
This is a repository copy of Real-world structure facilitates the rapid emergence of scene 
category information in visual brain signals.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/162200/

Version: Accepted Version

Article:

Kaiser, Daniel orcid.org/0000-0002-9007-3160, Häberle, Greta and Cichy, Radek (2020) 
Real-world structure facilitates the rapid emergence of scene category information in visual
brain signals. Journal of Neurophysiology. ISSN 0022-3077 

https://doi.org/10.1152/jn.00164.2020

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



            1

   

Real-world structure facilitates the rapid emergence of scene category 

information in visual brain signals 

 

Daniel Kaiser1, Greta Häberle2,3,4, Radoslaw M. Cichy2,3,4,5  

 

1Department of Psychology, University of York, York, UK 

2Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany 

3Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 

Berlin, Germany 

4Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany 

5Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany 

 

Correspondence: 

Dr. Daniel Kaiser 

Department of Psychology 

University of York 

Heslington, York 

YO10 5DD, UK 

danielkaiser.net@gmail.com 

 

 

  

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted May 4, 2020. . https://doi.org/10.1101/2020.03.24.004937doi: bioRxiv preprint 



            2 

Abstract 

 

In everyday life, our visual surroundings are not arranged randomly, but structured in 

predictable ways. Although previous studies have shown that the visual system is 

sensitive to such structural regularities, it remains unclear whether the presence of an 

intact structure in a scene also facilitates the cortical analysis of the scene’s 

categorical content. To address this question, we conducted an EEG experiment 

during which participants viewed natural scene images that were either “intact” (with 

their quadrants arranged in typical positions) or “jumbled” (with their quadrants 

arranged into atypical positions). We then used multivariate pattern analysis to 

decode the scenes’ category from the EEG signals (e.g., whether the participant had 

seen a church or a supermarket). The category of intact scenes could be decoded 

rapidly within the first 100ms of visual processing. Critically, within 200ms of 

processing category decoding was more pronounced for the intact scenes compared 

to the jumbled scenes, suggesting that the presence of real-world structure facilitates 

the extraction of scene category information. No such effect was found when the 

scenes were presented upside-down, indicating that the facilitation of neural category 

information is indeed linked to a scene’s adherence to typical real-world structure, 

rather than to differences in visual features between intact and jumbled scenes. Our 

results demonstrate that early stages of categorical analysis in the visual system 

exhibit tuning to the structure of the world that may facilitate the rapid extraction of 

behaviorally relevant information from rich natural environments. 

  

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted May 4, 2020. . https://doi.org/10.1101/2020.03.24.004937doi: bioRxiv preprint 



            3 

 

Introduction 

 

In everyday situations, the input to our visual system is not random. It rather arises 

from highly organized scenes, which follow a predictable structure: In practically 

every real-word scene, visual information (such as the scene’s layout properties or 

the objects contained in a scene) is distributed in meaningful ways across space (Bar 

2004; Kaiser et al., 2019a; Oliva & Torralba, 2007; Võ et al., 2019; Wolfe et al., 2011). 

Neuroimaging studies have shown that the visual system is sensitive to this structure, 

with cortical responses differing when scene elements do or do not adhere to typical 

real-world structure (Abassi & Papeo, 2019; Baldassano et al., 2017; Bilalic et al., 

2019; Kaiser et al., 2014; Kaiser & Peelen, 2018; Kim & Biederman, 2011; Roberts & 

Humphreys, 2010). Although such studies suggest that the presence of real-world 

structure aids efficient scene representation, it is unclear how real-world structure 

impacts the representation of scene content: Specifically, does the presence of real-

world structure facilitate the extraction of categorical information from a scene? 

 Evidence for an increase of visual category information in the presence of real-

world regularities has already been reported for individual object processing. Several 

studies showed that typical real-world positioning enhances the neural representation 

of object category (Chan et al., 2010; de Haas et al., 2016; Kaiser & Cichy, 2018; 

Kaiser et al., 2018): for example, neural responses to an airplane are better 

discriminable from responses to other objects when the airplane is shown in the upper 

visual field, where it is typically encountered in the real world. Does the presence of 
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real-world structure similarly facilitate the representation of categorical scene content 

in scenes? 

To address this question, we used a jumbling paradigm (Biederman, 1972; 

Biederman et al., 1974) that manipulates natural scenes’ spatial structure: individual 

parts of the scene could either appear in their typical, “intact” positions or in atypical, 

“jumbled” positions (Figure 1). In a recent neuroimaging study (Kaiser et al., 2020a), 

we employed this paradigm to show that in scene-selective visual cortex (fMRI) and 

after 250ms of vision (EEG), spatially intact scenes were represented differently from 

jumbled scenes. Here, we analyzed the EEG data from this jumbling paradigm to 

investigate whether the typical real-world structure, in contrast to an atypical jumbled 

structure, facilitates the visual representation of scene category. 

To extract differences in category information between intact and jumbled 

scenes with high sensitivity, we used a cumulative multivariate decoding approach 

(Ramkumar et al., 2013), which maximizes the amount of data available at every time 

point along the processing cascade. In line with previous reports (Dima et al., 2018; 

Kaiser et al., 2019b, 2020b; Lowe et al., 2018), this analysis showed that scene 

category information emerges rapidly, within the first 100ms of vision. Critically, the 

early emergence of scene category information was facilitated for intact compared to 

jumbled scenes. This benefit was only present for upright, but not inverted scenes, 

indicating that the early facilitation of scene analysis is related to the presence of real-

world structure, rather than differences in basic visual features. 
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Materials and Methods 

 

Participants  

Twenty healthy adults (mean age 26.6 years, SD=5.8; 9 female) participated. All 

participants had normal or corrected-to-normal vision. Participants provided 

informed consent and received either monetary reimbursement or course credits. All 

procedures were approved by the ethical committee of the Department of Psychology 

at Freie Universität Berlin and were in accordance with the Declaration of Helsinki. 

 

Stimuli 

Stimuli were scenes from four different categories: churches, houses, roads, and 

supermarkets (Figure 1a). The stimuli were taken from an online resource (Konkle, 

Brady, Alvarez, & Oliva, 2010). For each category six different exemplars were used. 

To manipulate scenes’ adherence to real-world structure, we first split each original 

image into quadrants. We then systematically recombined quadrants from different 

scenes such that the scenes’ spatial structure was either intact or jumbled (Figure 

1b). For the intact scenes, four fragments from four different scenes of the same 

scene category were combined in their correct spatial locations. For the jumbled 

scenes, four fragments from four different scenes of the same scene category were 

combined, but their spatial locations were arranged in a crisscrossed way. This 

jumbling manipulation simultaneously disrupted multiple structural regularities in the 

scene, such as visual feature distributions, scene geometry, absolute and relative 

object positions, and cues to 3D-structure. Additionally, the stimulus set entailed 

scenes that were jumbled in their categorical content (with the individual scene parts 
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stemming from different categories); these scenes were created to answer a different 

research question (see Kaiser et al., 2020a) and not used in the analyses reported in 

this paper. In both conditions relevant for this paper, we used fragments from four 

different scenes to equate the presence of visual discontinuities between fragments. 

Separately for each participant, 24 unique intact and 24 unique jumbled stimuli were 

generated by randomly drawing suitable fragments from different scenes. Each scene 

was presented upright and upside-down. 

 

 

Figure 1. Experimental design. a) The stimulus set was constructed from natural scene 

photographs of four categories. b) Intact and jumbled scenes were created by 

combining parts of four different scenes of the same category in either typical 

locations or in   locations (with positions swapped in a crisscrossed way). c) During 

the EEG experiment, participants viewed the scenes in upright and inverted 

orientation for 250ms each in random order. Participants performed an orthogonal 

task, where they responded whenever the fixation cross darkened. 

 

Paradigm 

During the EEG experiment, the different stimuli were randomly intermixed within a 

single session. Within each trial, a scene appeared for 250ms. Stimuli appeared in a 

black grid (4.5deg visual angle), which served to mask visual discontinuities between 

quadrants (Figure 1c). Each trial was followed by an inter-trial interval which randomly 
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varied between 700ms and 900ms. For this paper, only parts of the collected data – 

spatially intact and spatially jumbled scenes in upright and upside-down orientation 

– were analyzed. Each of these four conditions covered 384 trials (equating to 96 trials 

per scene category). Additionally, 1,152 target trials were measured. During the target 

trials the crosshair changed into a slightly darker red at the same time the scene was 

presented. When detecting a target, participants had to press a button; additionally, 

they were asked to blink during the target trials, making it easier for them to refrain 

from blinking during non-target trials. Target detection was purposefully made 

challenging to ensure sufficient attentional engagement (mean accuracy 78.1%, 

SE=3.6%). Target trials were not included in the subsequent analyses.  Furthermore, 

1,536 trials where the scene’s categorical structure was altered have been recorded. 

This data has been analyzed elsewhere (see Kaiser et al., 2020a).  Further, 

participants were instructed to maintain central fixation throughout the experiment. 

Stimulus presentation was controlled using the Psychtoolbox (Brainard, 1997). 

 

EEG recording and preprocessing 

The EEG data were the same as in Kaiser et al. (2020a). EEG signals were recorded 

using an EASYCAP 64-electrode system and a Brainvision actiCHamp amplifier. For 

two participants, due to technical problems, only data from 32 electrodes was 

recorded. Electrodes were arranged in accordance with the 10-10 system. EEG data 

was recorded at 1000Hz sampling rate and filtered online between 0.03Hz and 100Hz. 

All electrodes were referenced online to the Fz electrode. Offline preprocessing was 

performed using FieldTrip (Oostenveld et al., 2011). EEG data were epoched from -

200ms to 800ms relative to stimulus onset, and baseline-corrected by subtracting the 
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mean pre-stimulus signal. Channels and trials containing excessive noise were 

removed based on visual inspection. Blinks and eye movement artifacts were 

removed using independent components analysis and visual inspection of the 

resulting components (Jung et al. 2000). The epoched data were down-sampled to 

200Hz. 

 

EEG decoding 

Decoding analyses were performed using CoSMoMVPA (Oosterhof et al., 2016). To 

track cortical representations across time, we used a cumulative classification 

approach that for each time point across the epoch takes into account all time points 

prior to the current time point (Ramkumar et al., 2013). This classification technique 

uses larger amounts of data at each subsequent time point, while maintaining 

temporal precision in the forward direction (i.e., it only collapses across information 

backwards in time, but not forwards). Cumulative decoding may thus provide 

increased sensitivity for detecting decoding onsets, compared to standard timeseries 

decoding (Grootswagers et al., 2017).  
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Figure 2. Schematic depiction of the cumulative decoding approach. a) For each time 

point t1 across the epoch, a separate decoding analysis was performed. b) For each 

of these analyses, we aggregated ERP waveforms across all EEG electrodes and all 

time points between t1 and the beginning of the epoch (t0). c) For each trial, we then 

unfolded these two-dimensional response pattern across electrodes and time into a 

one-dimensional response pattern. d) These one-dimensional response patterns 

were first subjected to PCA analysis to reduce dimensionality (see Materials and 

Methods) and then fed to LDA classifiers, which were trained to discriminate the four 

scene categories. Decoding accuracy was computed by repeatedly assessing 

classifier performance on single trials left out during classifier training. e) Repeating 

this analysis across time yielded a decoding timeseries with 200Hz resolution. 

Importantly, the cumulative nature of this analysis allowed us to increase power by 

increasing the amount of data available to the classifier without losing temporal 

precision regarding the onset of category information. 

 

We used such cumulative classifiers to discriminate between the four scene 

categories. This analysis was done separately for the intact and jumbled scenes. 

Classification analyses were performed repeatedly, with the amount of information 

available to the classifier accumulating across time (Figure 2). That is, for the first time 
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point in the epoch, the classifier was trained and tested on response patterns across 

the electrodes at this time point. At the second time point in the epoch, the classifier 

was trained and tested on response patterns across the electrodes at the first and 

second time point in this epoch. Finally, at the last time point in the epoch, the 

classifier was trained on response patterns across all electrodes and at all time points 

in this epoch.  

The richer information contained in these cumulative response patterns comes 

at the expense of a higher dimensionality of the data, which potentially harms 

classification. To reduce the dimensionality of the data at each time point, we 

performed principal component analyses (PCAs). These PCAs were always done on 

the classifier training set and the PCA solution was projected onto the testing set 

(Grootswagers et al., 2017). For each PCA, we retained as many components as 

needed to explain 99% of the variance in the training set data (average number of 

components retained at example time points; at 0ms: 225, SE=11; at 200ms: 250, 

SE=10; at 800ms: 269, SE=10). 

For classification, we used linear discriminant analysis (LDA) classifiers. For 

each classifier, the covariance matrix was regularized by adding the identity matrix 

scaled by one percent of the mean of the diagonal elements (as implemented in the 

cosmo_classify_lda function in CoSMoMVPA; Oosterhof et al., 2016). Classification 

was performed in a cross-validation scheme with 12 distinct folds. Classifiers were 

trained on data from 11 of these folds and tested on data from the left-out fold. The 

amount of data in the training set was always balanced across the four categories. 

Classification was done repeatedly until every fold was left out once. Classification 

accuracies were averaged across these repetitions. These analyses resulted in 
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separate decoding timeseries for intact and jumbled scenes, which reflect the 

temporal accrual of category information (i.e., how well the four categories are 

discriminable from the neural data). 

 

Statistical testing 

To compare decoding timeseries against chance level and the different conditions’ 

decoding timeseries against each other, we used a threshold-free cluster 

enhancement (TFCE) procedure (Smith & Nichols, 2009). Multiple-comparison 

correction was based on a sign-permutation test (with null distributions created from 

10,000 bootstrapping iterations) as implemented in CoSMoMVPA (Oosterhof et al., 

2016). The resulting statistical maps were thresholded at z>1.96 (i.e., pcorr<.05). 

However, the onset of statistical significance for TFCE methods may be biased by 

the presence of strong clusters following the onset (as expected from the cumulative 

decoding performed here) and can therefore not be directly interpreted (Sassenhagen 

& Draschkow, 2019). We thus additionally provide statistics for conventional one-

sample t-tests, which we corrected for multiple comparisons using false-discovery-

rate (FDR) corrections. For all tests, only clusters of at least 4 consecutive significant 

time points (i.e., more than 20ms) were considered. 

 

Data availability 

Data are publicly available on OSF (doi.org/10.17605/OSF.IO/ECMA4).  
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Results 

 

We first analyzed data from the upright scenes, where we expected a facilitation of 

category information for spatially intact, compared to jumbled, scenes. We found that 

EEG signals conveyed robust scene category information: categories were 

discriminable for both intact scenes (significant decoding obtained by TFCE 

statistics: between 75ms and 800ms; significant decoding obtained by FDR-

corrected statistics: between 75ms and 800ms) and jumbled scenes (TFCE: between 

120ms and 800ms; FDR: between 135ms and 800ms) (Figure 3a). Crucially, we found 

significantly enhanced decoding for the spatially intact scenes, compared to the 

jumbled scenes (TFCE: between 105ms and 800ms; FDR: between 105ms and 

800ms) (Figure 3c).  
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Figure 3. Decoding of scene category for intact and jumbled scenes. a) First, we 

decoded the category of intact and jumbled scenes when they were presented 

upright. b) This analysis revealed widespread clusters of category decoding for both 

intact and jumbled scenes. c) Critically, we found more accurate decoding of scene 

category when the scene was intact, suggesting that adherence to real-world 

structure boosts early visual category information. d) Second, we decoded the 

category of upside-down scenes. e) For upside-down scenes, category could be 

similarly decoded from the EEG signals. f) However, there was no benefit of intact 

scene structure when the scenes were inverted, suggesting that adherence to real-

world structure, rather than low-level differences, explain the enhanced category 

decoding for structured scenes when they are upright. Error margins indicate 

standard errors of the difference. Significance markers indicate p<0.05, corrected for 

multiple comparisons using TFCE. 

 

The inclusion of inverted scenes allowed us to investigate whether the effects 

of scene structure were genuinely related to the scenes adhering to real-world 

structure, rather than differences in their low-level visual attributes. If the enhanced 

category information for spatially intact scenes is indeed related to their adherence 

with real-world structure, then no effects should be seen when the same scenes are 

viewed upside-down, as all inverted scenes do not adhere to real-world structure. 

Performing the category decoding analysis on the inverted scenes (Figure 3d) 

revealed a qualitative difference to the upright scenes: the effect of scene structure 

was significantly stronger for the upright scenes (TFCE: between 170ms and 800ms; 

FDR: between 95ms and 115ms, and between 185ms and 800ms). Indeed, no 

significant differences between intact and jumbled scenes were observed for the 

inverted scenes, although the category of both intact scenes (TFCE: between 55ms 

and 800ms; FDR: between 60ms and 800ms) and jumbled scenes (TFCE: between 

60ms and 800ms; FDR: between 75ms and 800ms) could be decoded from the EEG 
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signals (Figure 3e/f). This indicates that the early facilitation of scene category 

information for spatially structured scenes can be attributed to the scenes adhering 

to typical real-world structure, rather than to low-level features differing between the 

intact and jumbled scenes.  

 

 

Figure 4. Comparing category decoding between upright and inverted scenes. a) We 

compared the emergence of category information for the intact upright scenes, the 

jumbled upright scenes, and the inverted scenes; for the inverted scenes, we 

averaged across the intact and jumbled scenes, as no significant differences between 

the two were found. b) Numerically, category decoding accuracy for the inverted 

scenes was in between the accuracies observed for the intact and jumbled upright 

scenes. c) When subtracting decoding in the inverted condition from decoding in the 

upright conditions, we found that statistically, category information was comparable 

for intact upright scenes and inverted scenes. By contrast, weaker category 

information was found for the jumbled upright scenes, compared to the inverted 

scenes, suggesting that jumbling specifically harms the emergence of category 

information in upright scenes. Error margins indicate standard errors of the difference. 

Significance markers indicate p<0.05, corrected for multiple comparisons using 

TFCE. 

 

Our results establish that for processing of upright scenes, scene structure 

matters more than for processing inverted scenes. Additionally, one can also ask how 
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robustly category information emerges as a function of whether the scene is 

presented upright or upside down. To answer this question, we directly compared 

category information for the intact upright scenes, the jumbled upright scenes, and 

the inverted scenes (Figure 4a); as for the inverted scenes we found no statistical 

differences between the intact and jumbled scenes, we averaged across them. We 

found that category decoding accuracy for the inverted scenes was numerically in 

between the intact and jumbled upright scenes (Figure 4b). When directly comparing 

the decoding time courses (Figure 4c), we found that category decoding was not 

significantly stronger in the intact upright scenes, compared to the inverted scenes. 

By contrast, category decoding for the jumbled scenes was significantly weaker than 

for the inverted scenes (TFCE: between 170ms and 800ms; FDR: between 200ms 

and 800ms). This result suggests that for the inverted scenes, category can be 

decoded similarly as for the intact upright scenes. However, once the structure of an 

upright scene is destroyed, only weaker categorical representations emerge in the 

visual system.   
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Discussion 

 

Our results provide evidence that real-world regularities facilitate the extraction of 

scene category information during visual analysis. We show that this facilitation of 

category information emerges within the first 200ms of vision. Our findings highlight 

the pervasive role of real-world structure in perceptual processing, suggesting that 

already at relatively early processing stages cortical scene representations are tightly 

linked to the typical composition of our daily surroundings. 

Here, we used a cumulative decoding technique to establish differences in the 

initial emergence of information in EEG signals. This technique uses all the available 

historical data (i.e., data prior to the current time point) for classification. Together 

with using PCA for dimensionality reduction, the availability of this larger amount of 

data promises high detection sensitivity. The availability of historical data at later time 

points may also hold true for the brain, where downstream regions have access to 

information coded earlier in upstream regions. However, as a note of caution, 

classifiers may also use temporally distinct information that is not necessarily 

available in the same way in the brain, particularly when looking at late processing 

stages. Cumulative decoding nonetheless provides a useful approach to reveal early 

differences in cortical information processing. 

The early facilitation of category information is consistent with results from 

single-object processing, where representations of individual objects are rapidly 

enhanced – within the first 150ms of vision – when the objects appear in their typical 

real-world locations, such as an eye in the upper visual field (Issa & DiCarlo, 2012) or 

a shoe in the lower visual field (Kaiser et al., 2018). Together, these findings therefore 
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support the idea that real-world structure can boost basic visual analysis across 

diverse stimuli and processing levels (Kaiser et al., 2019a). 

When directly comparing neural category information in upright and inverted 

scenes, we found that it was equally pronounced when the scenes were intact and 

upright and when the scenes were inverted, regardless of their structural arrangement 

– only when the upright scenes were jumbled, we found significantly reduced 

category information. One interpretation of this result is that jumbling causes a 

specific disruption for upright scenes, as for these scenes the jumbling manipulating 

may be perceptually more salient. Alternatively, the pattern of results may be 

explained by an interaction of two different effects: The inverted intact scenes still 

retain the intact relative positioning of their parts, which may explain why they are 

better decodable than the upright jumbled scenes. The inverted jumbled scenes do 

not have this intact relative positioning, but by means of inversion they gain an intact 

absolute positioning of their parts (e.g., a piece of sky would be in the upper part of 

an inverted jumbled scene, which is where it belongs); this may explain why these 

scenes yield better category decoding than upright inverted scenes. At this point, 

further research is needed to fully understand this pattern of results. 

While our effects demonstrate an enhanced early representation of scenes that 

adhere to real-world structure compared to scenes that do not, studies on object-

scene consistency suggest that EEG waveforms only become affected by typical 

object positioning after around 250ms of vision (Coco et al., 2019; Draschkow et al., 

2018; Ganis & Kutas, 2003; Mudrik et al., 2010, 2014; Võ & Wolfe, 2013). How do 

these early and late effect of scene structure relate to each other? 

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted May 4, 2020. . https://doi.org/10.1101/2020.03.24.004937doi: bioRxiv preprint 



            18 

As one possibility, later effects may partly reflect increased responses to 

inconsistencies, rather than an enhanced processing of consistent scene-object 

combinations (Faivre et al., 2019). Together with our results, these findings may 

suggest that early responses are biased towards scenes that predictably follow real-

world structure, whereas later responses may be more biased towards violations of 

this structure. This idea is consistent with a recent proposal in predictive processing, 

which suggests a temporal succession of more general processing biases, first 

towards the expected and then towards the surprising (Press et al., 2020). 

Alternatively, the beneficial effects of real-world regularities may not 

immediately result in consistency signals: Whether visual inputs generally are 

consistent with our real-world experience may only be analyzed following more basic 

visual analysis. Supporting this idea, generic consistency signals in our data only 

emerge later than the enhanced category processing: As previously reported, intact 

and jumbled scenes (independent of their category) evoked reliably different 

responses only after 255ms of processing (Kaiser et al., 2020a). 

More broadly, the findings can add to our understanding of efficient everyday 

vision. Even under challenging real-world conditions, human vision is remarkably 

efficient – in fact, much more efficient than findings from simplified laboratory 

experiments would predict (Wolfe et al., 2011; Peelen & Kastner, 2014). Behavioral 

studies using jumbling paradigms have suggested that typical scene structure 

contributes to this efficiency: when scenes are structurally intact, observers can 

better categorize them (Biederman et al., 1974), recognize objects within them 

(Biederman, 1972), or detect visual changes in the scene (Varakin & Levin, 2008). 

These perceptual benefits may be linked the rapid facilitation of neural category 
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information for typical scenes observed in the current study. However, our 

participants performed an orthogonal fixation task, which precludes directly linking 

brain and behavior here. Future studies combining neural recordings with naturalistic 

behavioral tasks may reveal that the early cortical tuning to real-world structure may 

be a crucial asset for solving complex real-world tasks. 
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