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On Treed Gaussian Processes and Piecewise-Linear
NARX Modelling

T. Zhang, R.J. Barthorpe, K. Worden'

Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield,
Mappin Street, Sheffield S1 8JD

Abstract

In the scope of nonlinear system identification, traditional parametric models
are widely adopted as simplifying approaches to modelling the complexity of
nonlinearity. However, many high order parametric models are disadvantaged
due to their inherent demand for model detection and their tendency to overfit
in the absence of additional validation processes. Nonparametric models, such
as the Gaussian Process (GP), though being naturally exempt from model
detection, can involve expensive procedures of model optimisation. This
article presents a Linear Kernel Chipman-based Treed Gaussian Processes
(LK-CTGP), which is essentially an assembly of simple linear parametric
models using a decision tree framework, to model nonlinear systems. The
piecewise-linear structure of the LK-CTGP offers a natural geometric solution
to modelling nonlinear systems, where no model detection is required. The
essence of simplicity from the traditional parametric model is also completely
retained within each of the submodels. The effectiveness of the LK-CTGP is
illustrated here via a number of case studies from simple synthetic data to
experimental data, on which Nonlinear Autoregressive eXogenous (NARX)
systems will built from the data for in-depth study.

Keywords: Time series, Autoregressive models, Decision trees, Gaussian
processes

1. Introduction

In the context of system identification in structural dynamics, the prior
choice of modelling methods always inclines towards the methods in which all
the physical insights of the system can be manifested via model parameters.
However, such a requirement of comprehensive interpretation is rather rare in
practice. When the physical insight into the system is not accessible, black box
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models are often introduced to establish a relation between input and output
based on purely statistical characteristics of the provided data. To achieve
such an input-output mapping, over decades, myriads of model structures
have been proposed, which have covered a wide range of mathematical
subdivisions associated with machine learning techniques. The practice
of the linear system identification has already been populated by a series
of well-established theories[1, 2]. Nowadays, the general points of interest
for researchers do ground towards the more challenging field of nonlinear
black box system identification. However, in the statistics community, the
very research topic is considered as a partial relabelling of the long existing
topic of nonparametric regression modelling, from which sprouts well-known
methods such as artificial neural-networks (ANNS), support vector machines
(SVMs), spline models, fuzzy models etc [3]. Along with the rehabilitation
of Bayesian statistics during the 1980s and the growing trend of machine
learning, the Gaussian process (GP) was inevitably introduced in conducting
nonparametric modelling for nonlinear systems [4]. The GP is a natural
nonparametric kernel-based machine learning technique, which is capable of
providing versatile regression patterns via a specification of kernel functions.
Despite naturally being able to model nonlinear systems as provided by
their intrinsic inferential logic, the applications of GPs are extended and
made more adaptive by establishing coalescence with other machine learning
techniques. Over the years, on the stem of basic GPs, myriads of derivative
or collaborative methods have been developed, such as GP-neural networks,
mixtures of GP experts, Treed Gaussian processes, etc. [5][6][7]. This
particular paper will discuss the implementation of a Linear kernel Chipman-
based Treed Gaussian Process (LK-CTGP) in the identification of nonlinear
systems. The concrete details on the mechanism and configuration of the
LK-CTGP will be expounded in the later sections. The main purpose of
establishing this decision tree-based model is in general bipartite. Firstly,
the ordinary GP model is deficient at countering problems with the property
of heteroscedasticity (nonstationary regression); the second point is that
the traditional squared-exponential (SE) kernel requires a rather expensive
optimisation procedure for its hyperparameters, if the data size is too large.
The LK-CTGP proposed here chooses the linear kernel in lieu of the more
traditional SE kernel, and utilises the decision tree framework to break down
the nonlinearity geometry-wise by recursively partitioning the input space into
subregions wherein a fine linearity is preserved. Therefore, the LK-CTGP is
essentially a piecewise-linear approximator incorporating a Bayesian inference
framework. Speaking of modelling time series, piecewise-linear models have
appeared early since the 1980s under the name of Threshold Autoregressive
(TAR) model introduced by Howell Tong [8]. The original model has been
extended and adapted for use under various different purposes [9][10][11].

This paper takes a pertinent look into applying the LK-CTGP to studying the
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behaviour of time series data. In the domain of time series analysis (TSA), the
Nonlinear Auto-Regressive Moving-Average eXogenous (NARMAX) model is
a popular model-inferencing framework offering great versatility and adapt-
ability [12]. The NARMAX model possesses a high degree of generality by
taking a bipartite consideration of both the auto-regressive nature and the
moving average. To achieve more parsimonious improvement, the NARX
(Nonlinear Autoregressive eXogenous) model is often used, which is a special
case derived from the NARMAX model, when the noise model is assumed to
be white Gaussian.

The NARX model naturally inherits the character of the NAR (Nonlinear
AutoRegressive) model, where the current prediction of the system output is
a function of the previous inputs and outputs.

The NARX model is distinguished for its inclusion of the eXogenous term,
which accommodates a separate input from outside of the system, thus such
an external input is naturally independent of the development of the system
output. Such a configuration can be expressed in mathematical form by the
following equation,

Yt = f(yt—17yt—27 --~7yt—ny;33t—1737t—27 '-‘7xt—ng¢) + € (1)

where y; is the system output at the ¢** step; z is the eXogenous input; Ny

and n, are the lags w.r.t y and z; € represents the residual (noise), which is
assumed to be white Gaussian.

There are various forms for the NARX modelling function f; the common
choice, in a certain sense of tradition, describes the internal mechanism of the
NARX system with a multivariate polynomial (MVP) function. As a member
of the family of parametric modelling methods, the MVP approach to the
NARX system requires a two-step procedure. The first step is to determine
the specific model structure (e.g. what terms to include in the polynomial
function), which is known as the model structure detection. The second step
is to determine the corresponding expansion parameters (e.g. polynomial
coefficients) based on the result of the structure detection. However, the
procedure of model detection can be rather troublesome, as an inappropriate
establishment of the polynomial terms can lead to either poor prediction or
overfitting issues. As a result, in recent years, the nonparametric treatment
of the modelling of the NARX system has gradually gained increasing at-
tention, as it features a major advantage over the ‘traditional’ parametric
models. Nonparametric models such as Gaussian Processes (GP) [13], require
no structure detection step. Instead, since nonparametric models have a
fixed group of system parameters which establish a general conformity to
the data space, the user can simply specify all these parameters without
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reluctantly making selections on them. For example, Gaussian Processes as
a nonparametric modelling paradigm, only have three hyperparameters to
define once, for example a squared-exponential kernel has been selected for
use [14]. Despite such an advantage, the nonparametric models do suffer
from higher computational cost in terms of the hyperparameter estimation,
especially when handling large datasets containing thousands of data points,
as the computational cost is O(N3) (N is the number of data points); this
cost is associated with a matrix inversion at the heart of the GP algorithm.

In this paper, the authors present an advanced parametric model for NARX
systems based on the nonparametric framework provided by the Chipman-
based Treed Gaussian Processes (CTGP) [15], but restricted to linear models
on the leaves of the tree. This structure produces a piecewise-linear modelling
capability, and is applied here to the study of three case studies, each
of which carries a special purpose in demonstrating the effectiveness of
the algorithm. The first case study covers a well-customised synthetic
dataset to delve visually into the fitting characteristics from the LK-CTGP?2.
The second case study deals with a practical problem involving the classic
Duffing oscillator data. The mathematical insight of this case is accessible,
therefore the performance can yet again be compared with the exact test data
comprehensively. The last case study is a rather challenging experimental
one regarding the nonlinear behaviour of automotive shock absorbers. The
data space is rather skewed and it is hard to make an approximate fitting
from visual approximation. Besides in this case, the mathematical insight
will be unavailable due to the complex data environment.

The layout of this paper is structured explicitly simple for a clear demonstra-
tion of the effectiveness of the LK-CTGP. It begins with an explanation of
the mathematical theory followed by the three case studies aforementioned,
where individual summaries will be included respectively. A short general
summary will be given at the end of the paper.

2. The Linear-Kernel Chipman-based Treed Gaussian Process

2.1. Model Performance Assessment Criteria

The prediction from the LK-CTGP on the NARX data can be assessed
in various ways. The common basic metric is the One Step Ahead (OSA)
predictions of the model. The OSA prediction only uses the training data as
the reference for making the prediction at a given time, which is described

2The ‘Gaussian Process’ part of the name will be maintained here, despite the fact that
a linear kernel is adopted in this paper, as the methodology allows a general GP formulation
with minimal modification. The implications for computational cost are another matter
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y:( = f(yl'_]_,...,yi—ny;xh'-'7x’i—nz+l) (2)

It is arguable that the OSA prediction is not such a rigorous and descrip-
tive metric to evaluate the model prediction performance. First, the OSA
prediction completely depends on the training data, thus obviously it will
have problems with overfitting issues. Second, the NARX system is a
self-generative or self-developing time series system, where once the initial
condition is given, the subsequent process is largely deterministic. Therefore,
a good metric should provide a measure on the generative performance of the
model when given the same initial conditions as the training data. This leads
to the Model Predicted Output(MPQO) predictions, as shown in equation (3),
where the prediction at a certain time is computed based on the predictions
made up to that time,?

Yl = f(yztla“'ay;kfny;xi?"'7wi—na:+1) (3)

Once the MPO predictions are made, the Normalised Mean Square Error
(NMSE) of the model can be computed as,

N

NMSE() = 3o Y (i~ 60 (@)
Y i=1

According to long-standing experience in its use, the authors consider that
an NMSE less than 5.0 shows a good fit to the data, while an NMSE less
than 1.0 shows a excellent fit.

2.2. Methodology: Gaussian Processes
The very basic foundation of the Gaussian process algorithm is in classical
Bayesian inference governed by the well known Bayes’ rule,

osterior — likelihood x prior (5)
p "= marginal likelihood

3In the system identification community associated with electrical or control engineering,
the OSA and MPO modes of prediction are often referred to as prediction and simulation,
respectively.
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The relation shown above can be easily used to establish rudimentary para-
metric regressions by specifying a prior and likelihood distribution for the
corresponding parameters. At its very simplest form, a linear regression can
be achieved by setting a prior-likelihood combination for the gradient and
intercept parameters in the model. The GP is a special case built on the
Bayesian inference framework. In the GP, there exists no designated inference
towards any function parameters, instead, the inference is associated with the
function itself. The term ‘function’ is used to describe the immanent relations
between the input and output among the data space. This relation is not
necessarily accessible for mathematical expressions with closed form. In the
GP, the prior will directly be incarnated in the function as a multivariate
Gaussian distribution over all the data in the space.

Following the detailed discussion in [13], the prior of the GP is specified as,

(@) ~ Ny(m(z), k(z,2")) (6)

where m(z) is the multivariate mean and k(x,z’) is a covariance func-
tion/kernel.

To further explore this specification, it is conducive to conduct a well-clarified
analysis through separation of the training and testing datasets. Then the
prior bears the form below,

f1 K(X,X)+ 02l K(X,X,)
[fj —N(O’[ KX, X) KX, X))

where N stands for the multivariate normal distribution, X is the training
input data (arranged in matrix form) and X, is the test input data, K(.) is
the covariance matrix.

The GP is a special version of Bayesian inference where the prior specifies, not
only the initial preference on the output y (y = [f, f«]) at each input entry,
but also encodes the mutual correlations among each pair of data points
via the presence of the covariance function/matrix. The covariance matrix,
whose entries are outputs from a covariance function pre-selected by the user,
commands the form of GP likelihood as it determines the predictive function
on the given training data space. From the perspective of mathematical
neatness and simplicity, the GP is extremely advantageous for analytical
derivation of the posterior, simply because the prior in such a matrix form
allows the inference of the posterior through matrix operations without the
knowledge of the expressive form of both likelihood and marginal likelihood.
Again, following [13] one has,
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[l X, y, Xo ~ N(fs,cov(fs)), where
fe 2 E[fX,y, X] = K(Xo, X)[K(X, X) + 021] 71y,
cov(fy) = K(Xy, X.) — K(X+, X)[K(X,X)+ 021 'K(X,X.). (7)

By definition, the covariance matrix is constructed to reflect the statistical
variation at each input entry as a result of correlations with other data
points in the space. Because the influence between points is reciprocal, the
covariance matrix is completely symmetrical with elements that are all scalar
values. A typical covariance matrix is,

ki ki - Eip
kor koo - kop

cov=|_ T . (8)
knl kn2 e k’rm

where the k;; is an abbreviated form of k(x;, ), and represents the covariance
between two points x; and x;.

In the covariance matrix above, it could be observed that each row or each
column describes the variance interaction between one point (i*" or j if it
is the row or column being picked) with other points (including itself) in the
dataset.

The parametric model has a fixed pattern to reason the prediction through
the a priori user specification of the predictive form. As a nonparametric
model, the GP specifies no fixed form to accommodate the prediction. Its
own basic reasoning emerges from the generating criterion of the covariance
matrix, which is constructed through the covariance function as mentioned
formerly. It is a common practice to define the covariance in terms of distance
as to encode a belief that the influence of an observation on another decays
over distance. For the GP, the standard and most commonly-used distance
covariance functions are the squared-exponential (SE) covariance functions,
specified by the form,

702

ksp(r) = eXP(—ﬁ) (9)

where 7 is the distance between two mutually influential data points, [ is
the distance influence weighing parameter, or simply length scale. All the
parameters in the covariance functions are known as the hyperparameters.
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The SE covariance function is infinitely differentiable, so that its presentation
in the form of a predictive curve will be perfectly smooth. The GP is also
versatile, as the covariance function does not have to be a distance covariance.
For example, the GP also allows the covariance function to be set in relation
to the axial coordinates so as to plug in a fixed curve form for the regression
fitting. Hence the GP could also be applied as an alternative approach to
conduct Bayesian linear regression (as in the applications in this paper) etc.
From a more general angle, the covariance function could be specified in
some way as to conduct nonstationary regression as well (by making the
kernel depend on the absolute position of points, rather than the relative
positions of pairs). However, the analysis of such a GP would be accompanied
by various mathematical difficulties. In order to carry out Bayesian linear
regression with a GP, the linear covariance function is given as,

Kinear(v1,72) = kz] 29 + b (10)

where the superscript 7 denotes a matrix/vector transpose.

The nonparametric SE kernel possesses the advantage of being natively
adaptive to nonlinearity, in most cases, it ensures a smooth interpolation of
the data. However, the downside is that the SE kernel requires extremely
expensive optimisations for its hyperparameters if a sensible prediction is
desired from its output. However, using the simple linear kernel effectively
transforms the GP into a classic Bayesian linear regression, in which the gra-
dient and intercept parameters can be obtained analytically given knowledge
of the noise level (encoded in another hyperparameter). If the data from
the nonlinear system behave uniformly in terms of local variance, the rough
value of this noise can be determined by performing a single optimisation
procedure for the noise parameter on the entire dataset.

Looking back to the inference of the posterior of the GP, it could be perceived
that this is just the same as any Bayesian inference; the final stage of
the prediction is to select the most suitable prediction from the posterior.
For the Bayesian linear regression, it is extremely simple, as the posterior
predictive distribution accounts for all possible linear fittings. Thus to select
the best fitting model is just to select the best fit corresponding to the
highest probability from the posterior predictive distribution. In the GP, the
analytical posterior predictive is conceptually the same as its counterpart
in Bayesian linear regression, and it is commonly addressed with the name
‘Gaussian Process Marginal Likelihood (GPML)’. The GPML describes the
likelihood of prediction which accounts for all possible predictions as weighed
by their corresponding probabilities. Since, given the training data and the
covariance function, the GPML is a measure of the reliability of the prediction
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WRT a set of pre-selected hyperparameters, the Maximum Likelihood (ML)
criterion selects the predictions parametrised by the hyperparameter values
which maximise the GPML as the appropriate interpretation of the data space.
The ML analysis suffers from exasperated analytical and computational
difficulties compared to the MAP of the Bayesian linear regression due to the
complexity of the GPML function, where its function profile as related to
the hyperparameters is opaque to the probe of direct differentiation analysis.

In fact, the statement of the optimisation problem is rather simple and clear,
that given a function, the objective is to find its global extremity. This
particular type of problem casts a long shadow in the history of mathematics;
its internal concept is rather coherent to any simple problems such as finding
the extremity of a parabola. However its external expression varies and is
much more complicated and intricate. In the GP, by the ML criterion, the
objective function is the logarithmic GPML,

1 _ 1 n
logp(y| X, 0) = —y" Ky — 5 log | K| — 7 log 2 (11)

where all the hyper-parameters are contained in the covariance K.

Given a new data space, the actual graphical profile of the equation above is
mostly unavailable unless the data space is well organised, expressing an obvi-
ous behaviour. To search for a maximum, there are a number of difficulties to
encounter. First at different selections of the covariance function, the number
and the type of the hyperparameters could be radically different. Thus this
issue gives rise to difficulties in constructing general analytical models for the
optimisation. The next problem is that the presence of the K, also implies
the whole dataset will act as a dynamic influential factor imposed on the
equation, thus leading to stacked complexity in operating matrices, especially
matrix inversions. The impediments in the computational and operational
cost are already very demanding to the mathematical manipulations as well
as computational efficiencies, but the problem of multiple local extrema is
even worse for trapping the optimisation away from the global extremity.

2.8. Chipman-based Treed Gaussian Processes

A Treed Gaussian Process (TGP), in mathematical terms, is an amalgamation
of a Binary Decision Tree (BDT) and Gaussian Processes (GP) [7]. A decision
tree is a logical mapping process through which the elements of a given input
space will be assigned into different groups represented by leaves of the tree
based on a series of criteria [16]. A binary tree basically means the criteria
take the form of a simple choice of YES/NO, thus branching the underlying
space into two sub groups. Through repeated application of this process, a
treed structure will be established. Figure 1 shows a typical BDT.
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Figure 1 is taken as a typical BDT paradigm to explain the decision tree
terminologies. A BDT is essentially a bifurcating process. A parent node
can bifurcate into two child sub-nodes. The root of the tree at the top is
known as the root node. Those end nodes at the bottom of the tree are
external nodes, also known as leaves. All the rest of nodes in the middle who
do bifurcate, are called internal nodes. In such a process, the BDT may be
briefly thought of as a tangible representative framework for partitioning a
set of data.

Within a traditional GP setting with distance-based kernel functions, the
inference is based on the argument that predictions at any point in space are
latently influenced by all other data points in the training space.Thereby, a
covariance matrix is constructed which contains all the weight of the influence
between any pair of data points in the training space. If the covariance
function is non-distance based, the GP can also simply become a parametric
model. In a TGP, the GP regressions are only carried out on subsets of
data corresponding to the leaves of the tree. This can result in very large
computational savings e.g. if there are two leaves with half of the total dataset
associated with each, the GP cost will be O(N3/4) rather than O(N?3).

Gramacy introduced one type of TGP model [7] which has seen application
in numerous contexts. More strictly, Gramacy’s TGP (GTGP) is the first
attempt to amalgamate the GP model with the decision tree. Therefore
Gramacy is indubitably recognised as the founder of the TGP. Before the
introduction of the GTGP, its closest predecessor is the well known Bayesian
Classification and Regression Tree (BCART), introduced by Chipman et al
[17], where the idea of a Bayesian stochastic tree was first introduced. The
current paper discusses another type of TGP which will be referred to as
the ‘simplified TGP’ or ‘Chipman-based TGP’. The CTGP suggests a TGP
model which completely springs from the raw ideas of Chipman’s BCART
model. In order to prevent any confusion between these two TGP models,
one should know that the Gramacy-based TGP also borrows ideas from
Chipman’s theory, but only in terms of how to alter the structure of the tree.
The current paper sets complete reliance on Chipman’s ideas, which will be
illustrated subsequently.

The CTGP samples the partitions in the training space as in a form of
growing a tree. The tree is to be treated as a state in a Markov Chain, thus
the holistic sampling process manifests itself as a manner of Markov Chain
Monte Carlo (MCMC). The most crucial aim of sampling in the MCMC
space is to arrive at those trees with high posterior probability which is the
total product of local posteriors from all the leaves. The posterior of the tree
can be expressed mathematically by,

10
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Figure 1: Typical Binary Decision Tree.

p(T1X,Y) < p(Y|X,T)p(T)
b
p(Y1X,T) = [[p(¥ilX:)
=1
(12)

where T represents the tree; X and Y are the training inputs and outputs
respectively; b is the number of leaves.

To achieve suitably rapid convergence to appropriate trees, a Metropolis-
Hastings (MH) algorithm with a complement of four tree-structure alteration
operations is adopted.

Each step of the Markov Chain features a proposal stage and evaluation stage.
The proposal stage involves the proposition of a new tree through application
of one of the four operations described below. The evaluation stage involves
evaluating the Mazimum a posteriori (MAP) estimate of the newly-proposed
tree, and then setting forth a comparison against the posterior from the last
accepted tree. The residual that results from the subtraction between the
logarithm of these two posteriors will be taken as a metric to decide on the
probability that the proposal should be accepted. Through a large number of
MCMC samples, the process will eventually explore the MCMC state space
for high posterior probability trees, spending more time in regions of high
posterior probability.

11
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As mentioned above, the sampling of the tree structure features four op-
erations; these operations are GROW, PRUNE, CHANGE and ROTATE.
Each of these operations possesses a high similarity to the ones described
in Chipman’s paper regarding BCART under the exact same names, except
for the ROTATE, where Chipman used the idea of SWAP. The ROTATE
operation derives its originality from Gramacy.

In simple terms, the four operations have the following effect on the structure
of the tree:

e GROW: add one partition by splitting one leaf node of the tree.
e PRUNE: remove one partition by joining two sibling child nodes.

e CHANGE: relocate an existent partition by changing a splitting rule
in the tree.

e ROTATE: maintain the partitions but change their ‘staging’ sequence
by rearrangement of the tree structure.

After the alteration of the tree structure comes the evaluation of the MAP
of the tree. Normally this stage features an optimisation of the marginal
likelihood function of each individual GP in terms of all their covariance
hyperparameters, if a distance-based kernel function is chosen. To find the
extrema of a given function, suggested optimisation approaches include either
a gradient-based line search or a sampling-based search. In the particular
application of the NARX model presented in this paper, the only parameter
that requires the optimisation is the noise level, and it is treated as known.
The linear function parameters can be analytically obtained through the
Bayes’ rule at the knowledge of the noise level.

Following the completion of the MAP evaluation, the MAP estimate is used
for the Metropolis-Hastings evaluation, in which the MAP estimates of the
current and last-accepted tree are compared in order to decide whether to
accept the newly-proposed tree. The rule of the Metropolis-Hasting algorithm
is stated as,

P(T) QT T)
P(T) QT 1)

A =min(1,

where * denotes the proposed tree, ’ denotes the current tree state, Q is
the transition probability which depicts the probability of jumping between
states in the Markov space, P is the MAP of the tree. The proposed state
will be accepted with probability A.

To compare and contrast between the two TGP approaches is not within
the chief concerns of this paper. However, still for not downplaying its

12
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importance, a brief summary is provided here. For more concrete and
detailed comparison, one can refer to.... The fundamental difference of the
newly developed CTGP model from th original GTGP model lies mainly on
the ground of its internal modelling structure. The GTGP incorporates a full
probabilistic sampling scheme, involving a four-layer hierarchic specification
for its priors. It features a more sizeable pool of hyperparameters, whose
introduction and specification purport to establish a Gibbs sampling based
system to entitle a full probabilistic behaviour of the sampling process.
However, in contrast, the CTGP is compromisingly less probabilistic, as the
local posterior of each leaf is obtained deterministically via optimisation.
This trade-off does not necessarily conclude that the CTGP is a simplified
version of the GTGP apart from being merely structure-wise. The GTGP
naturally outstrips the CTGP on the ground of sampling rate, however, as
so many more hyper-parameters are involved in comparison, the search for
the global optimum will take more iterations, as well as a concession in
the overall posterior accuracy. Despite the well-known issue with the local
optima for a deterministic optimisation process, the current CTGP uses a
probabilistically guided searching scheme to ensure a local posterior optimum
at each leaf. In short, the GTGP holds an edge of advantage in overall speed,
but less accurate in giving the final optimal posterior. Being less robust and
flexible is another major downside for the GTGP, as more hyperparameters
lead to more prior assumptions.

3. Case Studies: Synthetic Data for Piecewise-Linear Systems

The first case study covers a pertinently-designed synthetic dataset that is
used to demonstrate the effectiveness of the LK-CTGP characteristically.
This case study consists of three sub-cases, which are arranged in order to
study the performance of the LK-CTGP at different levels of linearity and
complexity in terms of the number of time series lags. The first case study is
on a synthetic bilinear NARX system with single lag, while the second one is
a simple deepening of complexity by constructing a trilinear NARX system
with single lag. The third and final member of the set considers a bilinear
system with three lags.

The simple linear-based case study allows a better visualisation of the ac-
tual curve fitting from the LK-CTGP, that thereby, the characteristics of
prediction from the algorithm can be analysed more intuitively. The reason
for choosing only up to three lags, is due to the limiting problem of the
curse of dimensionality (COD). The COD is a common issue associated with
high-dimensional data analysis, where the escalation in the dimensionality
requires an exponential increase in the number of data points to characterise
the behaviour of the data set.

13


willi
Highlight


410

415

420

425

430

3.1. Case study 1: Bilinear NARX system

The simple bilinear NARX system is set as a basic example to study, where
only a single lag is considered along with a simple uniform random eXogenous
input. The generative function of the model is,

yi = —0.7y; 1 +10 52,15 if y 1 <0
yi = 0.Tyi—1 + 10 %15 if y;1 >0
(14)

where x ~ Unif(—5, 5).

4000 data points were generated through this process with Gaussian-distributed
measurement errors added subsequently (0.001% of rms). The current choice
of a distinctively small noise has made concessions toward the fact that the
performance of the MPO model is heavily noise-dependent, since the MPO,
in contrast with the OSA, make each prediction in the time axis based on
its previous predictions, which allows the error to augment.

Apparently in this 3D data space, there is only one natural split at y = 0
visually in the form of a straight line. Via applying the LK-CTGP, this split
has been successfully and precisely located within 500 MCMC rounds (Given
500 rounds, 20 repetitive runs unanimously give the exact same partition
for this case). Figure 2 below shows the fitting of the training data space
with two regions produced by LK-CTGP which exactly captured (split at
Yn_1 = 0.003e7%) the bilinear nature of the data. The partition has been
placed at the correct vicinity around Y;,—; = 0(The exact value is 0.002 for
the case shown in Figure 2).

According to the fit from Figure 3, the LK-CTGP produced an excellent
MPO prediction with an error less than 0.001 for the NARX system.

3.2. Case study 2: Trilinear system with one lag

The second case study of the trilinear system is governed by the generative
function,

yi = —0.Tyi-1 + 1070215 if ;1 <0
yi = 0.Tyic1 + 10 %213 if 0 < g1 <3
yi = —1.5y; 1 +6.6+10%z;_1; if yiq1 >3
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Figure 2: Model fit on the bilinear system with one lag.
%10
10
8
6
4
2
0
21
4l
6= | | | L | | L | | |
100 200 300 400 500 600 700 800 900 1000
Time

Figure 3: MPO prediction on the bilinear system with one lag.
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The noise level is set as the same across all case studies. Via applying the
LK-CTGP, the fitting pattern has been shown in Figure 4.

* 0D
© RE1

Figure 4: Fitting on the trilinear system with one lag.

20 individual runs have been carried out consecutively to explore the uncer-
tainty in the partitioning pattern. Figure 4 does display the most typical
result (13/20), and the rest 7 runs, though in resemblance, give a slight
adaption by perfectly giving one partition at one or both joint sections of
the planes. As a result, this indicates that for this particular trilinear case
study, the CTGP is more inclined to conservatively explain the transient
part using more partitions.

The fitting outcome indicates that six regions are generated to model the
trilinear system, which differs from the ideal three-region scheme. The
extra three regions are comparatively much smaller than the three main
regions, as they are produced to interpret the transitions between two
adjacent regions; two are placed around Y,_; = 0 and one is placed around
Y,—1 = 3. Theoretically, the additional interpretation with these extra regions
is redundant, if the algorithm can smartly find the two exact locations to
make partitions. However, during the process of MCMC search, it is rather
rare to locate accurately the exact transitional locations without making
inferior partitions in the first place. As having been explained before, the
MCMC walk in the tree structure space is guided by four tree-structure
alternating operations (Grow, Prune, Change, Rotate), but this does not
assure that, the full set of optimal partitions will be eventually achieved
through such a process. Especially when the tree-structural complexity has
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been raised during the early stage of the MCMC process, which prevents a

455 direct walk into the optimal state via the four operations. Accordingly, for
complicated datasets, issues with over-splitting are inevitable for such type
of decision tree-based models. Despite not being able to provide an exact set
of ideal partitions, the LK-CTGP still performed well in breaking down the
nonlinearity, resulting in a prediction with minimal errors. Figure 5 shows

w0 the MPO predictions (MSE=0.82) generated from such a fitting scheme by
the algorithm.
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Figure 5: MPO predictions for the trilinear system with one lag.

3.8. Case study 3: Bilinear system with three lags

Increasing the number of lags does raise the complexity dramatically as a
result of the expanded dimensionality of the training dataset. Recalling the

465 Curse Of Dimensionality, at higher dimensions, a dataset with fixed size will
experience a general loss of resolution of its behaviour, becoming less smooth
and more sparse. Apart from the effects on the data, high dimensionality
will also cause troubles for the MCMC searching process for the tree, because
the size of the sampling space is proportional to the dimensionality.

470 For the bilinear system with three lags, the generative function is given as,
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yi = —0.Tyi_1 + 0.7y, o — 0.2y; 3 + 10 %2;_1; if i1 <0
yi = 0.7yi—1 — 0.7y;—2 + 0.3y;—3 + 107 02,15 if i1 >0
(16)

Although the fitting on the training data cannot be visualised, the math-
ematical result shows that the LK-CTGP still successfully generated one
partition and placed it in the close vicinity of Y = 0. However, on average,
it took significantly longer to arrive at that correct partition, compared to
the bilinear case with single lag (see Table 1). Figure 6 shows the MPO
predictions on the test data. The overall prediction still fits well on the
original data, however, there are two intervals ([500,550] and [650,700]) where
the MPO predictions failed in tracking the progress. The zoomed-in view in
Figure 7 at the error section [500,550] shows that the first major departure
from the test data occurs at the iteration 480 where Y = 0. Y = 0 is the
exact joint section between two linear hyper-planes. This implies that the
system is not well modelled close to the discontinuity as attributed to the
nature of a partitioning based method. The induced error will propagate into
the following predictions. However, the error is very likely to be incurred
by the inaccurate placement of the partition in that area. However, along
with the expansion of the dimensionality, inevitably the chance of drawing
out that partition will fast dwindle. Besides, every newly-introduced lag has
to carry the predictive error incurred before, thus total error accumulates
faster with added lags.

Table 1 below summarises the performance of the LK-CTGP on each case
study in terms of prediction error, number of splits generated and compu-
tational cost (Each MCMC round takes approximately 0.1s in real time
on a four-core Xeon). Wherein, it can be seen that the increase in the
number of lags does heavily weaken the prediction accuracy of the algorithm,
despite the fact that the correct split has been located without incurring any
over-split. The possible explanations can be largely ascribed to the problems
with the curse of dimensionality. such a problem can also be observed from
the drastically-increased number of MCMC rounds to locate the split. The
added piecewise-linear segment naturally increased the overall prediction
error, when compared with the bilinear system. But the influence is not as
severe as in the case of escalated dimensionality. Therefore, it can be said the
issue with over-splitting won’t damage the overall performance to a significant
level. To demonstrate the necessity of partitioning the training data space,
the prediction NMSE of a linear fitting model has been listed for all four
cases as a reference. The huge errors given by the linear models indicate
its incapability at capturing or approximating the piecewise behaviour of
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4. Case study: Duffing Oscillator

The Duffing oscillator is a classic example for studying NARX behaviour.
The physical insight is explicit as it can be formulated into mathematical
equations. In this case study, a simple Duffing dynamical model will be
studied. The data will be processed preliminarily through a linear regression
process. Then a subsequent LK-CTGP study will be performed. Both OSA
predictions and MPO predictions will be acquired for comparison.

The basic generative function for this Duffing oscillator NARX system is
given as follows,

Yn = QYn—2 + byn—1 + 092—1 +dxn,—1 +¢€ (17)

where y is the output response variable, displacement; x is the eXogenous
input variable, the external force; € is the noise; a,b,c,d are the parameters.

The generative function in equation (17) shows the true relation between the
input and output to produce a sequence of responses y in terms of time is a
3D cubic function with input variables y,_1, y,—2 and z,_1. Therefore, a
simple linear regression model is supposed to be inept at comprehensively
describing the behaviour of the data. Naturally the cubic behaviour can be
approximated by a piecewise-linear model, when given the correct partitioning
locations to reasonably accommodate each individual linear model. The
LK-CTGP offers a binary process to recursively partition the input space
into regions, which is considered to be efficient and effective.

Before delving into the performance of the CTGP on the data, it is worthwhile
to study the generative function theoretically. From equation (17), it is clear
that the nonlinearity is introduced by the cubic term associated with the
first lag of y. from the partial differentiation with respect to each of the
input variables, it can be found that only in the dimension of 1,1, does the
function have non-constant slope. Such a fact manifests that the entire input
space has no gradient change in either of the dimensions of y,_o or x,_1;
therefore, the reasonable partitions are exclusive to taking in the dimension
of y,_1, where once the other two input variables are held fixed, the curve
simplifies to a visualisable classic one-dimensional cubic function. Through
performing the partial differentiation on equation (17) with respect to y,—1
and equating the expression to zero, one can obtain the two roots,

—b
7“172 =+ g (18)
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Naturally these two roots represent the local peak and trough of the cubic
function. The 3D cubic surface under the current Duffing setup can naturally
be approximated as a three-piece linear system by putting partitions at these
two roots if the y set contains both roots. However, one should be aware

ses  that, the highly nonlinear parts at the peak and trough may require extra
partitions to accommodate using piecewise linear approximators. Another
thing worthy of notice here is that, the AR setup listed above in equation
(17) relies on the chaotic stability of the Duffing system, which is a common
paradigm in studying chaos theory [18]. The eXogenous input representing

ss0 random excitation is a crucial influencing factor to such stability, which is
amplitude dependent as shown by Rand [18].

The current value set-up for equation (17) is a = —0.98, b = 1.97, ¢ = —5000,
d =1le—6 and € = 0.0001 % o, (0.001% of RMS value). The eXogenous input
is uniformly drawn from [-100,100]. 4000 points are generated. Under such a

sss set-up, the y values are bounded in [-0.004,0.004], while the two roots are
+0.114. The y values do not contain both the peak and trough of the NARX
generative function in equation (17). Since the y values concentrate in the
small centre interval between £0.114, a weak nonlinearity in the system is
to be expected. Figure 8 shows the original time series data of y.

%1073

_4 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Time
Figure 8: Original Time Series data for Duffing oscillator case study.

ss0o  When applying a simple least-squares (LS) model to the data space con-
structed by input variables [y,—1, Yn—2, un—1] and output y,, the OSA predic-
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tion gives an extremely good fit to the original data by producing an NMSE
value of 0.02 which is much less than 1.0. However, as has been addressed
before, the OSA prediction is a rather rough metric to assess the NARX
model. The MPO predictions of the first 1500 data points from the LS model
are shown in Figure 9.

%107

—Original data
—MPO prediction

5 ! ! ! ! !

1 1
200 400 600 800 1000 1200 1400
Y

n-1

Figure 9: MPO predictions of LS model against original data.

Figure 9 shows that, even though the OSA predictions of the LS model show
exceedingly good agreement to the original data at a low level of nonlinearity,
the small nonlinearity in the system can be large enough to cause significant
departures from the original data in the MPO predictions. Here the NMSE
for the MPO predictions of the LS model is 69.5.

If the LK-CTGP is applied, the MPO predictions for the first 1500 data
points (for graphical clarity) are as shown in Figure 10.

The LK-CTGP produced six leaves to accommodate the nonlinearity in
the system. All the leaves are generated from partitions concentrated in
the dimension of y,_1, therefore, these partitions are reasonably placed.
Figure 10 shows a good agreement between the MPO predictions of the
LK-CTGP model and the original data. The NMSE here is decreased to
1.26. Another fairly interesting observation from the LK-CTGP plot is that,
most of the major departures from the test data curve concentrate towards
the middle section (y = 0), both end sections (y = £0.004,) and in-between
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Figure 10: MPO predictions of LK-CTGP model against original data.

sections (y = +0.0015). y = 0,+0.0015 are approximately three of the
seven partitions, which manifests that the error arises at the presence of
discontinuity. Besides, it is natural for Bayesian methods to produce less
accurate predictions at the boundaries of the data, where the data points
correlate with less points than the central points.

5. Case study: Automotive Shock absorber

In the case of applying the LK-CTGP to studying the behaviour of a shock
absorber, the objective of the modelling is to use the algorithm to establish
a relation between the restoring force and other factors. The study of the
shock absorber is a more challenging case compared to the case study of the
Dulffing oscillator, because the exact governing equation is not available and
more factors will influence the result.

The shock absorber is a crucial part in the assembly of the automobile sus-
pension system, whose characteristics contribute heavily to the ride comfort
and handling properties of a vehicle. The conventional industrial modelling
treatment to the shock absorber tends to simplify its mechanism as a basic
linear spring-damper system. However, the experiments studied by Lang
[19] and Hagedorn and Wallaschek [20] have brought debate against the
validity of such an assumption of linearity. In their work, the shock absorber
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behaviour is significantly nonlinear, and behaves quite distinctly when the
shock absorber is in compression or rebound.

Lang [19], developed a rather rigorous analytical model to describe such
nonlinear behaviour. His model is heavily parameterised with 87 parameters
being introduced. Though it did show a good agreement with the experiment,
the Lang model is far from serving the purpose of generalisation, as it only
applies to a particular absorber at a certain configuration.

Automotive dampers are known to be highly frequency and amplitude de-
pendent; this means that identification is generally complicated and even
nonlinear models are limited in their capability if they have constant pa-
rameters. However, beyond the scope of accounting for the physical in-
sight comprehensively, a straightforward approach of obtaining experimental
characterisation can be applied by repeatedly taking measurements of the
restoring force and velocity at different levels of excitation frequency and
amplitude, the actual profile of the characteristics diagram can eventually be
plotted for fixed frequencies. Despite such measurements inevitably having
to discard some information, which makes the acquired data too coarse for
accurate simulations, it provides an opportunity of constructing restoring
force surfaces [21] which inherently carry the information of displacement
and velocity. The paramount benefit from such restoring force surfaces is
that they are a nonparametric representation which is independent of the a
priori model of the structure.

In fact, the data considered in this paper come from a test carried out using
random excitation, so the circumstances of the test mean that frequency
effects are ‘averaged out’ throughout the data. Details of the test can be
found in [21], but essentially a shock absorber was blocked at one end and
a given velocity profile was imposed at the other end; measurements of
the force were obtained at the blocked end. The object of the test was to
characterise the force in the absorber as a function of displacement and
velocity. It was assumed that any dynamic behaviour would be minimised
in the test in the sense that the force function F(y,y) would be static and
there would be no inertial effects (although the absorber is blocked, there is
relative movement of the two ends, and internal movement of the absorber
fluid between chambers). In this paper, the process y — F' is modelled. In
the first instance, the LK-CTGP is used to determine the ‘static’ properties
of the relationships, but then extended to see if dynamic behaviour can be
identified and modelled. As will be shown, the nonlinearity in the absorber is
fairly clearly of a piecewise-smooth variety, and so the LK-CTGP is expected
to be aplicable.

The dataset consists of 7192 data points featuring three variable dimensions:
the restoring force, displacement and velocity. In order to commence a
time series analysis with the LK-CTGP under the considerations above, the
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restoring force is indicated as the NARX model output, and the velocity is
chosen as the exogenous input. The reason for choosing the velocity over the
displacement in this case is that the measurements from the displacement
sensor was subject to a higher level of noise, which can incur high levels of
prediction error, as the time series analysis is rather sensitive to noise. To
avoid potential over-fitting, the first 5000 data points are selected as the
training dataset, while the rest goes in the bracket of testing data. The overall
dataset is presented in Figures 11 (3D perspective) and 12 (2D perspective
with one dimension projected out).

-0.1

3
-0.2 o5 © x10

Velocity -0.4 -2 Displacement

Figure 11: Original training data space of the shock absorber.

From Figure 12, along with the dimension of the displacement being projected
out, the small variation in the vertical direction suggests that the restoring
force does not vary much with the change of displacement. Therefore,
the relation between the restoring force and the other two factors can be
approximately treated as a one-sided dependence on the velocity. Applying
the LK-CTGP to study the ‘static’ behaviour of the data was not anticipated
to present a serious problem. Figure 13 depicts the regions after the process
of partitioning. The figure shows that four piecewise-linear regions were
generated from the LK-CTGP. By comparing Figure 13 with Figure 12, the
mild curvature between [-0.05,0] in the velocity dimension is successfully
modelled as a narrow linear plane indicated by the yellow middle region in
Figure 13. The single partition in the displacement dimension also supports
the aforementioned supposition of displacement independence.
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Figure 12: Side view of the data space with the displacement projected out.

Under such a static fitting scheme, the prediction on the test data can be
plotted against the measured data, as in Figure 14. In general, the static
model captured the behaviour of the restoring force rather well. The bottom
part of the data is appropriately established by the model, while the top part
occasionally has been more severely over or under estimated. The NMSE
of the prediction is 1.3, which as it is from a static model, is rather good;
however, it must be remembered that the test was conceived in order to
simplify any dynamics.

An alternative approach to modelling, motivated by Giacomin’s work [22],
led to the use of a neural network approach to approximate the behaviour of
the shock absorber [21]; the authors tried to model the force-velocity curve
(e.g. Figure 12) using the same hyperbolic tangent transfer function used
commonly in neural networks, the full dynamical model was specified by,

mij + ci + ky + altanh(8j +~) — tanh(y)] = a(¢) (19)

where m, ¢, k are the classic coefficients involved in a mass-spring-damper
system; «, 3,7 are used to compensate for the nonlinear characteristics
associated with the nonlinear damping.

The model is nonlinear in the parameters and requires an iterative approach
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Figure 13: Layout of regions after partitioning.
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to least-squares; the coefficients were obtained through a process of gradient
descent (or backpropagation in neural network terminology), when given the
data to learn. The study showed that a static (m = 0) approximating model
generated a prediction with an NMSE=7, which is significantly larger than
the error produced by the LK-CTGP. The paper also looked at polynomial
models of the form,

Np

my + Z eyt + ky = z(t) (20)
=1

The prediction accuracy proved very much dependent on the order of the
polynomials assumed. With a linear model, the prediction NMSE was 15;
when a 9"-order model was assumed, the error reduced to 0.9. However, the
model did not generalise, and became unstable if prediction on an independent
test set was attempted. The static study of the shock absorber using the
LK-CTGP has generated a significantly improved prediction with an error
very close to the best error achieved through analytical modelling at high
polynomial order, with none of the stability problems as the LK-CTGP is
linear with positive damping in the asymptotic regimes.

——Measured test data
— Estimated data

| |
0 500 1000 1500 2000
Time

Figure 14: Prediction given by static modelling(NMSE=1.3).
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However, the LK-CTGP formulated as an piecewise-ARX model is actually
capable of dynamic modelling, so it offers an opportunity here to see if there
are any explicable dynamic effects in the shock absorber data as measured.
As before, the input is taken as the velocity and the output as force, and
the LK-CTGP is applied using a single lag on the output. The advantage
of starting with this minimal model is that one can physically visualise the
variable space.

200

Velocity ' .04  -400 Restoring force lag1

Figure 15: Training data space of shock absorber NARX system.

Figure 15 presents the training data within the variable space of the model
with a single lag. Following the profile of the data surface, one can picture
it as a contorted flat plane, in which the middle section stays largely flat
with both ends folding towards opposite directions. It is rather difficult to
visually imagine the appearance of the final fit, considering the contorted
shape as well as the misalignment of the data surface with the axis. The LK-
CTGP is capable of dissecting the complexity into piecewise linear simplicity.
After allowing the algorithm to run for only 1000 MCMC rounds, the fit
to the training data space is presented in Figure 16 (The units have been
normalised).

Figure 16 demonstrates explicitly that the nonlinearity of the contorted
surface can be broken down into seven segments of piecewise-linear planes.
The bright red and dark blue regions at both ends do fold in opposite
directions and are seemingly perpendicular to each other. The complete
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Figure 16: NARX data fitting.

gradation of the curvature from the middle dark red plane to the bright
red end section is almost perfectly expressed by four transitional regions in
between.

Figure 17 is a 2D perspective view of the partitioning plane, where all the
horizontal and vertical partitions are neatly arranged for a global inspection.

The model fit here led to the MPO predictions on the 2000 test data shown
in Figure 18. The NMSE error is approximately 23, which is a fairly large
error compared to that for a static model; however, considering the error
propagation in the NARX model, such a number could be considered as
reasonable. The main issue is that the model is not capable of encompassing
the frequency dependence of the real absorber. In the NARX model, the
frequency dependence manifests as a substantial component of correlated
noise which seriously interferes with the predictive capability of the model.
The exercise has largely proved unsuccessful because any dynamic effects
present in the data are clearly small compared to the effects of the ‘corre-
lated noise’. However, it is rather clear that the algorithm has successfully
captured the general behaviour of the data by producing a set of predictions
largely conforming to the original test data, despite having to some extent,
underestimated the span of the amplitude.

Although the initial results were not promising, one more lag was added into
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Figure 18: MPO predictions on the test set (NMSE=23).
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the model; the four dimensional variable space that resulted is not accessible
for an intuitive visualisation. However, the goodness of fit is reflected in
740 the final prediction error. Figure 19 shows the MPO predictions given by
the LK-CTGP on the NARX test data with two lags. When compared to
the the single lag case, the additional lag seems have actually reduced the
geometrical complexity of the partitioning in the training dataspace. With
the same number of partitions as the single lag case, the NMSE has been
75 reduced from 23 to 15. By comparing Figure 19 to Figure 18, it is fairly
interesting to see that in the two-lag case, as quite contrary to the single lag
case, the MPO predictions actually tend to overestimate the variation of the
data over the time. One can also observe that, the modelling of the lower
bounds of the original test data has been significantly improved by taking in
750 this extra lag.

800
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—MPO predictions
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Figure 19: MPO predictions on the test set with 2 lags (NMSE=15).

Due to the limits imposed by the curse of dimensionality, further introducing
lags into the system drastically exasperates the prediction. The NMSE
generated are egregiously high, which can be ascribed to a complete failure
of capturing the trend from the beginning of the NARX process.

755 6. Conclusions

This paper presented a preliminary study of a piecewise-linear NARX system
using the LK-CTGP model. The LK-CTGP model is easy to specify its
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parameters and counters nonlinearity by producing partitions of the variable
space and assigning locally-linear models to each partition. Through a
number of case studies, the effectiveness of the LK-CTGP in modelling
NARX systems has been demonstrated. By examining the results both
visually and mathematically, in all the cases, the LK-CTGP generated
reasonable partitions to assure local regional linearity was achieved. The case
studies on the synthetic piecewise-linear system indicated that the algorithm
does partition into physically appropriate regions; however, it is noticed
that the algorithm tends to over-split at partition boundaries when more
linear planes are added, which shows that the algorithm is conservative
at modelling sharp changes. One possible explanation for this is rather
simple; the algorithm switches leaves on the basis of the prediction variable;
however, it does not take account of the fact that previous values of lagged
variables may be found in different partitions. Intuitively, one can see that
the algorithm could compensate by grouping partition boundaries in order
to smooth a transition. Apart from such a drawback, the overall fitting is
considered as appropriate according to the predictive errors produced. The
later case study on the Duffing oscillator shows that the MPO predictions
are extremely sensitive to the presence of nonlinearity. The global linear
least-square method failed at predicting the time evolution of the data,
despite the fact that the OSA predictions were very good indeed. The
LK-CTGP model successfully solved the problem through partitioning the
data space. All the partitions were symmetrically placed in the dimension
where the nonlinearity was present. The final, experimental, case study of
the automotive shock absorber has shown that, the predictions produced by
the LK-CTGP on the static data system excelled the predictions given by
most of the previous analytical models. In the later NARX system study, the
algorithm successfully allocated sensible partitions to segregate the intricately
contorted surface into linear planes. However, due to the inevitable error
propagation in NARX model as the result of the (effective) correlated noise,
the MPO predictive error could not compete with the predictions based on
the static system. This problem could potentially be circumnavigated by
generalising the linear models on the leaves to ARMAX models and allowing
locally-linear noise models. This will be considered for further work.

The problem with the current LK-CTGP model is that the model requires an
initial estimate of the noise parameter rather than allowing it to be passively
learnt and updated throughout the learning process. In this paper, this noise
parameter is briefly determined by running a preliminary GP on the entire
dataset, where the overall noise parameter can be optimised. However, the
global noise parameter does not necessarily agree with the local noise levels
after the variable space has been partitioned, especially when the data is
characterised by heteroscedasticity. In all the synthetic case studies presented
in the paper, all the datasets have stationary variances, therefore, the global
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variance given by the nonparametric GP model should be a reasonable
approximation to the local variances after partitioning. However, without
the accurately-learnt variance, the confidence interval cannot be displayed
for analysis in this paper. Technically, the LK-CTGP can still optimise
the local noise parameter to obtain the correct variance through the same
optimisation process as for an SE kernel GP. However, the computational
cost would then be similar to a full Gaussian TGP. The major advantage
of using the LK-CTGP is its efficiency as supported by the existence of
analytical solutions to its linear structural parameters. Since no confidence
interval is computed, to some extent, the linear kernel GP segment in the
model can be substituted by even simple least-squares methods, in which
case the computational cost is even lower.

More fundamentally, the piecewise-linear model might not be the best piece-
wise model for the NARX system, because too many regions are required to
ensure a good linearity in each region. The general CTGP undoubtedly has
more potential in studying the NARX model. Those distance-based kernels
can offer smoother curve fittings for the TGP model, which seems to be
promising; however, the computational cost will drastically increase.
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