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Antimicrobial therapy has provided the main component of chemotherapy against

bacterial pathogens. The effectiveness of this strategy has, however, been increasingly

challenged by the emergence of antimicrobial resistance which now threatens the

sustained utility of this approach. Humans and animals are constantly exposed to

bacteria and have developed effective strategies to control pathogens involving innate

and adaptive immune responses. Impaired pathogen handling by the innate immune

system is a key determinant of susceptibility to bacterial infection. However, the

essential components of this response, specifically those which are amenable to

re-calibration to improve host defense, remain elusive despite extensive research.

We provide a mini-review focusing on therapeutic targeting of microbicidal responses

in macrophages and neutrophils to de-stress reliance on antimicrobial therapy. We

highlight pre-clinical and clinical data pointing toward potential targets and therapies.

We suggest that developing focused host-directed therapeutic strategies to enhance

“pauci-inflammatory” microbial killing in myeloid phagocytes that maximizes pathogen

clearance while minimizing the harmful consequences of the inflammatory response

merits particular attention. We also suggest the importance of One Health approaches

in developing host-based approaches through model development and comparative

medicine in informing our understanding of how to deliver this strategy.
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INTRODUCTION

Antimicrobial chemotherapy has formed the cornerstone of our therapeutic strategy against
bacterial disease since penicillin was first developed. Prior to this, developing host-based therapy
was a major focus, including Fleming’s original work on lysozyme, a humoral microbicide he
isolated while seeking antimicrobial factors in pus (1). The first therapeutic use of penicillin in 1930
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(treating eye infections in babies in Sheffield by Cecil Paine),
and the pioneering work of Florey, Chain and colleagues in
Oxford who developed innovations in penicillin synthesis to
allow the first clinical trials in 1941, established antimicrobial
chemotherapy as the pre-eminent therapeutic approach to
bacterial disease (2). This has had a major impact on human
health but arguably diverted focus away from host-based
approaches other than vaccination.

Recent public health estimates suggest antimicrobial resistant
bacteria cause 131 infections/100,000 population in Europe and
that two-thirds are nosocomial (3). The disability adjusted life
years of these infections approximates tuberculosis, influenza
and HIV combined (3). In addition, development of new
antimicrobials has been declining (4). There is thus a pressing
need to develop new antimicrobials, improved antimicrobial
stewardship, better diagnostics to identify the patients who
truly need antimicrobials, and alternative approaches, for
example those involving bacteriophage therapy, nanoparticle-
based therapy, photodynamic light therapy and antimicrobial
peptides (AMP) to manage infection with antimicrobial resistant
ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter spp.) pathogens (5). While vaccination remains
a major focus, the concept of developing host-based therapy is
gaining traction.

CHARACTERISTICS OF OPTIMAL INNATE
IMMUNE RESPONSES TO PATHOGENIC
BACTERIA

Pathogenic bacteria commonly colonize healthy individuals
without causing disease. S. aureus is carried by >40% of
infants after birth and ∼50% of adults are permanent or
intermittent carriers (6, 7). Uropathogenic Escherichia coli is
typically part of an individual’s fecal microbiota and healthy
individuals carry a large number of potentially pathogenic
strains (8). In other cases, pathogens are harmless microbiome
constituents but cause opportunistic infections in patients
whose immune system is impaired by medical co-morbidity,
such as nosocomial enterococcal infections (9). This apparent
paradox, between common carriage but uncommon disease,
suggests most infections are readily controlled by the host
yet the specific microbicidal responses that control infection
when small numbers of colonizing bacteria translocate to new
sites is incompletely defined. Broadly, the innate immune
system ensures a rapid response, working in concert with
any adaptive immune responses to the pathogen. There are
many components to the innate immune system including
mucosal barrier function, humoral factors released in mucosal
secretions and a range of innate cellular responses that are
not restricted to myeloid phagocytes but also include innate
lymphoid cells. These responses are modified through adaptive
immune responses, but the focus of this review is exclusively on
myeloid phagocyte responses.

Professional phagocytes (macrophages and neutrophils) clear
bacteria frommucosa associated with a low-density microbiome,

for example the distal airway or bladder (10). Macrophages
play a critical role in the initial response as the resident
phagocytes in tissues, using pattern recognition receptors
(PRRs) to detect pathogens and orchestrate the inflammatory
response. They are efficient at phagocytosing bacteria and
utilize a range of microbicidal strategies to kill ingested
bacteria. Tissue macrophage function is tightly controlled by
activation state which is regulated by a cell network including
epithelial, endothelial, T- and B- lymphocytes, as well as tissue
resident innate lymphoid cells. The resulting cytokine networks
reflect the importance of environmental cues (11). Innate
immunememory ensures previous pathogen exposuremodulates
macrophage function via epigenetic imprinting of monocytes to
induce “training” (enhanced microbicidal responses to repeat
challenge) and “tolerance” (reduced deleterious responses to
repeat challenge) to pathogen-associated molecular patterns
(12, 13). Lipopolysaccharide (LPS) engagement of Toll-like
receptor (TLR) 4 is just one example amongst several of
a microbial stimulus that can on repeat stimulation be
associated with tolerance manifest as reduced generation of
pro-inflammatory cytokines and reactive species (14). This has
implications for monocyte-derived macrophage populations but
the extent to which it also influences resident macrophage
populations with distinct ontogeny remains to be established.
Though capable of avid phagocytosis, tissue macrophages have
a finite capacity to kill ingested bacteria (15). This capacity
can be diminished by interactions with other microorganisms
e.g., viruses, environmental factors or co-morbidity, resulting
in increased susceptibility to bacterial disease. For example,
both HIV-1 infection and chronic obstructive pulmonary
disease (COPD) impair alveolar macrophage (AM) killing
of pneumococci (16, 17). Furthermore, pathogenic bacteria
have evolved mechanisms to withstand microbicides, such as
antioxidant systems (18). Successful pathogens such as S. aureus
inhibit phagosomal maturation contributing to intracellular
survival (19), while others that are more readily killed may escape
killing in subsets of macrophages, as exemplified by survival
of pneumococci in permissive CD169+ splenic macrophages
in murine and porcine models (20). Several potentially AMR
pathogens such as K. pneumoniae and P. aeruginosa can
subvert phagosomal maturation in macrophages (21, 22).
Traditional paradigms of intracellular and extracellular bacteria
are blurring and the intracellular fate of the so-called extracellular
bacteria (including medically important ESKAPE pathogens,
Haemophilus influenzae and Streptococcus pneumoniae) is likely
a major determinant of infection outcome.

When the intracellular killing capacity of resident tissue
macrophages is overwhelmed, they orchestrate recruitment of
neutrophils and other inflammatory cells. Murine models of
clodronate-mediated AM depletion illustrate how escalating
bacterial challenge shifts the role of AM from primary effectors
of bacterial clearance to regulators of the inflammatory response,
with neutrophils required for pathogen clearance (15, 23). The
exhaustion of macrophage clearance capacity is likely also a
feature of systemic infections, as evidenced for Kupffer cells
in the liver and is augmented by commensal bacteria (24).
This represents the transition from sub-clinical infection to
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FIGURE 1 | Optimal and sub-optimal inflammatory and bacterial killing trajectories during infection. (A) Invading extracellular bacteria are recognized and

phagocytosed by macrophages, followed by intracellular killing. Pathogen clearance is optimal and achieved without the requirement for neutrophil recruitment.

Inflammation is tightly controlled and resolves without causing tissue damage. We term this optimally calibrated response “pauci-inflammatory.” (B) In hosts with

sub-optimally calibrated responses, there is inefficient phagocytosis and/or intracellular killing by macrophages, resulting in incomplete bacterial clearance. When

macrophage defense is overwhelmed beyond a “tipping point,” neutrophil recruitment is required to control the invading pathogen. Inflammation is more prolonged

and sustained by pathogen persistence and/or tissue damage. Inflammatory responses give rise to clinically recognizable features of disease, for example pneumonia.

Images created using BioRender.com.

clinical disease, and signs of neutrophilic inflammation are used
to establish a clinical diagnosis. The inflammatory response,
however, contributes to tissue injury since potent microbicides,
such as reactive oxygen species (ROS), can cause tissue injury
and organ dysfunction (25). Nevertheless, this inflammatory
response is essential and neutrophil deficiency results in severe
bacterial infection (26). Neutrophil microbicidal responses have
been extensively characterized and include ROS, AMP, divalent
metal iron-sequestering proteins (e.g., lactoferrin), proteases
such as the serine proteases contained in azurophilic granules
(e.g., cathepsin G and neutrophil elastase) and acid hydrolases
in lysosomes (26). The pre-eminence of ROS as a direct
microbicidal mechanism has been challenged by observations
that it is the associated ionic changes in the phagosome,
activating granule-associated serine proteases, that actually
mediate microbicidal killing (27). Neutrophils can also release
granule contents and DNA extracellular traps to kill bacteria (28).

The challenge is therefore to generate an effective response
that maximizes pathogen clearance and minimizes the
inflammatory response, either by enhancing the macrophage
response to raise the threshold for induction of neutrophilic

inflammation or by ensuring the neutrophilic component
achieves pathogen clearance yet limits bystander tissue
injury. We term this desirable microbicidal profile a “pauci-
inflammatory microbicidal response” recognizing that its
characteristics include rapid induction, effective pathogen
killing, and controlled recruitment of inflammatory cells
when needed, but also early resolution and tightly regulated
production of potentially damaging microbicidal species
(Figure 1). It builds on concepts articulated by Sears and
colleagues in chronic parasitic infections where the cost of
the host response (immunopathology) is weighed against
resistance to the pathogen (29). In the case of common
“extracellular” bacterial disease, the primary cost becomes
tissue injury/organ dysfunction due to the microbicidal
response and chronic infection is a rare outcome. If initial
microbicidal responses by phagocytes are sub-optimal,
the inflammatory response is escalated with increased
recruitment of neutrophils, macrophages and lymphocytes
that have the potential to promote self-propagating waves of
inflammation driven by release of damage-associated molecular
patterns in response to tissue injury. Excessive production
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of cytokines, reactive species, proteases, phospholipids and
eicosanoids mediate inflammatory tissue injury, induction
of various cell death paradigms and ultimately loss of tissue
homeostasis. These principles are well-exemplified by the
development of acute respiratory distress syndrome (ARDS)
(30). Organ specific injury is also associated with a systemic
inflammatory response which can cause multiorgan failure (31).
In addition, the generalized inflammatory response can lead
to immunosuppression with impaired immune responses on

subsequent pathogen challenge (32). It is therefore essential to
limit these dysregulated inflammatory responses and induce
a more limited inflammatory response with optimal pathogen
clearance, by targeting microbicidal responses. To target
potential bottlenecks in the host microbicidal response, we
must identify optimal responses that promote resilience in the
healthy population and patient groups in whom these fail. We
need to develop assays to assess the host response and effect
of therapy.

FIGURE 2 | Macrophage microbicidal responses involved in successful clearance of extracellular bacterial pathogens. Macrophage responses to ingested

extracellular bacteria (e.g., S. pneumoniae, S. aureus, P. aeruginosa) are summarized. Following phagocytosis of bacteria an initial microbicidal response occurs in the

phagolysosome (top panel). Specific effectors with demonstrated microbicidal roles differs based on the ingested organism, and include NADPH derived ROS,

MMP-12 (S. aureus), cathepsin L (S. aureus), asparagine endopeptidase (P. aeruginosa), lysozyme and antimicrobial peptides. Microbicidal species produced later

that co-localize to bacteria-containing phagolysosomes include NO and mROS which have demonstrated roles in killing ingested pneumococci. A mitochondrial

pathway of host-directed apoptosis is engaged in response to live ingested pneumococci, involving recognition of pneumolysin and accumulation of NO (middle

panel). This has been best studied in pneumococcal models, where it allows pauci-inflammatory clearance of bacteria that have survived initial phagolysosomal killing,

but may occur for other extracellular bacteria also. Immuno-metabolic changes that underpin the microbicidal function of macrophages have also been characterized

well in pneumococcal models and also in some other extracellular bacterial infections (bottom panel). This involves an early shift to glycolysis and a progressive

transition of mitochondrial function from ATP generation (oxidative phosphorylation) to become microbicidal organelles (mROS generation). Targets of host-directed

therapeutics that have been investigated in infection studies (clinical or pre-clinical) are indicated. The number corresponding to each indicates the stage in the killing

process where it acts, as indicated on the panels above. LAP, LC-3 associated phagocytosis; MMP, matrix metalloproteinase; Cat, cathepsin; AEP, asparagine

endopeptidase; AMP, antimicrobial peptide; ROS, reactive oxygen species; mROS, mitochondrial ROS; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; Casp,

caspase; iNOS, inducible nitric oxide synthase; Mcl-1, myeloid cell leukemia-1; PAMP, pathogen-associated molecular pattern; LMP, lysosomal membrane

permeabilization; 19M, mitochondrial membrane potential; OCR, oxygen consumption rate; IVIG, intravenous immunoglobulin; IFN, interferon.
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IDENTIFYING HOST RESPONSES AS
TARGETS FOR IMMUNOMODULATION

A critical bottleneck in host defense involves macrophage
bacterial clearance (19, 33). However, therapeutic modulation
of this is impeded by limitations in our understanding of
microbicidal responses in tissue macrophages, which are often
inferred from neutrophils, monocytes or monocytic cell lines.
Well-established microbicidal mechanisms in other phagocytes
may not operate in tissue macrophages, which (excluding those
in atherosclerotic plaques) lack the ability to produce the more
potent halogenated ROS like hypochlorous acid (34, 35). Some
microbicidal responses are more convincingly demonstrated in
mice than man, for example those involving nitric oxide (NO),
which may be produced at lower levels in human macrophages,
although several groups have detected it following bacterial
challenge (36). Effective responses likely require combinations
of microbicidals. Defining these has been limited by how well
in vitro macrophage cultures mirror tissue macrophages in vivo.
Many tissue macrophages with low-level homeostatic turnover
arise from embryonic yolk sac or fetal liver hematopoietic stem
cell progenitors and are maintained by division of resident cells,
e.g., AM derived from fetal liver precursors (37). Monocyte-
derived macrophages (MDM) give rise to macrophages in
the gut and peritoneum, populations associated with a higher
turnover, but we cannot assume their microbicidal responses are
identical to macrophages derived from embryonic progenitors.
In addition, tissue macrophage maturation is heavily influenced
by environmental cues and their transcriptional profiles are as
distinct as they are from monocytes (38).

Irrespective of these limitations there are many similarities
between microbicidal mechanisms of different macrophage
populations. A range of primary human macrophages (including
MDM and AM) and murine models demonstrate an initial phase
of extensive intracellular killing, activated in the phagosome. For
pathogens such as pneumococci, this is followed by a delayed
phase of bacterial killing, involving apoptosis-associated killing
that clears residual viable bacteria (16, 19, 33). These responses
often involve combinations of microbicidals (Figure 2), for
example ROS and NO, which helps subvert pathogen resistance
(33). Tissue macrophages modify the phagosomal environment
to inhibit bacterial survival; phagolysosomal acidification and
restriction of divalent metal cations inhibits bacterial enzymes,
including manganese-containing superoxide dismutase.
Nevertheless, the role of these responses is more established
in killing intracellular bacteria, compared to internalized
extracellular bacteria (39). These defenses are complemented by
AMP and proteases. Matrix metalloproteinase 12 contributes to
early killing of bacteria in macrophages (40). The cathelicidin
LL-37 enhances killing of bacteria including S. aureus in
macrophages and is taken up from exogenous sources to
complement ROS generation and lysosome fusion (41). AMR in
E. coli can increase the sensitivity to AMP, suggesting host-based
strategies can synergize with antimicrobials or with antimicrobial
selective pressure (42). Similarly, a synthetic peptide derived
from human lactoferrin synergizes with antimicrobials against

a carbapenemase-producing K. pneumoniae (43). However,
there are also examples where mutations inducing AMR may
also enable resistance to AMP; modification of K. pneumoniae
lipid A not only enables resistance to polymyxins but also
β-defensins and human neutrophil peptide-1 (44). Many other
AMP and proteases contribute to microbicidal responses, but
the mechanism may be indirect. For example cathepsin D
enhances apoptosis-associated killing by increasing proteasomal
degradation of the anti-apoptotic Bcl-2 family member
Mcl-1 (45).

The ability to perform lentiviral delivery of genome-
scale clustered regularly interspaced short palindromic repeats
(CRISPR)-associated nuclease Cas9 knock-out (GeCKO) pooled
libraries to human cells allows whole genome screening with the
potential to shed new light on microbicidal mechanisms (46, 47).
A further potential approach is to harness comparative biology
and aims to use convergent evolution of pathogens as they shift
species tropism (48) or divergent evolution within species as
they rapidly evolve under a host-selective pressure (49), to probe
microbicidal mechanisms. Nevertheless, identifying microbicidal
mechanisms as targets for immunomodulation will also require
evidence that these are sub-optimally calibrated in patient groups
with increased susceptibility to bacterial disease. For example,
AM from patients with COPD fail to enhancemitochondrial ROS
(mROS) production following bacterial challenge (16). This is
important since mROS has recently emerged as a keymicrobicide
affecting bacterial killing in the macrophage phagolysosome
(33, 50). Evaluation of potential microbicidal targets will also
require application of super-resolution microscopy and other
advanced imagingmodalities, combined with advances in probes,
optics and analytics to provide temporal and spatial resolution of
microbicidal generation. In the past, generation at a population
level using automated systems such as flow cytometry has been
assumed to be a surrogate for this but may be insufficient to
allow optimal characterization. In vivo imaging is also a valuable
adjunct and comparative medicine using large animals such as
pigs, whose immune system is similar to humans, and studies in
humans will aid translation in models of infection (51, 52).

RECALIBRATING MICROBICIDAL
RESPONSES IN CLINICAL SETTINGS

Only a few strategies to modulate the host response to bacteria
have progressed to clinical trials, and specific assessment
of target microbicidal responses is often lacking (Table 1).
Interferon (IFN)-γ is established in the treatment of chronic
granulomatous disease (CGD), a genetic disorder in which
deficiency in one of the components of the nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase leads to
increased susceptibility to a range of infections. While this
is an extreme case of adjusting an immune response, it
shows immunomodulation can be used to enhance microbicidal
responses. Clinical trial data shows IFN-γ reduces the frequency
of severe infections in CGD and it has also been investigated
for multi-drug resistant tuberculosis, Mycobacterium avium
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TABLE 1 | Examples of host-directed therapies in infectious diseases from clinical and pre-clinical studies.

Therapy Level of

evidence

Target Pathogen or disease Outcomes References

Cell type Cellular pathway Microbicidal

response

IFN-γ Clinical trial

(RCT)

Neutrophil NADPH-mediated

ROS production

Phagosomal

intracellular killing

Patients with chronic

granulomatous disease

(n = 128)

↓ frequency of serious

infections in patients receiving

IFN- γ (22 vs. 46%, p =

0.0006).

(53)

No serious toxicity.

GM-CSF Clinical trial

(RCT)

Neutrophil RhoA GTPase

pathway and actin

polymerisation

Phagocytosis Critically ill adults with ↓ ex

vivo neutrophil phagocytosis

(n = 38)

Ex vivo reversal of defective

neutrophil phagocytosis.

(54)

No serious toxicity.

IL-7 Clinical trial

(RCT)

Lymphocyte IL-7R signaling via

Jak/STAT and

PI3K/Akt pathways

T-cell apoptosis Adults with septic shock and

lymphopenia (n = 27; most

commonly pneumonia or

intra-abdominal infection)

↑ absolute lymphocyte count. (55)

↑ CD8+ and CD4+ T-cell

count.

↑ T-cell proliferation and

activation.

No serious toxicity

IFN-γ Clinical trial Monocyte HLA-DR expression Monocyte activation Critically ill adults with sepsis

and ↓ monocyte HLA-DR

expression (n = 9)

↑ ex vivo monocyte

LPS-induced TNF-α

production.

(56)

↑ ex vivo monocyte HLA-DR

expression.

No serious toxicity.

Anti-PD1 mAb +

IFN-γ*

Case report Lymphocyte PD-1/PDL-1

interactions

T-cell apoptosis 1 patient with invasive

mucormycosis

Clinical cure. (57)

↑ absolute lymphocyte count.

↑ monocyte HLA-DR

expression.

↑ CD8+ T-cell count.

↓ T-cell PD-1 expression.

IFN-γ* Case report Monocytes HLA-DR expression Monocyte activation 1 patient with persistent S.

aureus bacteraemia and

metastatic infection

Clinical cure. (58)

↑ MHC-II pathway

transcription.

↑ HLA-DR expression.

↑ antigen-specific T-reg cells.

Shift from Th2 to Th1/Th17.

IFN-γ Pre-clinical Macrophage p62 tagging of

intracellular bacteria

and autophagosome

formation.

Autophagic killing of

intracellular bacteria

B. cenocepacia (cystic

fibrosis)

MDM from patients with cystic

fibrosis in vitro:

(59)

↑ intracellular killing

↓ IL-1β production

P4 peptide

+ IVIG

Pre-clinical Neutrophils

and

macrophages

Fc-γR Phagocytosis S. pneumoniae Murine pneumococcal disease

model:

(60)

↑ survival

↑ bacterial clearance

↑ Fc-γR expression

(neutrophils)

Murine macrophages: ↑

phagocytosis.

P4 peptide Pre-clinical Neutrophils

and

monocytes

Phagosome Phagocytosis and

killing

S. pneumoniae Neutrophils from adults with

severe sepsis:

(61)

↑ neutrophil bacterial killing

↑ neutrophil and monocyte

ROS

Nrf2 agonists Pre-clinical Macrophage Antioxidant

response (phase II

detoxifying enzymes)

Phagocytosis S. pneumoniae, H. influenzae Alveolar macrophages from

patients with COPD: ↑

phagocytosis.

(62)

(Continued)
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TABLE 1 | Continued

Therapy Level of

evidence

Target Pathogen or disease Outcomes References

Cell type Cellular pathway Microbicidal

response

BH3 mimetics

Clodronate

Pre-clinical Macrophage Inhibition of

anti-apoptotic

BCL-2 family

members or

induction of

apoptosis in case of

clodronate

Apoptosis-associated

killing

S. pneumoniae, L.

pneumophila

Murine pneumonia models: (33, 63)

↑ survival

↑ bacterial clearance (lung)

↓ neutrophil recruitment

↑ alveolar macrophage

apoptosis

Statins Pre-clinical Macrophage Cholesterol

biosynthesis

Phagosomal

maturation and

autophagy

M. tuberculosis MDM from statin-treated

patients:

(64)

↓ intracellular bacterial growth

Murine tuberculosis model:

↓ bacterial burden and lung

micro-abscesses

Statin-treated murine BMDM:

↓ intracellular bacterial growth

Statins Pre-clinical Macrophages Cholesterol

biosynthesis

Apoptosis-associated

killing

S. enterica serovar

Typhimurium

Statin-treated RAW 264.7

cells:

(65)

↓ intracellular bacterial growth

↑ apoptosis and CatD

localisation to SCV

Murine model (intra-peritoneal):

↓ bacterial burden (liver and

spleen)

Statins Pre-clinical Neutrophils Cholesterol

biosynthesis

NETosis

Phagocytosis

ROS

S. aureus Statin-treated neutrophils: (66)

↑ extracellular killing & NETosis

↓ phagocytosis

↓ oxidative burst

Murine pneumonia model:

↑ bacterial clearance (lung)

↓ lung inflammation

↑ NETosis

Statins Pre-clinical Macrophages Cholesterol

biosynthesis

JNK pathway

Phagocytosis

ROS

Fc-γR signaling

S. aureus Statin-treated MDM: (67)

↓ phagocytosis, ROS &

intracellular killing

↑ Fc-γR-mediated TNF-α

production

GM-CSF: granulocyte-macrophage colony-stimulating factor; IL: interleukin; IFN: interferon; RCT: randomised-controlled trial; ROS: reactive oxygen species; mAb: monoclonal antibody;

IVIG: intravenous immunoglobulin; BMDM: bone marrow-derived macrophages; MDM: monocyte-derived macrophages; CatD: cathepsin D; SCV: Salmonella-containing vacuole; NET:

neutrophil extracellular trap.

*Administered in addition to appropriate antimicrobials.

complex and Cryptococcus neoformans infections (53, 68). IFN-
γ enhances several microbicidal mechanisms and has been
shown to correct defective ex vivo killing of the intracellular
pathogen Burkholderia cenocepacia in cystic fibrosis (CF) MDM
by enhancing autophagy, a regulated cellular process that enables
removal and recycling of macromolecules and organelles to
promote cellular homeostasis and a related cell process using
autophagy machinery that leads to killing of ingested bacteria
termed xenophagy (59). However, nebulized IFN-γ did not

reduce bacterial density or inflammation in a clinical trial in
CF (69). In critically ill adults, clinical trial data demonstrates
that IFN-γ is associated with clearance of persistent bacteremia
and improved cytokine profiles in the setting of sepsis-induced
immunosuppression. Further investigation in clinical trials in
sepsis is ongoing (70). It has also been shown to correct HLA-
DR expression on monocytes in patients with sepsis which
provides a useful marker of response (56). In a case report,
IFN-γ enabled clearance of persistent S. aureus bacteremia in
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association with transcriptional profiles associated with a shift
toward Th1/Th17 responses and antigen-specific T-regs, though
the specific consequences for microbicidal responses were not
examined (58). In patients with septic shock and lymphopenia,
IL-7 has been shown to reverse sepsis-induced lymphopenia (55).

GM-CSF and G-CSF enhance macrophage and neutrophil
phagocytosis and microbicidal responses in vitro and are used
to restore functional phagocyte numbers in patients receiving
bone marrow-suppressive chemotherapy. GM-/G-CSF have also
been investigated in patients with sepsis, with a meta-analysis
suggesting a trend toward benefit (71, 72). Timing may be
important with GM-CSF and it may have most efficacy when
targeted to patients with low monocyte HLA-DR (73). Whilst
the impact on microbicidal responses is often not studied,
a recent clinical trial showed GM-CSF targeted to critically
ill patients with defects in ex vivo neutrophil phagocytosis
could ameliorate this defect and increase monocyte HLA-DR
(54). Both GM-CSF and IFN-γ will, with subtle differences,
contribute to macrophage activation phenotypes that promote
microbicidal responses, particularly against pathogens with
significant intracellular survival. Other cytokines will have
similar effects (74). As with many other approaches listed, each
can impact more than one cellular process directly or indirectly,
affecting microbicidal responses (Table 2). For example, IFN-γ
can also enhance myeloid cell recruitment in clinical trials (68).

Other investigational approaches include the use of check-
point inhibitors, such as anti-programmed cell death protein-1
(anti-PD-1) or anti-cytotoxic T-lymphocyte-associated protein-
4 (CTLA-4) monoclonal antibodies (73). These inhibitors
aim to reverse suppression of T-cell inflammatory responses.
Nivolumab, an anti-PD-1 monoclonal antibody, is being
tested in a clinical trial in sepsis, and while such therapies are
anticipated to modulate the inflammatory response, they may
also target microbicidal responses. For example, there is a case
report of Nivolumab being used in combination with IFN-γ to
successfully treat an intractable fungal infection (57). A PD-1
ligand inhibitor has also been shown to increase monocyte
HLA-DR expression (76). Other immune modulating strategies
that can be expected to modulate microbicidal responses
include recombinant IL-7, which corrects lymphopenia and
will enhance IFN-γ, and intravenous immunoglobulin (IVIG),
which in addition to immunomodulation enhances pathogen
clearance through phagocytosis (73). Immunomodulatory
peptides have also been combined with IVIG, specifically the P4
peptide (derived from the immunomodulatory pneumococcal
lipopeptide Pneumococcal surface adhesin A), resulting in
increased pneumococcal clearance in mice and enhanced
neutrophil and monocyte bacterial killing (60, 61).

REPURPOSED DRUGS TO TARGET
MICROBICIDAL RESPONSES IN
PRE-CLINICAL MODELS

Studies in relevant in vitro and animal models, and human
patient groups, can identify host microbicidal targets. But there is
then a need to develop therapeutic approaches to modulate these

targets. This will inevitably be constrained by cost, but this can
potentially be reduced by re-purposing existing agents that are
found to modify the host response of interest (75).

Critical illness can be associated with the compensatory
anti-inflammatory response syndrome and temporary
immunoparesis, after the initial stages of innate immune
activation. This is characterized by reduced Th1 and monocyte
responses, which increase the risk of nosocomial infection (77).
Reducing PRR engagement and subsequent immune activation,
such as through reduction in TLR activation in the early stages
of illness, could potentially reverse this phenomenon and
the turmeric constituent curcumin appears to down-regulate
signaling through a range of TLRs (78, 79).

Phagocytosis of bacteria activates phagosomal microbicidal
responses in myeloid cells (80). Although phagocytosis is not
usually a rate limiting process, in conditions such as COPD
macrophage phagocytosis may be reduced. This is associated
with increased airway bacterial burden (62). This defect is
related to cellular oxidative stress (62, 81). Nrf2 agonists are in
development, which enhance the host cell’s anti-oxidant host
defenses, and in COPD AM can enhance phagocytosis as well
as clearance of P. aeruginosa in mice exposed to cigarette smoke
(62, 82).

Xenophagy is selective autophagy that aids clearance of
intracellular pathogens such as Mycobacterium tuberculosis (83)
and some extracellular bacteria. Of note, Streptococcus pyogenes
subverts this process in endothelial cells (84). Activation of
autophagy via inhibition of inhibitory pathways, such as class
I phosphoinositide-3-kinase, mitogen-activated protein kinases
or 5’-AMP-activated protein kinases, could be a tractable
microbicidal strategy and drugs already under development for
other indications could be re-purposed (75).

Another novel microbicidal response in macrophages
and potentially other myeloid cells involves apoptosis-
associated killing. BH3 mimetics enhance killing of S.
pneumoniae and Legionella pneumophila in murine models
through augmentation/restoration of this pathway (33, 63).
Bisphosphonates also enhance macrophage apoptosis-associated
killing of bacteria (33), while fluoroquinolones cause lysosomal
permeabilization, sensitizing cells to this pathway (45, 85).

3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase
inhibitors, termed statins, are used as cholesterol lowering
medicines. Statins enhance bacterial clearance in a murine sickle
cell model of pneumococcal disease. The impact was limited to
the sickle cell mice with no response seen in wild type (86). One
potential mechanism was downregulation of platelet-activating
factor receptor required for bacterial translocation from the
lung in the sickle cell mice. However, the microbicidal basis
for the enhanced clearance was not established beyond the
association of increased clearance with reduced sickle cell-
associated inflammation. In the case of M. tuberculosis, statins
enhance phagosomal maturation and xenophagy (64), while
for Salmonella enterica serovar Typhimurium they enhance
cathepsin D localization to phagosomes and apoptosis induction
(65). Whether they also enhance these processes for extracellular
pathogens is not established. They can enhance neutrophil and
monocyte killing by extracellular traps (66). However, they

Frontiers in Immunology | www.frontiersin.org 8 June 2020 | Volume 11 | Article 786

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Watson et al. Novel Host-Based Therapies

TABLE 2 | Summary of strategies of host-directed therapy.

Strategy Therapy References

↑ microbicidal activity

through canonical

killing mechanisms

IFN-γ (53)

GM-CSF (54)

Statins (undetermined

mechanism, presumed

canonical)

(64–66)

Anti-PD1 (nivolumab) (57)

IL-7 (73)

P4 peptide (61)

↑ apoptosis-associated BH3 mimetics (33, 63)

killing (macrophages) Clodronate (33)

Statins (65)

↑ xenophagy IFN-γ (59)

Statins (64)

PI3K, MAPK 5′ AMP

kinases

(75)

↑ monocyte activation IFN-γ (56, 58)

GM-CSF (54, 73)

PDL1 inhibitor (76)

Enhancing T cell

numbers to indirectly

increase microbicidal

responses

IL-7 (73)

↑ Phagocytosis as

basis of increased

microbicidal response

GM-CSF (54)

IVIG (60)

P4 peptide (61)

Nrf2 agonists (62)

Statins (66, 67)

inhibit phagocytosis and microbicidal responses in other models
such as Fcγ-receptor mediated uptake of opsonized S. aureus
(67) and reduce bacterial killing by neutrophils in a murine
pneumonia model (87). Therefore, how they would be best
used requires further elucidation, as reflected in contradictory
findings from clinical studies. For example, a reduced risk of
community-acquired S. aureus bacteremia (88) and reduced
mortality in pneumonia were reported (89, 90) yet no reduction
in mortality was observed in another pneumonia study (91) or in
a study of ventilator-associated pneumonia (92).

CHALLENGES

Recalibrating responses will likely require a personalized
medicine approach. Individual pathogens would need varying
degrees of engagement of a given response. S. aureus inhibits
apoptosis-associated killing in macrophages so might need
a greater degree of enhancement, or might require an
alternative approach, while for S. pneumoniae in which
apoptosis-associated killing is already engaged, the adjustment
might only need to be of a more modest extent in a

subset of individuals (33). Certain responses might need
engagement in select patient groups such as those with
medical comorbidities that adjust the response. Alternatively
these responses might not be suitable for enhancement in
certain groups. For example, patients with COPD might not
be amenable to enhancement of mROS production or might
require reduction in high baseline levels of antioxidants to
enhance this microbicidal response (16). Such personalized
approaches would require validated tests to help calibrate an
individual response.

Another challenge is that where responses need to be
recalibrated it will be important that responses do not over
shoot and result in overproduction of factors that could lead
to tissue injury if there is excessive production of microbicidals
or inflammatory cells (30). This is most likely to be prevented
where the responses enhanced are intracellular, generated at high
levels adjacent to bacteria and transient. Responses will require
application of techniques to measure the individuals response
through use of appropriate biomarkers or imagingmodalities and
would benefit from approaches that combine thesemeasures with
microdosing experiments and endomicroscopy (the application
of in vivomicroscopy applied through endoscopy to allow optical
biopsy) to test the efficacy of recalibration (93).

CONCLUSIONS

The ineluctable progression of AMR necessitates investigation
of novel strategies for treating bacterial disease. Based on the
observation that exposure to potentially pathogenic bacteria
infrequently leads to disease, we contend that identification
and exploitation of specific determinants of host defense
represents a tractable alternative to antimicrobials (host-
based therapy). While there are many potential aspects of
the host response that represent tractable targets, including
humoral factors (e.g., AMP), epithelial barrier function, and
lymphoid populations, we suggest approaches that promote
pauci-inflammatory macrophage and neutrophil microbicidal
responses can improve outcomes. We have highlighted a number
of promising in vitro, animal model, human and pre-clinical
observations that support this viewpoint and provide a roadmap
for future research.
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