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ε
2-order normal form analysis for a

two-degree-of-freedom nonlinear coupled oscillator

X. Liu1 and D. J. Wagg1

Department of Mechanical Engineering, University of Sheffield, S1 3JD, UK,

david.wagg@sheffield.ac.uk

Abstract. In this paper, we describe an ε2-order normal form decomposition

for a two-degree-of-freedom oscillator system that has a mass supported with

horizontal and vertical support springs. This system has nonlinear terms that are

not necessarily ε1-order small when compared to the linear terms. As a result,

analytical approximate methods based on an ε expansion would typically need

to include higher-order components in order to capture the nonlinear dynamic

behaviour. In this paper we show how this can be achieved using a direct normal

form transformation up to order ε2. However, we will show that the requirement

for including ε2 components is primarily due to the way the direct normal form

method deals with quadratic coupling terms rather than the relative size of the

coefficients.

Keywords: nonlinear oscillator, normal form, ε2-order

1 Introduction

Normal form transformations are a classical method for studying dynamical systems

first introduced by Poincaré [1]. The historical background of normal form transfor-

mations can be found in a number of texts including [2–4]. This work is motivated by

vibration problems involving coupled nonlinear oscillators, where the objective of a

normal form transformation is to both simplify the system, but also to identify potential

nonlinear resonances that might occur. For vibration problems, Jezequel & Lamarque

[5] proposed a normal form decomposition for a system of two coupled oscillators with

cubic nonlinearities and both forcing and damping. The relationship between the nor-

mal form transformation and nonlinear normal modes was established by Touzé and

co-workers [6, 7], based on examples of coupled oscillator systems that included both

quadratic and cubic nonlinear terms.

In this paper, we will consider an oscillator system consisting of a mass supported

by vertical and horizontal springs that are attached to solid supports. This system is

shown schematically in Fig. 1. The equations of motions of this example system, as

derived by [6], are taken to be

ẍ1 + 2ζ1ω1ẋ1 + ω2
1x1 + a1x

2
1 + a2x1x2 + a3x

2
2 + a4x

3
1 + a5x1x

2
2 = f1 cos(Ωt),

ẍ2 + 2ζ2ω2ẋ2 + ω2
2x2 + b1x

2
1 + b2x1x2 + b3x

2
2 + b4x

2
1x2 + b5x

3
2 = f2 cos(Ωt),

(1)
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where the coefficients of the nonlinear terms ai, bi for i, j = 1, 2, ..., 5 are of the same

size order as the natural frequencies ω1 and ω2 respectively. The other coefficients are

damping ratios ζi, and forcing amplitudes fi, for each degree of freedom i = 1, 2 and

the external forcing frequency is Ω.

This system has been studied in depth by several previous authors, [6–8]. In particu-

lar, Touzé & Amabili [7] showed how a single-linear-mode approximation to the system

dynamics would predict hardening instead of softening behaviour for a specific set of

parameter values, whereas a nonlinear normal mode type analysis predicts the correct

softening resonance, behaviour. Furthermore, in Touzé & Amabili [7] backbone curves

for the system were computed, and these curves were compared with forced-damped

simulations of the system. In [8] a detailed study of methods for computing backbone

curves was carried out. As part of their study Breunung & Haller, [8], used the current

example to make a comparison between a spectral sub-manifold method and the meth-

ods of Touzé & Amabili [7] and Neild & Wagg [9]. This comparison showed that the ǫ1

direct normal form proposed by Neild & Wagg [9] gave the incorrect approximations

for this example. In fact, using the ǫ1 version gave a result similar to the linear mode

approximation first discussed by [7] — predicting hardening instead of softening be-

haviour. In this paper, we will show that the ǫ2 terms are required in the direct normal

form method of Neild & Wagg [9] to give the correct solutions. Typically the direct

x1

x2

Fig. 1. The example system considered in this paper.

normal form method, [9], is applied to systems where the nonlinear, damping and forc-

ing terms are assumed to be of order ε1 small (or higher orders of ε) when compared

to the linear terms [10–14]. The linear terms are the natural frequencies, taken to be of

order ε0, meaning that the ε1 nonlinear terms are typically an order smaller than the

natural frequencies. In Eq. (1) this is not the case, and it is possible for the nonlinear co-

efficients to be of the same size order as the natural frequencies. As a result, the normal

form approximation would typically need to be extended to include higher-order terms.

Here, we show that an ε2-order analysis is sufficient to capture the required behaviour,

although in fact the need for the ε2-order terms is actually because of the quadratic

coupling terms, as will be explained below.
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2 ε
2-order normal form analysis

We follow the method set out in Chapter 4 of [15] for a ε2 direct normal form method.The

coefficients of the nonlinear terms in Eq. (1) are taken to be

a1 = 3
2ω

2
1 a2 = ω2

2 a3 = 1
2ω

2
1 a4 = 1

2 (ω
2
1 + ω2

2) a5 = 1
2 (ω

2
1 + ω2

2)

b1 = 1
2ω

2
2 b2 = ω2

1 b3 = 3
2ω

2
2 b4 = 1

2 (ω
2
1 + ω2

2) b5 = 1
2 (ω

2
1 + ω2

2)
(2)

As the conservative form of Eq. (1) is naturally linearly decoupled, it can be described

in the matrix form as q̈ + Λq + Nq(q) = 0 by setting q = [q1, q2]
⊺ = [x1, x2]

⊺,

where

Λ =

[

ω2
1 0
0 ω2

2

]

, and Nq(q) =

(

a1q
2
1 + a2q1q2 + a3q

2
2 + a4q

3
1 + a5q1q

2
2

b1q
2
1 + b2q1q2 + b3q

2
2 + b4q

2
1q2 + b5q

3
2

)

, (3)

although as noted above Nq(q) is not ε1 small in this example. Here the non-internal-

resonant case is considered, such that the detuned response frequencies ωri 6= nωrj for

i, j = 1, 2 with i 6= j and n = 1, 2, · · · . Note that other rational resonances, such as

n = 3/5 are not considered here. The exact detuning mechanism is explained in detail

in [15].

Next we carry out a ε2 near identity transformation q = u+ εh(1)(u)+ ε2h(2)(u).
The first step in this process is to substitute q = [q1, q2]

⊺ = [u1p + u1m, u2p + u2m]⊺

into Eq. (3). This then leads to a [30×1] dimension u∗ vector, which is used to redefine

Nq(u) = n1u
∗ and h(1)(u) = h1u

∗, such that n1 and h1 are coefficient matrices for

the ε1 terms. The objective is to obtain a normal form of ü+ Λu+Nu(u) = 0, with

Nu = εnu(1) + ε2nu(2). To find the transformed vectors nu(1) and nu(2), solutions to

the following equations are required

ε1 : ḧ(1)(u) +Υh(1)(u) + n(1)(u) = nu(1)(u), (4a)

ε2 : ḧ(2)(u) +Υh(2)(u) + n(2)(u) = nu(2)(u), (4b)

where Υ is a {N ×N} diagonal matrix of the square of the response frequencies, ω2
ri

such that Λ = Υ+ ε∆, and

n(1)(u) = Nq(q = u), (5a)

n(2)(u) = (∆ +
∂Nq(q)

∂q

∣

∣

∣

∣

q=u

)h(1)(u). (5b)

Solving Eq. (4a) we can first obtain the ε1 terms as

nu(1) =

(

3a4(u
2
1pu1m + u1pu

2
1m) + 2a5(u1pu2pu2m + u1mu2pu2m)

2b4(u1pu1mu2p + u1pu1mu2m) + 3b5(u
2
2pu2m + u2pu

2
2m)

)

, (6)

For the ε2 terms, we must determine Eq. (5b) up to cubic order which should pro-

vide an accurate solution for this example, and thus the nonlinear terms vector n(2) is

truncated at O(u4). As a result we can simplify Nq because we only need terms up to
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order O(u2) in the partial derivative, and so we write Nq(u) = Ñq(u) +O(u3). Then

we have

∆ =

[

ω2
n1 − ω2

r1 0
0 ω2

n2 − ω2
r2

]

=

[

δ1 0
0 δ2

]

, and (7a)

∂Ñq(u)

∂u
=

[

2a1(u1p + u1m) + a2(u2p + u2m) a2(u1p + u1m) + 2a3(u2p + u2m)
2b1(u1p + u1m) + b2(u2p + u2m) b2(u1p + u1m) + 2b3(u2p + u2m)

]

.

(7b)

Therefore we can compute n(2) using

n(2) =

[

δ1 0
0 δ2

]

h1u
∗ +

∂Ñq(u)

∂u
h̃1ũ

∗ +O(u4), (8)

where h̃1 and ũ∗ are the respective projections of h1 and u∗ to O(u2). This allows the

vector of nonlinear terms up to order ε2 to be obtained as

nu(2) =









(−
10

3ω2
r1

a21 +
3ω2

r2 − 8ω2
r1

(4ω2
r1 − ω2

r2)ω
2
r2

a2b1)(u
2
1pu1m + u1pu

2
1m)

(−
10

3ω2
r2

b23 +
3ω2

r1 − 8ω2
r2

(4ω2
r2 − ω2

r1)ω
2
r1

a3b2)(u
2
2pu2m + u2pu

2
2m)

+ (
2

ω3
r2 − 4ω2

r1

a22 −
4

ω2
r1

a1a3 +
4

ω2
r1 − 4ω2

r2

a3b2 −
2

ω2
r2

a2b3)(u1pu2pu2m + u1mu2pu2m)

+ (
2

ω3
r1 − 4ω2

r2

b22 −
4

ω2
r2

b1b3 +
4

ω2
r2 − 4ω2

r1

a2b1 −
2

ω2
r1

a1b2)(u1pu1mu2p + u1pu1mu2m)









.

(9)

Now using Nu = nu(1) + nu(2), the direct normal form for the system (for the non-

internally-resonant case) is given by

ü1 + ω2
1u1 +A(u2

1pu1m + u1pu
2
1m) +B(u1pu2pu2m + u1mu2pu2m) = 0,

ü2 + ω2
2u2 + C(u2

2pu2m + u2pu
2
2m) +D(u1pu1mu2p + u1pu1mu2m) = 0,

(10)

where

A = 3a4 −
10

3ω2
r1

a21 +
3ω2

r2 − 8ω2
r1

(4ω2
r1 − ω2

r2)ω
2
r2

a2b1, (11a)

B = 2a5 +
2

ω3
r2 − 4ω2

r1

a22 −
4

ω2
r1

a1a3 +
4

ω2
r1 − 4ω2

r2

a3b2 −
2

ω2
r2

a2b3, (11b)

C = 3b5 −
10

3ω2
r2

b23 +
3ω2

r1 − 8ω2
r2

(4ω2
r2 − ω2

r1)ω
2
r1

a3b2, (11c)

D = 2b4 +
2

ω3
r1 − 4ω2

r2

b22 −
4

ω2
r2

b1b3 +
4

ω2
r2 − 4ω2

r1

a2b1 −
2

ω2
r1

a1b2. (11d)
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Substituting u1p = (U1

2 e−iφ1)eiωr1t and u1m = (U1

2 eiφ1)e−iωr1t into Eq. (10) en-

ables expressions for the backbone curves to be obtained as

[

−ω2
r1 + ω2

1 +
1

4
AU2

1 +
1

4
BU2

2

]

U2
1

2
= 0, (12a)

[

−ω2
r2 + ω2

2 +
1

4
CU2

1 +
1

4
DU2

2

]

U2
2

2
= 0, (12b)

where Ui is the displacement amplitude of ui, for i = 1, 2. Successively setting U2 and

U1 to zero will give the S1 and S2 backbone curves

S1 : ω2
r1 = ω2

1 +
1

4
AU2

1 , (13a)

S2 : ω2
r2 = ω2

2 +
1

4
CU2

2 , (13b)

Note that these are now implicit expressions for ω2
r1 and ω2

r2 respectively which can be

solved numerically to find the backbone curves.

Finally, the physical displacement responses may be computed using the corre-

sponding reverse transform u1 → q1 = x1, and u2 → q2 = x2 such that that

x1 = q1 = u1 + h1,1u
∗ + h+

2,1u
+,

x2 = q2 = u2 + h1,2u
∗ + h+

2,2u
+,

(14)

where hi,j are row vectors taken from the h1 and h+
2 coefficient matrices based on the

fact that h(2) has been redefined as h(2) = h+
2 u

+ — see Chapter 4 of [15] for full

details of this procedure.

3 Numerical results

The simulation uses the parameters ω1 = 2, ω2 = 4.5, ζ1 = 0.001, ζ2 = 0.001, fk =
0.0015 and fℓ = 0 for the two different forcing cases k = 1, ℓ = 2 and k = 2, ℓ = 1.

The results for the S1 and S2 backbone curves computed using Eqs. (13) are shown

as the red lines in Figs. 2 and 3. For comparison, the order ε1 backbone curves are

shown as blue lines in the figures. In order to verify the analytically approximated ε2

backbone results, resonance response curves for the corresponding forced, damped case

are computed using the continuation Matlab toolbox — COCO [16]. These are shown

as black lines in Figs. 2 and 3.

The plots in Fig. 2 are presented in the projection of the response amplitude of the

physical coordinates, Xi, against the forcing frequency, Ω (or ωr for the undamped

backbone curves). In each figure X1 against Ω is shown in plot (a) and X2 against

Ω is shown in plot (b). Consequently, in Fig. 2 where the forcing is applied to the

x1 equation, the dominant response is in the X1 amplitude (plot Fig. 2 (a)), and the

response in plot (b), of X2 vs Ω is primarily due to the harmonic terms via Eq. 14.

Values of ωi are chosen as they are exactly the same as those used by previous

studies [6, 8] to demonstrate the non-internally-resonant dynamics of the system. For
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the damping values, ζ1 = 0.001, was used previously by [6], but here we have used ζ2 =
0.001 as well so that the COCO continuation curves are very close to the undamped

case. It can be seen that the analytical backbone curves correctly predict the softening

dynamics of the example system which is consistent with the findings in [6]. However, it

is important to note that the backbone curve expression computed with just the ε1 terms

gives a hardening response, which does not match the system behaviour correctly, as

shown by the blue lines in Figs. 2 and 3 (and also the comparison presented by [8]).

1.8 1.9 2
0

0.1

0.2

|x
1
|

1

2

COCO

1.8 1.9 2
0

0.01

0.02

0.03

|x
2
|

1

2

COCO

Fig. 2. The backbone curves S1, and resonance response curves of the two-degree-of-freedom

example system described in Eq.1 for the case where its horizontal mode is dominant. The red

and black lines denote the backbone curves and numerically computed forced response curves

using COCO, respectively. Parameters: ω1 = 2, ω2 = 4.5, ζ1 = 0.001, ζ2 = 0.001. There are

three different forcing amplitude curves f1 = 0.001, 0.0016, 0.0025 and f2 = 0. Note that the

stability of the solution curves is not indicated on this figure.

0

1

2

3

4

|x
1
|

10-3

1

2

COCO

4.4 4.45 4.5 4.55
0

0.05

0.1

0.15

|x
2
|

1

2

COCO

Fig. 3. The backbone curves S2, and resonance response curves of the two-degree-of-freedom

example system described in Eq. 1 for the case where its horizontal mode is dominant. The red
and black lines denote the backbone curves and numerically computed forced response curves

using COCO, respectively. Parameters: ω1 = 2, ω2 = 4.5, ζ1 = 0.001, ζ2 = 0.001. Here there

are three different forcing amplitude curves shown f2 = 0.002, 0.004, 0.006, and f1 = 0. Note

that the stability of the solution curves is not indicated on this figure.

The specific reason for this can be seen in Eq. (11) which gives the coefficients for

the S1 and S2 backbone curves in Eqs. (13). Specifically for the S1 backbone the coef-
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ficient producing curvature is A. In the ε1 case, A = 3a4, which will give a hardening

S1 curve. However in the ε2 case, A is given by Eq. (11a) and there are two additional

terms that reverse the curvature of S1, for the given parameters, to produce a softening

backbone curve. In fact reducing the ω2 value to a value of 3.8rad/s (whilst keeping all

other parameters the same ) results in the backbone curve switching to hardening.

This is consistent with the finding of [7] that the quadratic terms of the type found

in this example will generate cubic terms in the nonlinear coordinate transformation. As

we have shown, in the direct normal form method of Neild & Wagg [9], these generated

terms from the quadratics are only captured in the ε2 expansion not the ε1 version.

This explains why the ε1 version of the direct normal form will not show the correct

softening nonlinear behaviour — as also shown in the comparison by [8]. It is also

clear from the results presented above, that this can be rectified by the inclusion of the

ε2 terms.

Although not the specific cause (and therefore less important) we note that the direct

normal form method does rely on the nonlinear terms being small in the sense that

they should be significantly smaller than the ω2
ni values. However, in this example the

nonlinear coefficients are of the same order as the ω2
ni values, and yet despite this, by

adding ε2 terms, the direct normal form method gives a very good approximation to

the solution. Specifically, the maximum response position of the COCO curves are very

close to the backbone curves for both S1 and S2.

4 Conclusions

In this paper, ε2-order approximate analytical expressions for the backbone curves of

a coupled two-degree-of-freedom system have been obtained using the direct normal

form method proposed by Neild & Wagg. The motivation for this study was the obser-

vation that the ε1 version of the direct normal form method did not predict the correct

softening type of behaviour for this example. In fact, we have shown in this paper that

the primary cause of this discrepancy is due to how the direct normal form treats the

quadratic coupling terms of the type found in this example.

This is because during the backbone curve approximation process quadratic terms

actually generate terms up to cubic order. These terms are significant in obtaining a

representative model for the backbone curve. In the method proposed by Neild & Wagg,

these additional cubic terms are captured only in the ε2 part of the approximation. As

a result, if using this method for a system with quadratic nonlinearities, then the ε2

version is needed to fully capture the relevant dynamic behaviour.

In addition to this, and despite the fact that the direct normal form assumes small

nonlinear terms, which are not the case in this example, the results obtained from the

ε2 version and the numerical method agree well.
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