
Effects of Explicit Convection on Future Projections of Mesoscale Circulations,
Rainfall, and Rainfall Extremes over Eastern Africa

DECLAN L. FINNEY

School of Earth and Environment, University of Leeds, Leeds, United Kingdom

JOHN H. MARSHAM

School of Earth and Environment, University of Leeds, and National Centre for Atmospheric Science, Leeds,

United Kingdom

DAVID P. ROWELL, ELIZABETH J. KENDON, SIMON O. TUCKER, AND RACHEL A. STRATTON

Met Office, Exeter, United Kingdom

LAWRENCE S. JACKSON

School of Earth and Environment, University of Leeds, Leeds, United Kingdom

(Manuscript received 6 May 2019, in final form 13 November 2019)

ABSTRACT

Eastern Africa’s fast-growing population is vulnerable to changing rainfall and extremes. Using the first

pan-African climate change simulations that explicitly model the rainfall-generating convection, we inves-

tigate both the climate change response of key mesoscale drivers of eastern African rainfall, such as sea and

lake breezes, and the spatial heterogeneity of rainfall responses. The explicit model shows widespread in-

creases at the end of the century inmean (;40%) and extreme (;50%) rain rates, whereas the sign of changes

in rainfall frequency has large spatial heterogeneity (from 250% to over 190%). In comparison, an equiv-

alent parameterized simulation has greater moisture convergence and total rainfall increase over the eastern

Congo and less over easternAfrica. The parameterizedmodel also does not capture 1) the large heterogeneity

of changes in rain frequency; 2) the widespread and large increases in extreme rainfall, which result from

increased rainfall per humidity change; and 3) the response of rainfall to the changing sea breeze, even though

the sea-breeze change is captured. Consequently, previous rainfall projections are likely inadequate for in-

forming many climate-sensitive decisions—for example, for infrastructure in coastal cities. We consider the

physics revealed here and its implications to be relevant for many other vulnerable tropical regions, especially

those with coastal convection.

1. Introduction

Robust and well-understood predictions of changes

in extreme weather events, particularly rainfall, are ur-

gently needed by impact scientists, engineers, nongov-

ernmental organizations, and governments worldwide

to prepare for future climate change (Hoegh-Guldberg

et al. 2018). Eastern Africa is no exception, with several

recent high profile floods and droughts in the region,

highlighting vulnerabilities in current climate (Kilavi

et al. 2018; Funk et al. 2019).

Many studies of eastern African climate change have

already been undertaken (Shongwe et al. 2011; Cook

and Vizy 2013; Otieno and Anyah 2013; Rowell et al.

2015; Thiery et al. 2016; Ongoma et al. 2018; Osima et al.

2018; Giannini et al. 2018). Out of these numerous
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studies several conclusions paint a picture of how east-

ern Africa’s climate may change:

d Average temperature over eastern Africa could rise by

up to 58C by the end of the century under a high

emission scenario (Otieno and Anyah 2013; Rowell

et al. 2016; Ongoma et al. 2018).
d Temperature rise is shown to be nonuniform across

eastern Africa, with additional factors, such as prox-

imity to the ocean, affecting the size of temperature

rise (Osima et al. 2018).
d On average, the models show an increase in rainfall,

particularly from October to February (Otieno and

Anyah 2013; Ongoma et al. 2018).
d The range of rainfall projections is broad, and some

models do show a decrease (Rowell et al. 2015).
d Over Lake Victoria, extreme rainfall may increase

despite a possible decrease in mean rainfall in response

to climate change (Thiery et al. 2016).

While these studies are vital in helping populations pre-

pare, the climatemodels used so far are limited due to their

representation of convection. Several studies have shown

that the use of convection-permitting (CP)models—that is,

models that represent convection explicitly instead of

through approximations (convective parameterizations)—

can improve the modeled rainfall and its coupling with

convergence (Birch et al. 2014; Hohenegger et al. 2015;

Finney et al. 2019). A review by Prein et al. (2015) presents

results from studies evaluating CP models against various

observations. They show that CPmodels can reduce biases

in the simulation of the diurnal cycle of precipitation, ex-

treme precipitation, cloud cover, and associated radiation.

However, CP models do not necessarily improve the rep-

resentation of all aspects; for instance, they often to do not

greatly reduce biases in mean precipitation (Prein et al.

2015; Jackson et al. 2019). With regard to projections

of future climate with CP models, it is notable that they

can project greater increases in future extreme rain rates

than parameterized climatemodels (Mahoney et al. 2013;

Kendon et al. 2014; Ban et al. 2015; Prein et al. 2017;

Kendon et al. 2019). However, until recently CP models

have not been applied for continental-scale, tropical cli-

mate change simulations.

A new dataset simulating current climate over Africa

(Stratton et al. 2018) with a CP model at 4.5-km grid

spacing (CP4), and a parameterized convectionmodel at

;25-km grid spacing (P25), has been shown to improve

the representation of both intensity and timing of rain-

fall associated with deep convection (Finney et al. 2019;

Kendon et al. 2019). The samemodel has also been used

to simulate a future climate and has shown that for

Africa as a whole, explicit convection increases the

change in extreme rainfall (Kendon et al. 2019). For

current climate, a decade around the year 2000 is used,

with a future-climate simulation applying representative

concentration pathway 8.5 (RCP8.5; van Vuuren et al.

2011) changes to greenhouse gases and sea surface

temperatures for a decade around year 2100 (giving a

5.28C increase in global mean 1.5-m air temperature).

This new dataset allows us to address critical unan-

swered questions for eastern Africa, a region already

shown to have a different climate change response than

much of Africa (Kendon et al. 2019). Here we ask the

following questions: Does improved representation of

convection support or conflict with projections by pa-

rameterized convection, for total, extreme, and frequency

of rainfall across the hugely varied climatic zones of

eastern Africa? Can a deeper understanding of the

drivers of rainfall changes provide confidence in the

projections? And specifically, how does the rainfall cou-

pling, or lack of coupling, to atmospheric flows such as the

sea breeze affect rainfall projections in the two models?

2. Data

Two regional climate models based on the Met Office

Unified Model have been independently applied over an

African domain (Stratton et al. 2018). Each model has

been run for 10 years and 2 months (January 1997–

February 2007) for current climate, and for 10 years and

2 months for a decade representative of 2100. All results

use the 10 years of simulation following the first 2 months

of spinup. In addition to the 2-month spinup, soil moisture

has been spun up offline for 10 years using observed me-

teorological conditions as described further by Stratton

et al. (2018). Analysis here uses data archived from the

simulations at hourly or 3-hourly frequency, with the ex-

ception of the integrated subgrid vertical mass flux, which

has been postprocessed as a vertical column integral from

monthly mean model level data, and saturation vapor

pressure, which has been postprocessed from hourly in-

stantaneous 1.5m temperature.The vertical column integral

is a density-weighed integral over all model level depths,

thereby accounting for varying model depths. All analysis

uses complete years of data, without subselecting by season.

a. Setup of global driving model and common
regional model

Both simulations are 1-way nested within an unnudged

N512L85 global atmospheric model using the Global

Atmosphere/Land 7.0 (GA7/GL7) configuration (Walters

et al. 2019). The global model, which includes a convec-

tion parameterization, provides lateral boundary condi-

tions to the regional models, and is itself driven by sea

surface temperature (SST) analyses (Reynolds et al.

2007). The regionalmodels use this sameSSTdataset over
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the years 1997–2007. TheUnifiedModel is a nonhydrostatic

model based on a semi-implicit, semi-Lagrangian dy-

namical core. The global and regional configurations in-

volved in this study use ‘‘ENDGame’’ dynamics (Wood

et al. 2014). The land surface is simulated using the Joint

U.K. Land Environment Simulator (JULES) at the same

resolution as the respective regional models and coupled

to the atmospheric model. The domain of the regional

models encompasses the African continent and is de-

tailed in Stratton et al. (2018), but here we focus on a

subset of the data over eastern Africa.

Several lakes within the model domain are represented

as inland sea grid cells, many ofwhich are located in eastern

Africa (Stratton et al. 2018). Lakes included in the ARC-

Lake, version 3, dataset (Hook et al. 2012; MacCallum

and Merchant 2012) (http://www.laketemp.net/home/) in-

cludingLakesVictoria, Tanganyika, andMalawi, andmany

others use a surface temperature of monthly nighttime

estimates from a climatology over 1995–2012, otherwise

for smaller lakes (typically for lakes of less than 50km2)

the value is prescribed from the nearest grid cell that is

either in ARC-Lake or is an ocean grid cell. A uniform

sandy soil is applied across the domain in both regional

simulations. This choice is made to avoid introduction

of rainfall biases related to unrealistic small-scale

variability in soil properties (De Kauwe et al. 2013),

particularly in the convection-permitting model. Full

details of the soil property setup are provided in the

model description paper (Stratton et al. 2018), but for

our analysis here the experiment design provides a

clean comparison of the effect of the higher resolution

and representation of convection. Further details of

the simulations are provided in the CP4A overview

paper (Stratton et al. 2018) and East Africa evaluation

paper (Finney et al. 2019).

b. Convection-permitting regional model (CP4)

This regional climate model has no convection pa-

rameterization (including no shallow convection param-

eterization), instead convection occurs explicitly based

on the atmospheric equations of motion. Convection is

possible without parameterization because of the high

resolution used (4.5-km grid spacing at the equator).

Although small-scale shallow convection will not be well

resolved, several past studies have shown success of such

coarse grid spacings over tropical continents (Marsham

et al. 2013; Willetts et al. 2017; Kendon et al. 2019). Each

model uses orography at its raw resolution, so this as-

pect is better resolved by the CP4 simulation. A mois-

ture conservation scheme is applied to this simulation

(Aranami et al. 2015), which generally acts to reduce

precipitation extremes over the African domain as dis-

cussed by Stratton et al. (2018). The large-scale cloud

scheme (Smith 1990) is that used in other convection-

permitting versions of the Unified Model. The cloud

scheme diagnoses liquid cloud fraction and condensed

water when the gridboxmean relative humidity exceeds a

critical value. Ice water content is determined by the

microphysics scheme, with cloud fractions then diagnosed

(Abel et al. 2017). A higher vertical resolution is used

than in the parameterized convection models. The verti-

cal grid consists of 80 levels up to 38.5km, with higher

resolution in the boundary layer and troposphere. For all

analysis in this study, the CP4 data have been regridded

using area-weighting to the N512 horizontal grid.

c. Parameterized convection regional model (P25)

A regional simulation with parameterized convection

is used to compare against the convection-permitting

simulation. This simulation has the same grid spacing as

the global driving model (approximately 26 km in lati-

tude by 39km in longitude at the equator). The vertical

grid consists of 63 levels up to 41km. The cloud scheme

used by the model is the prognostic cloud scheme (PC2;

Wilson et al. 2008) as used in the global driving model.

The P25 model is similar to the global driving model

but provides a better comparison to the CP4 simula-

tion as it uses the same domain, land surface, and

aerosol climatologies. The convective parameteriza-

tion is that implemented in GA7 (Walters et al. 2019).

The scheme is based upon amass flux scheme (Gregory

and Rowntree 1990) with several extensions (Walters

et al. 2017).

d. Future-climate model setup

The global driving model has also been run for a fu-

ture climate using the representative concentration

pathway 8.5 for greenhouse gas concentrations for year

2100, and this has been used to drive a future simula-

tion with the CP4 and P25 models (Kendon et al.

2019). For future-climate SSTs, a DT is added to the

current-climate observation-based SSTs (described in

section 2a), with the same change used for the global

model and both regional models. The DT is calculated

on a gridcell and monthly basis as the climatological

decadal mean change in SST between the end of the

century and the present day from HadGEM2-ES global

climate model simulations. As well as the above condi-

tions, for the regional models, a DT is applied to lake

surface temperatures calculated based on a fraction of

the change in land grid cells in the vicinity of the lakes

in the HadGEM2-ES simulations (further details are

given below). Ozone and aerosol climatologies are not

changed from the current-climate simulation. The set of

changes described allows the isolation of changes gen-

erated from future greenhouse gas changes.
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e. Prescribed lake surface temperature changes

For each lake and climatological month, the following

approach is used to calculate a future change to add to

the current-climate observed lake surface temperatures.

Before final use the values calculated were smoothed

using a 3-month rolling average. The equation to cal-

culate the lake temperature change is

DT
lake

5DT
land

"
k1 (12 k)

DT
coast,sea

DT
coast,land

#
,

where DTlake is the DT applied to observed current-

climate lake surface temperatures, k is a constant 0.75,

DTland is the average value of surface air temperature

changes over the CP4 lake grid cells interpolated from

the land grid cells in the global driving model, DTcoast,sea

is the average change in air temperature of coastal ocean

grid cells between 158S and 158N in the simulation by the

global driving model, and DTcoast,land is the average

change in air temperature of coastal land grid cells be-

tween 158S and 158N in the global driving model. The

only lake grid cells in the global drivingmodel were over

Lake Victoria, but the associated temperature changes

were not considered to be reliable, so the values in these

grid cells were replaced by averages over land grid cells

in the vicinity of the lake.

The k constant represents the weighting of the tem-

perature change of surrounding land compared to tem-

perature change of surrounding land adjusted by the

simulated ratio of coastal ocean/land warming. For k5 1,

the lake temperature changes will be the same change

as the surrounding land. A smaller value adds an inertial

term associated with the ocean–land contrast. Here a

small inertial term (1 2 k) with weighting 0.25 is used

that is based on recent evidence that many lakes may be

currently warming as fast as neighboring land (O’Reilly

et al. 2015), although this is yet to be substantiated by

other studies. The exact value of k is somewhat arbi-

trary, but nevertheless it is a reasonable choice given the

little evidence currently available on the response of

East African lake temperatures to climate change. Lake

surface temperatures for P25 were aggregated from the

CP4 changes described above so that the changes are

consistent between the two simulations.

Climate models have a variety of approaches to sim-

ulating Lake Victoria water temperature changes, and

several approaches are used in the regional Coordinated

Regional Downscaling Experiment (CORDEX) models

(Vanderkelen et al. 2018). Some models, such as Rossby

Center Regional Atmospheric Model, version 4 (RCA4),

Consortium for Small-Scale Modeling in Climate Mode

(CCLM), and the Canadian Regional Climate Model,

version 5 (CRCM5), use the Flake 1D lake model. The

Regional Atmospheric Climate Model, version 2.2

(RACMO22T), parameterizes temperatures on the

basis of deep soil temperature of the surrounding land.

The Consortium for Small-Scale Modeling climate

version of the Lokalmodell (CCLM4-8-17) interpolates

sea surface temperature. This latter approach generally

leads to cold biases and suppression of lake rainfall. In

CORDEX simulations, the range of projections of

Lake Victoria rainfall varies from decreases to in-

creases (Vanderkelen et al. 2018), which may relate to

their different representations of the lake. Some global

climate models represent the lake surface as water,

others as saturated soil or in some cases as land. In any

case, many of these models struggle to resolve the lake

and the neighboring mountains due to coarse grid

spacings. Here we have used regional models that use

satellite-observed temperatures for the present day

and in future climate have applied a change that is a

fraction of the simulated temperature change of land

grid cells around the lake in the future simulation of the

global parent model. This approach ensures a lake

temperature that matches observations in present day

and a plausible response of temperatures to climate

change even though there is no lake model coupled to

the atmospheric model.

f. Satellite rainfall observation product

Two satellite-based rainfall products are used to evalu-

ate the model simulations. These are the Tropical Rainfall

Measuring Mission (TRMM) Multisatellite Precipitation

Analysis 3B42, version 7, and the Climate Prediction

Center Morphing technique (CMORPH) product (Xie

et al. 2017). As with the CP4 data, all satellite data have

been regridded using area weighting to the N512 reso-

lution in order to compare to the parameterized con-

vection model. For clarity only the CMORPH results

are shown in figures, since the results of the two products

are similar. Where relevant we discuss the TRMM re-

sults in the text.

The CMORPH product uses precipitation estimates

frompassivemicrowave instruments and propagates these

precipitation estimates using motion vectors, which are

obtained from geostationary satellite infrared data. Time-

weighted linear interpolation is applied between forward-

and backward-propagated precipitation estimates. Here

we used the bias-corrected CMORPH product, which has

calibrated the satellite-based precipitation estimates to

gauge station data (Xie et al. 2017). Data are provided on

an 8-km horizontal grid and at 30-min intervals from 1998.

Data from 1998 to 2006 have been used.

The TRMM product combines passive microwave–

based estimates of rainfall from multiple polar-orbiting
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instruments with infrared-based rainfall estimates from

geostationary satellites (Huffman et al. 2007). Bias

correction is then applied to the estimates on the basis of

monthly rain gauge data. Data are provided on a 0.258
horizontal grid and at 3-hourly intervals from 1998. The

observation years used to compare with model simula-

tions are noted in the relevant figure captions.

3. Methods

a. Composite analysis

To understand the drivers of extreme rainfall, com-

posites of 3-hourly data are used. These take rainy 3-

hourly periods (.0.125mmh21) during which the rain

rate is between the 98.5th and 99.5th quantiles, calcu-

lated on a gridcell basis. The first 3-h period is taken as

0000–0300 UTC, with three consecutive periods there-

after. Averages are then taken over total column water

and vertically integrated vertical mass flux at these

times. An average over the 1.5-m specific humidity in the

preceding 3-h period is also used.

b. Clausius–Clapeyron analysis

This work analyses three ratios in relation to the

Clausius–Clapeyron (CC) scaling, as shown in the equa-

tion below. These are the ‘‘precipitation change com-

pared with CC scaling,’’ the ‘‘humidity change compared

with CC scaling,’’ and a residual change.We calculate CC

scaling as the change in 1.5-m saturation vapor pressure:

D
%
P

D
%
e
sat1:5m

5
D

%
q
1:5m

D
%
e
sat1:5m

3
D

%
P

D
%
q
1:5m

,

where

D
%
X5 1003

X
f
2X

c

X
c

and P is precipitation, esat1.5m is the saturation vapor

pressure at 1.5m, q1.5m is specific humidity at 1.5m, X

represents each of the previous variables, Xc is using

data from the current climate, and Xf is using data from

the future climate. For the first results using total rain-

fall, the values are averages taken over all times. For the

second results of the extreme rainfall metric, the pre-

cipitation is the 99th percentile of rainfall during wet 3-h

periods, the saturation vapor pressure is the average

over all times, and the specific humidity is the average of

times in the 3 h preceding rainfall when the rain rate is

between the 98.5th and 99.5th quantiles. This latter

measure is used because it approximates the humidity

available to the storm. A comparison is still made to the

all-time average (as opposed to the prestorm average)

saturation vapor pressure to establish whether prestorm

humidity changes relative to mean temperature change

of location following CC scaling, or with a sub- or su-

perscaling. By using different timings, the results will

encompass differences in temperature at prestorm times

relative to mean temperature, as well as changes in

relative humidity at prestorm times.

4. Future rainfall changes

As a starting point, Fig. 1 shows the total rainfall,

rainfall frequency, average rain rate, and 99th percentile

rain rate during wet 3-h periods (i.e., an extreme-rain-

rate metric). The two models show broadly the same

distribution of total rainfall, and the details of differ-

ences are discussed at length in Finney et al. (2019).

Average and extreme rain rates are much lower in the

P25 model, and rainfall frequency is much higher.

Kendon et al. (2019) show that, for wet season equiva-

lents of these metrics, CP4 is close to the TRMM and

CMORPH rainfall estimates, while P25 underestimates

rain rates and overestimates rainfall frequency. Such

biases are generally expected in models using parame-

terized convection and were also found for the specific

whole-year metrics analyzed here (not shown).

Although the parameterized convection model has

biases in certain current-climate rainfall metrics, it is

common to still consider the climate change signal pro-

jected. In this study, we investigate whether the projec-

tions of climate change in rainfall differ between the

parameterized convection model, and the model using

explicit convection. Given the different current-climate

values for rain rates and frequency, we use future per-

centage changes relative to their own current-climate

values to compare the models.

The two simulations analyzed here each exhibit large

spatial variability of changes in rainfall characteristics,

as well as substantially different projections of certain

metrics (Fig. 2). Figure 2 includes significance testing

where hatching shows insignificant grid cells at 5% level

from a Student’s t test applied over the 10 annual values

of the metrics. We assume that the 10 annual values in

each of the current- and future-climate simulations are

independent, even though there is common interannual

variability in the SST forcings used. The results show

that CP4 gives a stronger response of total rainfall than

P25 (gradient of the best-fit line m 5 1.28), with large

increases in many drier regions, although overall spatial

patterns of changes are similar (correlation coefficient

R 5 0.71). Both models show notable percentage in-

creases over Lake Victoria (label V) and surrounding

mountains, especially to the northeast; the Turkana

channel (T); the center of the Horn of Africa (H); and
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the Awash Valley (A), with relatively small changes

close to the coast.

CP4 shows similar increases across the domain in both

average and extreme rain rates, while P25 shows large

variations in the increases, for example, ranging from

10% to over 90% increases over theHorn of Africa. The

spatial pattern of changes of P25 mirror the changes

in total rainfall, whereas the spatial pattern of CP4

rain rate changes are not similar to the total changes,

resulting in very low correlations (;0.1) between the

two models. Changes in rainfall frequency are corre-

lated between models (R 5 0.74) but with much larger

changes in CP4 (m 5 1.66). P25 does not capture such

large percentage changes in rain frequency, and there-

fore, its pattern of changes in rain intensity and total

rainfall are broadly similar.

In summary, within the current climate the two models

have similar total rainfall, despite large differences in

average rain rate, rainfall frequency, and extreme rain

rates. The CP4 model shows larger increases in total

rainfall than P25 under climate change, but the spatial

patterns of change are similar. However, the spatial pat-

terns andmagnitudes of change of othermetrics aremuch

more different between themodels. It is notable that, on a

gridcell basis, some of the largest increases in extreme

rain rate are in the P25 model. On average, it is expected

that larger changes would be seen in an explicit convec-

tion model, and this is the case for many grid cells.

However, the focus of the large changes in the P25 model

around areas where mesoscale flows dominate (Lake

Victoria basin, theHorn ofAfrica, and the easternCongo)

suggests this is just an intensification of those underlying

mechanisms. In contrast, in the CP4 model, the increases

are widespread and show that in this model, with a much

better representation of convection, climate change affects

storms more broadly across the region than the parame-

terized convection model suggests.

5. Drivers of rainfall change

Availability of water and convective available potential

energy provide the fundamental controls on convection and

rainfall, and in the tropics these are affected by the Hadley

and Walker overturning circulations. We first consider the

horizontal flows of moisture moving water vapor from the

ocean across the continent. Figures 3a and 3c show that

both models have an average easterly flow of moisture flux

from the Indian Ocean across eastern Africa. In the fu-

ture scenario, both models project this flow will increase

(Figs. 3b,d). Themoisture flux convergence correspondingly

increases over the land too, generating increased rainfall.

Similar analysis has been undertaken for evaporation (not

shown), the other source term in the atmospheric moisture

budget (Finney et al. 2019). Evaporation over water bodies

increases with increased temperature, thereby increasing

the source of moisture to the atmosphere in these locations.

There are also some small changes/differences in evapora-

tion over land, but these are generally smaller than, and in

FIG. 1. Current-climate annual climatology of rainfall metrics for (top) CP4 and (bottom) P25. Rainfall metrics shown are the (left) total

rainfall, (left center) frequency of 3-hourly rainfall, (right center) average rain rate at wet 3-h periods, and (right) 99th percentile of wet 3-h

periods. Wet 3-h periods are 3-hourly rainfall . 0.125mm (3 h)21. Gray contours show 1000- and 2000-m orography.

2706 JOURNAL OF CL IMATE VOLUME 33

D
ow

nloaded from
 http://journals.am

etsoc.org/doi/pdf/10.1175/JC
LI-D

-19-0328.1?dow
nload=true by guest on 23 June 2020



most cases less than one-half of, the moisture flux conver-

gence changes/differences shown in Fig. 3.

A subtlety in the moisture flux changes is that there is

actually weaker easterly flow in the CP4 model (Fig. 3e),

as well as weaker increases (Fig. 3f), relative to the P25

model. Potentially as a response to this smaller easterly

flow increase, the CP4 model shows larger rainfall in-

creases than the P25model in theEastAfricanRiftValley

but smaller changes over eastern Congo (Fig. 2). This

result clearly demonstrates how changing the represen-

tation of convection modifies the effect of climate change

on continental-scale rainfall patterns and circulations.

Such westerly anomalies enhancing rainfall over the

LakeVictoria region are also presented byGiannini et al.

(2018). In their conclusions, Giannini et al. (2018) caveat

that the complex orography of East Africa is likely to

affect this anomalous westerly flow and that the global

models usedmay not sufficiently resolve this for the result

to be robust. However, in our results, the model with the

highest resolution exhibits the westerly moisture flux

anomaly relative to the lower-resolution model, and

therefore we suggest the results of Giannini et al. (2018)

are not simply a consequence of poor representation of

orography.

In Fig. 4, the annual average column-integrated vertical

mass flux, and change in the future climate are shown.

The current-climate results show both models have net

ascent over the highland areas of eastern Africa, and net

descent over the lowland areas of the Horn of Africa

(Figs. 4a,c). Ascent and descent generally correspond to

the wetter and drier regions, respectively. Figure 4 dem-

onstrates how East Africa is a region of transition from

ascent in the Congo to subsidence over the IndianOcean,

with these ascents and descents being part of the tropical

FIG. 2. Percentage changes in the annual climatology of rainfall metrics for (top) CP4 and (middle) P25, and (bottom) the relationship

between the projections of the two models. Rainfall metrics shown are the (left) total rainfall, (left center) frequency of 3-hourly rainfall,

(right center) average rain rate at wet 3-h periods, and (right) 99th percentile of wet 3-h periods. Wet 3-h periods are 3-hourly rainfall.
0.125mm (3 h)21. Hatching shows insignificant grid cells at the 5% level as based on a Student’s t test applied over the 10 annual values of

themetrics. Density plots are shown for land and lake grid cells in themaps, but ocean grid cells have been excluded. Pearson’s correlation

coefficient R and the gradient of the black best-fit linem are given. Gray contours show 1000- and 2000-m orography. The white letters V,

T, H, and A in the top-left panel label Lake Victoria, the Turkana Channel, the Horn of Africa, and the Awash Valley.
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climate features of the Hadley and Walker circulations.

It is, therefore, of interest to understand how the two

models here respond to the influence of climate change

on these circulations and how they modify them on a

regional scale. In general, tropical overturning circula-

tions are expected to weaken under climate change

(Collins et al. 2013). And indeed, over eastern Africa,

there is reduced subsidence in the regions of net subsi-

dence. However, there is also increased ascent in regions

of net ascent, thereby also generating increased rainfall in

these regions and demonstrating an important difference

between easternAfrican climate change response and the

theoretical global average view of the response of the

overturning circulation.

To improve understanding of drivers ofmodeled rainfall

changes, and therefore our confidence in projections, it is

common to consider the well-studied thermodynamic re-

sult of increasing saturation vapor pressure esat with in-

creasing temperature of ;6%K21 near the surface (CC

scaling) (O’Gorman andMuller 2010; Kendon et al. 2019).

Global average rainfall is expected to increase at a sub-CC

scaling (1%–3%K21) (Collins et al. 2013). However, this

will vary regionally, especially over land where advection

of moisture from the oceans is an important factor.

FIG. 3. Average moisture flux (vectors) and moisture flux convergence (color-shaded contours) for (left) current

climate and (right) future change for (top) CP4 and (middle) P25. The moisture flux variable is a column integral

over the all model levels up to full model height and weighted by density. Also shown are (bottom left) differences

between CP4 and P25’s current climate and (bottom right) the difference between the models’ climate change

response. Gray contours show 1000- and 2000-m orography.
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Figures 5a and 5d show that over much of eastern Africa

total rainfall increases at a super-CC scaling, deviating

from the global average behavior. This is despite specific

humidity over those areas roughly following CC scaling

(i.e., relative humidity is unchanged). Since changes in

specific humidity do not account for the super-CC and sub-

CC scalings of rainfall (Figs. 5b,e), they must occur as a

result of changes in rainfall per change in low-level spe-

cific humidity (Figs. 5c,f), generally corresponding to

changes in vertical mass flux (Fig. 4). The increase in

moisture flux convergence (Fig. 3) also supports the in-

crease in rainfall. The two models show similar patterns of

change, but CP4 shows larger changes. It should be noted

that the average vertical mass flux change in Fig. 4 includes

changes in subsidence as well as changes in ascent. Since

the strength of subsidence may not have a proportional

effect on rainfall, a direct correspondence between av-

erage vertical mass flux and total rainfall is not expected.

However, it is useful to see that the changes are broadly

consistent.

The result that total rainfall changes are strongly

controlled by the rainfall per humidity change implies

one or a combination of different mechanisms: 1) in-

creased frequency of storms in the future climate, 2) a

speeding up of the water cycle through increased evap-

oration and/or moisture flux convergence to accompany

increased updraft strength and supply moisture at a

faster rate to storms, or 3) a greater conversion of

available moisture to rainfall within clouds through cli-

mate change impacts on storm dynamics and micro-

physics. We have shown in Fig. 2 that frequency of

rainfall increases, demonstrating that mechanism 1 is

a factor. To establish the role of mechanism 3 would

require much more detailed analysis beyond the scope

of this study. However, we can provide further insight

on the role of mechanism 2 through focusing on the

extreme rainfall cases.

Figure 5j shows that for many places parameterized

convection does not capture the super-CC changes in

extremes in the CP4 model (Fig. 5g). Instead we see that

FIG. 4. Average column-integrated vertical mass flux for (top) CP4 and (bottom) P25 for (left) current climate and

(right) future change. Gray contours show 1000- and 2000-m orography.
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FIG. 5. Clausius–Clapeyron scalingof rainfall and its decomposition intoahumidity change anda residual change: (left) ratioof rainfall change to

esat change, (center) ratio of specific humidity change to esat change, and (right) ratio of rainfall change to specific humidity change for (a)–(f) total

rainfall using average humidity over all times and (g)–(l) the 99th percentile of rainfall at wet times using humidity from the 3h preceding extreme

rainfall. Hatching in (g)–(l) shows where fewer than 10 rainfall events have been used in either/both of the current- and future-climate composites.

Gray contours show 1000- and 2000-m orography. For details of the methods of composition and Clausius–Clapeyron analysis refer to section 3.
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the largest increases occur over the Horn of Africa

(Fig. 5j) in similar locations to where largest total rain-

fall increases occur (Fig. 5d). CP4, however, shows a

very different response of extremes (Fig. 5g) compared

to its total rainfall changes (Fig. 5a). The super-CC

scaling is a result of factors other than low-level hu-

midity, since available humidity preceding the extreme

rain events increases at CC scaling or less (Fig. 5h). The

CC scaling of humidity will have contributed toward

part of the increase of rain rate, but the vertical mass flux

can also further increase the rain rate beyond the CC

scaling. Analysis of the total column water (TCW) and

vertical mass flux at times of extreme rainfall confirms

that the parameterized convection has a weaker sensi-

tivity to spatial variability of TCW (Fig. 6) and has a

smaller range in both TCW and vertical mass flux. Both

models do show increased values of updraft mass flux

in the future, suggesting the super-CC scalings of

total rainfall are not solely a result of increased rainfall

frequency but also these stronger updrafts. There is

evidence in the literature that storms modify the avail-

able moisture of the environment (Taylor et al. 2017).

Therefore, a smaller range of TCW and updraft mass

flux, relative to the CP4 model, highlights that the P25

model fails to sufficiently modify its environment dur-

ing the lifetime of a storm, thereby limiting the highest

values of 1) available water and 2) updraft strength

driven by latent heating.

6. Changes to mesoscale circulations

We now consider changes over Lake Victoria and the

Horn of Africa, both areas of super-CC total rainfall

change (Figs. 5a,d) and containing key population centers

(e.g., Kampala, Uganda, and Mombasa, Kenya). There is

significant influence of lakes and the Indian Ocean on

rainfall in eastern Africa. Contrasts between water and

land in daily cycles of temperature lead tomesoscale flows

that drive convergence and convection. Under climate

change there are lags in the surface warming of water due

to mixing that can suppress or enhance the underlying

daily cycles of mesoscale flows. In the simulations here,

the surface temperature changes of lakes and oceans are

imposed based on global climate models and understand-

ing of how lake bodiesmay respond to climate change (see

section 2 for details). The temperatures changes at 1200

and 0000UTC and the average change are shown in Fig. 7.

The results show that the land warming is greater than

water warming. In the daytime, when land is warmer than

water, the temperature contrast between the two surface

types increases under climate change. While at nighttime,

when land is cooler than water, the temperature con-

trast will decrease under climate change. These different

changes in temperature contrast are important for meso-

scale circulations and are discussed in the following sec-

tions. Note that for the remainder of this section times are

given in East Africa time (EAT), which is UTC plus 3h.

FIG. 6. Composited TCW and column-integrated vertical mass flux at times for which rainfall is between the

98.5th and 99.5th percentiles of wet times [.0.125 mm (3 h)21]. Black dots are current-climate land grid cells,

and gray dots are future-climate land grid cells. Grid cells with fewer than 10 contributing events are not

included. Solid lines show the current-climate line of best fit, and dashed lines show the future-climate line of

best fit.
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a. Nocturnal land-breeze convergence over Lake
Victoria

LakeVictoria isEarth’s largest tropical lake, a source of

the Nile, and a key natural resource. The lake rainfall,

which maintains the lake, is generated by low-level con-

vergence over the lake at night as a consequence of the

lake–land temperature contrast (Anyah et al. 2006; Thiery

et al. 2015; Williams et al. 2015; Finney et al. 2019) as

captured by both models (Fig. 8). The total convergence

across the lake is 0.00106 s21 in P25 and 0.00120 s21 in

CP4, so a stronger land-breeze forcing occurs in the CP4

model as discussed by Finney et al. (2019). TheCMORPH

satellite estimates of rainfall confirm the nighttime peak in

rainfall, though the rainfall maximum is offset slightly to

the west of the model rainfall maximum. The same anal-

ysis has been performed with an alternative satellite

rainfall product, TRMM (not shown). The TRMM prod-

uct also shows a lake maximum of nocturnal rainfall but

this is over the southwest of the lake. The difference be-

tween satellite products in the exact location of the max-

imum suggests the models cannot be evaluated to this

level of detail, but it can be said that they correctly

simulate a nighttime peak in rainfall over the lake

(Finney et al. 2019).

Increases in atmosphericmoisture under climate change

lead to an increase in rainfall over the lake, but this is

modified by changes to the nighttime convergence. Under

climate change land warms more than water. At night this

leads to a weaker lake–land temperature contrast (Fig. 7)

and weaker convergence (Fig. 8). Both models simulate

similar reductions in lake convergence, 216% in P25

and 213% in CP4. Correspondingly, both models show

smaller percentage increases in rainfall where that con-

vergence hasweakened, resulting in the largest percentage

rainfall increases over the east and south of the lake.

Contrasting east–west changes have also been found pre-

viously (Thiery et al. 2016), and the success of the P25

simulation here gives confidence that parameterized con-

vection models may be able to qualitatively capture the

pattern of mean rainfall changes over Lake Victoria.

However, such success is reliant on the simulations using

high enough resolution to represent the lake and capture

changes in lake temperature (which are imposed here).

Nevertheless, with both our study and a past study showing

an east–west contrast in precipitation change, those car-

rying out future impact studies should consider that com-

munities on the eastern shore of the lake may face larger

percentage increases in rainfall than on the western shore.

Future ensemble convection-permitting projections in the

LakeVictoria basin, such as those of the climate Extremes

in theLakeVictoriaBasin (ELVIC) project, will be able to

further establish the robustness of this result.

We have demonstrated the important role of con-

vergence over Lake Victoria on rainfall and its future

change. This convergence arises due to the lake–land

temperature contrast, and as a result is a function of the

change in that contrast. The supplemental material of

FIG. 7. Average 1.5-m temperature future change (K) at (left) 0000 UTC, (center) 1200 UTC, and (right) all times

for (top) CP4 and (bottom) P25. Gray contours show 1000- and 2000-m orography.
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Thiery et al. (2016) shows an increase in mean 2-m air

temperature of Lake Victoria of 3.5–4K using RCP8.5

2071–2100, with mean temperature increases of land

around the lake of about 3.5–4.5K. Mean 1.5-m temper-

ature changes from the simulations here are shown in

Fig. 7, these are substantially greater (lake: 5.4K; CP4

land: up to 6.0K; P25 land: up to 6.4K), but overall

change in the mean lake–land temperature contrast is

similar to that of the previous study (;0.5–1K). Figure 5b

shows that in CP4 the low-level moisture over the lake is

scaling with the temperature increase following the CC

relationship, and this could be expected of the model of

Thiery et al. (2016) too. The higher temperature increase

in CP4 than in Thiery et al. (2016) has likely led to a

higher moisture availability and may explain why our

model results show an increase in average rainfall over

the lake while the previous study results show a decrease

in mean lake rainfall, that is, with a greater warming the

scaling of available water (;7%K21) may dominate the

decreased convergence from decreasing nocturnal land–

lake contrast. This hypothesis would need dedicated

runs with varied lake warming to test. Our results, how-

ever, appear to show that the parameterization of con-

vection does not change the fundamental character of

climate change in Lake Victoria total rainfall, likely since

the rainfall is strongly forced at night and so is not di-

rectly affected by the diurnal timing bias of the daytime

parameterized convection, unlike the evening rainfall

coupled to the sea breeze discussed in the next section.

b. Sea-breeze convergence over the Horn of Africa

The Horn of Africa is an unusually dry tropical region,

particularly vulnerable to catastrophic droughts (Funk

et al. 2019), where convergence of low-level moisture

from the sea breeze, that arises from the land–ocean

temperature contrast, provides a strong control on rain-

fall. A transect was chosen to capture the convergence

and rainfall patterns along the Horn of Africa, as well as

the patterns of change in those features. Consideration

was also given to the clarity of the propagating rainfall

feature in the CMORPH satellite rainfall estimates. The

hourly average values for 10-m wind convergence and

rainfall were interpolated to points along the transect,

and then plotted as Hövmöller plots in Fig. 9. The tran-

sect from the coast toward the Ethiopian highlands in

Fig. 9 shows that both models have an inland progres-

sion of low-level convergence through the afternoon and

evening because of the sea breeze. Both models also

show a stationary nighttime convergence between 08 and
18 latitude. This is located along the coastline and asso-

ciatedwith themean onshore flowof the Somali low-level

jet being slowed as it passes from the relatively smooth

ocean to the coarser land.

FIG. 8. Rainfall, 10-mwind, and10-mwindconvergence changesover

Lake Victoria averaged over 0000–0900 EAT for (top),(top middle)

current climate averages and (bottom middle),(bottom) future climate

changes. The red contours are CMORPH rainfall observations. Gray

shading masks areas with,0.1mmh21 rainfall in the current climate.
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FIG. 9. Transect Hövmöller plots of rainfall and dynamical changes over theHorn ofAfrica for

(left) CP4 and (right) P25: (top) mean 1800 EAT 10-m wind convergence and rainfall (blue

contours), along with the black dotted transect used in the other panels; (top middle),(middle)

current climate means, where the red contours are CMORPH rainfall observations, and (bottom

middle),(bottom) mean changes under future climate, where solid and dashed black contours

show positive and negative values, respectively, from the current climate.

2714 JOURNAL OF CL IMATE VOLUME 33

D
ow

nloaded from
 http://journals.am

etsoc.org/doi/pdf/10.1175/JC
LI-D

-19-0328.1?dow
nload=true by guest on 23 June 2020



Satellite rainfall estimates of CMORPH (red contour)

show a feature in the mean rainfall that propagates in-

land with the sea-breeze convergence—something that

is much better captured by CP4. The satellite rainfall

product of TRMM also shows a similar propagation

of rainfall to CMORPH (not shown). The CP4 model

does show an overestimate, though smaller than P25,

of rainfall inland (;38 latitude; 1500 EAT) but shows

an inland rainfall progression through the afternoon,

whereas P25 rainfall completely cuts off at 1800EATwhen

rainfall observations are peaking. Our results support

similar findings by Birch et al. (2015) that parameterized

convection simulations are able to produce the sea breeze,

but not a realistic response of convection and rainfall.

In general, increased specific humidity under climate

change (i.e., close to unchanged relative humidity shown

in Fig. 5 with increased temperatures shown Fig. 7) will

work to increase rainfall, and this rainfall increase is seen

in both models in Fig. 9. However, changes in conver-

gence are also likely to affect generation of rainfall

through increased likelihood of triggering convection and

increased supply of moisture to storms. The greater land–

ocean contrast in the future (Fig. 7) strengthens the sea

breeze in both models, giving greater convergence along

the leading edge, accompanied by weaker convergence

on the trailing edge, resulting in the convergence line

initiating farther inland (Fig. 9; 1200–1500 EAT and

;0.58 latitude). In P25, rainfall only responds at night,

whereas the CP4 rain responds throughout the afternoon,

with the exception being close to the coast where the

convergence line begins farther inland. This is particu-

larly important for densely populated areas of the coast-

line, including those in major cities such asMombasa and

Mogadishu, Somalia. Under climate change this coastline

region may experience weaker increases in rainfall than

farther inland or even no change in total rainfall (Fig. 2),

something not well simulated with parameterized con-

vection. Furthermore, global climate models with much

coarser resolution than P25 would not be able to capture

the small-scale but important sea breeze.

7. Conclusions

We highlight three main conclusions:

1) For total rainfall change over the Lake Victoria

region, there is uncertainty from the parameteriza-

tion of convection in a regional model, which shows

smaller changes over the region when compared with

the explicit simulation but larger changes over the

eastern Congo basin. These differences between the

Congo and Lake Victoria regions are associated with

westerly anomalies of zonal moisture flux and its

future changes in the convection-permitting model

relative to the parameterized model.

2) For changes in rain frequency and rain rates, the

parameterized model is limited: it fails to capture the

widespread increases in extremes seen in the explicit

model, with a weaker control by available water,

instead only simulating larger changes where meso-

scale forcings are strong. Furthermore, the range of

available moisture and updrafts at times of extreme

rainfall are smaller in the parameterized convection

model, suggesting that it is less able to modify its

environment to be conducive to higher rain rates.

3) Inadequate interaction between parameterized con-

vection and circulations induced by land–sea tempera-

ture contrasts can limit the reliability of parameterized

model’s daytime response to climate change in key

locations. These small-scale features are critical drivers

of eastern African rainfall, especially around some of

the major population centers.

The results here provide a mixed picture of how much

confidence we should place in existing projections of

rainfall over the region. Clearly, and as expected, the

parameterized convection (representing a traditional

climate model) struggles to capture the drivers and extent

of extreme rainfall increases. Therefore, further convection-

permittingmodeling studies over the region are needed to

provide useful ensemble projections of extreme rainfall

metrics. However, over Lake Victoria where night-

time mesoscale circulations drive rainfall, the two models

produce qualitatively similar increases in total rainfall.

Instead, the largest difference here is with past results that

have suggested a decrease in mean rainfall over Lake

Victoria. Our results give confidence for projections of

nocturnal rainfall features from traditional climatemodels

as long as the ensemble spans the uncertainty in drivers of

mesoscale circulation such as, in this case, lake surface

temperatures. The feature of larger percentage increases

of rainfall on the Lake Victoria western shore in both

models here, and in the previous study by Thiery et al.

(2016), suggest that thismay be a robust feature of climate

change. Since the higher rainfall changes may be impor-

tant for coastal communities, it warrents investigation in

future studies. For daytime mesoscale circulations such as

sea breezes, our results suggest little confidence can be

placed in parameterized convection models to reliably

couple the mesoscale circulations to rainfall or the re-

sponse of rainfall to climate change. In locations where

these mesoscale circulations are important, existing pro-

jections are likely to be less useful.

The experiments here have been designed to test the

uncertainty in existing climate projections related to the

representation of convection. There are some limitations
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that require careful use of the data as climate change

projections: notably, the use of uniform soil properties and

prescribed lake and sea surface temperatures. Because of

the important effects of lakes on mesoscale circulations, as

demonstrated here, it would be highly beneficial for future

research to focus on the response of lake surface temper-

atures ofAfrica’sGreat Lakes.Accurate soil properties for

the continent are also important to establish reliable high-

resolution projections. These two lines of research would

enable better constrained simulations to further investi-

gate the aspects of climate fundamental to the rainfall

generation that is so important to people in the region.

Several conclusions have been drawn regarding ex-

treme rainfall events. These events encompass 1 in 100

of all 3-hourly periods of rainfall. Some applicationsmay

require analysis of even more extreme events. The 10-yr

length of these simulations limits the sampling of such

events, and therefore any such analysis must be under-

taken with care.

Another interesting result from this work is the smaller

increase of easterly moisture flux in the explicit convec-

tion model compared to the parameterized convection

model. This difference is associated with higher rainfall in

the Lake Victoria region in the explicit model. Other

studies have found the easterly moisture flux to be an

important feature of climate connecting eastern equato-

rial Africa with the west (Giannini et al. 2018; Finney

et al. 2020). By studying this feature for the first time

with a convection-permitting model, we have highlighted

an application of such models beyond those already

presented in convection-permitting studies of the extra-

tropics. There is scope for more detailed research of this

key dynamical feature within the data used here, but

understanding of equatorial African climate would also

undoubtedly benefit from study of the easterly moisture

flow in a range of other datasets.

The approach used here allows novel determination of

uncertainty from the way in which convection is parame-

terized, but not from the global uncertainties, which must

instead be obtained from global ensembles (Ongoma et al.

2018; Osima et al. 2018). Our results provide new detailed

user-relevant information on important possible changes to

eastern African climate and clearly show that parameter-

izedmodels should not be the sole source of climate change

information for long-lived decisions. We would anticipate

our conclusions are directly relevant to other tropical re-

gions with similar controls on weather: mountain–coastline

interactions of the ‘‘Maritime Continent,’’ the Ghats, and

the Andes and regions with large tropical lake influences.

Future studies should address possible changes with other

models and under other emission scenarios, as well as the

implications for hydrological changes, which are sensitive

to extremes.
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