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Stabilizing two-dimensional quantum scars by deformation and synchronization
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1IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
2School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

3Department of Theoretical Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva, Switzerland

(Received 13 March 2020; accepted 27 April 2020; published 22 June 2020)

Relaxation to a thermal state is the inevitable fate of nonequilibrium interacting quantum systems without
special conservation laws. While thermalization in one-dimensional systems can often be suppressed by
integrability mechanisms, in two spatial dimensions thermalization is expected to be far more effective due to
the increased phase space. In this work we propose a general framework for escaping or delaying the emergence
of the thermal state in two-dimensional arrays of Rydberg atoms via the mechanism of quantum scars, i.e.,
initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways:
by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity
of the lattice. We demonstrate that these mechanisms allow us to realize robust quantum scars in various
two-dimensional lattices, including decorated lattices with nonconstant connectivity. In particular, we show
that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong
boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future
experiments on two-dimensional quantum scars.
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I. INTRODUCTION

Recent experimental breakthroughs allow us to probe
nonequilibrium quantum dynamics of various isolated quan-
tum systems [1–3]. Yet, for generic interacting systems that
do not have any special conservation laws, such dynamics
lead to a thermal state. This process of thermalization is
explained by the typicality of highly excited eigenstates in
interacting quantum systems. Formally, the eigenstate ther-
malization hypothesis (ETH) [4,5] conjectures that all eigen-
states of a Hamiltonian in a sufficiently narrow energy shell
display the same expectation values of physical observables
as the microcanonical ensemble. ETH has been numerically
and experimentally verified in a variety of different quantum
systems [6,7].

To observe long-time coherent dynamics in quantum sys-
tems one must avoid thermalization or at least delay its
onset. Integrable systems which satisfy the Yang-Baxter
equation [8,9], and the disordered systems which undergo
a many-body localization (MBL) transition [10,11], provide
explicit examples of ETH violation. However, integrability is
known to exist only for one-dimensional (1D) systems; the ex-
istence of MBL in higher dimensions is also debated [12,13].
Intuitively, thermalization is more ubiquitous in higher di-
mensions due to larger phase space available for relaxation
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processes. This motivates the exploration of alternative ETH-
violating mechanisms.

Recent experiments on Rydberg atom arrays [14] sug-
gested the possibility of weak ETH breaking via a dif-
ferent mechanism now known as “quantum many-body
scars” [15,16]. Quantum many-body scarring manifests itself
as the presence of a small set of atypical ETH-breaking eigen-
states. Experimentally, scars lead to strong dependence of
relaxation on initial conditions: initial configurations that have
a large overlap with atypical eigenstates feature slow growth
of entanglement and long-time coherent dynamics, whereas
other initial states relax much faster. Theoretically, scars have
been explained via the existence of an (un)stable trajectory
within the variational semiclassical approach [16,17] or, al-
ternatively, via a hidden su(2) algebra representation in the
subspace of atypical eigenstates [18,19]. In addition, some
exact scarred eigenstates of the Rydberg atom chain have been
constructed [20], and their stability under perturbations was
investigated [21,22]. Finally, scars were also reported in a
variety of other models [23–35], while scarring may be related
to nonergodic behavior observed in models with confinement
[36–39], dynamical symmetries [40,41], fractons [42–44], and
“Krylov restricted thermalization” [45].

In this work we present a detailed study of scars on two-
dimensional (2D) lattices of Rydberg atoms in the regime
of the nearest-neighbor blockade that has been realized in
many recent experiments [3,14,46,47]. We concentrate on
experimental knobs that could be used to enhance many-body
scars in 2D quantum systems, which are significantly more
susceptible to thermalization as well as finite-size effects
due to their larger boundary-to-bulk ratio. First, we show
that weak perturbations of the Rydberg atom Hamiltonian on
square lattices can significantly stabilize scars by improving
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FIG. 1. (a) Square lattice, Hamiltonian density operator, Eq. (1), and the deformation, Eq. (2), needed to stabilize the scars. (b) Fidelity of
quantum many-body revivals for the unperturbed Hamiltonian (magenta) and the model with the optimal perturbation (black) for a 6 × 6 lattice
with PBC. (c) Entanglement entropy for all eigenstates as a function of their energy. The color indicates the density of dots, which is strongly
peaked around zero energy. The deformed model (bottom plot) has a much more pronounced band of low-entangled eigenstates (red diamonds)
compared with the undeformed model (top plot). Data are obtained by exact diagonalization in the zero-momentum, inversion-symmetric sector
for the 6 × 6 lattice with Dim(H) = 9702 states.

an approximate su(2) algebra representation in the subspace
of scarred eigenstates. This leads to stronger fidelity revivals
and enhanced coherence in the dynamics. Furthermore, we
consider scars on more complicated lattices and in the pres-
ence of open boundaries. For lattices featuring nonuniform
connectivity, coherent many-body oscillations can be stabi-
lized by adjusting the driving Rabi frequency according to
local connectivity. We refer to this stabilization mechanism
as “enforced synchronization,” and we demonstrate that this
can be used to suppress the dephasing due to the boundary by
matching the oscillation frequency at the boundary and in the
bulk.

II. MODEL

We begin by considering Rydberg atoms arranged in a
square lattice in the regime of the nearest-neighbor blockade.
The Hamiltonian generates Rabi oscillations of a given atom
under the constraint that all four neighboring atoms are in the
ground state,

H =
∑

r

σ x
r

∏

〈r′,r〉
Pr′ =

∑

r

σ̃ x
r , (1)

where the indices r = (i, j) denote the lattice site, i, j =
1, . . . , L, and the product goes over all nearest neighbors
of site r. The operator σ x

r = |↑〉 〈↓| + |↓〉 〈↑| describes Rabi
oscillations between excited (↑) and ground states (↓) of a
given atom. The product of projectors onto the ground state,
P = |↓〉 〈↓|, ensures the absence of excitations on nearest-
neighbor sites. In Fig. 1(a) we show the lattice and the
corresponding Hamiltonian density operator σ̃ x

r . We focus on
the sector of the Hilbert space with no adjacent excitations,
which is the largest sector of the system. The dimension of
this sector scales as Dim(H) ∝ cL2

1 where c1 ≈ 1.503 . . . is
the hard square entropy constant [48].

III. STABILIZATION OF SCARS VIA DEFORMATION

Figure 1(a) shows a partition of the square lattice M into
two sublattices, M = A ∪ B. Two states with the maximum
number of excitations (compatible with the constraint of no
adjacent excitations), |MA〉 (|MB〉), correspond to all the atoms

in sublattice A (B) being in the excited state. In Ref. [17], it
was shown that the fidelity, F (t ) = |〈MA|e−iHt |MA〉|2, which
quantifies a probability of returning to the many-body state
|MA〉 at time t features persistent revivals with period T .
These revivals were attributed to the existence of a periodic
trajectory in the variational manifold of tree tensor states.

Figure 1(b) shows the revivals for a 6 × 6 square lattice
with periodic boundary conditions (PBCs). The persisting
oscillations of fidelity have a period of T ≈ 5, where at
half period the system is approximately close to the second
maximally excited state |MB〉. This dynamics is similar to the
1D case where the system oscillates between the two Neél
states [14]. The revivals are decaying, and it is interesting to
find small deformations that would enhance them.

To improve the revival quality, we propose the following
deformation of the Hamiltonian, see Fig. 1(a):

V =
∑

r

Vr, Vr = σ̃ x
r

(
aP l

r + 2aPd
r + bP3

r

)
, (2)

where a and b are parameters to be optimized and the projec-
tors are defined as

P l
i, j = Pi, j+2 + · · · , (3a)

Pd
i, j = Pi+1, j+1 + · · · , (3b)

P3
i, j = Pi−1, j+1Pi, j+2Pi+1, j+1 + · · · . (3c)

Ellipses in Eqs. (3) denote the three remaining terms obtained
by 90◦ rotations around the lattice site at position r = (i, j)
that make the perturbation invariant under the full space
group symmetry. Our heuristics on the choice of perturba-
tions are based on the “forward-scattering approximation”
(FSA) [15,18,49]. Intuitively, the three terms in the defor-
mation (2) correspond to configurations encountered in the
process of flipping the four excited Rydberg atoms that are
nearest neighbors on the A sublattice into their ground state
[50].

Optimization of coefficients a and b for the 6 × 6 size
lattice with PBCs results in a ≈ 0.040, b ≈ 0.056. The op-
timization of a, b is performed by maximizing the fidelity
at the first revival, F (T ), using the Nelder-Mead method;
see Ref. [50]. The resulting fidelity time series are shown in
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Fig. 1(b) where one observes a significant improvement of the
revival quality from F ≈ 0.72 for the unperturbed model to
F ≈ 0.997 for the optimal perturbation.

IV. STRUCTURE OF EIGENSTATES

The effect of optimal deformation is strongly pronounced
not only in the dynamics, but also in eigenstate properties,
such as entanglement entropy. Figure 1(c) compares the entan-
glement of each eigenstate for the clean and perturbed mod-
els. The entanglement is calculated as S = −Tr{ρL log ρL},
where ρL = TrR |ψ〉 〈ψ | is the reduced density matrix for
the bipartition of the lattice into two cylindrical subsystems
R,L of size (L/2) × L, where L is the linear dimension if
the lattice. In both cases, the entropy for the majority of the
eigenstates depends only on energy density, consistent with
ETH. The unperturbed system features no significant entan-
glement outliers, in contrast to 1D models where a similar
plot clearly revealed the special scarred eigenstates [15,49].
At the same time, the special eigenstates still can be detected
by their overlap with the |MA〉 and |MB〉 product states [50].
By contrast, the optimally perturbed Hamiltonian displays a
special band of eigenstates with much lower entropy than
any other eigenstate at similar energy density, as seen in the
bottom panel of Fig. 1(c). Likewise, the deformation enhances
the overlap of special eigenstates with |MA〉 and |MB〉 product
states.

The existence of a deformation that improves the special
band of eigenstates suggests that potentially one may deform
the 2D Hamiltonian (1) to the point where the manifold
of scarred eigenstates forms an exact su(2) representation.
However, while Ref. [18] provided strong numerical evidence
for the existence of exact scars in 1D models by constructing
a long-range quasilocal deformation, the rapidly growing
Hilbert space of 2D systems precludes us from simulating
longer-range deformation terms. At the same time, the ex-
istence of such a perturbation in the 2D case is nontrivial
and suggests that the existence of exact scars is not related
to integrability [21]. Moreover, the leading-order deformation
improves the coherence so strongly that longer-range terms
may be not needed on the experimentally relevant timescales.

V. SCARS IN DECORATED LATTICES

Above we considered the square lattice—the simplest 2D
bipartite lattice (see Ref. [50] for the case of a honeycomb
lattice). It is interesting to explore more exotic lattices, e.g.,
one possibility, which does not exist in 1D, are lattices where
different Rydberg atoms have different number of nearest
neighbors.

The simplest bipartite lattice with different connectivity
can be obtained from the honeycomb lattice by adding extra
Rydberg atoms to the middle of each link, see Fig. 2(a). Such
a “decorated” honeycomb lattice is bipartite, where partition
A consists of atoms in the middle of the edges and partition
B includes atoms located at the vertices of the honeycomb
lattice. We assume that there is no Rydberg blockade between
sites on the same sublattice. Under such an assumption, we

(a)

(c)

(b)A B

FIG. 2. (a) The decorated honeycomb lattice where each site
from A (B) partition has two (three) neighbors. The unit cell contains
five lattice cites. (b) Plot of the TDVP trajectories for different ω

and regularization ε = 4 × 10−4. Black points indicate the singular
points, whereas red (blue) points correspond to |MA〉 (|MB〉) states.
(c) The fidelity of the first revival of the quantum Hamiltonian with
respect to the frequency ω for two different lattice sizes N . The
TDVP prediction for the optimal value of ω is illustrated by the green
line.

write the Hamiltonian as

H = ωA

∑

r∈A

σ̃ x
r + ωB

∑

r∈B

σ̃ x
r , (4)

where the Hamiltonian density operator is the same as in
Eq. (1), and we introduced two different Rabi frequencies
(we set ωB = 1 for simplicity). We will tune ωA below to
correct for the connectivity mismatch between different sub-
lattices. For the rest we denote ωA ≡ ω, and use PBC. The
maximally blocked states, |MA〉 (|MB〉) are given by exciting
every site from sublattice A (B), while keeping the atoms in the
other sublattice in their ground state. Now these states have
an inequivalent number of excited Rydberg atoms, with the
“maximally excited” state in the system being |MA〉.

To have a quantitative understanding of dynamics, we
approximate the decorated lattice by a tree with the same
pattern of local connectivities using the method discussed in
Ref. [17]. We project quantum dynamics on the tree onto a
manifold of tensor tree states (TTSs), parametrized by two
real angles |ψ (θA, θB)〉 using the time-dependent variational
principle (TDVP) [17,50,51]. The resulting equations of mo-
tion in the TTS manifold read

θ̇A = −ω coscA−1 θB − coscB θA sin θA tan θB, (5a)

θ̇B = − coscB−1 θA − ω coscA θB sin θB tan θA, (5b)

where cA = 2, cB = 3 are the connectivities of sublattices
A, B. For the case when cA = cB and ω = 1, Refs. [16,17]
demonstrated the existence of a periodic trajectory that con-
nects states |MA〉 and |MB〉 on the variational manifold.

Surprisingly, when cA = cB as in the present case, the
trajectory emanating from the |MA〉 state does not reach the
|MB〉 state but instead falls into the singular point. Thus, an
unstable periodic orbit does not exist for generic values of
ω. In order for it to exist, it should pass through both |MA〉
and |MB〉 states. Figure 2(b) illustrates that this happens for
a special value of the frequency, ωc ≈ 0.841. Note that, in
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FIG. 3. (a) Illustration of the splitting of the square lattice into
three different regions distinguished by the number of nearest neigh-
bors. (b) Domain-wall dynamics for the maximally excited initial
state of a 6 × 6 square lattice with open boundary conditions. The
black curve corresponds to the noncorrected Hamiltonian and the red
curve corresponds to the system where the corner Rabi frequency is
reduced by gc = 0.105.

this figure, we regularized the equations of motion by replac-
ing tan θA → tan θA/(1 − ε tan2 θA) and tan θB → tan θB/(1 −
ε tan2 θB), where the value of ε is small but finite. Such a
regularization prevents trajectories from completely “falling”
into singular points, yet we see that only at ωc the trajectory
passes through both |MA〉 and |MB〉 states, with the value of
ωc being independent of regularization.

Finally, we investigate the behavior of quantum fidelity at
the first revival as a function of ω. Figure 2(c) shows that
the fidelity has best revivals at the value of ω ≈ 0.8, which is
close to but does not coincide with the prediction from TDVP
dynamics, ωc. The difference between the two values and also
the smooth dependence of fidelity revival quality on ω may be
attributed to quantum fluctuations present in the model.

The improvement of oscillations predicted by variational
dynamics and confirmed in the simulation of exact quantum
dynamics may be intuitively explained as enforced synchro-
nization. Indeed, in the decorated honeycomb lattice the atoms
on sublattice A experience weaker blockade due to the pres-
ence of a smaller number of nearest neighbors. Thus, the
optimal fidelity revivals are achieved when the Rabi frequency
ω on this sublattice is decreased compared with sublattice
B. We believe that such intuition will also hold for more
decorated lattices with different local connectivities cA and cB;
see Ref. [50] for predictions for ω from FSA. On the one hand,
this can open the door to the realization of scars on lattices
with more exotic geometries; on the other hand, this intuition
can be applied to remove the unwanted boundary effects, as
we show next.

VI. BOUNDARY SYNCHRONIZATION

In experiments with Rydberg blockade, atoms are manip-
ulated individually with optical tweezers [3,14,46,47], which
enables the realization of arbitrary lattice geometries. At the
same time, implementing PBCs that were used above is chal-
lenging if not unfeasible. Thus it is imperative to understand
and address boundary effects. For instance, the boundary for
the square lattice as large as 6 × 6 atoms still has more atoms
compared with the “bulk” of the lattice—see Fig. 3(a). A
different number of local neighbors at the boundary and in
the bulk of the system leads to faster dephasing that quickly

degrades fidelity revivals as well as oscillations of local ob-
servables.

Inspired by the results from decorated lattices, we propose
a correction to the local Rabi frequency which depends on the
local connectivity. The corrected Hamiltonian for the square
lattice reads

H̃ = H − gC

∑

r∈C
σ̃ x

r − gE

∑

r∈E
σ̃ x

r , (6)

where H is the Hamiltonian from Eq. (1) and the subtracted
terms include the sum over all atoms at corners (C) which have
only two nearest neighbors and those at the edges of the lattice
(E), which have three neighbors; see Fig. 3(a).

To optimize the perturbations (gC, gE ), we maximize the
fidelity on a 4 × 4 lattice where the full Hilbert space has
dimensions Dim(H) = 1234. In this case we find an insignif-
icant correction to the edge sites, gE ≈ 10−3, while the corner
terms acquire a much stronger correction, gC ≈ 0.12. Guided
by this result, we completely disregard the edge correction,
by setting gE = 0, and focus only on the correction to the
four corners of the lattice, gC . The optimization of fidelity for
the 6 × 6 lattice yields the optimal value gC ≈ 0.105 which
corresponds to an approximately 10% decrease in the Rabi
frequency for corners of the lattice.

We explore the effects of the perturbation on the dynamics
of the experimentally observable quantity—mean domain-
wall density, G = (1/L2)

∑
r Pr

∑
〈r′r〉 Pr′ . Figure 3(b) com-

pares the dynamics of the domain-wall density in the quench
from |MA〉 state for the original and boundary-synchronized
Hamiltonians with open boundary conditions. While at early
times the effects of the boundaries are weak (the Lieb-
Robinson bound [52] suggests that boundary effects “prop-
agate” to the bulk with a constant velocity), after four revivals
the dephasing from the boundaries begins to degrade the os-
cillations. For the uncorrected model the domain-wall density
is almost equilibrated at t � 15. In contrast, the oscillations in
the synchronized Hamiltonian persist for much longer times.

VII. DISCUSSION

We demonstrated the stabilization of quantum scars in
2D lattices by two complementary types of deformations of
the Hamiltonian. First, we constructed a weak longer-range
deformation that improves the quality of the fidelity revivals
by further decoupling the scarred subspace away from the
thermal bulk of the spectrum, similar to “perfect” scars in
a 1D Rydberg blockade [18]. Second, inspired by the time-
dependent variational-principle (TDVP) description within
the TTS manifold [17], we proposed synchronization as a
mechanism for improving scars on lattices of nonconstant
connectivity and in the presence of boundaries. The local
tuning of the Rabi frequency is feasible and can be used to
experimentally mitigate the boundary effects. We expect that
such a synchronization will open the door to the experimental
application of scars in two dimensions akin to the π -pulse
experiment in 1D [53].

An immediate question raised by our results is the in-
terplay between the synchronization mechanism explained
via TDVP and the deformation of the Hamiltonian that is
explained in terms of su(2) representations. Understanding
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the relation between these two mechanisms beyond the phe-
nomenological arguments provided in Ref. [50] could provide
a more complete picture and classification of possible scars.
In addition, the existence of synchronization that improves
scars bears a distant analogy to the collective oscillations in
the BCS model [54] and collective modes in Maxwell-Bloch
equation [55]. Making this analogy more quantitative could
prove fruitful for generalizations of scars.

More broadly, while we demonstrated the existence of
scars for several bipartite lattices; the existence of oscillations
in nonbipartite lattices, such as triangular or kagome, remains
an open question. For instance, triangular lattice features a
natural partition into three sublattices and it would be in-
teresting to explore the possibility for analogs of Z3 scars
in Rydberg chains [17,27,49]. In addition, understanding the
connection between existence of scars and the ground-state
phase diagram [56] and extending these results to models with
longer-range blockade remains an interesting question.

Note added. Recently, Refs. [57] proposed that XXZ
spin-1/2 models may acquire nonthermal eigenstates on
a kagome lattice via a mechanism that utilizes geometric
frustration. It remains to be understood if a similar mecha-

nism could be useful for constrained models on nonbipartite
lattices.

The data that support the figures within this paper and other
findings of this study are available in Ref. [60].
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