. Juiz, ‘‘Availability-aware service placement
policy in fog computing based on graph partitions,’’ IEEE Internet Things
J., vol. 6, no. 2, pp. 3641–3651, Apr. 2019.

[64] Z. Zhang and X. Zhang, ‘‘A load balancing mechanism based on ant
colony and complex network theory in open cloud computing federation,’’
in Proc. 2nd Int. Conf. Ind. Mechatronics Autom., vol. 2, May 2010,
pp. 240–243.

[65] A.-L. Barabási and R. Albert, ‘‘Emergence of scaling in random net-
works,’’ Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.

[66] D. J. Watts and S. H. Strogatz, ‘‘Collective dynamics of ‘small-world’
networks,’’ Nature, vol. 393, no. 6684, p. 440, 1998.

[67] P. Erdös and A. Rényi, ‘‘On random graphs, I,’’ Publicationes Math.
Debrecen, vol. 6, no. 1, pp. 290–297, 1959.

[68] R. Van Der Hofstad, Random Graphs and Complex Networks, vol. 1.
Cambridge University Press, 2016.

[69] L. A. Schintler, A. Reggiani, R. Kulkarni, and P. Nijkamp, ‘‘Scale-free
phenomena in communication networks: A cross-atlantic comparison,’’ in
Proc. 43rd Congr. Eur. Regional Sci. Assoc., ‘Peripheries, Centres, Spa-
tial Develop. New Eur.’. Jyväskylä, Finland: European Regional Science
Association, Aug. 2003.

[70] I. Sohn, ‘‘Small-world and scale-free network models for IoT systems,’’
Mobile Inf. Syst., vol. 2017, pp. 1–9, Jan. 2017.

[71] R. V. Solé and S. Valverde, ‘‘Information theory of complex networks:
On evolution and architectural constraints,’’ in Complex Networks. Berlin,
Germany: Springer, 2004, pp. 189–207.

[72] J. Kleinberg, ‘‘The small-world phenomenon: An algorithmic perspec-
tive,’’ Dept. Comput. Sci., Cornell Univ., Ithaca, NY, USA, Tech. Rep. 99-
1776, Oct. 1999.

[73] A. Dutot, F. Guinand, D. Olivier, and Y. Pigné, ‘‘Graphstream: A tool for
bridging the gap between complex systems and dynamic graphs,’’ in Proc.
Emergent Properties Natural Artif. Complex Syst. Satell. Conf., 4th Eur.
Conf. Complex Syst. (ECCS), 2007, pp. 63–72.

[74] C. Reiss, J. Wilkes, and J. L. Hellerstein, ‘‘Google cluster-
usage traces: Format + schema,’’ Google, Mountain View, CA,
USA, Tech. Rep., Nov. 2011, Mar. 2012. [Online]. Available:
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2

[75] J. Wilkes. (Nov. 2011).More Google Cluster Data. Google Research Blog.
[Online]. Available: http://googleresearch.blogspot.com/2011/11/more-
google-cluster-data.html

[76] C. C. Byers, ‘‘Architectural imperatives for fog computing: Use cases,
requirements, and architectural techniques for fog-enabled IoT networks,’’
IEEE Commun. Mag., vol. 55, no. 8, pp. 14–20, Aug. 2017.

[77] W. Wang, Y. Zhao, M. Tornatore, A. Gupta, J. Zhang, and B. Mukherjee,
‘‘Virtual machine placement and workload assignment for mobile edge
computing,’’ in Proc. IEEE 6th Int. Conf. Cloud Netw. (CloudNet),
Sep. 2017, pp. 1–6.

[78] M. Amadeo, G. Ruggeri, C. Campolo, A. Molinaro, V. Loscrí, and
C. T. Calafate, ‘‘Fog computing in IoT smart environments via named
data networking: A study on service orchestration mechanisms,’’ Future
Internet, vol. 11, no. 11, p. 222, Oct. 2019.

[79] V. A. Barros, J. C. Estrella, L. B. Prates, and S. M. Bruschi, ‘‘An IoT-DaaS
approach for the interoperability of heterogeneous sensor data sources,’’
in Proc. 21st ACM Int. Conf. Modeling, Anal. Simulation Wireless Mobile
Syst., Oct. 2018, pp. 275–279.

[80] E. Çınlar, Probability and Stochastics, vol. 261. New York, NY, USA:
Springer, 2011.

[81] N. L. Johnson, S. Kotz, and N. Balakrishnan, ‘‘Beta distributions,’’Contin-
uous Univariate Distributions, vol. 2. New York, NY, USA: Wiley, 1995,
ch. 21.

[82] R. P. Brent, ‘‘Efficient implementation of the first-fit strategy for dynamic
storage allocation,’’ ACM Trans. Program. Lang. Syst., vol. 11, no. 3,
pp. 388–403, Jul. 1989.

VOLUME 9, 2021 64999

http://dx.doi.org/10.1007/BF01158693

Z. Nezami et al.: Decentralized Edge-to-Cloud Load Balancing: Service Placement for the IoT

ZEINAB NEZAMI received the B.Sc. degree
in computer engineering from Zanjan University
(ZNU), Zanjan, Iran, in 2010, and the M.Sc.
degree in distributed systems from the Iran Uni-
versity of Science and Technology (IUST), Tehran,
Iran, in 2014. She is currently pursuing the Ph.D.
degree with the Software Engineering Depart-
ment, Faculty of Computer Engineering, Univer-
sity of Isfahan, Isfahan, Iran. She is doing her
research work on cloud/edge computing and col-

lective intelligence, as a member of the Pervasive Computing Group, under
the supervision of Dr. K. Zamanifar. During her Ph.D., she was a Visiting
Researcherwith ETHZürich, Zürich, workingwith the Computational Social
Science Group (COSS) and the EPFL, Lausanne, working with the ICT for
Sustainable Manufacturing Group (ICT4SM), and contributed to the IoT
research projects. Her main research interests include distributed systems,
autonomic and green communication, and artificial intelligence.

KAMRAN ZAMANIFAR received the B.Sc. and
M.Sc. degrees in electronics engineering from the
University of Tehran, and the Ph.D. degree in par-
allel and distributed systems from theUniversity of
Leeds, U.K. He is currently an Associate Professor
with the Faculty of Computer Engineering and
the Director of the Pervasive Computing Group,
University of Isfahan. He has authored or coau-
thored numerous articles in prestigious interna-
tional journals and conferences. He has published

numerous books on parallel programming, operating systems, and parallel
and evolutionary algorithms. His research interests include big data, parallel
processing, distributed systems, cloud computing, pervasive computing, and
soft computing.

KARIM DJEMAME (Member, IEEE) received
the Ph.D. degree from the University of Glasgow,
U.K., in 1999. He is currently a Professor of
distributed systems with the School of Comput-
ing, University of Leeds. He sits on a num-
ber of international program committees for
cloudmiddleware, computer networks, and perfor-
mance evaluation. He was an Investigator of var-
ious e-science/cloud projects including, DAME,
BROADEN, AssessGrid, ISQoS, STRAPP, OPTI-

MIS, ASCETiC, and TANGO. His main research interest includes grid/cloud
computing, including system architectures, resource management, and
energy efficiency. He is a member of the BCS.

EVANGELOS POURNARAS received the B.Sc.
degree in technology education and digital systems
from the University of Piraeus, Greece, in 2006,
the M.Sc. degree (Hons.) in Internet computing
from the University of Surrey, U.K., in 2007, and
the Ph.D. degree from the Delft University of
Technology and VU University Amsterdam, The
Netherlands, in 2013. He is currently an Asso-
ciate Professor with the Distributed Systems and
Services Group, School of Computing, University

of Leeds, U.K. He is also a Research Associate with the UCL Center of
Blockchain Technologies and a Research Fellow with blockchain industry.
He has more than five years of experience as a Senior Scientist and a
Postdoctoral Researcher with ETH Zürich, Switzerland. He has also been
a Visiting Researcher with the EPFL, Switzerland, and has industry expe-
rience with the IBM Thomas J. Watson Research Center, USA. He has
published more than 70 peer-reviewed articles in high impact journals and
conferences. He is the Founder of the projects, including EPOS, DIAS,
SFINA, and Smart Agora. He has raised significant funding and has been
actively involved in EU projects, such as ASSET, SoBigData, and FuturICT
2.0. He has supervised several Ph.D. and M.Sc. thesis projects, while he
designed courses in the areas of data science and multi-agent systems that
adopt a novel pedagogical and learning approach. His research interest
includes distributed and intelligent social computing systems with expertise
in the inter-disciplinary application domains of smart cities and smart grids.
He has won the Augmented Democracy Prize, the 1st Prize at ETH Policy
Challenge, four best paper awards, and honors.

65000 VOLUME 9, 2021

