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It is widely accepted that topological superconductors can only have an effective interpretation
in terms of curved geometry rather than gauge fields due to their charge neutrality. This approach
is commonly employed in order to investigate their properties, such as the behaviour of their en-
ergy currents. Nevertheless, it is not known how accurately curved geometry can describe actual
microscopic models. Here, we demonstrate that the low-energy properties of the Kitaev honeycomb
lattice model—a topological superconductor that supports localised Majorana zero modes at its
vortex excitations—are faithfully described in terms of Riemann-Cartan geometry. In particular,
we show analytically that the continuum limit of the model is given in terms of the Majorana ver-
sion of the Dirac Hamiltonian coupled to both curvature and torsion. We numerically establish the
accuracy of the geometric description for a wide variety of couplings of the microscopic model. Our
work opens up the opportunity to accurately predict dynamical properties of the Kitaev model from
its effective geometric description.

I. INTRODUCTION

In recent years there has been a surge of interest in
the geometrical degrees of freedom that characterise the
response of topologically-ordered phases of matter be-
yond the well-known limit governed by an effective topo-
logical quantum field theory. An important class of
such systems, the fractional quantum Hall (FQH) states,
have been understood to exhibit a universal response
to the variations of ambient geometry, leading to many
fruitful investigations of an interplay between topology
and geometry in these strongly-correlated systems 1–11.
In particular, the neutral collective mode of FQH sys-
tems12 has been described as a fluctuating spacetime
metric13–15. On the other hand, a recent study16 has
shown that by minimally coupling a spinless p-wave su-
perconductor on a square lattice to an electromagnetic
field, the continuum limit takes the form of a Dirac
Hamiltonian defined on a spacetime with both curva-
ture and torsion. Such curved spaces with torsion are
called Riemann-Cartan spacetimes17. Riemann-Cartan
geometry also naturally arises in the theory of defects
in lattices, whereby disclinations and dislocations in the
continuum limit are described by curvature and torsion,
respectively18,19, which has been investigated in strained
graphene19–21. Other techniques from quantum gravity
have also been employed in condensed matter such as
the holographic correspondence or AdS/CFT correspon-
dence. Recently, the holographic correspondence has
been used to model gapless modes living on the defect
lines of class D topological superconductors22 and to de-
termine the specific heat of a two-dimensional interacting
gapless Majorana system23. Moreover, the emergence of
gravitational anomalies has been considered in topolog-
ical superconductors 24. Building upon Luttinger’s pro-
posal25, gravitational techniques applied to the thermal
Hall effect have also attracted many theoretical26–32 and
experimental33,34 investigations.
Nevertheless, despite much progress in the investiga-

tion of geometric effects in the continuum field theory
description, the study of Riemann-Cartan geometry in
microscopic, solvable lattice models has received less at-
tention. In this paper, we investigate geometric descrip-
tion of the Kitaev honeycomb lattice model (KHLM)35,
the well-known two-dimensional (2D) model of interact-
ing spin- 12 particles that gives rise to a quantum spin
liquid phase with topological order. A salient feature of
the KHLM is that it can support non-Abelian anyons in
the form of Majorana zero modes (MZMs) trapped at its
vortices35–39. Similar to the FQH effect40, the KHLM is
both topologically ordered in the sense that it can sup-
port anyonic excitations and it is a topological phase cat-
egorised by a non-trivial Chern number35,41. Unlike the
FQH effect, the KHLM is exactly solvable, which has
provided unique opportunities to analytically probe its
anyonic properties38,39,42, its topological edge currents43,
its finite temperature behaviour44–49 and to investigate
dimer limits of the model 50,51. Moreover, many features
of the KHLM are recognised in experimentally realisable
materials, such as complex iridium oxides52–54 or ruthe-
nium chloride55. This makes the KHLM of interest to
numerous theoretical and experimental investigations.

In this paper we address the following question: can we
use the KHLM to simulate Majorana fermions embedded
in a Riemann-Cartan spacetime? To answer this ques-
tion, we allow the couplings of the KHLM to take general
configurations that are anisotropic and inhomogeneous,
while leaving the lattice configuration of the model un-
affected. We demonstrate that in this case the low en-
ergy limit of the model can be effectively described by
massless Majorana spinors obeying the Dirac equation
embedded in a Riemann-Cartan spacetime which is lo-
cally Lorentz invariant. Moreover, the Majorana spinors
are coupled to a non-trivial torsion. It is important to
stress that this geometry emerges purely from distortions
in the couplings of the system and not from the geometry
of the lattice itself.

We shall see that choosing the two-spin couplings to
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be anisotropic gives rise to a general two-dimensional
metric. When these couplings are varying in space they
can give rise to an arbitrary curved space. Moreover,
the three-spin interactions generate the torsion of the
Riemann-Cartan geometry. As a result, the KHLM can
be effectively described by massless relativistic Majorana
spinors. These particles become massive when a Kekulé
distortion is introduced in the two-spin couplings56. We
numerically investigate the phase diagram produced by
the torsion and mass terms that support competing topo-
logical phases.
To quantify how faithful the geometric description is

to the KHLM we consider two physical quantities of the
original microscopic model. First, we investigate the
spatial distribution of the quantum correlations in the
ground state of the model. Second, we analyse the shape
of a Majorana zero mode bounded by a vortex. While we
vary the couplings of the model away from the isotropic
regime we numerically observe that the geometric dis-
tortion of the quantum correlations as well as shape of
the zero mode follow the theoretically predicted geomet-
ric configurations. This agreement is faithful through
most of the non-Abelian phase only breaking down near
the phase transition boundaries. Hence, the Riemann-
Cartan description can be employed to accurately de-
scribe the behaviour of the KHLM in a quantum field
theory language. This opens up the exciting possibility
to theoretically study response properties of KHLM, such
as the energy currents as a function of coupling distor-
tions or temperature gradients, in a quantitative way.
The paper is organised as follows. In Section II we

provide a self-contained introduction to the KHLM and
demonstrate that the low energy limit of the model is
described by massless Majorana fermions satisfying the
Dirac Hamiltonian. In Section III we review the relevant
theory of Majorana spinors defined on a Riemann-Cartan
geometry and derive the corresponding Hamiltonian. In
Section IV we demonstrate that the low energy limit of
the KHLM can be faithfully described by massless Ma-
jorana fermions propagating on a Riemann-Cartan back-
ground, with geometric characteristics fully determined
by the coupling constants of the model. We also present
the Kekulé distortion modification to the KHLM, which
is responsible for generating mass in the continuum limit.
In Section V we present numerical results of correlation
functions and zero mode profiles for various coupling con-
figurations of the KHLM in order to verify its non-trivial
description in terms of a metric. Finally in Section VI
we present the conclusions and an outlook of our work.

II. KITAEV HONEYCOMB LATTICE MODEL

IN THE CONTINUUM

Similar to graphene57–59, the KHLM with isotropic,
homogeneous couplings has a continuum limit that is
given in terms of a Dirac Hamiltonian. To reveal this fea-
ture we consider the low energy sector of the model where
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FIG. 1. The honeycomb lattice with Majorana fermions tun-
nelling between nearest neighbouring sites with couplings Jx,
Jy and Jz depending on the direction of the link. Tunnelling
between next-to-nearest neighbouring sites with coupling K
is also indicated. The honeycomb lattice comprises two tri-
angular sub-lattices, A and B, denoted by full and empty
circles, respectively. We take the unit cell along the z-links.
The translation vectors between sites of the same sub-lattices
are n1 = (

√
3

2
, 3

2
) and n2 = (−

√
3

2
, 3

2
). The orientations of the

nearest tunnelings (from A to B sites) and next-to-nearest
tunnelings (anticlockwise) are indicated.

long wavelengths are dominant and the lattice spacing is
negligible. In this low energy regime the KHLM can be
efficiently described by a linear energy dispersion rela-
tion. This linearity between energy and momentum can
be modelled by the Dirac Hamiltonian. For the case of
the KHLM, this Dirac Hamiltonian can take a purely
imaginary form signalling that the effective degrees of
freedom of the model are Majorana fermions. As a re-
sult, the model is faithfully described by a quantum field
theory of relativistic Majorana fermions. We will review
this derivation here in order to set our notation for the
later sections.
Kitaev’s honeycomb lattice is an exactly solvable

model that describes interacting spin- 12 particles residing

on the vertices of a honeycomb lattice35. The spin cou-
plings consist of nearest and next-to-nearest neighbour
interactions described by the Hamiltonian

H =− 4

(

Jx
∑

x links

σx
i σ

x
j + Jy

∑

y links

σy
i σ

y
j + Jz

∑

z links

σz
i σ

z
j

+K
∑

(i,j,k)

σx
i σ

y
j σ

z
k

)

,

(1)
where the orientation of the x-links, y-links and z-links
are indicated in Fig. 1. In Eq. (1) we have introduced
a factor of 4 compared to Ref. 35 in order to simplify
the subsequent algebra. The three spin interaction acts
between three successive spins around a hexagonal pla-
quette35. For certain values of the couplings {Ji} and
K, the ground state of the model is a quantum spin
liquid60–62. This state exhibits exotic quantum order
due to long-range entanglement, which leads to spin-
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fractionalised excitations that behave as Abelian or non-
Abelian anyons35.

By employing an appropriate fermionisation proce-
dure, the spin Hamiltonian can be brought to a form de-
scribing Majorana fermions coupled to a Z2 gauge field.
This gauge field can encode vortices which are eigenstates
of the original spin Hamiltonian. Here, we shall restrict
ourselves to the no-vortex sector, where the gauge field
has a trivial configuration. In this case, the Hamiltonian
takes the form

H = i





∑

〈i,j〉
2Jijcicj + 2K

∑

〈〈i,j〉〉
cicj



 , (2)

where {ci} are Majorana fermions sitting on the site i.
The first term of the Hamiltonian is a sum over nearest
neighbours whilst the second term is a sum over next-to-
nearest neighbours. The ordering of the Majorana oper-
ators for the nearest and next-to-nearest couplings is as
shown in Fig. 1.
The honeycomb lattice contains two triangular sub-

lattices, A and B, denoted in Fig. 1 by full and empty
circles, respectively. With this identification, we denote
the Majoranas of sub-lattice A as cai and those of sub-
lattice B as cbi , where now the index i labels a unit
cell of two neighbouring sites along the z-direction, as
shown in Fig. 1. The honeycomb lattice model is pe-
riodic with respect to this unit cell. We are able to
diagonalise the Hamiltonian in Majorana form by tak-

ing its Fourier transform, through the definitions c
a/b
i =

∫

d2qe−iq·ric
a/b
q , where ri is the position of the cell i. If

we define the two-component spinor ψq = (caq ic
b
q)

T, then

the Hamiltonian takes the form H =
∫

d2qψ†
qh(q)ψq,

with the single-particle Hamiltonian h(q) given by

h(q) =

(

∆(q) −f(q)
−f∗(q) −∆(q)

)

, (3)

where

f(q) = 2(Jxe
iq·n1 + Jye

iq·n2 + Jz), (4)

and

∆(q) = 2K[− sin(q · n1) + sin(q · n2)

+ sin(q · (n1 − n2))].
(5)

For simplicity we initially consider the isotropic case
where Jx = Jy = Jz = J . The dispersion relation of the
single-particle Hamiltonian is given by

E(q) = ±
√

∆2(q) + |f(q)|2. (6)

For K = 0 the spectrum of h(q) is plotted in Fig. 2. We
see that the system has two independent Fermi points in
the Brillouin zone located at

P± = ±
(

4π

3
√
3
, 0

)

. (7)

FIG. 2. The dispersion relation E(q) for the honeycomb
Hamiltonian when Jx = Jy = Jz = J and K = 0. The Fermi
points are the points where E(q) = 0. The two inequivalent
Fermi points within the Brillouin zone are given by P+ and
P−.

When K 6= 0 this opens a gap in the dispersion of
2|∆(P±)|, where ∆(P±) = ±∆ and ∆ = −3

√
3K. The

presence of Fermi points enables us to analyse the low
energy properties of the Kitaev model and extract its
behaviour in the continuum limit.

In the regions close to the two Fermi points the Majo-
rana fields have a linear dispersion relation much like the
spectrum of graphene, as shown in Fig. 2. Hence, at low
enough energies the Hamiltonian h(q) can be effectively
described by a Dirac Hamiltonian. In order to obtain this
description, we substitute q = P± + p for small p and
Taylor expand h(q) around the Fermi points up to first
order in p. For convenience we define the Hamiltonian
h±(p) ≡ h(P± + p) for each Fermi point. For non-zero
K we obtain

h±(p) = 3J(±σxpx − σypy)∓ 3
√
3Kσz +O(p2), (8)

which act on the spinors ψ+(p) = (ca+, ic
b
+)

T and

ψ−(p) = (ca−, ic
b
−)

T, respectively, where c
a/b
± (p) =

c
a/b
P±+p. As these two Hamiltonians need to be considered

simultaneously, we can treat the two Fermi points as dif-
ferent chiral degrees of freedom by defining the Dirac-like
spinor Ψ(p) = (ca+ icb+ icb− ca−)

T. We take the direct sum
of h+(p) and h−(p) in their respective bases defined by
Ψ to yield the total 4× 4 Hamiltonian

hKHLM(p) = 3J(σz ⊗ σxpx − σz ⊗ σypy)− 3
√
3KI⊗ σz.

(9)
Note that we have rotated h−(p) with a σx rotation be-
fore combining it with h+(p) to obtain hKHLM(p).

The low energy limit given by (9) suggests that we use
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the Dirac α and β matrices

α =

(

σ 0
0 −σ

)

= σz ⊗ σ, β =

(

0 I

I 0

)

= σx ⊗ I, (10)

where σ = (σx, σy, σz) are the Pauli matrices and I is
the two-dimensional identity. The corresponding Dirac
gamma matrices are defined by γ0 = β and γ = β−1α

where

γ0 =

(

0 I

I 0

)

= σx ⊗ I, γ =

(

0 −σ

σ 0

)

= −iσy ⊗ σ.

(11)
These matrices satisfy the Clifford algebra {γa, γb} =
2ηab, where Latin indices a, b ∈ (0, 1, 2) and ηab =
diag(1,−1,−1) is the Minkowski metric.
Using the gamma matrices, the Hamiltonian (9) be-

comes

hKHLM(p) = 3Jγ0(γ1px − γ2py)− 3
√
3Kiγ1γ2. (12)

By its turn the many-body Hamiltonian of the low energy
limit is given by

HKHLM =

∫

d2p Ψ†(p) hKHLM(p) Ψ(p). (13)

Hence, the low energy limit of the Kitaev model is given
by the Dirac Hamiltonian with linear energy dispersion
relation and an additional K term that gives rise to an
energy gap at the Fermi points.
To verify that the spinors of the Dirac operator are

Majorana we first define charge conjugation. The charge
conjugate of a Dirac spinor Ψ is defined as Ψ(c)(p) =
CΨ∗(−p), where C is the unitary charge conjugation ma-
trix satisfying C†γµC = −(γµ)∗ for all gamma matrices.
In our chiral basis the charge conjugation matrix is given
by C = −σy ⊗σy. With this and the fact that the Majo-

rana modes obey c†±(p) = c∓(−p), we see that the spinor

Ψ satisfies the neutrality condition Ψ(c)(p) = Ψ(p) and
is therefore a Majorana spinor.

III. MAJORANA FIELDS ON

(2 + 1)-DIMENSIONAL RIEMANN-CARTAN

GEOMETRY

As we have seen in the previous section, the contin-
uum limit of the KHLM describes a Majorana field on a
Minkowski spacetime. We now consider a Majorana field
on a curved spacetime. To proceed we first introduce
the tools that allow us to transform from a flat space,
where the usual Dirac Hamiltonian is defined, to a curved
space. This can be achieved with the help of the dreibein
and spin connection. In particular, we are interested in
curved spacetimes that support torsion, i.e. deformations
of spacetime that cannot be descried by a metric. These
generalised spacetimes are called Riemann-Cartan space-
times. The following section closely follows references 63
and 64.

A. Riemann-Cartan Spacetime

1. Dreibein

Consider a (2 + 1)-dimensional spacetime M with co-
ordinate system (t, x, y). At every point on M we have
the coordinate basis vectors {eµ = ∂µ} of the tangent
spaces, together with their corresponding dual basis vec-
tors {eµ = dxµ} satisfying eµ(eν) = δµν . We use Greek

indices ranging over t, x, y to represent components of
tensors with respect to the coordinate basis. When dis-
cussing spinors on a general spacetime we need the notion
of an orthonormal basis. Given a metric tensor g, the
dreibein basis is given by {ea = e µ

a eµ} with correspond-
ing dual basis {ea = eaµe

µ}, which satisfies g(ea, eb) =
ηab and ea(eb) = δab , where ηab = diag(1,−1,−1) is the
Minkowski metric. In components, these relations read

gµνe
µ
a e

ν
b = ηab, eaµe

µ
b = δab . (14)

We use Latin indices ranging over 0, 1, 2 to represent com-
ponents of tensors with respect to the dreibein basis.
The components of the dreibein e µ

a themselves are
sometimes called the dreibein, while the components of
the dual dreibein eaµ are called the inverse dreibein as
they allow one to invert the expressions (14). However,
we adopt the convention of simply calling them both the
dreibein. The dreibein also allow us to transform com-
ponents between frames, i.e. for a (1, 0) tensor A we
have Aµ = e µ

a A
a and Aa = eaµA

µ and so on for higher
rank tensors. The metrics gµν and ηab and their inverses
gµν and ηab allow us to raise and lower Greek and Latin
indices, respectively.

2. Spin Connection

The covariant derivative of a tensor is usually ex-
pressed in terms of the coordinate basis. For example,
the covariant derivative of a rank (1, 1) tensor Aµ

ν is given
by

∇αA
µ
ν = ∂αA

µ
ν + Γµ

αβA
β
ν − Γβ

ανA
µ
β , (15)

where Γα
βγ are the components of the connection. From

this, we can extend the definition to tensors of arbitrary
rank with a factor of Γα

βγ for each index of the tensor.
The choice of our connection defines what our covari-

ant derivative is. It is commonplace to restrict to a met-

ric compatible connection, that is, a connection for which
∇g = 0. It can be shown that a metric compatible con-
nection takes the form

Γρ
µν = Γ̃ρ

µν +Kρ
µν , (16)

where Γ̃ρ
µν is the Levi-Civita connection, sometimes

called the Christoffel symbols, and Kρ
µν is the contor-

tion tensor. The Levi-Civita connection is completely
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determined by the metric

Γ̃ρ
µν =

1

2
gρσ(∂µgσν + ∂νgσµ − ∂σgµν), (17)

and is symmetric on exchange of µ and ν. On the other
hand, the contortion tensor is given by

Kρ
µν =

1

2
(T ρ

µν + T ρ
µ ν + T ρ

ν µ). (18)

where T ρ
µν = 2Γρ

[µν] is the torsion tensor corresponding

to the connection Γρ
µν . Square brackets denote anti-

symmetrisation over the indices contained within the
bracket.
The tools introduced so far can be expressed in terms

of the dreibein basis. The components of the spin con-

nection are given by

ωa
µb = eaα(∂µe

α
b + Γα

µβe
β
b ). (19)

In this case, analogous to (15), the covariant derivative
of a (1, 1) tensor Aa

b in the dreibein basis will be

∇µA
a
b = ∂µA

a
b + ωa

µcA
c
b − ωc

µbA
a
c. (20)

The spin connection is of interest to us as it allows one
to take covariant derivatives of spinors which will be dis-
cussed in more detail in the next section.
If we work with a metric compatible connection given

by (16), we see that the spin connection will expand out
as

ωa
µb = ω̃a

µb +Ka
µb, (21)

where ω̃a
µb is the Levi-Civita spin connection related

to the coordinate Levi-Civita connection via the for-
mula (19) with Γα

µβ replaced with Γ̃α
µβ and Ka

µb =

eaαe
β
b K

α
µβ is the contortion tensor simply expressed in

the dreibein basis instead. It can be shown that for a
metric compatible connection, if we treat the dreibein
e µ
a as the components of a (1, 1) tensor, then ∇µe

ν
a = 0,

which is known as the dreibein postulate.

3. Curvature and Torsion

The connection of a space also defines two extra ge-
ometric quantities, the curvature and the torsion. The
torsion of a connection has already been defined as

T ρ
µν = 2Γρ

[µν], (22)

with respect to the coordinate basis. As the Levi-Civita
connection Γ̃ρ

µν is symmetric under interchange of µ and
ν, its corresponding torsion vanishes. The curvature of a
connection is given by the Riemann tensor defined as

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ. (23)

From the Riemann tensor, we can obtain two more ge-
ometric quantities, the Ricci tensor defined as Rµν =
Rσ

µσν and the Ricci scalar defined as R = Rµ
µ.

In terms of the full connection Γα
µν = Γ̃ρ

µν +Kρ
µν the

Riemann tensor is given by

Rρ
σµν = R̃ρ

σµν + 2∂[µK
ρ
ν]σ + 2Γ̃ρ

[µ|λK
λ
ν]σ

+ 2Kρ
[µ|λΓ̃

λ
ν]σ + 2Kρ

[µ|λK
λ
ν]σ,

(24)

where R̃ρ
σµν is defined equivalently to Rρ

σµν in (23),

but with Γα
βµ replaced with Γ̃α

βµ. The bracket notation
A[µ|νBρ] for example denotes anti-symmetrisation over
only µ and ρ, leaving ν alone. The corresponding Ricci
scalar is given by

R = R̃−KρµνK
ρµν , (25)

where we have assumed that the contortion is completely
anti-symmetric. We shall employ this simple formula in
order to determine the curvature of the spaces we con-
sider.

B. Spinor Fields on Riemann-Cartan Geometry

1. The Dirac Action

The action for a spin- 12 particle ψ of massm defined on
a general (2+1)-dimensional Riemann-Cartan spacetime
M is given by63

SRC =
i

2

∫

M

d2+1x|e|
(

ψ̄γµDµψ −Dµψγ
µψ + 2imψ̄ψ

)

,

(26)
where {γµ} are the curved space gamma matrices. These
matrices obey the Clifford algebra {γµ, γν} = 2gµν and
are related to the flat space gamma matrices {γa} via
γµ = e µ

a γ
a, which obey the flat space Clifford algebra

{γa, γb} = 2ηab. The gamma matrices obey (γa)† =
γ0γaγ0. The object |e| = | det[eaµ]| which from (14)

obeys |e| =
√

|g|, where g is the determinant of the met-
ric. Using the flat space gamma matrices, we define the
Dirac adjoint ψ̄ = ψ†γ0.
The covariant derivative of spinors is given by

Dµψ = ∂µψ + ωµψ, (27)

Dµψ = (Dµψ)
†γ0 = ∂µψ̄ − ψ̄ωµ, (28)

where ωµ is given by

ωµ =
i

2
ωµabΣ

ab, Σab =
i

4
[γa, γb], (29)

and ωµab = ηacω
c
µb are the components of the spin con-

nection. The operators {Σab} are the generators of the
Lorentz algebra so(2, 1). We use the notation Dµ instead
of ∇µ to highlight the fact these derivatives are acting on
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spinors and not tensors. In this paper we shall refer to
ωµ as the connection as well.
When quantising this theory, we impose the curved

space fermionic anti-commutation relations

{ψα(t,x), ψβ(t,x
′)} = {ψ†

α(t,x), ψ
†
β(t,x

′)} = 0,

{ψ†
α(t,x), ψβ(t,x

′)} =
i

|e|δαβδ
(2)(x− x′),

(30)

where α, β label the components of the spinors and
δ(2)(x− x′) is the two-dimensional Dirac delta.
It is important to note that the continuum limit of the

KHLM can be described using a single-particle Hamilto-
nian (12) expressed with respect to a spinor field Ψ obey-
ing flat spacetime anti-commutation relations. These
flat spacetime anti-commutation relations are simply (30)
with |e| = 1. In order to compare the lattice and quan-
tum field theory Hamiltonians at the single particle level,
the corresponding spinors need to satisfy the same anti-
commutation relations. Hence, we must renormalise the
spinors ψ of the Riemann-Cartan theory in (26) in order
to obey the flat space anti-commutation relations. This
is achieved by defining

χ =
√

|e|ψ, (31)

which indeed obeys {χ†
α(t,x), χβ(t,x

′)} = iδαβδ
(2)(x −

x′), the flat spacetime anti-commutation relations. We
can then make the identification Ψ = χ between the
spinors of the two theories.
With this observation, we substitute our new spinor χ

into the Dirac action (26). If we explicitly expand out
the covariant derivatives, we have

SRC =
i

2

∫

M

d2+1x (χ̄γµ∂µχ− ∂µχ̄γ
µχ+ χ̄{γµ, ωµ}χ) ,

(32)
where to declutter the algebra we have temporarily set
m = 0. We now integrate by parts to remove ∂µχ̄. This
gives

SRC =

∫

M

d2+1xχ̄

(

iγµ∂µ +
i

2
{γµ, ωµ}+

i

2
∂µγ

µ

)

χ.

(33)
Using the identity that in (2 + 1)-dimensional spacetime
we have {γa, [γb, γc]} = 4ǫabcγ0γ1γ2, where ǫabc is the
Levi-Civita symbol, we can simplify the second term in
the integrand as

{γµ, ωµ} = −1

8
ωµab{e µ

c γ
c, [γa, γb]} = −1

2
ωabcǫ

abcγ0γ1γ2,

(34)
where ωabc = e µ

a ωµbc. The final form of the action is
given by

SRC =

∫

M

d2+1xχ̄

(

iγµ∂µ − i

4
ωabcǫ

abcγ0γ1γ2 +
i

2
∂µγ

µ

)

χ.

(35)

2. The Hamiltonian

We restrict our spacetime M to be a static spacetime
of the form

M = R× Σ (36)

with the natural coordinate system (t, xi), where R corre-
sponds to time and Σ is a two-dimensional curved space.
In this way, we are assuming that only the purely spatial
part of spacetime is curved and time can be viewed as a
parameter. This is the case that corresponds to the geo-
metric description of KHLM as time remains unaffected
by the distortion of the system’s couplings.

The metric tensor for M takes a block-diagonal form
in the natural coordinate system

gµν =





1 0 0
0 gxx gxy
0 gxy gyy



 (37)

and will be a constant in coordinate time, ∂tgµν = 0.
The dreibein that correspond to this metric will take the
form

eaµ =





1 0 0
0 e1x e1y
0 e2x e2y



 , e µ
a =





1 0 0
0 e x

1 e y
1

0 e x
2 e y

2



 , (38)

where the convention taken is that the index a runs down
the columns while the index µ runs along the rows.

We make two observations which allow us to simplify
the action (35). First, using the definition (17), we see
that any time components of the Levi-Civita connection
Γ̃ρ

µν will vanish: Γ̃t
µν = Γ̃ρ

tν = Γ̃ρ
νt = 0. This means the

time components of the corresponding Levi-Civita spin
connection will also vanish: ω̃a

tb = ω̃0
µb = ω̃a

µ0 = 0, while
the contortion of the spin connection remains unaffected.
If we expand out the spin connection term in the action
(35) we have

ωabcǫ
abc = ω̃abcǫ

abc +Kabcǫ
abc =

1

2
Tabcǫ

abc, (39)

so the Levi-Civita connection falls out, where we have
used the fact that ω̃abcǫ

abc = 0 on a static spacetime and
replaced the contortion with the torsion using definition
(18).

The second observation we can make is by noting that,
due to (39), the spinor field only couples to the com-
pletely anti-symmetric part of the torsion Tabc. For this
reason, without loss of generality, we take our torsion to
be completely anti-symmetric

Tabc =
1

3!
φǫabc, (40)

where we refer to φ as the torsion pseudoscalar.
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With these two observations, the action reduces to the
simple form

SRC =

∫

M

d2+1xχ̄

(

iγµ∂µ − i

8
φγ0γ1γ2 +

i

2
∂iγ

i

)

χ

≡
∫

M

d2+1xLRC,

(41)
where LRC is the Lagrangian density.
As we have assumed our spacetime is static, we can

define the Hamiltonian from the Lagrangian density via
a Legendre transformation as

HRC =

∫

Σ

d2x

(

∂LRC

∂χ̇
χ̇− LRC

)

≡
∫

Σ

d2xχ†hRCχ.

(42)
The single-particle Hamiltonian hRC is given by

hRC = e i
a γ

0γapi +
i

8
φγ1γ2 − i

2
∂ie

i
a γ

0γa +mγ0, (43)

where we have written it down explicitly in terms of the
dreibein and reinstated the mass m. The canonical mo-
mentum operator is given by pi = −i∂i.

IV. RIEMANN-CARTAN GEOMETRY FROM

THE KITAEV HONEYCOMB LATTICE MODEL

We now deform the original Kitaev model by varying
its couplings in order to obtain a Riemann-Cartan Hamil-
tonian in the continuum limit, as given by (43). There
are several aspects of this Hamiltonian that we would like
to identify.
The non-trivial geometry of a Riemann-Cartan theory

is encoded in the dreibein e µ
a and torsion pseudoscalar

φ. These objects arise in the Hamiltonian with their own
respective terms which both require corresponding terms
in the microscopic model to emerge. The same applies to
the mass m. In addition to this, we require a metric that
has space-dependent components in order to achieve a
non-trivial curvature. This implies that the parameters
{Ji} andK of the micoscropic model have to be upgraded
to space-dependent parameters.
In this section, we shall assume that the continuum

limit of the model with space-dependent parameters
takes the same form as the model with constant param-
eters, but where the parameters have been simply up-
graded to slowly varying space-dependent functions. For
this reason, we first take the continuum limit in the con-
stant parameter case in order to extract the dreibein and
torsion, and then upgrade them to space-dependent func-
tions to extract the curvature.
Note that any continuum limit of the KHLM for con-

stant parameters will not yield the ∂ie
i
a term of the gen-

eral Riemann-Cartan Hamiltonian (43), however this is
not a problem because all of the important information
about the dreibein is contained in the kinetic term.

A. The isotropic Jx = Jy = Jz = J case

We first focus on the isotropic coupling case for which
Jx = Jy = Jz = J . The corresponding continuum limit
for which J is a constant is given by

hKHLM = 3Jγ0(γ1px − γ2py)− 3
√
3Kiγ1γ2. (44)

We proceed to interpret this as a Riemann-Cartan Hamil-
tonian of the form (43) and identify the corresponding
dreibein, metric, curvature and torsion of the model.

1. The Metric

A direct comparison of the isotropic continuum limit
(44) with the Riemann-Cartan Hamiltonian (43) reveals
that the dreibein of the model are given by

e µ
a =





1 0 0
0 3J 0
0 0 −3J



 , eaµ =





1 0 0
0 1

3J 0
0 0 − 1

3J



 , (45)

with the corresponding metric

gµν = eaµe
b
νηab =





1 0 0
0 − 1

9J2 0
0 0 − 1

9J2



 . (46)

We see that the J term alone determines the metric of
the model and is unaffected by the K term.

2. Curvature and Torsion

As presented previously, the curvature and torsion of a
spacetime depends upon which connection we are work-
ing with. We first calculate the curvature of the Levi-
Civita connection Γ̃ρ

µν .
As we are working on a static spacetime of the form

M = R × Σ, the metric, after diagonalisation, takes the
form

gµν =





1 0 0
0 F 0
0 0 G



 , (47)

where F = F (x, y) and G = G(x, y) are arbitrary func-
tions of space only. A metric of this form yields the Levi-
Civita connection Γ̃α

µν = 1
2g

αβ(∂µgβν + ∂νgβµ − ∂βgµν),
where

Γ̃x
xx =

1

2F
∂xF, Γ̃x

xy = Γ̃x
yx =

1

2F
∂yF,

Γ̃x
yy = − 1

2F
∂xG, Γ̃y

yy =
1

2G
∂yG,

Γ̃y
xy = Γ̃y

yx =
1

2G
∂xG, Γ̃y

xx = − 1

2G
∂yF,

(48)

while all of the time components vanish.
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As the Levi-Civita connection has no time components
and is constant in time, all time components of the cor-
responding Riemann tensor are zero. For this reason we
can restrict ourselves to the two-dimensional spatial hy-
persurface Σ. It can be shown that the Riemann tensor in
a two-dimensional space has only one independent com-
ponent and is given by

R̃ijkl =
1

2
R̃(gikglk − gilgkj), (49)

where R̃ is the Ricci scalar and i, j, k, l denote spatial
components. With a metric in the form (47), giving the
connection (48), we find the corresponding Ricci scalar
is given by

R̃ = −1

2

[

∂x

(

∂xG

FG

)

+ ∂y

(

∂yF

FG

)

+
∂2xG+ ∂2yF

FG

]

(50)

With the Ricci scalar at hand, the Riemann tensor is
fully determined. This is a result we shall refer back to
later on in the paper.
For the isotropic case we have F = G = − 1

9J2 . Em-
ploying (50), we upgrade the parameter J to an arbitrary
function of space which yields the Ricci scalar

R̃ = 2∂2 ln J, (51)

where ∂2 = gµν∂µ∂ν is the Laplacian operator. Hence, in
order to obtain non-zero curvature from the Levi-Civita
connection, the coupling constant J of the isotropic
KHLM needs to be position dependent. In other words,
when ∂iJ = 0, then R̃ = 0.
Next, we calculate the curvature and torsion of the

total connection Γρ
µν = Γ̃ρ

µν + Kρ
µν . Comparison of

(44) with (43) also reveals that the torsion pseudoscalar
φ and mass m are given by

φ = −24
√
3K, m = 0, (52)

so we see the continuum limit describes massless Majo-
rana fermions. From φ, the corresponding components of
the torsion and contortion in the dreibein basis are given
by

Tabc = −4
√
3Kǫabc, Kabc = −2

√
3Kǫabc, (53)

so we see that the next-to-nearest K couplings are re-
sponsible for torsion in the continuum limit. The tor-
sion pseudoscalar φ also determines the total Ricci scalar
which, using (25), is given by

R = 2∂2 ln J − 72K2. (54)

Note that the total Ricci scalar R is non-zero even when
∂iJ = 0 due to the contribution from φ.
To summarise, the continuum limit of the isotropic

KHLM corresponds to freely propagating massless Majo-
rana fermions on a curved spacetime with torsion. Start-
ing from the lattice model, the nearest-neighbour J terms

Strong bonds

Weak bonds

𝒔"

𝒔#𝒔$

FIG. 3. The Kekulé distortion in the couplings of the hon-
eycomb lattice model, as described by Eqns. (55) and (56),
which generate a mass term in the Hamiltonian. Strong and
weak tunnelling couplings are indicated as thick and thin
bonds, respectively, between lattice sites. This configuration
of couplings is periodic with respect to a unit cell with six

sites, as shown. The vectors s1 = (0,−1), s2 = (
√

3

2
, 1

2
),

s3 = (−
√
3

2
, 1

2
) used in (56) translate between lattices A and

B are also depicted.

become the kinetic terms in the continuum limit with
non-trivial dreibein, while the next-to-nearest-neighbour
K terms become the torsional contribution in the contin-
uum limit. Both of these terms contribute to the total
curvature of the model as seen in (54)
Originally, the next-to-nearest K terms were derived

from three-spin interactions as given in (1). These in-
teractions are inserted into the KHLM to generate an
energy gap in order to give rise to a well-defined non-
Abelian topological phase. Despite the gap, this term is
not interpreted as a mass in the continuum limit as it
does not generate the mass term of (43), but instead it
is interpreted as the source of torsion as given in (53).

3. Mass from Kekulé distortions

The energy gap of the original Kitaev model comes
from the K term that is equivalent to torsion in the con-
tinuum limit. To give rise to a mass term in the contin-
uum limit, we need to introduce a Kekulé distortion to
the tunnelling couplings of the Majorana fermions. This
method is similar to the one employed in graphene to
theoretically generate a mass gap65 and adjusted further
to the case of Majorana fermions56.
To proceed we consider an additional term in the lat-

tice Hamiltonian of the Kitaev honeycomb lattice model
of the form

δH = i
∑

i∈A

3
∑

k=1

δJikc
a
ri
cbri+sk

+ h.c., (55)

whereA is the sub-lattice defined in Fig. 1 and the vectors
s1, s2 and s3 are defined in Fig. 3. With this term the
couplings Jx, Jy and Jz that were taken to be equal and
homogeneous before, are now distorted in the following
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FIG. 4. Phase diagram of the KHLM with its energy gap ∆E
varying as a function of the K coupling and the mass, m. By
increasing the Kekulé distortion a first order phase transition
is induced from the gapped topological phase of the KHLM
with Chern number ν = 1 that belongs in class D to a gapped
Kekulé phase with Chern number ν = 0 that belongs in class
BDI. Both of these phases support vortices that bound Majo-
rana zero modes. The red dashed line denotes the analytically
obtained phase transition boundary.

way:

δJik =
m

3
eiP+·skei(P+−P−)·ri + c.c., (56)

where m is a constant real number. This additional term
causes a Kekulé distortion in the couplings of the honey-
comb lattice that has the form shown in Fig. 3.

The Kekulé distortion changes the unit cell of the hon-
eycomb lattice to include six sites, causing the Brillouin
zone to fold three times compared to the undisturbed
case. Subsequently, we Fourier transform and restrict
ourselves to the low energy contributions near the Fermi
points. Up to linear order in momenta the additional
term, δH, gives the following contribution around the
Fermi points56

δH = Ψ†mγ0Ψ. (57)

The contribution to the single-particle Hamiltonian is
therefore

hm = mγ0, (58)

where γ0 = σx ⊗ I, which is the mass term given in (43).
Hence, the Majorana fermions in the continuum limit of
the KHLM can acquire a mass if a non-trivial Kekulé
distortion is inserted.
When K = 0 the Kekulé distortion creates an energy

gap due to a non-zero mass m. In this situation ver-
tices of sub-lattice A are coupled exclusively to vertices
of sub-lattice B. So the KHLM recovers its chiral sym-
metry and the phase of the system belongs in the BDI
class that has trivial Chern number66. Nevertheless, zero

dimensional defects, such as vortices, can trap chiral Ma-
jorana zero modes56,66,67. This should be contrasted with
the case where only the K-term is present and the model
is equivalent to the p + ip superconductor belonging to
class D66.
By varying the couplings of the extended Kitaev

model, it is possible to induce a phase transition be-
tween the BDI and D phases. The phase diagram of
the model as m and K are varied is shown in Fig. 4.
It is possible to investigate the nature of the phase
transition from the quantum field theory description of
the model given by the single-particle Hamiltonian (43),

where φ = −24
√
3K. As we consider here the homoge-

neous and isotropic case we have e i
a = δia. Moreover, the

phase transition is given when the energy gap is mini-
mum, so we take pi = 0 which is exactly at the Fermi
points. Observing that [iγ1γ2, γ0] = 0, we deduce that
the phase transition occurs when the coefficients of these
two operators are equal, i.e. m = 3

√
3K. This is verified

in Fig. 4 to be in agreement with the numerical mod-
elling. Due to the commutation relation [iγ1γ2, γ0] = 0
we deduce that the phase transition is first order occur-
ring due to a simple energy level crossing. We have also
verified this behaviour of the spectrum numerically.

B. The generally anisotropic J coupling case

We now turn away from the isotropic coupling case
Jx = Jy = Jz = J and consider the most general met-
ric achievable. In particular, we consider the completely
anisotropic case where all {Ji} couplings are unequal.
Moreover, we allow for anisotropy in the K couplings
taking values Kx, Ky and Kz depending on their ori-
entation, as shown in Fig. 5. This is to ensure that the
Fermi points are not shifted as discussed later in this sec-
tion. We refer to this case as the generally anisotropic
case.

1. Continuum Limit

In this section we take the continuum limit of the gen-
erally anisotropic case where the parameters are con-

stant. In this case, the KHLM Hamiltonian takes the
form H =

∫

d2qψ†
qh(q)ψq, where ψq = (caq icbq)

T, and
the single-particle Hamiltonian h(q) given by

h(q) =

(

∆(q) −f(q)
−f∗(q) −∆(q)

)

, (59)

where

f(q) = 2(Jxeiq·n1 + Jyeiq·n2 + Jz), (60)

and

∆(q) = 2
[

−Kx sin(q · n1) +Ky sin(q · n2)

+Kz sin(q · (n1 − n2))
]

.
(61)
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Ky

<latexit sha1_base64="1pAU8B+XJ8H4auF78Uj97K3+1Qc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9FjwInipaD+gDWWz3bRLN5uwOxFC6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aytb2xubZd2yrt7+weHlaPjtolTzXiLxTLW3YAaLoXiLRQoeTfRnEaB5J1gcjPzO09cGxGrR8wS7kd0pEQoGEUrPdwNskGl6tbcOcgq8QpShQLNQeWrP4xZGnGFTFJjep6boJ9TjYJJPi33U8MTyiZ0xHuWKhpx4+fzU6fk3CpDEsbalkIyV39P5DQyJosC2xlRHJtlbyb+5/VSDK/9XKgkRa7YYlGYSoIxmf1NhkJzhjKzhDIt7K2EjammDG06ZRuCt/zyKmlf1rx6rX5frza8Io4SnMIZXIAHV9CAW2hCCxiM4Ble4c2Rzovz7nwsWtecYuYE/sD5/AExa42x</latexit>

Ky

<latexit sha1_base64="1pAU8B+XJ8H4auF78Uj97K3+1Qc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9FjwInipaD+gDWWz3bRLN5uwOxFC6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aytb2xubZd2yrt7+weHlaPjtolTzXiLxTLW3YAaLoXiLRQoeTfRnEaB5J1gcjPzO09cGxGrR8wS7kd0pEQoGEUrPdwNskGl6tbcOcgq8QpShQLNQeWrP4xZGnGFTFJjep6boJ9TjYJJPi33U8MTyiZ0xHuWKhpx4+fzU6fk3CpDEsbalkIyV39P5DQyJosC2xlRHJtlbyb+5/VSDK/9XKgkRa7YYlGYSoIxmf1NhkJzhjKzhDIt7K2EjammDG06ZRuCt/zyKmlf1rx6rX5frza8Io4SnMIZXIAHV9CAW2hCCxiM4Ble4c2Rzovz7nwsWtecYuYE/sD5/AExa42x</latexit>

Kz

<latexit sha1_base64="7BNqYuxXXmPVjFiRA4OEQBW5xGI=">AAAB6nicbVDLSgNBEOyNRmN8xcfNy2AIeAq7EtBjwIvgJaJJhGQJs5NOMmR2dpmZFeKST/CSgyJe/SJv/oGf4eRx0MSChqKqm+6uIBZcG9f9cjJr69mNzdxWfntnd2+/cHDY0FGiGNZZJCL1EFCNgkusG24EPsQKaRgIbAbDq6nffESleSTvzShGP6R9yXucUWOlu5vOU6dQdMvuDGSVeAtSrGaP8XtS8mqdwme7G7EkRGmYoFq3PDc2fkqV4UzgON9ONMaUDWkfW5ZKGqL209mpY1KySpf0ImVLGjJTf0+kNNR6FAa2M6RmoJe9qfif10pM79JPuYwTg5LNF/USQUxEpn+TLlfIjBhZQpni9lbCBlRRZmw6eRuCt/zyKmmcl71KuXJr0/BgjhycwCmcgQcXUIVrqEEdGPThGV7g1RHOxHlz3uetGWcxcwR/4Hz8AKDZkDw=</latexit>

Kz

<latexit sha1_base64="7BNqYuxXXmPVjFiRA4OEQBW5xGI=">AAAB6nicbVDLSgNBEOyNRmN8xcfNy2AIeAq7EtBjwIvgJaJJhGQJs5NOMmR2dpmZFeKST/CSgyJe/SJv/oGf4eRx0MSChqKqm+6uIBZcG9f9cjJr69mNzdxWfntnd2+/cHDY0FGiGNZZJCL1EFCNgkusG24EPsQKaRgIbAbDq6nffESleSTvzShGP6R9yXucUWOlu5vOU6dQdMvuDGSVeAtSrGaP8XtS8mqdwme7G7EkRGmYoFq3PDc2fkqV4UzgON9ONMaUDWkfW5ZKGqL209mpY1KySpf0ImVLGjJTf0+kNNR6FAa2M6RmoJe9qfif10pM79JPuYwTg5LNF/USQUxEpn+TLlfIjBhZQpni9lbCBlRRZmw6eRuCt/zyKmmcl71KuXJr0/BgjhycwCmcgQcXUIVrqEEdGPThGV7g1RHOxHlz3uetGWcxcwR/4Hz8AKDZkDw=</latexit>

Kz

<latexit sha1_base64="7BNqYuxXXmPVjFiRA4OEQBW5xGI=">AAAB6nicbVDLSgNBEOyNRmN8xcfNy2AIeAq7EtBjwIvgJaJJhGQJs5NOMmR2dpmZFeKST/CSgyJe/SJv/oGf4eRx0MSChqKqm+6uIBZcG9f9cjJr69mNzdxWfntnd2+/cHDY0FGiGNZZJCL1EFCNgkusG24EPsQKaRgIbAbDq6nffESleSTvzShGP6R9yXucUWOlu5vOU6dQdMvuDGSVeAtSrGaP8XtS8mqdwme7G7EkRGmYoFq3PDc2fkqV4UzgON9ONMaUDWkfW5ZKGqL209mpY1KySpf0ImVLGjJTf0+kNNR6FAa2M6RmoJe9qfif10pM79JPuYwTg5LNF/USQUxEpn+TLlfIjBhZQpni9lbCBlRRZmw6eRuCt/zyKmmcl71KuXJr0/BgjhycwCmcgQcXUIVrqEEdGPThGV7g1RHOxHlz3uetGWcxcwR/4Hz8AKDZkDw=</latexit>

Jz

<latexit sha1_base64="gZ2bIDAN1EgrjeoGlkY/SEi/oWk=">AAAB6nicbVDLSgNBEOyNRmN8xcfNy2AIeAq7EtBjwIt4imgSIVnC7KSTDJmdXWZmhbjkE7zkoIhXv8ibf+BnOHkcNLGgoajqprsriAXXxnW/nMzaenZjM7eV397Z3dsvHBw2dJQohnUWiUg9BFSj4BLrhhuBD7FCGgYCm8Hwauo3H1FpHsl7M4rRD2lf8h5n1Fjp7qbz1CkU3bI7A1kl3oIUq9lj/J6UvFqn8NnuRiwJURomqNYtz42Nn1JlOBM4zrcTjTFlQ9rHlqWShqj9dHbqmJSs0iW9SNmShszU3xMpDbUehYHtDKkZ6GVvKv7ntRLTu/RTLuPEoGTzRb1EEBOR6d+kyxUyI0aWUKa4vZWwAVWUGZtO3obgLb+8ShrnZa9SrtzaNDyYIwcncApn4MEFVOEaalAHBn14hhd4dYQzcd6c93lrxlnMHMEfOB8/n1OQOw==</latexit>

Jy

<latexit sha1_base64="TS14m1T81HtZEnahCvFSNWl2RoY=">AAAB6nicbVC7SgNBFL3rM8ZXNIWFzWAQrMKuBLQM2IhVRPOAZAmzk9lkyMzsMjMrLEs+wcZCUVv/xkKw069x8ig08cCFwzn3cu89QcyZNq775Swtr6yurec28ptb2zu7hb39ho4SRWidRDxSrQBrypmkdcMMp61YUSwCTpvB8GLsN++o0iyStyaNqS9wX7KQEWysdHPVTbuFklt2J0CLxJuRUrX4/nIgvj9q3cJnpxeRRFBpCMdatz03Nn6GlWGE01G+k2gaYzLEfdq2VGJBtZ9NTh2hY6v0UBgpW9Kgifp7IsNC61QEtlNgM9Dz3lj8z2snJjz3MybjxFBJpovChCMTofHfqMcUJYanlmCimL0VkQFWmBibTt6G4M2/vEgap2WvUq5c2zQ8mCIHh3AEJ+DBGVThEmpQBwJ9uIdHeHK48+A8O6/T1iVnNlOEP3DefgBpg5GR</latexit>

Jx

<latexit sha1_base64="tTqdVffZRFHJVNDMnY6BiqorX7s=">AAAB6nicbVDLSgNBEOyNRmN8xcfNy2AIeAq7EtBjwIt4imgSIVnC7KSTDJmdXWZmxbDkE7zkoIhXv8ibf+BnOHkcNLGgoajqprsriAXXxnW/nMzaenZjM7eV397Z3dsvHBw2dJQohnUWiUg9BFSj4BLrhhuBD7FCGgYCm8Hwauo3H1FpHsl7M4rRD2lf8h5n1Fjp7qbz1CkU3bI7A1kl3oIUq9lj/J6UvFqn8NnuRiwJURomqNYtz42Nn1JlOBM4zrcTjTFlQ9rHlqWShqj9dHbqmJSs0iW9SNmShszU3xMpDbUehYHtDKkZ6GVvKv7ntRLTu/RTLuPEoGTzRb1EEBOR6d+kyxUyI0aWUKa4vZWwAVWUGZtO3obgLb+8ShrnZa9SrtzaNDyYIwcncApn4MEFVOEaalAHBn14hhd4dYQzcd6c93lrxlnMHMEfOB8/nEuQOQ==</latexit>

FIG. 5. The anisotropic KHLM is given by choosing the
couplings Jx, Jy and Jz to be unequal, giving rise to an
anisotropic model. In order to have the K-term contribute
purely an energy gap we choose the couplings Kx, Ky and Kz

to be also anisotropic and functions of Ji’s, as given by (69).

For Ki = 0 we expect the system to have Fermi
points. Following the procedure we employed in the
isotropic case, we solve for the momenta q = P such
that f(P ) = 0. This condition gives two equations

Jx cos(P · n1) + Jy cos(P · n2) + Jz = 0, (62)

Jx sin(P · n1) + Jy sin(P · n2) = 0. (63)

There are two solutions to these equations corresponding
to two Fermi points located at momenta

P± = ±
( 1√

3

(

arccos(a) + arccos(b)
)

1
3

(

arccos(a)− arccos(b)
)

)

, (64)

where

a =
J2
y − J2

x − J2
z

2JxJz
and b =

J2
x − J2

y − J2
z

2JyJz
. (65)

To determine the behaviour of the Hamiltonian around
these points, we Taylor expand to first order as

f(P± + p) = f(P±) + p ·∇f(P±) +O(p2),

∆(P± + p) = ∆(P±) + p ·∇∆(P±) +O(p2). (66)

By direct calculation we find

∇f(P±) = 2i
[

Jx

(

a± i
√

1− a2
)

n1

+ Jy

(

b∓ i
√

1− b2
)

n2

]

,
(67)

∇∆(P±) = 2
[

−Kxan1 +Kybn2

+Kz

(

ab−
√

1− a2
√

1− b2
)

(n1 − n2)
]

.
(68)

For the isotropic case addressed earlier in section IVA,
we note that in the continuum limit f(p) became the
kinetic term whist ∆(p) simply provided an energy gap
at the Fermi points. If we demand that this is the case
for generally anisotropic couplings, we must ensure that

∆(p) does not shift the position of the Fermi points de-
termined by f(p). This can be achieved if (68) vanishes.
In order to impose this, we must constrain the couplings
{Ki} to take the values

Kx = 4Kb
(

ab−
√

1− a2
√

1− b2
)

,

Ky = 4Ka
(

ab−
√

1− a2
√

1− b2
)

,

Kz = 4Kab,

(69)

where K ∈ R is a constant that gives the overall scale of
the K couplings and a, b are given in (65). The factor of
4 ensures the gap for the most general case agrees with
the gap from the isotropic case in Section II.
With these conditions, the energy gap at each Fermi

point is given by 2|∆(P±)|, where ∆(P±) = ±∆ and

∆ = 8K
√

(1− a2)(1− b2)
(

a
√

1− b2+b
√

1− a2
)

. (70)

At the isotropic limit, Jx = Jy = Jz = J , we have
from (65) that a = b = −1/2 and we recover the cor-

responding ∆ = −3
√
3K, in agreement with (9).

As usual, we expand our Hamiltonian about the Fermi
points and define the continuum limit Hamiltonian as
h±(p) = h(P± + p). We consider the Fermi points
simultaneously by defining the four component spinor

Ψ = (ca+ icb+ icb− ca−)
T where c

a/b
± (p) = c

a/b
P±+p. We com-

bine the Hamiltonians h+(p) and h−(p) by taking their
direct sum with respect to the basis defined by Ψ. This
yields the total 4× 4 Hamiltonian

hKHLM =(Aσz ⊗ σx +Bσz ⊗ σy) px

+ Cσz ⊗ σypy +∆I⊗ σz,
(71)

where we have defined the quantities

A =

√

12J2
x − 3

(J2
y − J2

x − J2
z )

2

J2
z

, (72a)

B =
√
3
(J2

y − J2
x)

J2
z

, (72b)

C = −3Jz. (72c)

This reduces to the original isotropic continuum limit
given in (9) when Jx = Jy = Jz = J . In terms of the
gamma matrices defined in (11), we see that the contin-
uum limit Hamiltonian is given by

hKHLM =
(

Aγ0γ1 +Bγ0γ2
)

px + Cγ0γ2py + i∆γ1γ2,
(73)

which is the most general continuum limit Hamiltonian
in Riemann-Cartan form.

2. The Metric

From previously, the general Riemann-Cartan Hamil-
tonian is given by

hRC = e i
a γ

0γapi +
i

8
φγ1γ2 − i

2
∂ie

i
a γ

0γa +mγ0 (74)
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B

<latexit sha1_base64="NIOnfbcn4xtIQ2v1T91wydQ3FNs=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ5lsN+3SzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3M79zhNTmsfywUwT5kc4kjzkFI2VulmfoiA3s0G54lbdBcg68XJSgRzNQfmrP4xpGjFpqECte56bGD9DZTgVbFbqp5olSCc4Yj1LJUZM+9ni3hm5sMqQhLGyJQ1ZqL8nMoy0nkaB7YzQjPWqNxf/83qpCet+xmWSGibpclGYCmJiMn+eDLli1IipJUgVt7cSOkaF1NiISjYEb/XlddK+qnq1au2+VmnU8ziKcAbncAkeXEMD7qAJLaAg4Ble4c15dF6cd+dj2Vpw8plT+APn8wehpI+t</latexit>

A

<latexit sha1_base64="0Ip0W04DlRLh3gIXF0RgQ0lK1ds=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI8VLx4r2A9oQ5lsN+3SzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3M79zhNTmsfywUwT5kc4kjzkFI2VulmfoiA3s0G54lbdBcg68XJSgRzNQfmrP4xpGjFpqECte56bGD9DZTgVbFbqp5olSCc4Yj1LJUZM+9ni3hm5sMqQhLGyJQ1ZqL8nMoy0nkaB7YzQjPWqNxf/83qpCet+xmWSGibpclGYCmJiMn+eDLli1IipJUgVt7cSOkaF1NiISjYEb/XlddK+qnq1au2+VmnU8ziKcAbncAkeXEMD7qAJLaAg4Ble4c15dF6cd+dj2Vpw8plT+APn8wegH4+s</latexit>

A

<latexit sha1_base64="0Ip0W04DlRLh3gIXF0RgQ0lK1ds=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI8VLx4r2A9oQ5lsN+3SzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3M79zhNTmsfywUwT5kc4kjzkFI2VulmfoiA3s0G54lbdBcg68XJSgRzNQfmrP4xpGjFpqECte56bGD9DZTgVbFbqp5olSCc4Yj1LJUZM+9ni3hm5sMqQhLGyJQ1ZqL8nMoy0nkaB7YzQjPWqNxf/83qpCet+xmWSGibpclGYCmJiMn+eDLli1IipJUgVt7cSOkaF1NiISjYEb/XlddK+qnq1au2+VmnU8ziKcAbncAkeXEMD7qAJLaAg4Ble4c15dF6cd+dj2Vpw8plT+APn8wegH4+s</latexit>

A

<latexit sha1_base64="0Ip0W04DlRLh3gIXF0RgQ0lK1ds=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI8VLx4r2A9oQ5lsN+3SzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3M79zhNTmsfywUwT5kc4kjzkFI2VulmfoiA3s0G54lbdBcg68XJSgRzNQfmrP4xpGjFpqECte56bGD9DZTgVbFbqp5olSCc4Yj1LJUZM+9ni3hm5sMqQhLGyJQ1ZqL8nMoy0nkaB7YzQjPWqNxf/83qpCet+xmWSGibpclGYCmJiMn+eDLli1IipJUgVt7cSOkaF1NiISjYEb/XlddK+qnq1au2+VmnU8ziKcAbncAkeXEMD7qAJLaAg4Ble4c15dF6cd+dj2Vpw8plT+APn8wegH4+s</latexit>

Jx = 1,
Jy = Jz = 0

<latexit sha1_base64="VG+giFWRk72tDD0O2EYAvItb3rs=">AAAB+3icbVDLSsNAFJ34rPEV6043g0VwISWRQt0UCm6kqwr2AU0Ik+mkHTp5MDORxtC1f+HGhSJuXfgFuu7Ov3H6WGjrgQuHc+7l3nu8mFEhTfNbW1ldW9/YzG3p2zu7e/vGQb4pooRj0sARi3jbQ4IwGpKGpJKRdswJCjxGWt7gauK37ggXNApvZRoTJ0C9kPoUI6kk18jX3GHFOrdtveamlZp7XzFdo2AWzSngMrHmpFA9+io+jD8/6q4xtrsRTgISSsyQEB3LjKWTIS4pZmSk24kgMcID1CMdRUMUEOFk09tH8FQpXehHXFUo4VT9PZGhQIg08FRngGRfLHoT8T+vk0j/0sloGCeShHi2yE8YlBGcBAG7lBMsWaoIwpyqWyHuI46wVHHpKgRr8eVl0rwoWqVi6UalUQYz5MAxOAFnwAJlUAXXoA4aAIMheATP4EUbaU/aq/Y2a13R5jOH4A+09x8Wr5bs</latexit>

Jy = 1,
Jx = Jz = 0

<latexit sha1_base64="rRX74B03hnFs4NZYnpMGDbntMzM=">AAAB+3icbVDLSsNAFJ34rPEV6043g0VwISWRQt0UCm6kqwr2AU0Ik+mkHTp5MDORxtC1f+HGhSJuXfgFuu7Ov3H6WGjrgQuHc+7l3nu8mFEhTfNbW1ldW9/YzG3p2zu7e/vGQb4pooRj0sARi3jbQ4IwGpKGpJKRdswJCjxGWt7gauK37ggXNApvZRoTJ0C9kPoUI6kk18jX3LRindu2XnOHlZp7XzFdo2AWzSngMrHmpFA9+io+jD8/6q4xtrsRTgISSsyQEB3LjKWTIS4pZmSk24kgMcID1CMdRUMUEOFk09tH8FQpXehHXFUo4VT9PZGhQIg08FRngGRfLHoT8T+vk0j/0sloGCeShHi2yE8YlBGcBAG7lBMsWaoIwpyqWyHuI46wVHHpKgRr8eVl0rwoWqVi6UalUQYz5MAxOAFnwAJlUAXXoA4aAIMheATP4EUbaU/aq/Y2a13R5jOH4A+09x8WuJbs</latexit>

Jz = 1,
Jx = Jy = 0

<latexit sha1_base64="KJlrpMtldadjt7t/BGJmYmwGuKc=">AAAB+3icbVDLSsNAFJ34rPEV6043g0VwISWRQt0UCm6kqwr2AU0Ik+mkHTp5MDORxtC1f+HGhSJuXfgFuu7Ov3H6WGjrgQuHc+7l3nu8mFEhTfNbW1ldW9/YzG3p2zu7e/vGQb4pooRj0sARi3jbQ4IwGpKGpJKRdswJCjxGWt7gauK37ggXNApvZRoTJ0C9kPoUI6kk18jX3PuKdW7bes0dVmpuWjFdo2AWzSngMrHmpFA9+io+jD8/6q4xtrsRTgISSsyQEB3LjKWTIS4pZmSk24kgMcID1CMdRUMUEOFk09tH8FQpXehHXFUo4VT9PZGhQIg08FRngGRfLHoT8T+vk0j/0sloGCeShHi2yE8YlBGcBAG7lBMsWaoIwpyqWyHuI46wVHHpKgRr8eVl0rwoWqVi6UalUQYz5MAxOAFnwAJlUAXXoA4aAIMheATP4EUbaU/aq/Y2a13R5jOH4A+09x8WxZbs</latexit>

Jx = Jy + Jz

<latexit sha1_base64="UudW8xmzydIzmzF1BUJ/uSrkuPw=">AAAB+HicbVDLSgMxFM3UV62PjrrTTbAIgjDMSKFuhIIb6aqCfUA7DJk004ZmMkOSEaelaz/CjQtF3LrzC3TdnX9j+lho64F7OZxzL7k5fsyoVLb9bWRWVtfWN7Kbua3tnd28ubdfl1EiMKnhiEWi6SNJGOWkpqhipBkLgkKfkYbfv5r4jTsiJI34rUpj4oaoy2lAMVJa8sx8xbuHl7DipfBM94FnFmzLngIuE2dOCuXDL+th/PlR9cxxuxPhJCRcYYakbDl2rNwhEopiRka5diJJjHAfdUlLU45CIt3h9PARPNFKBwaR0MUVnKq/N4YolDINfT0ZItWTi95E/M9rJSq4cIeUx4kiHM8eChIGVQQnKcAOFQQrlmqCsKD6Voh7SCCsdFY5HYKz+OVlUj+3nKJVvNFplMAMWXAEjsEpcEAJlME1qIIawCABj+AZvBgD48l4Nd5moxljvnMA/sB4/wHlVZWw</latexit>

Jy = Jx + Jz

<latexit sha1_base64="j3BQqIVvWBiwY+1Wo1wJSB3I/L0=">AAAB+HicbVDLSgMxFM3UV62PjrrTTbAIgjDMSKFuhIIb6aqCfUA7DJk004ZmMkOSEaelaz/CjQtF3LrzC3TdnX9j+lho64F7OZxzL7k5fsyoVLb9bWRWVtfWN7Kbua3tnd28ubdfl1EiMKnhiEWi6SNJGOWkpqhipBkLgkKfkYbfv5r4jTsiJI34rUpj4oaoy2lAMVJa8sx8xUvhJax49/BM94FnFmzLngIuE2dOCuXDL+th/PlR9cxxuxPhJCRcYYakbDl2rNwhEopiRka5diJJjHAfdUlLU45CIt3h9PARPNFKBwaR0MUVnKq/N4YolDINfT0ZItWTi95E/M9rJSq4cIeUx4kiHM8eChIGVQQnKcAOFQQrlmqCsKD6Voh7SCCsdFY5HYKz+OVlUj+3nKJVvNFplMAMWXAEjsEpcEAJlME1qIIawCABj+AZvBgD48l4Nd5moxljvnMA/sB4/wHlW5Ww</latexit>
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FIG. 6. The phase diagram of the anisotropic KHLM, where
the couplings are normalised as Jx+Jy+Jz = 1. The isotropic
case with Jx = Jy = Jz is denoted by a dot in the centre of
the triangles. The quantum spin liquid phase that supports
Majorana fermions, denoted as B, sits in the centre of the
diagram. The topological phases A correspond to the Toric
Code phase. The singularity condition of the metric (78) de-
fines the boundaries between the phases A and B. The dashed
line corresponds to a possible anisotropic change of couplings
in the B phase.

Direct comparison of the continuum limit (73) with the
Riemann-Cartan Hamiltonian (74) for constant parame-
ters reveals the dreibein of the model are given by

e µ
a =





1 0 0
0 A 0
0 B C



 , eaµ =





1 0 0
0 1

A 0
0 − B

AC
1
C



 , (75)

with corresponding metric

gµν = eaµe
b
νηab =





1 0 0

0 − 1
A2 − B2

A2C2

B
AC2

0 B
AC2 − 1

C2



 . (76)

We also identify the torsion pseudoscalar and mass as

φ = 8∆, m = 0. (77)

From (76) we see that the geometry becomes singular
when A = 0 or C = 0. To analyse the properties of
the model when A = 0 we note that this condition is
equivalent to satisfying one of the following equations

Jx + Jy + Jz = 0,
Jx − Jy − Jz = 0,
Jx − Jy + Jz = 0,
Jx + Jy − Jz = 0.

(78)

Assuming that Jx, Jy, Jz are all positive we obtain the
following conditions that Jx = Jy+Jz or Jy = Jx+Jz or
Jz = Jx + Jy. Choosing for convenience the normalisa-
tion condition Jx + Jy + Jz = 1 we obtain the triangular

phase diagram shown in Fig. 6. The above conditions
between the {Ji} couplings define the phase boundaries
that lie between the non-Abelian phase B and the Toric
Code36 phases A of the model. On the other hand, the
condition C = 0 corresponds to the case where Jz = 0.
This coupling configuration makes the model gapless as
it becomes a set of disentangled one-dimensional chains
with zero energy gap. The Jz = 0 case corresponds to
the middle of the bottom site of the large triangle in
Fig. 6. Hence, the geometric description of the KHLM
is non-singular within the whole region B. The singular
regions of the metric correspond to the well known phase
transitions of the KHLM35.

C. The anisotropic case with Jx = Jy = 1 and

0 ≤ Jz ≤ 2

The phase diagram obtained above corresponds to pa-
rameters {Ji} that are constant. We now upgrade these
parameters to functions of space to investigate whether
the continuum limit can describe a curved geometry.
For simplicity, we focus our attention on the special
anisotropic case where Jx = Jy = 1 and Jz can take
values between the critical points 0 ≤ Jz ≤ 2, as shown
in Fig. 6. We refer to this case as the anisotropic case.

1. The Metric

In the anisotropic case, we see from (72) and (73) in the
previous section that the continuum limit Hamiltonian is
given by

hKHLM =
√

12− 3J2
z γ

0γ1px − 3Jzγ
0γ2py

−KJz(4− J2
z )

3
2 iγ1γ2

(79)

Using formula (76), the corresponding metric is given by

gµν =





1 0 0
0 1

3J2
z
−12 0

0 0 − 1
9J2

z



 . (80)

We see that this agrees with the metric of the isotropic
case (46) when Jz = 1, in which case this would be de-
scribing the isotropic case for J = 1.

2. Curvature and Torsion

We now upgrade our coupling constants to slowly-
varying functions of space only in order to calculate the
curvature. The metric (80) is diagonal so we can employ

the general formula (50) for the Ricci scalar R̃ of the
Levi-Civita connection. A direct substitution of

F =
1

3J2
z − 12

, G = − 1

9J2
z

(81)
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into the formula yields a rather unpleasant expression for
the curvature, but the upshot is that the curvature is non-
zero and space-dependent when the coupling constant Jz
is space-dependent. The Ricci scalar R̃, together with
the formula (49), fully determines the Riemann tensor of
the Levi-Civita connection.
Next we determine the torsion of the system. Using

equation (70) we find that the gap at the Fermi points is
given by

∆ = −KJz(4− J2
z )

3
2 . (82)

Combining this result with the equation (77), we have
the torsion pseudoscalar

φ = −8KJz(4− J2
z )

3
2 (83)

which fully determines our torsion Tabc = 1
3!φǫabc and

contortion Kabc = 1
12φǫabc tensors. This result, com-

bined with the Levi-Civita connection, fully determines
the spacetime connection Γρ

µν = Γ̃ρ
µν + Kρ

µν of the
model. We can use the above results to determine the
total Ricci scalar of the model using formula (25) which
gives

R = R̃− 8

3
K2J2

z (4− J2
z )

3. (84)

We stated previously that the torsion of the continuum
limit is due to the next-to-nearest-neighbour interaction
term. Indeed, in the isotropic case the torsion was solely
determined byK and had no dependence on the J term—
it existed whether we had nearest-neighbour interactions
or not. However, despite this fact, we see that the tor-
sion in (83) actually depends on Jz in this special case.
This is due to the fact that we modified our K term to
ensure that it did not shift the Fermi points determined
by the J term. For this reason, the value of these next-
to-nearest neighbour K terms has a dependence on the
couplings {Ji}, however the overall scale of the torsion
is determined by K and will vanish if K = 0. There-
fore the identification of the next-to-nearest-neighbour
interactions as a source of torsion in the continuum limit
remains, albeit the strength being dependent on Jz too.

The same can be said for the total curvature R. We see
that in the isotropic case, the J term only contributed
to the curvature of the Levi-Civita connection and was
independent of the contortion. Now, due to the previous
reasons, the J term contributes to the total curvature in
two ways.
In the next section we shall investigate how faithfully

KHLM can reproduce the metric (80) just by varying its
couplings.

V. GEOMETRY OF QUANTUM

CORRELATIONS AND ZERO MODES

In this section we perform a numerical study of
the KHLM with periodic boundary conditions and

anisotropic J couplings. Our aim is to determine how
faithfully the exact form of the metric obtained in (80)
can be reproduced from the lattice description of the mi-
croscopic model. To proceed we employ the following
procedure. The geometric description of KHLM deter-
mines the form of the metric for any configuration of
the couplings. By knowing, for example, an eigenstate
of the Hamiltonian for a given configuration such as the
isotropic case, we can deduce the form of the eigenstate
for any other coupling configuration by only considering
its spatial transformation according to the corresponding
change of the metric.
To be more concrete consider the transformation of

the model from the isotropic case, Jx = Jy = Jz = 1, to
the anisotropic case with Jx = Jy = 1 and 0 ≤ Jz ≤ 2
described by the metric (80). As Jz varies this metric
describes the simultaneous change in the measure of dis-
tance for both the x and y directions. To study systemat-
ically this effect we consider the case where Jz is constant
in space. In this case the spatial distance d between two
points on the distorted space Σ is given by

d =
√

−gij∆Xi∆Xj , (85)

where ∆Xi is the change in coordinates between each
point and gij are the spatial components of the metric.
We can visualise what the effect of changing the coupling
Jz is on the spatial anisotropy by noting that a unit circle
at Jz = 1 gets deformed into an ellipse as Jz 6= 1 with
principle axes dx and dy along the x and y directions,
respectively, satisfying

dx
dy

=

√−gxx√−gyy
=

√
3Jz

√

4− J2
z

. (86)

In the following we study the effect varying Jz has on
physical observables of the model. Specifically we will
investigate how faithfully the spatial profiles of two-
point Majorana correlations and Majorana zero modes35,
bounded at a vortices, are deformed compared to the ra-
tio (86).

A. Two-Point Quantum Correlations

Two-point Majorana correlations are the expectation
value of a product of two Majorana operators at dif-
ferent sites with respect to the ground state |ψ0〉, i.e.
i〈cicj〉 = 〈ψ0| icicj |ψ0〉. They are an important quantity
as any other property of the model can be deduced from
them as our model is effectively free68. As the system
is gapped we expect the two-point correlations i〈cicj〉 to
decrease exponentially fast with respect to the distance
|ri − rj |. We extract the two-point correlations by ex-
act diagonalisation of Hamiltonian (2). Taking a single
row or column of the correlation matrix gives us a dis-
crete spatial profile of the two-point correlations of each
site with respect to a central reference site, as shown in
Fig. 7(a).
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ihc0cii = 10−3

(b)

10−5 10−3 10−1

ihc0cii

(a)

10−5 10−3 10−1

ihc0cii

FIG. 7. The two-point correlations and their continuous
profile. (a) The two-point correlations i〈c0ci〉 between each
site, i and a central reference site, 0, denoted with a red cross.
(b) A continuous approximation of the two-point correlations
is constructed using two-dimensional Gaussians centred on
each lattice site, as described by (87). The size and shape of
the correlations are characterised by finding the set of points
where i〈c0ci〉 = 10−3, as illustrated. We notice that even
for large system sizes the hexagonal geometry of the lattice
influences the spatial distribution of the correlations. Here
we used Jx = Jy = Jz = 1, system size 36 × 36 K = 0.1 and
ǫ = 1.

To study the effect of varying Jz, as in Fig. 6, on this
discrete spatial profile we produce a continuous approx-
imation by replacing the two-point correlation data at
each lattice point with a two-dimensional Gaussian cen-
tred at the site,

i〈c(r)cj〉 =
∑

i

i〈cicj〉 δ(r − ri) →
∑

i

i〈cicj〉

2πǫ
e−

|r−ri|
2

2ǫ ,

(87)
where ǫ is taken to be of similar magnitude as to the lat-
tice spacing so that the Gaussians of neighbouring sites
overlap. Fig. 7 illustrates this substitution. This con-
tinuous approximation reduces the discrete lattice effects
and allows us extract the stretching and squeezing of the
observables predicted by (86). It is worth noticing that
as the two-point correlations are local they are strongly
influenced by the lattice structure of the system. Hence,
even if we expected the isotropic point to be rotationally
invariant we observe that the honeycomb lattice structure
is still evident in the continuum representation even for
large system sizes. Nevertheless, this deformation does
not obstruct us from demonstrating the equivalence be-
tween the microscopic model and the RC geometric the-
ory.
From the continuous approximation of the correlations

we numerically identify the set of points where 〈c(r)cj〉
has decayed to a fixed value e.g. 10−3. This ‘boundary’
line is drawn for the correlations at the isotropic point of
the model in Fig. 7(b). We find that at the isotropic point
the boundary is almost circular. As we move away from
the isotropic point the boundary should be stretched in
either the x or y direction.

10−7 10−5 10−3 10−1

ihc0cii

0.25 0.50 0.75 1.00 1.25 1.50 1.75
Jz

0

1

2

3

4

5

w
y
/w

x

p

3Jz/
p

4− J2
z

K =0.1

K =0.2

K =0.3

FIG. 8. Verifying the metric from the continuous approxima-
tion of the correlations. The points in the main panel plot the
ratio between the height and width of the ‘boundary’ wy/wx

for Jx = Jy = 1, ǫ = 1, system size 36× 36 and a range of K.
Also plotted with a dashed line is the theoretically predicted
ratio dx/dy =

√
3Jz/

√
4− J2

z from Eq. (86). The numerical
data converges to the theoretical line as K decreases. Below
are illustrative examples of the boundaries we find at various
Jz and K = 0.1. At the isotropic point, Jz = 1, we find
wy/wx = 1. As Jz deviates from the isotropic point the ratio
wy/wx can become larger or smaller than one.

To verify the metric (80) we compare the ratio between
the height and width of the boundary wy/wx to the ratio
of the principle axes of the ellipse dx/dy, given in (86).
We find that at the isotropic point the width and height
of the boundary are almost circular, with wy/wx ≈ 1.
Fig. 8 plots the comparison of wy/wx to dx/dy for dif-
ferent values of Jz. The ratio wy/wx converges to dx/dy
with decreasing K. As K decreases the energy gap also
decreases, which leads to an increase in the correlation
length. When the correlation length becomes large com-
pared to the lattice spacing discrete lattice effects be-
come negligible and the correlations approximate the be-
haviour of those in a continuous system. We find that
these ratios agree very well, particularly away from the
phase transition boundaries. We observe that an increase
(decrease) in Jz corresponds to a decrease (increase) in
the effective distance between lattice sites dy (dx), re-
sulting in stronger (weaker) correlations along that axis.
Thus the correlations appear stretched (squeezed) along
that axis of the lattice, i.e. wy/wx increases (decreases).
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|ψ|2 = 10−3

(b)

10−4 10−3 10−2 10−1

|ψ(x, y)|2

(a)

10−4 10−3 10−2 10−1

|ψi|
2

FIG. 9. Obtaining a continuous profile for the vortex wave
function and extracting its dimensions. (a) The discrete lat-
tice probability density |ψi|2 of the wave function for a vor-
tex, located on the plaquette in the centre. (b) A contin-
uous approximation of the discrete vortex probability den-
sity is constructed using two-dimensional Gaussians centred
on each lattice site, as described in the text. The size and
shape of the vortex are characterised by finding the set of
points where |ψ(r)|2 = 10−3, as illustrated. Here we used
Jx = Jy = Jz = 1, system size 36× 36, K = 0.125 and ǫ = 1.

B. Vortex zero-modes

Vortex excitations can be introduced in pairs by in-
serting π-fluxes into the Z2 gauge field that couples to
the Majorana matter fermions of the model35. Practi-
cally this can be done by flipping the sign of a coupling
Jij of a link (i, j) relative to its value in the no-vortex
sector. This link belongs to two hexagonal plaquettes,
and following this change of gauge, these two plaquettes
will each hold a vortex with a Majorana zero-mode lo-
calised at each. By subsequent changes in the sign of Jij
couplings these two vortices can be moved far apart. In
the spectrum of the model the vortex pair manifests as a
zero-energy fermion mode35. We study the spatial wave
function of a single vortex sufficiently separated from its
pair. We call the probability density at each lattice site,
|ψi|2 the discrete spatial profile of the wave function, as
shown in Fig. 9(a).

To analyse the geometric profile of the zero modes we
adopt the same procedure we used for the Majorana cor-
relations. We approximate the discrete wavefunction pro-
file with a continuous distribution by replacing the proba-
bility density at each lattice point with a two-dimensional
Gaussian centred at the site,

|ψ(r)|2 =
∑

i

|ψi|2 δ(r − ri) →
∑

i

|ψi|2
2πǫ

e−
|r−ri|

2

2ǫ , (88)

where ǫ is taken to be similar to the lattice spacing so
that the Gaussians of neighbouring sites overlap. Fig. 9
illustrates this substitution. In the continuum we expect
a wave function exponentially localised at the position of
the vortex. This continuous profile reduces the discrete

10−7 10−5 10−3 10−1

|ψ(x, y)|2

0.25 0.50 0.75 1.00 1.25 1.50 1.75
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(w
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)
/
(2
/√
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√
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4− J2
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K =0.2

K =0.3

FIG. 10. Inferring the metric distortions from the spatial
profile of a vortex wave function. The points in the main panel
plot the ratio between the height and width of the vortex
boundary wy/wx, divided by the height to width ratio of a
regular hexagon 2/

√
3 for Jx = Jy = 1, ǫ = 1, system size

36× 36 and a range of K. Also plotted with a dashed line is
the theoretical relationship given in Eq. (86) we expect from
the geometrical description. The numerical data converges
to the theoretical line as K decreases. Below are illustrative
examples of the hexagonal boundaries we find at various Jz
and K = 0.125. At the isotropic point, Jz = 1, it is a regular
hexagon. As Jz deviates from the isotropic point the ratio
wy/wx can take smaller or larger values than 2/

√
3.

lattice effects allowing us to clearly observe the effects of
geometry.
From the continuous profile of the vortex we extract

its relative scale in the x and y spatial directions by nu-
merically identifying the set of points where |ψ(r)|2 has
decayed to a fixed value, e.g. 10−3. This ‘boundary’ line
is drawn for a vortex at the isotropic point of the model
in Fig. 9(b). We observe that the geometry of the hon-
eycomb lattice is strongly manifested in this boundary.
This is due to the exponential localisation of the zero
mode to the vortex, with localisation length comparable
to the lattice spacing and independent of the system size
if we keep the energy gap constant. Hence, the lattice
effects are expected to be visible in the wave function of
the zero mode.
As we move away from the isotropic point the hexagon

will be stretched in either the x or y direction. To com-
pare the changing shape of the boundary to the distor-
tions predicted by (86), we compare the ratio between the
height and width of the hexagonal boundary wy/wx to

the height and width ratio of a regular hexagon, (2/
√
3).
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We find that at the isotropic point the boundary sat-
isfies wy/wx = 2/

√
3. Fig. 10 plots the comparison of

(wy/wx)/(2/
√
3) to the ratio dx/dy, given in (86), for dif-

ferent values of Jz. The ratio wy/wx converges to dx/dy
with decreasing K. As K decreases the energy gap also
decreases, which leads to an increase in the correlation
length. When the correlation length becomes large com-
pared to the lattice spacing discrete lattice effects become
negligible and the probability densities approximate the
behaviour of those in a continuous system. We find that
these ratios agree very well, particularly away from the
phase transition boundaries. We observe that an increase
(decrease) in Jz equates to a decrease (increase) in the ef-
fective distance between lattice sites dy (dx). This results
in the apparent stretching (squeezing) of the zero mode in
that direction, i.e. an increase (decrease) in wy/wx. As
a result the effective geometric description of KHLM in
terms of a metric is faithful. As the metric is a geometric
primitive, we expect that the rest of the geometric quan-
tities, such as the curvature, to be faithfully reproduced
as well. We leave this investigation to future work.

VI. CONCLUSIONS

In this paper we expanded upon the known result that
the low energy limit, or continuum limit, of the Kitaev
honeycomb lattice model is described by massless Majo-
rana fermions obeying the Dirac Hamiltonian embedded
in a Minkowski spacetime. We took this idea further by
investigating whether the continuum limit could possibly
yield non-trivial curved geometry. A suitable generalisa-
tion of Minkowski spacetime, namely a Riemann-Cartan
geometry, with both curvature and torsion manifests it-
self in the KHLM via non-trivial dreibein e µ

a and space-

time connection Γρ
µν = Γ̃ρ

µν +Kρ
µν . It was shown that

if the couplings of KHLM take a general space-dependent
form, a Riemann-Cartan continuum limit can indeed be
obtained.
We first showed theoretically that the single-particle

Hamiltonian of a Majorana field in a Riemann-Cartan
spacetime hRC can be identified with the continuum limit
of the KHLM Hamiltonian hKHLM with general space-
dependent nearest-neighbour couplings {Ji} and next-
to-nearest-neighbour couplings {Ki}. We demonstrated
that the nearest-neighbour part of the Hamiltonian be-
comes the kinetic term of the Dirac-like continuum limit
while the next-to-nearest neighbour part generates an en-
ergy gap at the Fermi points. By comparing hRC and
hKHLM, we subsequently interpreted the coefficients of
the kinetic term as the dreibein corresponding to a non-
trivial Levi-Civita connection Γ̃ρ

µν and interpreted theK
term that generates the gap as a non-trivial contortion
Kρ

µν . With this identification the metric gµν = eaµe
b
νηab

was fully determined, as well as the total connection
Γρ

µν = Γ̃ρ
µν + Kρ

µν , providing us with the curvature
Rρ

µνσ and torsion T ρ
µν of the Riemann-Cartan theory.

For the special case of isotropic couplings where Jx =

Jy = Jz = J , we demonstrated that the continuum limit
had non-trivial dreibein and spacetime connection yield-
ing a curvature and torsion depending on the parameters
J and K. The torsion term is equivalent to the supercon-
ducting gap. So when the torsion is dominant the sys-
tem is a topological superconductor in class D. We also
demonstrated that by modifying the model with a Kekulé
distortion, one can give the Majorana fermions a non-
zero mass in the continuum limit. When the mass term is
dominant over the torsion then the system is in class BDI.
To study the anisotropic case we considered in detail the
special configuration of couplings where Jx = Jy = 1,
with Jz a free parameter. In this case, the metric of the
continuum limit corresponded to a non-uniform dilation
in the x- and y-directions relative to the isotropic metric.
This stretching of space was confirmed by analysing the
spatial distribution of the quantum correlations as well
as the zero-mode profiles of the model. We numerically
determined that the description of the model in terms of
a geometric metric is faithful even for moderate system
sizes. In Fig. 8 and Fig. 10 we see how well the geo-
metric theory describes the deformation of the quantum
correlations and zero mode profiles, respectively. We see
the accuracy of the geometric description improves with
increasing correlation length. As expected, in the limit
of large correlation length discrete lattice effects become
negligible and the model strongly resembles its continu-
ous description.

Our work verified that the theory of Majorana fields
in Riemann-Cartan geometry can faithfully describe the
microscopic Kitaev honeycomb lattice model. This field
theoretic description can be then employed to analyti-
cally investigate a variety of properties of the microscopic
model. As an example, this opens up the exciting possi-
bility to quantitatively study the energy-momentum cur-
rents of KHLM and determine their behaviour in terms of
various coupling configurations or external driving. The
geometric description of superconductors used to obtain
the thermal transport coefficients from response theory
as employed by Luttinger25 can be realised here with a
perturbation of the KHLM couplings around the isotropic
and homogeneous configuration. Similarly, our geometric
description of KHLM parallels the coupling of topolog-
ical superconductors to a geometric backgroung22 that
demonstrate, with the help of the AdS/CFT correspon-
dence, the presence of chiral edge modes at their bound-
ary.

Our geometric framework can also consider the pres-
ence of Heisenberg interactions in the KHLM. In the low
energy limit these interactions take the form of four Ma-
jorana fermion interactions, ca+c

a
−c

b
+c

b
−. For weak cou-

plings mean field theory can be employed that will renor-
malise the tunnelling J couplings and the mass m of
the Majorana fermions, thus appropriately renormalis-
ing the metric of the geometric description. Moreover,
chiral gauge fields have been investigated in the context
of graphene69 that could be extended to the KHLM case,
giving a more complete quantum field theory description
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of the model. Finally, the response of KHLM to time-
dependent geometric perturbations including quenches70

or considering a dynamical metric introduced by addi-
tional quantum fields, such as phonons that perturb the
tunnelling couplings, can also be probed using the for-
malism developed here. We leave these investigations to
a future work.
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