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Abstract

The Birnbaum-Saunders (BS) distribution is a model that frequently appears in the statistical

literature and has proved to be very versatile and efficient across a wide range of applications.

However, despite the growing interest in the study of this distribution and the development of

many review articles, few papers have considered data with a dependency structure. To fill this

gap, we introduce a new class of time-series models based on the BS distribution, which allows

modelling of non-negative and asymmetric data that have an autoregressive structure. We call

these Birnbaum-Saunders autoregressive moving averaging (BISARMA) models. Also included

is a thorough study of theoretical properties of the proposed methodology and of practical issues,

such as maximum likelihood parameter estimation, diagnostic analysis and prediction. The per-

formance of the proposed methodology is evaluated using a Monte Carlo simulation. Finally, an

analysis of real-world mortality data is performed using the methodology to show its potential

for applications. The numerical results show the excellent performance of the BISARMA model,

indicating that the BS distribution is a good modeling choice when dealing with time series data

which are both non-negative and asymmetric, and hence it can be a valuable addition to the tool-kit

of applied statisticians and data scientists.

Keywords ARMA models; Birnbaum-Saunders distribution; data dependent over time; maxi-

mum likelihood and Monte Carlo methods; model selection; residuals; R software.

1 Introduction

The Birnbaum-Saunders (BS) distribution frequently arises in the applied statistical literature. In

the last decades, it has been widely studied and has been shown to be versatile and efficient in several

fields of science, due to theoretical justification, its good properties and its close relationship with the

normal distribution. The BS distribution is defined on the positive real numbers, is unimodal with

positive skewness and has two parameters that control its shape and scale. It is often considered as

a life distribution due to its origins describing fatigue of materials subject to stress. Hence, it has a

prominent role in the areas of reliability and survival analysis, being a good alternative to symmetric

distributions. For more details, see Birnbaum and Saunders (1969), Johnson et al. (1995, pp. 651-663)

and Leiva (2016).

∗Corresponding author:Victor Leiva. Email:victorleivasanchez@gmail.com. URL:http://www.victorleiva.cl
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Although the BS distribution has its origins in physics and engineering, it has also received interest

in several other areas. In particular, it is attracting interest in the earth and medical sciences, following

its reformulation for environmental and medical processes formalized by Leiva et al. (2015) and Leão

et al. (2018b), respectively. For examples of environmental and medical applications of BS models

conducted by international transdisciplinary groups the reader is referred to Ferreira et al. (2012),

Marchant et al. (2013, 2016a,b, 2018, 2019), Saulo et al. (2013), Leiva et al. (2016), Garcia-Papani

et al. (2017, 2018a,b), Leão et al. (2017, 2018a,b), Desousa et al. (2018), Lillo et al. (2018), Huerta

et al. (2019) and Martinez et al. (2019).

The study of the BS distribution has received growing interest and a considerable body of work

is available, with recent publications by Leiva (2016), Aykroyd et al. (2018), and Balakrishnan and

Kundu (2019) providing a thorough summary. To date, however, there has been little development of

methods for the analysis of data with temporal dependence structure, and particularly for time series,

based on the BS distribution. Some efforts along these line are attributed to Bhatti (2010), Leiva et al.

(2014) and Saulo et al. (2019) who, motivated by the work of Engle and Russell (1998), developed

autoregressive conditional duration models based on the BS distribution. Other recent studies related

to BS autoregressive models are attributed to Fonseca and Cribari-Neto (2018) and Rahul et al. (2018).

Following on from the above, the main objective of this work is to propose a new class of mod-

els based on the BS distribution for time series data, named the Birnbaum-Saunders autoregressive

moving averaging (BISARMA) model. Our proposal can be thought of as analogous to ARMAX

models; see Shumway and Stoffer (2017) and it is an extension of the work of Benjamin et al. (2003),

Rocha and Cribari-Neto (2009), and Maior and Cysneiros (2016). The authors extended the autore-

gressive moving average (ARMA) time series model to different classes of distributions, such as the

generalized ARMA (GARMA) model (see Ben Amor et al., 2018), which includes the exponential

family, beta-ARMA for beta distributions and SYMARMA for symmetric distributions. We apply the

BISARMA model for forecasting mortality using weather and particulate matter data; see Xu (2020).

After this introduction, the paper is organized as follows. Section 2 defines the BS distribution, its

logarithmic version (log-BS) and some of their properties. In Section 3, we formulate the BISARMA

model and provide estimation, prediction and residual analysis based on maximum likelihood (ML).

In Section 4, a Monte Carlo simulation study is reported to evaluate the performance of the proposed

methodology. The section also describes analytics of real mortality time series data, including a diag-

nostic analysis, to show the potential of the proposed methods. Section 5 gives concluding remarks.

Appendixes with detailed mathematical proofs and expressions are also presented.

2 Basic definitions

2.1 The Birnbaum-Saunders distribution

If a random variable T follows a BS distribution, usually denoted by T ∼ BS(α, β), then its

distribution can be represented by the cumulative distribution function (CDF) given by

FT (t;α, β) = Φ

[
1

α

(√
t

β
−
√
β

t

)]
, t > 0, α > 0, β > 0, (1)

where Φ is the standard normal distribution function, α is a shape parameter, and β is a scale parameter

that is also the median of the distribution. The probability density function (PDF) of T is obtained by
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differentiating (1) with respect to t, that is, fT (t;α, β) = F ′
T (t;α, β), so that

fT (t;α, β) =
1√
2π

exp

[
− 1

2α2

(
t

β
+
β

t
− 2

)]
t−3/2

2α
√
β
(t+ β), t > 0, α > 0, β > 0.

Figure 1 shows examples of the BS PDF. Note that, in Figure 1(a), as the value of α increases, the

degree of asymmetry increases, causing the variance to increase and also the flattening of the density

function. When α approaches zero, the curve approaches the symmetric case, centred around the fixed

value β (the median of the distribution), with β = 1 here, and its variability decreases. In Figure 1(b),

setting the value α = 0.1 and varying β, the shape of the PDF does not change and only its location

and scale changes; that is, the PDF moves and its spread changes in the same sense as the change of

β. This shows the fact that β is both a location parameter (defining the median of the distribution) and

a scale parameter. The BS PDF is always unimodal, see, for example, Proposition 2.7 in Vila et al.
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Figure 1: PDF of the distribution: (a) BS(α, 1) for selected values of the shape parameter α, and (b) BS(0.1, β)
for selected values of the scale parameter β.

(2020).

An important and well-known property in the construction of this distribution is that a random

variable T ∼ BS(α, β) can be generated from a random variable Z, which has the standard normal

distribution, through the relationship

T = β


αZ

2
+

√(
αZ

2

)2

+ 1



2

,

where

Z =
1

α

(√
T

β
−
√
β

T

)
∼ N(0, 1).
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This relationship is extremely useful and gives a method to obtain pseudo-random numbers from the

BS distribution; see details in Leiva (2016).

Some properties of the BS distribution are now presented. If T ∼ BS(α, β), then:

(i) for any real constant k > 0, we have kT ∼ BS(α, kβ), which means that the BS distribution is

closed under proportionality;

(ii) 1/T ∼ BS(α, 1/β), implying that the BS distribution is also closed under reciprocity;

(iii) the parameter β is a scale parameter, hence T/β ∼ BS(α, 1). Furthermore, β is the median of

the distribution, which can be obtained directly by making q = 0.5 in the quantile function which is

given by

t(q;α, β) = F−1
T (q;α, β) = β


αz(q)

2
+

√(
αz(q)

2

)2

+ 1



2

, 0 < q < 1,

where z is the standard normal quantile function and F−1
T is the inverse of FT defined in (1);

(iv) the parameter α is a shape parameter, such that when α → 0, the BS distribution tends to a normal

distribution N(β, τ), where τ → 0;

(v) expressions for the BS mean and variance are hence given by

E[T ] = β

(
1 +

1

2
α2

)
and Var[T ] = (αβ)2

(
1 +

5

4
α2

)

and for the coefficients of skewness and kurtosis by

CS[T ] = 16α2 (11α
2 + 6)

(5α2 + 4)3
and CK[T ] = 3 + 6α2 (93α

2 + 41)

(5α2 + 4)2
.

Consequently, according to the property of reciprocity, we have that

E[T−1] = β−1

(
1 +

1

2
α2

)
and Var[T−1] =

(
αβ−1

)2
(
1 +

5

4
α2

)
.

2.2 The log-Birnbaum-Saunders distribution

The log-BS distribution, denoted as log -BS(α, µ), is derived as the logarithm of a BS(α, β) ran-

dom variable. Rieck and Nedelman (1991) proved that if T ∼ BS(α, β), then Y = log(T ) ∼
log-BS(α, µ) with shape and location parameters given by α > 0 and µ = log(β) ∈ R, respectively.

In an alternative formulation, the random variable Y follows a log-BS distribution if and only if

Z =
2

α
sinh

(
Y − µ

2

)
∼ N(0, 1).

Then, the CDF of Y is given by

FY (y;α, µ) = Φ

[
2

α
sinh

(
y − µ

2

)]
, y ∈ R, µ ∈ R, α > 0, (2)
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and differentiating (2) with respect to y, we obtain the corresponding PDF given by

fY (y;α, µ) =
1

α
√
2π

exp

[
− 2

α2
sinh2

(
y − µ

2

)]
cosh

(
y − µ

2

)
, y ∈ R, µ ∈ R, α > 0.

The mean and variance of Y can be obtained using the moment-generating function defined as

MY (s) = exp(µs)

[
K[σs+1]/2(δ

−2) +K[σs−1]/2(δ
−2)

2K1/2(δ−2)

]
,

where Kλ is a modified Bessel function of the third kind given by

Kλ(w) =
wλ

2λ+1

∫ ∞

0

u−λ−1 exp
[
−u− (w2/4u)

]
du.

Some properties of the log-BS distribution are now presented. If Y ∼ log -BS(α, µ), then:

(i) T = exp(Y ) ∼ BS(α, β);
(ii) E[Y ] = µ = log(β);
(iii) there is no closed form for the variance of Y , but, based on an asymptotic approximation for

the moment-generating function of the log-BS distribution, it follows that if α → 0, then Var[T ] =
α2 − α4/4, whereas if α → ∞, then Var[T ] = 4

(
log2

√
2α
)
+ 2− 2log

(√
2α
)
;

(iv) if X = Y ± k, then X ∼ log -BS(α, µ± k); and

(v) the log-BS distribution is symmetric around µ, unimodal for 0 < α 6 2 and bimodal for α > 2.

Another important property of the BS distribution is that its logarithmic version has flexible bimodal-

ity. Note that if T ∼ BS(α, β), then Y = log(T ) ∼ log -BS(α, µ), where µ = log(β). For more

details, see Desousa et al. (2018), Leão et al. (2017, 2018a,b) and references therein.

In Figure 2(a) some of the properties of the log-BS distribution described above can be seen. Notice

that α modifies the shape of the distribution and when α increases, the kurtosis of the distribution also

increases, so that the distribution becomes flatter. In particular, for α 6 2, the distribution is unimodal

and exhibits smaller kurtosis than the normal distribution. However, if α > 2, then the distribution

begins to display bimodality, with widely separated modes and its kurtosis is greater than that of the

normal distribution. Figure 2(b) shows how µ modifies the location.

3 BISARMA model

3.1 Formulation

Let Y1, . . . , Yn be random variables defined in the probability space (Ω,F ,P) for every t =
1, . . . , n, and Ft = σ(Y1, . . . , Yt) be a σ-algebra generated by Y1, . . . , Yt. In addition, we define

F0 = {∅,Ω}. Suppose that for each t = 1, . . . , n, the conditional distribution of Yt, given the

past data Ft−1 = {Yt−1, . . . , Y1, µt−1, . . . , µ1} follows a log-BS distribution, denoted by Yt|Ft−1 ∼
log -BS(α, µt), with conditional PDF given by

f(yt;α, µt|Ft−1) =
1

α
√
2π

exp

[
− 2

α2
sinh2

(
yt − µt

2

)]
cosh

(
yt − µt

2

)
, yt ∈ R, µt ∈ R, α > 0,

where α and µt = E[Yt|Ft−1] are, respectively, the shape parameter and the conditional mean of the
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Figure 2: PDF of the log-BS distribution for (a) log-BS(α, 0) for selected values of the shape parameter α,

and (b) log-BS(1, µ) for selected values of the location µ.

random variable Yt.
Next, a class of BS log-linear regression models is defined by

Yt = µt + εt, t = 1, . . . , n, (3)

where µt = x⊤
t β, with x⊤

t = (xt1, . . . , xtk) being a vector containing the values of k explanatory

variables, for k < n, where n is the sample size, β = (β1, . . . , βk)
⊤ is a vector of unknown parameters

to be estimated and εt is the model error term. Note that these errors are not correlated and that εt ∼
log-BS(α, 0). In the BISARMA(p, q) model, however, the component µt included in (3) contains an

extra dynamic additive term, τt, with ARMA structure, such that now

µt = x⊤
t β + τt. (4)

The component τt included in (4) is defined as follows. Consider ψt = Yt −x⊤
t β = τt + εt described

by an ARMA(p, q) model expressed as

ψt = η +

p∑

i=1

φiψt−i +

q∑

j=1

θjut−j + ut, (5)

where φ = (φ1, . . . , φp)
⊤ ∈ Rp, θ = (θ1, . . . , θq)

⊤ ∈ Rq, and p, q ∈ N are the autoregressive and

moving-average parameters and their respective orders, with η ∈ R being a constant. The terms ut
are uncorrelated random errors (white noise), which can be, for example, measurement errors on the

original scale (that is, ut = yt − µt = εt). Assuming that E[ut|Ft−1] = 0, a.s., for all t, and taking the

conditional expectation, with respect to the set of past data Ft−1, of both sides of expression (5), we
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have

E[ψt|Ft−1] = η +

p∑

i=1

φi(Yt−i − x⊤
t−iβ) +

q∑

j=1

θj ut−j, a.s., for all t.

Given that E[Yt|Ft−1] = µt a.s. and µt = x⊤
t β + τt, we get

E[ψt|Ft−1] = E[Yt|Ft−1]− x⊤
t β = µt − x⊤

t β = τt, a.s., for all t,

and thus

τt = η +

p∑

i=1

φi(yt−i − x⊤
t−iβ) +

q∑

j=1

θj ut−j. (6)

Therefore, from (3), (4) and (6), we propose the BISARMA(p, q) model defined by

Yt = η + x⊤
t β +

p∑

i=1

φi(yt−i − x⊤
t−iβ) +

q∑

j=1

θj ut−j + εt, t = 1, . . . , n, (7)

where εt ∼ log-BS(α, 0), which implies that

Yt = log(Tt) ∼ log-BS

(
α, η + x⊤

t β +

p∑

i=1

φi(yt−i − x⊤
t−iβ) +

q∑

j=1

θj ut−j

)

and then

Tt ∼ BS

(
α, exp

[
η + x⊤

t β +

p∑

i=1

φi(yt−i − x⊤
t−iβ) +

q∑

j=1

θj ut−j

])
. (8)

Theorem 1. Let Φ(B) = −∑p
i=0 κiB

i with κ0 = −1, and Θ(B) =
∑q

i=0 ξiB
i with ξ0 = 1, be

the autoregressive and moving averages polynomials respectively, where Bi is the lag operator, i.e.,

Biyt = yt−i. Provided that Φ(B) is invertible, the marginal mean and marginal variance of Yt, and

the covariance and correlation of Yt and Yt−k in the BISARMA(p, q) model are given by

E[Yt] = η + x⊤
t β, Var[Yt] =

∞∑

i=0

ψ2
i gt−i, Cov[Yt, Yt−k] =

∞∑

i=0

ψiψi−k gt−i, k > 0,

Corr[Yt, Yt−k] =

∑∞
i=0 ψiψi−k gt−i∏

j∈{0,k}

√∑∞
i=0 ψ

2
i gt−j−i

,

respectively, where gt = E
[
Var[Yt|Ft−1]

]
. See proof in Appendix A.

3.2 Estimation

Let Y1, . . . , Yn be a sample from the BISARMA(p, q) model defined in (7), and let γ = (α,β, η,φ,θ)
be the parameter vector of interest, where m = max{p, q} with n > m. For each t = m + 1, . . . n,

consider the log-likelihood function ℓt(α,β, η,φ,θ) = log(f(yt;α, µt|Ft−1)) given Ft−1. Therefore,
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ℓt = ℓt(α,β, η,φ,θ) is expressed as

ℓt ∝ − log(α) + log

[
cosh

(
yt − µt

2

)]
− 2

α2
sinh2

(
yt − µt

2

)
,

which is written as proportional to remove the components that are independent of γ and which will

be eliminated by mathematical differentiation. Thus, the log-likelihood function for the parameter

vector γ of the BISARMA(p, q) model is given by

ℓ =
n∑

t=m+1

ℓt(α,β, η,φ,θ). (9)

In order to perform the estimation of parameters in the BISARMA(p, q) model, we calculate the score

vector, which is defined as U (γ), formed by the first order partial derivatives, with respect to each of

the parameters, of the log-likelihood function. Hence, from (9), we have

∂ℓt
∂α

= − 1

α
+

4

α3

[
sinh

(
yt − µt

2

)]2

and consequently

∂ℓ

∂α
=

1

α

n∑

t=m+1

[
4

α2
sinh2

(
yt − µt

2

)
− 1

]
.

Notice that
∂ℓt
∂µt

= tanh

(
yt − µt

2

)[
2

α2
cosh2

(
yt − µt

2

)
− 1

2

]

and hence

∂ℓt
∂βi

=
∂ℓt
∂µt

∂µt

∂βi
=

(
xt,i −

p∑

k=1

φkxt−k,i

)
∂ℓt
∂µt

,

∂ℓt
∂η

=
∂ℓt
∂µt

∂µt

∂η
=
∂ℓt
∂µt

.

Thus, the scores associated with the parameters βi and η are defined as

∂ℓ

∂βi
=

n∑

t=m+1

(
xti −

p∑

k=1

φkx(t−k)i

)
tanh

(
yt − µt

2

)[
2

α2
cosh2

(
yt − µt

2

)
− 1

2

]
, (10)

∂ℓ

∂η
=

n∑

t=m+1

tanh

(
yt − µt

2

)[
2

α2
cosh2

(
yt − µt

2

)
− 1

2

]
.

Then, since

∂ℓt
∂φi

=
∂ℓt
∂µt

∂µt

∂φi

= (yt−i − xt−iβ)
∂ℓt
∂µt

,

∂ℓt
∂θj

=
∂ℓt
∂µt

∂µt

∂θj
= ut−j

∂ℓt
∂µt

,

8



we have

∂ℓ

∂φi

=
n∑

t=m+1

(yt−i − xt−iβ)tanh

(
yt − µt

2

)[
2

α2
cosh2

(
yt − µt

2

)
− 1

2

]
,

∂ℓ

∂θj
=

n∑

t=m+1

ut−j tanh

(
yt − µt

2

)[
2

α2
cosh2

(
yt − µt

2

)
− 1

2

]
.

The ML estimate, γ̂, of the vector of parameters γ is obtained through the solution of the system of

equations Uη(γ) = 0, Uβk
(γ) = 0, for k = 1, . . . , w, Uα(γ) = 0, Uφi

(γ) = 0, for i = 1, . . . , p,

and Uθj(γ) = 0, for j = 1, . . . , q, where Uη(γ) = ∂ℓ/∂η, Uβk
(γ) = ∂ℓ/∂βk, Uα(γ) = ∂ℓ/∂α,

Uφi
(γ) = ∂ℓ/∂φi and Uθj(γ) = ∂ℓ/∂θj . Except for Uα = 0, where the ML estimate is given by

α̂ =

√√√√ 4

n

n∑

t=m+1

[
sinh

(
yt − µt

2

)]2
, (11)

the normal equations U (γ) = ∂ℓ/∂γ = 0 do not have analytic solutions, and hence it is necessary

to use a non-linear optimization method to maximize the log-likelihood function defined in (9). The

Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm (see Lange, 2001), also known as

the quantum-quantum BFGS algorithm, is a good choice for the solution of non-linear systems since,

in most cases, it can obtain the solution more quickly than other methods. This quasi-Newton method

approximates the second derivative matrix, reducing the number of operations per iteration. For more

details on numerical maximization methods and the BFGS algorithm, see Nocedal and Wright (1999),

Press et al. (1992) and Lange (2001). The BFGS algorithm is implemented in the R software (version

3.6.3) by the functions optim and optmx; see www.R-project.org and R Core Team (2018).

Results for the Fisher information matrix are provided in Appendix B. Starting values are required to

initiate the parameter estimation. Particularly, initial values for β̂, η̂, φ̂ and θ̂ are obtained from the R

function arima, whereas the initial value for α̂ is obtained from (11).

Theorem 2. For each v = 1, . . . , k fixed, suppose that xtv > pmaxi=1,...,p |φix(t−i)v| for each t =
m+ 1, . . . , n. If α, η,φ = (φ1, . . . , φp)

⊤ and θ = (θ1, . . . , θq)
⊤ are known such that 0 < α < 2, then

there exists a unique maximum likelihood estimate of the parameter βv, for each v = 1, . . . , k. See

proof in Appendix A.

3.3 Prediction

The prediction using origin t and horizon h is denoted by ŷt+h. Consider that

ŷt+h =

{
ŷt(h), for h > 0;

yt+h, for h ≤ 0;
ε̂t+h =

{
0, for h > 0;

ε̂t+h, for h ≤ 0.

The fact that ε̂t+h = 0 for h > 0 indicates that observation yt+h is predicted correctly. Estimates for

µt, with t = m+ 1, . . . , n, denoted by µ̂t, are obtained from the ML estimate of γ, γ̂, as

µ̂t = η̂ + x⊤
t β̂ +

p∑

i=1

φ̂i(yt−i − x⊤
t−iβ̂) +

q∑

j=1

θ̂j ût−j.

9



Using µ̂t, we can get ε̂, with t = m + 1, . . . , n. For example, for εt = yt − µt, that is, measurement

errors on the original scale, we have ε̂t = yt − µ̂t. Thus, we can predict yn+1 by

ŷn+1 = η̂ + x⊤
n+1β̂ +

p∑

i=1

φ̂i(yn+1−i − x⊤
n+1−iβ̂) +

q∑

j=1

θ̂jûn+1−j.

For a time n+ 2, we obtain

ŷn+2 = η̂ + x⊤
n+2β̂ +

p∑

i=1

φ̂i(yn+2−i − x⊤
n+2−iβ̂) +

q∑

j=1

θ̂jûn+2−j,

and so on.

3.4 Residual analysis

The analysis of residuals plays a fundamental role in the validation of any statistical model. This

analysis aims at detection of possible outliers based on an assessment of their effect on the model

fitting and prediction. To evaluate the fit of the BS log-linear regression model defined in (3), we

consider the generalized Cox-Snell (GCS) residual defined as

ri = − log(Ŝ(yi|Fi−1)), i = m+ 1, . . . , n, (12)

where Ŝ is the survival function estimated for the model evaluated for observation i given by

Ŝ(Yi;α,β,x) = Φ

[
− 2

α̂
sinh

(
yi − µ̂i

2

)]
, i = m+ 1, . . . , n.

The GCS residuals follow a unit exponential distribution, EXP(1), when the model is specified cor-

rectly. Because the GCS residuals have an EXP(1) distribution, a quantile–quantile (QQ) plot of ri,
defined in (12), for i = m + 1, . . . , n, can be used to evaluate the fit of the model. The interested

reader can see details about GCS residuals in Leiva et al. (2016) and references therein.

4 Numerical calculations

We present the results of two Monte Carlo simulation studies for the BISARMA(1,1) model. Re-

sults are presented only for p = 1 and q = 1, since higher order of lags produced similar results.

The first study considers the evaluation of the performance of the ML estimators, while the second

study assesses whether the model is chosen correctly according to the data generating process. The

idea in this second study is to generate simulated data from the BISARMA(1,1) model and check

if the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the root

mean square error (RMSE) can select the correct model. The comparison is made with the Gaussian

ARMA(1,1) model. Therefore, it is expected that the AIC, BIC and RMSE measures will indicate

that the BISARMA(1,1) model is better.

10



4.1 Maximum likelihood estimation

In this section, Monte Carlo simulations are used to evaluate the performance and behaviour of

the ML estimators of the model parameters. All the simulation and estimation routines are developed

using the R software. For the study, in all cases and for each sample size (n), the number of Monte

Carlo replications is set at Nr = 10, 000. The ML estimates are obtained by maximizing the log-

likelihood function defined in (9) using the BFGS optimization algorithm. To assess accuracy of

estimators, for each case and sample size, the mean, bias, variance and mean square error (MSE) are

calculated empirically based on the simulated data, with definitions given, respectively, by

ϕ̂ =
1

Nr

Nr∑

r=1

ϕ̂r, Bias(ϕ̂) = ϕ̂−ϕ, V̂ar(ϕ̂) =
1

Nr

Nr∑

r=1

(ϕ̂r−ϕ̂)2, and M̂SE(ϕ̂) =
1

Nr

Nr∑

r=1

(ϕ̂r−ϕ)2,

where ϕ̂r is the estimate obtained in the r-th replicate, ϕ is the true value of the parameter, and Nr

is the number of Monte Carlo replicates. With the exception of the bias, for all other statistics, as the

value decreases, estimation performance improves – bias only has this result, when analysed in terms

of its absolute value.

The results of the simulation study performed using the BISARMA(1,1) model are now presented.

We evaluate the performance of the ML estimator for the shape parameter, α, autoregressive parame-

ter, φ, and moving average parameter, θ. Specifically, the study is conducted for two cases. In the first

case, we consider sample sizes n ∈ {50, 100, 200, 500}, with the following values for the parameters

of interest: α ∈ {0.25, 0.5, 1.5, 2.5}, β = 0.7, η = 1.0, φ = 0.7 and θ = 0.5. The sample sizes con-

sidered allow us to verify whether there are improvements in the estimation of the model parameters

as the sample size increases. The set of values for α is chosen in order to obtain different shapes. In

the second case, sample sizes n ∈ {50, 100, 200, 500}, with values of α = 0.5, β = 0.7 and η = 1.0
are considered. The parameters φ and θ are fixed at values of 0.3, 0.5 and 0.7. The results of the

calculated statistics for the first and second case are reported in Tables 1 and 2.

The results in Table 1 show that, in general, the performance of the estimates of α is directly related

to the sample size. That is, as n increases, the accuracy of the estimates improves, as expected. These

conclusions are also valid for α, β, η, φ and θ. Note that when the sample size increases from n = 50
to n = 500, the bias in absolute value of the estimator of α = 0.5, on average, decreases considerably,

going from 0.0303 to 0.0028. For a fixed sample size, the absolute bias of the estimators increases as

α increases. For example, when n = 100 and α = 0.25, the absolute bias of α̂ is 0.0071. However,

when α = 2.5, this bias increases to 0.0813. Such a behaviour is similar for the variance and MSE

of the estimator of α. In all scenarios considered, the parameter α is, on average, underestimated,

that is, α̂ is less than the true value of the parameter. Note that the variability of α̂ decreases when

n increases, as expected, with similar results for the MSE. This indicates that the estimator of the

parameter α of the BISARMA(1,1) model obtained by the ML estimator is accurate.

Figure 3 shows the results in graphical form for the indicated values of n and α. Note in Figure

3(a) that, as n increases, the bias of the estimator is smaller in absolute value. Also for a fixed sample

size, the absolute bias increases as α increases. This behaviour is similar for the variance and MSE

of α̂; see Figures 3(b) and (c).

For the second case, Table 2 reports summary statistics for the estimates of the parameters φ and θ.

Note that the ML estimator for φ and θ are accurate. For example, for n = 500, φ = 0.5 and θ = 0.3,

the estimates are quite close to the true value of the parameters, that is, φ̂ = 0.4914 and θ̂ = 0.3067.

On average, the empirical absolute bias of φ̂ and θ̂ are always less than 0.0490. The largest values
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Figure 3: Empirical absolute bias (a), variance (b) and MSE (c) of the estimator of α for simulated data.

of the empirical MSEs occur when φ = 0.3, θ = 0.3, and n = 100. It can also be seen that the

ML estimators of φ and θ become more accurate as the sample size increases. Considering a fixed

sample size, we note a slight reduction in the variance and MSE of φ̂ and θ̂, as the values of φ and/or

θ increases. Also note that φ is, on average, underestimated, that is, φ̂ is less than its true value, in all

scenarios considered, whereas θ is overestimated.

Table 1: ML estimates for indicated α, based on Monte Carlo simulations for the BISARMA(1,1)

model.

n α
α̂

Mean Bias Variance MSE

50

0.25 0.2353 −0.0147 0.0006 0.0008

0.5 0.4697 −0.0303 0.0025 0.0034

1.5 1.3972 −0.1028 0.0232 0.0337

2.5 2.3268 −0.1732 0.0696 0.0995

100

0.25 0.2429 −0.0071 0.0003 0.0004

0.5 0.4854 −0.0146 0.0013 0.0015

1.5 1.4507 −0.0493 0.0116 0.0140

2.5 2.4187 −0.0813 0.0337 0.0403

200

0.25 0.2465 −0.0035 0.0002 0.0002

0.5 0.4927 −0.0073 0.0006 0.0007

1.5 1.4753 −0.0247 0.0057 0.0063

2.5 2.4599 −0.0401 0.0164 0.0180

500

0.25 0.2487 −0.0013 0.0001 0.0001

0.5 0.4972 −0.0028 0.0003 0.0003

1.5 1.4907 −0.0093 0.0023 0.0024

2.5 2.4850 −0.0150 0.0064 0.0066
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Table 2: ML estimates for the different values of φ and θ, based on Monte Carlo simulations for the BIS-

ARMA(1,1) model.

n φ θ
φ̂ θ̂

Mean Bias Variance MSE Mean Bias Variance MSE

50

0.3

0.3 0.1893 −0.1107 0.0839 0.0961 0.4094 0.1094 0.0869 0.0989

0.5 0.2087 −0.0913 0.0546 0.0629 0.5931 0.0931 0.0516 0.0603

0.7 0.2230 −0.0770 0.0397 0.0456 0.7790 0.0790 0.0368 0.0430

0.5

0.3 0.3991 −0.1009 0.0463 0.0564 0.3950 0.0950 0.0546 0.0636

0.5 0.4112 −0.0888 0.0346 0.0424 0.5870 0.0870 0.0389 0.0464

0.7 0.4205 −0.0795 0.0278 0.0341 0.7779 0.0779 0.0320 0.0380

0.7

0.3 0.6023 −0.0977 0.0259 0.0354 0.3868 0.0868 0.0387 0.0462

0.5 0.6093 −0.0907 0.0215 0.0297 0.5840 0.0840 0.0321 0.0391

0.7 0.6138 −0.0862 0.0186 0.0260 0.7825 0.0825 0.0283 0.0351

100

0.3

0.3 0.2510 −0.0490 0.0364 0.0388 0.3435 0.0435 0.0377 0.0396

0.5 0.2584 −0.0416 0.0243 0.0261 0.5383 0.0383 0.0236 0.0250

0.7 0.2644 −0.0356 0.0185 0.0198 0.7311 0.0311 0.0162 0.0172

0.5

0.3 0.4562 −0.0438 0.0188 0.0207 0.3367 0.0367 0.0233 0.0246

0.5 0.4595 −0.0405 0.0149 0.0165 0.5354 0.0354 0.0178 0.0190

0.7 0.4632 −0.0368 0.0124 0.0138 0.7306 0.0306 0.0140 0.0149

0.7

0.3 0.6575 −0.0425 0.0097 0.0115 0.3334 0.0334 0.0166 0.0177

0.5 0.6587 −0.0413 0.0086 0.0103 0.5343 0.0343 0.0145 0.0156

0.7 0.6607 −0.0393 0.0076 0.0091 0.7322 0.0322 0.0126 0.0136

200

0.3

0.3 0.2768 −0.0232 0.0170 0.0175 0.3198 0.0198 0.0177 0.0181

0.5 0.2789 −0.0211 0.0115 0.0119 0.5182 0.0182 0.0110 0.0113

0.7 0.2828 −0.0172 0.0090 0.0093 0.7145 0.0145 0.0078 0.0080

0.5

0.3 0.4794 −0.0206 0.0087 0.0091 0.3165 0.0165 0.0111 0.0113

0.5 0.4800 −0.0200 0.0070 0.0074 0.5163 0.0163 0.0084 0.0087

0.7 0.4823 −0.0177 0.0060 0.0063 0.7141 0.0141 0.0068 0.0070

0.7

0.3 0.6799 −0.0201 0.0043 0.0047 0.3150 0.0150 0.0078 0.0081

0.5 0.6800 −0.0200 0.0038 0.0042 0.5155 0.0155 0.0069 0.0071

0.7 0.6812 −0.0188 0.0035 0.0039 0.7150 0.0150 0.0061 0.0063

500

0.3

0.3 0.2904 −0.0096 0.0066 0.0067 0.3080 0.0080 0.0069 0.0070

0.5 0.2916 −0.0084 0.0045 0.0046 0.5073 0.0073 0.0043 0.0044

0.7 0.2923 −0.0077 0.0035 0.0036 0.7062 0.0062 0.0031 0.0031

0.5

0.3 0.4914 −0.0086 0.0034 0.0035 0.3067 0.0067 0.0043 0.0044

0.5 0.4920 −0.0080 0.0027 0.0028 0.5066 0.0066 0.0033 0.0033

0.7 0.4922 −0.0078 0.0023 0.0024 0.7060 0.0060 0.0026 0.0027

0.7

0.3 0.6917 −0.0083 0.0016 0.0017 0.3061 0.0061 0.0030 0.0031

0.5 0.6919 −0.0081 0.0015 0.0015 0.5064 0.0064 0.0026 0.0027

0.7 0.6919 −0.0081 0.0014 0.0014 0.7061 0.0061 0.0023 0.0024
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4.2 Performance measures and model selection

A fundamental step in statistical modeling is selecting a specific model which describes the data

well, and which is also valid for prediction. Several performance measures can be used to assess the

accuracy of forecasts and to compare different models. The most widely used measure of goodness

of fit is the RMSE defined by

RMSE =

√√√√ 1

n

n∑

t=1

(yt − ŷt)2,

where n is the length of the series, yt is the observed value of Yt at t and ŷt is its predicted value at t.
Whereas for model selections, the AIC and BIC are preferred, and are defined as

AIC = −2log(L) + 2k, and BIC = −2log(L) + 2klog(n),

where L is the maximized value of the likelihood function for the estimated model, n is the number of

observations in the sample, and k is the number of estimated parameters. The model that provides the

minimum of AIC or BIC is selected as the best fit model. Table 3 presents results of these measures for

sample sizes n ∈ {50, 100, 200, 500} for the BISARMA(1,1) model, with η = 1.0, β = 0.7, α = 0.5,

φ ∈ {0.3, 0.5, 0.7} and θ ∈ {0.3, 0.5, 0.7}. For each combination of parameters, 1, 000 Monte Carlo

replicates are used. Comparing the BISARMA(1,1) and Gaussian ARMA(1,1) models based on the

statistics given in Table 3, it is confirmed that the AIC and/or BIC values highlight the fact that the

BISARMA model fits the data better than the Gaussian ARMA model. The BISARMA(1, 1) model

also provides smaller RMSE values, indicating better prediction ability. To verify the effects of the

shape parameter α on the model performance, we consider the values of η = 1.0, β = 0.7, φ = 0.6,

θ = 0.2 and α ∈ {0.5, 1.0, 1.5, 2.0, 2.5}, again with 1, 000 Monte Carlo replicates. The results are

reported in Table 4. In this case, the BISARMA(1, 1) model again provides smaller values of AIC,

BIC and RMSE, indicating a better performance than the Gaussian ARMA(1,1) model.

4.3 Analytics of real-world mortality time series data

Next, three real time-series data sets are used to illustrate the performance of the BISARMA(p, q)
model. The data correspond to time series with n = 508 continuous observations. They refer to the

possible effects of temperature variation and levels of particulate matter (particulates) on cardiovas-

cular mortality in Los Angeles between 1970 and 1979; see Figure 4. Data are available in the R

software through the package astsa; see Shumway and Stoffer (2017). The variables under study

are mortality (Mt), temperature (X1t), and particulates (X2t).

Figure 4(a) shows a downward trend along the series Mt. In all series, the presence of seasonal

peaks, corresponding to winter-summer variations, is also evident. Figure 5 shows the dispersion plots

for the relationship between: (a) mortality and particulates and (b) mortality and temperature. Figure

5(a) indicates a possible linear relationship between mortality and particulates levels whereas Figure

5(b) shows a curvilinear relationship between mortality and temperature, indicating that mortality

fluctuations are strongly associated with temperature variations. Shumway and Stoffer (2017) used

these data in several examples throughout their book. Amongst these examples, we can highlight

the classical multiple linear regression and ARMA applications. Figure 5 shows the relationship

between variables Mt, X1t and X2t. Considering Mt as the response variable, these relationships can
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Table 3: Predictive evaluation statistics for the different values of φ and θ, based on Monte Carlo

simulations for the BISARMA (1,1) model, with statistics for the ARMA (1,1) model in parentheses.

n φ θ AIC BIC RMSE

50

0.3

0.3 72.3576 (73.3029) 81.9177 (82.8631) 0.4603 (0.4770)

0.5 71.9333 (73.9673) 81.4934 (83.5274) 0.4585 (0.4824)

0.7 72.2643 (75.5863) 81.8245 (85.1464) 0.4599 (0.4959)

0.5

0.3 72.2507 (73.3638) 81.8108 (82.9240) 0.4598 (0.4786)

0.5 71.8260 (74.0690) 81.3862 (83.6292) 0.4580 (0.4849)

0.7 72.2174 (75.9380) 81.7775 (85.4981) 0.4597 (0.5015)

0.7

0.3 72.0982 (73.3189) 81.6584 (82.8790) 0.4591 (0.4801)

0.5 71.6726 (74.1032) 81.2327 (83.6633) 0.4572 (0.4875)

0.7 72.0363 (76.2311) 81.5964 (85.7912) 0.4588 (0.5073)

100

0.3

0.3 141.8991 (142.7913) 154.9250 (155.8172) 0.4729 (0.4814)

0.5 141.9712 (143.7678) 154.9971 (156.7937) 0.4731 (0.4845)

0.7 141.9093 (145.7418) 154.9351 (158.7677) 0.4728 (0.4915)

0.5

0.3 141.7895 (142.8292) 154.8154 (155.8551) 0.4726 (0.4822)

0.5 141.8908 (143.9018) 154.9166 (156.9276) 0.4729 (0.4860)

0.7 141.8989 (146.1938) 154.9248 (159.2196) 0.4727 (0.4945)

0.7

0.3 141.6287 (142.8097) 154.6546 (155.8356) 0.4722 (0.4830)

0.5 141.7572 (143.9976) 154.7831 (157.0235) 0.4726 (0.4876)

0.7 141.8046 (146.6471) 154.8304 (159.6729) 0.4725 (0.4977)

200

0.3

0.3 280.6618 (281.7446) 297.1533 (298.2362) 0.4787 (0.4829)

0.5 280.8021 (282.8071) 297.2937 (299.2987) 0.4789 (0.4842)

0.7 280.8887 (285.1818) 297.3803 (301.6734) 0.4790 (0.4888)

0.5

0.3 280.5644 (281.7629) 297.0559 (298.2545) 0.4786 (0.4833)

0.5 280.7148 (282.9062) 297.2064 (299.3978) 0.4788 (0.4848)

0.7 280.9012 (285.7727) 297.3928 (302.2643) 0.4790 (0.4905)

0.7

0.3 280.4677 (281.7850) 296.9593 (298.2765) 0.4785 (0.4839)

0.5 280.6136 (283.0111) 297.1051 (299.5027) 0.4787 (0.4856)

0.7 280.8398 (286.4212) 297.3314 (302.9128) 0.4789 (0.4924)

500

0.3

0.3 699.6953 (701.3716) 720.7683 (722.4447) 0.4837 (0.4854)

0.5 700.0944 (702.7698) 721.1674 (723.8428) 0.4839 (0.4863)

0.7 699.3433 (704.6478) 720.4163 (725.7208) 0.4835 (0.4875)

0.5

0.3 699.5842 (701.3973) 720.6573 (722.4703) 0.4836 (0.4855)

0.5 699.9943 (702.8966) 721.0674 (723.9697) 0.4838 (0.4866)

0.7 699.2964 (705.2882) 720.3694 (726.3612) 0.4835 (0.4882)

0.7

0.3 699.4819 (701.4246) 720.5549 (722.4977) 0.4836 (0.4857)

0.5 699.9119 (703.0665) 720.9849 (724.1395) 0.4838 (0.4869)

0.7 699.1754 (706.0010) 720.2485 (727.0740) 0.4834 (0.4890)
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Table 4: Predictive evaluation statistics for the different values of α, based on Monte Carlo simulations

for the BISARMA (1,1) model, with statistics for the ARMA (1,1) model in parentheses.

n α AIC BIC RMSE

50

0.5 71.8284 (72.6513) 81.3885 (82.2114) 0.4581 (0.4768)

1.0 133.2322 (134.7363) 142.7924 (144.2964) 0.8646 (0.8821)

1.5 164.9856 (167.7778) 174.5457 (177.3379) 1.2151 (1.2306)

2.0 184.8822 (189.2896) 194.4424 (198.8497) 1.5198 (1.5298)

2.5 198.6240 (204.8004) 208.1841 (214.3605) 1.7880 (1.7903)

100

0.5 141.9090 (142.8055) 154.9349 (155.8314) 0.4729 (0.4813)

1.0 265.7652 (268.0712) 278.7910 (281.097) 0.8913 (0.8985)

1.5 329.6598 (334.6509) 342.6856 (347.6767) 1.2499 (1.2553)

2.0 369.6198 (378.0031) 382.6457 (391.0290) 1.5593 (1.5614)

2.5 397.1729 (409.2500) 410.1987 (422.2758) 1.8297 (1.8275)

200

0.5 280.5448 (281.5542) 297.0364 (298.0457) 0.4786 (0.4831)

1.0 −349.1334 (−347.1097) −332.6419 (−330.6182) 0.0983 (0.1120)

1.5 657.9656 (666.9540) 674.4572 (683.4456) 1.2625 (1.2651)

2.0 738.2936 (753.9990) 754.7852 (770.4906) 1.5730 (1.5737)

2.5 793.6655 (816.7358) 810.1571 (833.2274) 1.8436 (1.8419)

500

0.5 699.4671 (701.0986) 720.5401 (722.1716) 0.4836 (0.4852)

1.0 1323.3460 (1331.902) 1344.4190 (1352.9750) 0.9101 (0.9113)

1.5 1644.9330 (1666.830) 1666.0060 (1687.9030) 1.2736 (1.2743)

2.0 1845.8550 (1884.830) 1866.9280 (1905.9030) 1.5853 (1.5852)

2.5 1984.2180 (2041.935) 2005.2910 (2063.0080) 1.8563 (1.8552)

be modelled over time t by means of the observed values of X1t and X2t, x1t and x2t say, as

Mt = η + β1trendt + β2(x1t − x1) + β3(x1t − x1)
2 + β4x2t + εt, (13)

where x1 is the mean temperature added in the model to avoid collinearity, “trendt” is the downward

linear trend observed in Figure 4(a), and εt is a random error, or a noise process, consisting of in-

dependent variables which are identically normal distributed with zero mean and variance σ2
ε ; see

Shumway and Stoffer (2017). In time series regression modeling, it is unusual for the noise to be

white, and eventually this assumption must be relaxed. Figure 6 shows the autocorrelation function

(ACF) in (a) and partial autocorrelation function (PACF) in (b) of the residuals from the least squares

fit of (13). The ACF for an AR(p) process slowly tends to zero and the PACF cuts off at lag p; see

Table 3.1 of Shumway and Stoffer (2017). Therefore, examination of the ACF and PACF in Figure 6

suggests a stationary AR(p) model of order p = 2 for the residuals. Then, the correlated error model

defined in (13) can be expressed as εt = φ1εt−1 + φ2εt−2 + ut, where εt is an AR(2) model and ut is

a white noise process. The results for this model are obtained using the function garmaFit of the

package gamlss.util; see http://www.gamlss.org.
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Consider now an analysis of the BISARMA(2, 0) model defined in (7), with

Yt = log(Mt) = η + β1trendt + β2(x1t − x1) + β3(x1t − x1)
2 + β4x2t

+
2∑

i=1

φi

[
yt−i −

(
η + β1trendt−i + β2(x1t−i − x1) + β3(x1t−i − x1)

2 + β4x2t−i

)]
+ εt,

where εt ∼ log-BS(α, 0), for the data set associated with the variables Mt (with Mt = Tt according

to (8)), X1t and X2t. Table 5 reports the values of the ML estimates, RMS, AIC and BIC. This table

also reports the p-values of the Ljung-Box (LB) statistic, labelled Q(k), for up to k-th order serial

correlation. This statistic evaluates the autocorrelation of the GCS residuals. From this table, note

that the BISARMA(2,0) model provides a better fit than the Gaussian ARMA(2,0) model based on

the AIC and BIC values. Also, the BISARMA(2,0) model has smaller RMSE values, indicating better

quality of the model. Finally, the LB p-values provide no evidence of serial correlation in the GCS

residuals for the two models. Nevertheless, those LB p-values favour the BISARMA(2,0) model.
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Figure 4: Cardiovascular mortality (a), temperature (b) and particulates (c) over the 10-year period (1970 -

1979) in Los Angeles.
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Figure 5: Scatter plots for the relationship between mortality and particulates (a) and between mortality and

temperature (b) over the 10-year period (1970 - 1979) in Los Angeles.
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Figure 6: plots of ACF (a) and PACF (b) of the residuals of the regression model for times series data over the

10-year period (1970 - 1979) in Los Angeles.

The QQ plots of the GCS residuals, with simulation envelopes, indicate better agreement with the

EXP(1) distribution in the BISARMA(2,0) model; see Figure 7 (left) and Figure 8 (left). From the

ACF and PACF plots, however, note that both models produce non-autocorrelated GCS residuals;

see Figures 7 and 8 (centre and right). The time series fitted by the BISARMA(2,0) and Gaussian

ARMA(2,0) models are presented together with the observed time series in Figure 9.

5 Conclusions and future research

The Birnbaum-Saunders distribution is studied often in the statistical literature due to its versatility

and efficiency in diverse applications, but few works have considered data with a dependency struc-

ture. To fill this gap, in this work we proposed a novel autoregressive moving average model based

on the Birnbaum-Saunders distribution, which allows modelling of non-negative and asymmetric data

that have a structure of dependence over time. The new model has proven to be a good alternative to
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Table 5: Estimates and model selection measures for the mortality times series data over the 10-year

period (1970 - 1979) in Los Angeles.

Model Parameters Estimate AIC BIC RMSE Q(4) Q(16)

BISARMA(2,0)

φ1 0.4057

-1487.9150 -1454.0710 0.0547 0.9143 0.6037

φ2 0.2779

η 38.066

β1 -0.0171

β2 -0.0017

β3 0.0002

β4 0.0023

α 0.0548

ARMA(2,0)

φ1 0.3727

-1453.30 -1419.45 0.2890 0.4276 0.2290

φ2 0.4434

η 36.4848

β1 -0.0163

β2 -0.00003

β3 0.0002

β4 0.0017
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Figure 7: Envelope plot of generalized Cox-Snell residuals (left) and ACF (centre) and PACF (right) for the

BISARMA(2,0) model with times series data over the 10-year period (1970 - 1979) in Los Angeles.

describe this type of data with this structure. Some further examples where our model can be applied

are in the description of: (i) index of coal production in industry (Rahul et al., 2018); (ii) in chemical

process concentrations (McLeod and Zhang, 2006); (iii) river flow (Sim, 1987); and (iv) monthly

average affluent streamflow and monthly averages series of the bus ridership (Milani et al., 2017).

We performed a numerical evaluation of the maximum likelihood estimators of the model parameters

through Monte Carlo simulations using as performance measures the empirical mean, bias, variance

and mean square error of the estimators. The simulation study demonstrated the good performance

of the maximum likelihood estimators. A diagnostic analysis based on residuals was also carried out.

An application of the new Birnbaum-Saunders autoregressive moving average model was performed
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Figure 8: Envelope plot of QQ residuals (left) and autocorrelation (centre) and partial autocorrelation (right)

for an ARMA(2,0) model with times series data over the 10-year period (1970 - 1979) in Los Angeles.
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Figure 9: Series cardiovascular mortality in Los Angeles (gray), adjusted by a BISARMA(2,0) model (black)

and adjusted by an ARMA(2,0) model (black - - -).

with real-world data from the environmental sciences. The application showed the superiority of

the new model over the standard Gaussian moving average autoregressive model, providing strong

evidence that the Birnbaum-Saunders distribution is a good modeling alternative when dealing with

temporal data. These results suggest that the BISARMA model can become a new standard for the

routine analysis of non-negative and asymmetric time series data in the environmental sciences, and

elsewhere.

Since the Birnbaum-Saunders distribution is based on the normal distribution, parameter estima-

tion in BISARMA models can be affected by atypical cases. To achieve robust estimation, however,

the Birnbaum-Saunders-t distribution model, for example, can be considered instead; see Athayde

et al. (2019). Second, in addition to fixed effects, added to a regression model, random effects can

also be added to produce mixed models, which may lead to a more sophisticated BISARMA model

and more closely describing reality; see Villegas et al. (2011). Third, we can consider multivariate
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BISARMA modeling base on the multivariate Birnbaum-Saunders distribution; see Marchant et al.

(2018). Fourth, local influence diagnostics can be conducted, which permit detection of combined

influential cases. Work on local influence in Birnbaum-Saunders models was conducted by a number

of authors; see, for example, Garcia-Papani et al. (2017, 2018b), Santana et al. (2011), Desousa et al.

(2018), and Saulo et al. (2019). Fifthly, a simulation study to evaluate the adequacy of generalized

Cox-Snell residuals is being considered by the authors (see Leiva et al., 2016), which, unfortunately,

in complex models, such as that proposed in this work, may be very intensive computationally. Re-

search on these issues is in progress and their findings will be reported in a future article.
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Appendix A: Proofs

Proof of Theorem 1 Since Θ(B)Φ(B)−1 =
∑∞

i=0 ψiB
i with ψ0 = 1, by using (5), the BISARMA model can

be rewritten as

ψt = Yt − x⊤
t β = η +Θ(B)Φ(B)−1εt. (14)
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Seeing that E[εt|Ft−1] = 0, a.s., for all t, it follows that E[εt] = 0. Then

E[Yt] = x⊤
t β + E[ψt]

(14)
= η + x⊤

t β +Θ(B)Φ(B)−1E[εt] = η + x⊤
t β,

whenever the series Θ(B)Φ(B)−1εt exists. In addition, since E[εt|Ft−1] = 0, a.s., for all t, and Cov[εs, εt] = 0
for all t 6= s, by (14) we have

Var[Yt] = Var[Θ(B) Φ(B)−1εt] =

∞∑

i=0

ψ2
i Var[εt−i] =

∞∑

i=0

ψ2
i E
[
Var[Yt−i|Ft−i−1]

]
,

where in the last equality we use the law of total variance. Analogously, the covariance Cov[Yt, Yt−k] can be

written as
∑∞

i=0 ψiψi−k E
[
Var[Yt−i|Ft−i−1]

]
, k > 0. Thus, the proof is complete.

Proof of Theorem 2 By using (10), and by combining (17) and (18) (see Appendix B),

∂ℓ

∂βv
=

n∑

t=m+1

(
xt,v −

p∑

i=1

φix(t−i)v

)
tanh

(
yt − µt

2

)[
2

α2
cosh2

(
yt − µt

2

)
− 1

2

]
;

∂2ℓ

∂β2v
=

1

α2

n∑

t=m+1

(
xtv −

p∑

i=1

φix(t−i)v

)2 [
α2

4
sech2

(
yt − µt

2

)
− 2sinh2

(
yt − µt

2

)
− 1

]
.

Note that the condition xtv > pmaxi=1,...,p |φix(t−i)v| implies that xt,v −
∑p

i=1 |φix(t−i)v| > 0. Then

xt,v −
p∑

i=1

φix(t−i)v > 0, t = m+ 1, . . . , n. (15)

Let g(x) = tanh(x)
[

2
α2 cosh2(x)− 1

2

]
and h(x) = α2

4 sech2(x)−2sinh2(x)−1. A straightforward computation

shows that g(x) is an increasing function such that g(0) = 0 and g(x) → ±∞ as x → ±∞. Seeing that

xtv > pmaxi=1,...,p |φix(t−i)v|, we have that xtv > 0. Therefore xtvβv → ±∞ as βv → ±∞. It follows that

g
(yt−µt

2

)
→ ±∞ as βv → ∓∞, for each t = m+ 1, . . . , n. Then, by using (15), we have

∂ℓ

∂βv
→ +∞ as βv → −∞, and

∂ℓ

∂βv
→ −∞ as β → +∞. (16)

In addition, note that for 0 < α < 2, h′(x) = −2 sinh(x)

cosh3(x)
(α

2

4 − 2 cosh4(x)) = 0 iff x = 0, and h′′(0) =

−2(α
2

4 + 2) < 0. That is, h(x) increases on (−∞, 0) and then decreases on (0,∞) with h(0) = α2

4 − 1 < 0.

Then h(x) is a negative function for all x ∈ R and 0 < α < 2. Therefore, by using (15), we have that ∂2ℓ
∂β2

v
< 0,

which means that ∂ℓ
∂βv

is a decreasing function in βv, for each v = 1, . . . , k fixed. Finally, by using (16), the

proof follows by the standard intermediate value theorem, see Lang (1998).

Appendix B: Fisher observed information matrix

This appendix contains expressions for the second order partial derivatives of the log-likelihood function of

the BISARMA model given in (9), which can be used to obtain the elements of the Fisher observed information

matrix. The first and second order derivatives of the log-likelihood function ℓt(α,β, η,φ,θ) with respect to µt
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are expressed, respectively, by

∂ℓt
∂µt

= tanh

(
yt − µt

2

)[
2

α2
cosh2

(
yt − µt

2

)
− 1

2

]
,

∂2ℓt
∂µ2t

=
∂

∂µt

(
∂ℓt
∂µt

)
=

1

α2

[
α2

4
sech2

(
yt − µt

2

)
− 2sinh2

(
yt − µt

2

)
− 1

]
. (17)

Note that

∂2ℓt
∂η2

=
n∑

t=m+1

∂2ℓt
∂µ2t

=
n∑

t=m+1

1

α2

[
α2

4
sech2

(
yt − µt

2

)
− 2sinh2

(
yt − µt

2

)
− 1

]
.

For βv,w, with v, w = 1, . . . , k, we have

∂2ℓt
∂βv∂βw

=
n∑

t=m+1

∂

∂βv

(
∂ℓt
∂βw

)
=

n∑

t=m+1

∂

∂βv

(
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∂µt
∂βw
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=
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)
, (18)

where

∂µt
∂βv

= xtv −
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i=1

φix(t−i)v,
∂µt
∂βw

= xtw −
p∑
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φix(t−i)w,
∂2µt

∂βv∂βw
=

∂
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)
= 0.

For βv, with v = 1, . . . , k, we get

∂2ℓt
∂βv∂η

=
n∑

t=m+1

∂

∂η

(
∂ℓt
∂βv

)
=

n∑

t=m+1

∂

∂η

(
∂ℓt
∂µt

∂µt
∂βv

)

=
n∑

t=m+1

∂2ℓt
∂µ2t

∂µt
∂η

∂µt
∂βv

+
∂ℓt
∂µt

∂2µt
∂η∂βv

=
n∑

t=m+1

∂2ℓt
∂µ2t

(
xtv −

p∑

i=1

φix(t−i)v

)
.

where ∂2µt/∂η∂βv = ∂(∂µt/∂βv)/∂η = 0.
Notice that

∂2ℓ

∂α2
= − 1

α2

n∑

t=m+1

[
12

α2
sinh2

(
yt − µt

2

)
− 1

]
.

For βv, with v = 1, . . . , k, we reach

∂2ℓ

∂α∂βv
=

n∑

t=m+1

∂

∂α

(
∂ℓt
∂βv

)
=

n∑

t=m+1

∂

∂α

(
∂ℓt
∂µt

∂µt
∂βv

)

= − 4

α3

n∑

t=m+1

cosh

(
yt − µt

2

)
sinh

(
yt − µt

2

)(
xtv −

p∑

i=1

φix(t−i)v

)
.

Notice that

∂2ℓ

∂α∂η
=

∂

∂α

(
∂ℓ

∂η

)
= − 4

α3

n∑

t=m+1

sinh

(
yt − µt

2

)
cosh

(
yt − µt

2

)
.
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For φi, φj , with i, j = 1, . . . , k, we have

∂2ℓ

∂φi∂φj
=

n∑

t=m+1

∂

∂φi

(
∂ℓt
∂φj

)
=

n∑

t=m+1

∂

∂φi

(
∂ℓt
∂µt

∂µt
∂φj

)

=

n∑

t=m+1

(
∂2ℓt
∂µ2t

∂µt
∂φi

∂µt
∂φj

+
∂ℓt
∂µt

∂2µt
∂φi∂φj

)
=

n∑

t=m+1

∂2ℓt
∂2µt

(
yt−i − x⊤

t−iβ
)(

yt−j − x⊤
t−jβ

)
.

where ∂µt/∂φi = yt−i − x⊤
t−iβ, ∂µt/∂φj = yt−j − x⊤

t−jβ, ∂2µt/∂φi∂φj = ∂(∂µt/∂φj)/∂φi = 0.
For φi, with j = 1, . . . , k, we get

∂2ℓ

∂α∂φi
=

n∑

t=m+1

∂

∂α

(
∂ℓt
∂φi

)
=

n∑

t=m+1

∂

∂α

(
∂ℓt
∂µt

∂µt
∂φi

)

= − 4

α3

n∑

t=m+1

cosh

(
yt − µt

2

)
sinh

(
yt − µt

2

)(
yt−i − x⊤

t−iβ
)
.

For φi with i = 1, . . . , k, we reach

∂2ℓ

∂βv∂φi
=

n∑

t=m+1

∂

∂βv

(
∂ℓt
∂φi

)
=

n∑

t=m+1

∂

∂βv

(
∂ℓt
∂µt

∂µt
∂φi

)

=
n∑

t=m+1

[
∂2ℓt
∂2µt

(
xtv −

p∑

i=1

φix(t−i)v

)(
yt−i − x⊤

t−iβ
)
− ∂ℓt
∂µt

x(t−i)v

]
,

where ∂2µt/∂βv∂φi = ∂(∂µt/∂φi)/∂βv = −x(t−i)v.
For φi, with i = 1, . . . , k, we have

∂2ℓt
∂φi∂η

=
n∑

t=m+1

∂

∂η

(
∂ℓt
∂φi

)
=

n∑

t=m+1

∂

∂η

(
∂ℓt
∂µt

∂µt
∂φi

)

=

n∑

t=m+1

(
∂2ℓt
∂µ2t

∂µt
∂η

∂µt
∂φi

+
∂ℓt
∂µt

∂2µt
∂η∂φi

)
=

n∑

t=m+1

∂2ℓt
∂µ2t

(
yt−i − x⊤

t−iβ
)
.

where ∂2µt/∂η∂φi = ∂(∂µt/∂φi)∂η = 0.
For θi, θj , with i, j = 1, . . . , k, we get

∂2ℓ

∂θi∂θj
=

n∑

t=m+1

∂

∂θi

(
∂ℓt
∂θj

)
=

n∑

t=m+1

∂

∂θi

(
∂ℓt
∂µt

∂µt
∂θj

)

=

n∑

t=m+1

(
∂2ℓt
∂µ2t

∂µt
∂θi

∂µt
∂θj

+
∂ℓt
∂µt

∂2µt
∂θi∂θj

)
=

n∑

t=m+1

∂2ℓt
∂2µt

ut−iut−j ,

where ∂µt/∂θi = ut−i, ∂µt/∂θj = ut−j , ∂
2µt/∂θi∂θj = ∂/∂θi(∂µt/∂θj) = 0.
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For φi, θj , with i, j = 1, . . . , k, we reach

∂2ℓ

∂φi∂θj
=

n∑

t=m+1

∂

∂φi

(
∂ℓt
∂θj

)
=

n∑

t=m+1

∂

∂φi

(
∂ℓt
∂µt

∂µt
∂θj

)

=

n∑

t=m+1

(
∂2ℓt
∂µ2t

∂µt
∂φi

∂µt
∂θj

+
∂ℓt
∂µt

∂2µt
∂φi∂θj

)
=

n∑

t=m+1

∂2ℓt
∂2µt

(
−x⊤

t−iβ
)
ut−j .

where ∂2µt/∂φi∂θj = ∂(∂µt/∂θj)/∂φi = 0.
For θj , with j = 1, . . . , k, we have

∂2ℓ

∂α∂θj
=

n∑

t=m+1

∂

∂α

(
∂ℓt
∂θj

)
=

n∑

t=m+1

∂

∂α

(
∂ℓt
∂µt

∂µt
∂θj

)

= − 4

α3

n∑

t=m+1

cosh

(
yt − µt

2

)
sinh

(
yt − µt

2

)
ut−j

For θj , with j = 1, . . . , k, we get

∂2ℓ

∂βv∂θj
=

n∑

t=m+1

∂

∂βv

(
∂ℓt
∂θj

)
=

n∑

t=m+1

∂

∂βv

(
∂ℓt
∂µt

∂µt
∂θj

)

=
n∑

t=m+1

∂2ℓt
∂µ2t

∂µt
∂βv

∂µt
∂θj

+
∂ℓt
∂µt

∂2µt
∂βv∂θj

=
n∑

t=m+1

∂2ℓt
∂2µt

(
xtv −

p∑

i=1

θjx(t−i)v

)
ut−j ,

For θj , with i = 1, . . . , k, we reach

∂2ℓt
∂θj∂η

=
n∑

t=m+1

∂

∂η

(
∂ℓt
∂θj

)
=

n∑

t=m+1

∂

∂η

(
∂ℓt
∂µt

∂µt
∂θj

)

=

n∑

t=m+1

(
∂2ℓt
∂µ2t

∂µt
∂η

∂µt
∂θj

+
∂ℓt
∂µt

∂2µt
∂η∂θj

)
=

n∑

t=m+1

∂2ℓt
∂µ2t

ut−j ,

where ∂2µt/∂η∂θj = ∂(∂µt/∂θj)∂η = 0.
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