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A B S T R A C T

Real-world environments are extremely rich in visual information. At any given moment in time, only a fraction of

this information is available to the eyes and the brain, rendering naturalistic vision a collection of incomplete

snapshots. Previous research suggests that in order to successfully contextualize this fragmented information, the

visual system sorts inputs according to spatial schemata, that is knowledge about the typical composition of the

visual world. Here, we used a large set of 840 different natural scene fragments to investigate whether this sorting

mechanism can operate across the diverse visual environments encountered during real-world vision. We

recorded brain activity using electroencephalography (EEG) while participants viewed incomplete scene frag-

ments at fixation. Using representational similarity analysis on the EEG data, we tracked the fragments’ cortical

representations across time. We found that the fragments’ typical vertical location within the environment (top or

bottom) predicted their cortical representations, indexing a sorting of information according to spatial schemata.

The fragments’ cortical representations were most strongly organized by their vertical location at around 200 ms

after image onset, suggesting rapid perceptual sorting of information according to spatial schemata. In control

analyses, we show that this sorting is flexible with respect to visual features: it is neither explained by com-

monalities between visually similar indoor and outdoor scenes, nor by the feature organization emerging from a

deep neural network trained on scene categorization. Demonstrating such a flexible sorting across a wide range of

visually diverse scenes suggests a contextualization mechanism suitable for complex and variable real-world

environments.

1. Introduction

The visual world around us is structured in predictable ways at

multiple levels (Kaiser et al., 2019a). Natural scenes are characterized by

typical distributions of low- and mid-level visual features (Geisler, 2008;

Oliva and Torralba, 2003; Purves et al., 2011), as well as typical ar-

rangements of high-level contents across the scene (Bar, 2004; Kaiser

et al., 2019a; Torralba et al., 2006; Oliva and Torralba, 2007; Vo et al.,

2019; Wolfe et al., 2011). The visual system has adapted to this structure:

when multiple scene elements are arranged in a typical way, cortical

processing is more efficient (Abassi and Papeo, 2020; Baldassano et al.,

2016; Bilalic et al., 2019; Gronau et al., 2008; Kim and Biederman, 2011;

Kim et al., 2011; Kaiser et al., 2014, 2020; Kaiser and Peelen, 2018;

Roberts and Humphreys, 2010). Such results suggest that when multiple

scene elements need to be processed concurrently, cortical processing is

strongly tuned to the typical composition of these elements.

In real-life situations, however, we usually do not have access to

detailed visual information about all scene elements at once. Instead,

visual inputs are fragmented, and only incomplete snapshots of the world

are available for visual analysis at any given moment in time. How does

the brain assemble a coherent image of the world from such fragmented

inputs? To solve this problem, the visual system may draw from internal

representations of typical scene structure – scene schemata (Mandler,

1984; Minsky, 1975; Rumelhart, 1980) – in order to contextualize the

fragmented inputs with which it is faced. More specifically, schemata

may be used to match fragmented visual inputs with their place in the

schema: as a result, fragmented visual information should be sorted ac-

cording to its typical location within the environment. This sorting may
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help to efficiently contextualize visual inputs.

A recent study showed that incomplete inputs – fragments of natural

scenes – are indeed sorted according to their typical location in real-

world environments (Kaiser et al., 2019b): In the occipital place area

and after 200 ms of vision, representations of scene fragments were

organized by their typical vertical location in the world. For instance,

fragments that typically appear in the upper part of a scene (e.g., a house

roof or the ceiling of a room) were represented more similarly to each

other than to fragments that typically appear in the lower part of a scene

(e.g., a lawn or a room’s floor). No such organization was found for the

fragments’ horizontal location, for which clear schemata are missing

(Mandler and Parker, 1976).

As a critical limitation, our previous study (Kaiser et al., 2019b) only

comprised six different scenes. However, for this mechanism to be useful

in the real world, it has to operate across huge amounts of vastly different

scenes encountered in our everyday lives. We therefore set out to repli-

cate our findings across a larger and more diverse set of scene images.

Here, we used a set of 210 indoor and outdoor scenes, which we split into

4 position-specific fragments each, yielding 840 unique scene fragments

(Fig. 1a). During an EEG experiment, participants viewed each fragment

centrally and in isolation (Fig. 1b). Using representational similarity

analysis (RSA; Kriegeskorte et al., 2008), we then tracked the fragments’

cortical representations across time. As the key result, we found that

within the first 100 ms of visual processing and most prominently after

200 ms, the fragments’ cortical representations were organized by their

vertical location within the full scene. This neural organization was

neither explained by visual similarities amongst indoor and outdoor

scenes, nor by the features extracted by a deep neural network (DNN)

trained on scene categorization, suggesting that it is not immediately

explicable by differences in simple visual features. We conclude that the

visual system uses scene schemata to sort inputs according to their typical

location within the environment, supporting the contextualization of

fragmented visual information.

2. Materials and Methods

2.1. Participants

Twenty healthy adults (mean age 27.3, SD ¼ 4.6; 12 female) partic-

ipated in the study. The sample size was identical to the sample size of

our previous EEG study (Kaiser et al., 2019b). All participants had normal

or corrected-to-normal vision. Participants provided informed consent

and received monetary reimbursement or course credits. All procedures

were approved by the ethical committee of Freie Universit€at Berlin and

were in accordance with the Declaration of Helsinki.

2.2. Stimuli

Stimuli were 210 natural scene photographs, taken from an online

resource (Konkle et al., 2010). Half of the stimuli depicted outdoor scenes

from seven different categories (bridges, camping sites, historical

buildings, houses, nature scenes, streets, and waterfronts) and half of the

stimuli depicted indoor scenes from seven different categories (bath-

rooms, bedrooms, churches, classrooms, dining rooms, kitchens, and

living rooms). To create position-specific fragments, each scene was split

along the vertical and horizontal axes (Fig. 1a), yielding four fragments

of equal size for each scene and 840 fragments in total. The full stimulus

set is available on OSF (doi.org/10.17605/OSF.IO/D7P8G). During the

experiment, these fragments were presented individually and in the

center of the screen (5.5� by 5.5� visual angle). Participants were not

shown the full scene images prior to the experiment.

2.3. Experimental paradigm

During the experiment, participants briefly viewed the individual

scene fragments, all presented in the same central location (Fig. 1b). Each

of the 840 fragments was shown twice during the experiment, yielding

1680 trials. Trial order was randomized separately for the first and sec-

ond half of trials, so that every fragment appeared once in the first half of

the experiment and once in the second half. On each trial, a single

fragment appeared for 200 ms and participants were asked to categorize

it as either stemming from an indoor scene or an outdoor scene using two

keyboard buttons. After every response, the fixation cross turned red or

green for 300 ms, indicating response correctness. Trials were separated

by an inter-trial interval varying randomly between 1,300 ms and 1,500

ms. Participants performed the categorization task well (93% correct

responses, SE¼ 1%; 769 ms average response time, SE¼ 36 ms), with no

differences in accuracy or response time between fragments stemming

from the top versus the bottom or from the left versus the right (all t

[19]<1.89, p>0.07). Further, participants were instructed to maintain

central fixation throughout the experiment, and to only blink after they

had given a response. Stimulus presentation was controlled using the

Psychtoolbox (Brainard, 1997).

2.4. EEG recording and preprocessing

EEG signals were recorded using an EASYCAP 64-electrode system

and a Brainvision actiCHamp amplifier. Electrodes were arranged in

accordance with the 10-10 system. EEG data were recorded at 1000Hz

sampling rate and filtered online between 0.03Hz and 100Hz. All elec-

trodes were referenced online to the Fz electrode. Offline preprocessing

Fig. 1. Stimuli and paradigm. a) To mimic the fragmented nature of natural visual inputs, we used a set of 210 widely varying indoor and outdoor scene photographs,

from a total of 14 categories. Each scene was split into four equally sized fragments (top/left, top/right, bottom/left, bottom/right). The panel shows representative

examples of different indoor (upper rows) and outdoor (lower rows) scenes. b) During the EEG experiment, participants viewed the individual fragments in the center

of the screen while performing an indoor/outdoor categorization task.
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was performed using FieldTrip (Oostenveld et al., 2011). EEG data were

epoched from �200 ms to 800 ms relative to stimulus onset, and

baseline-corrected by subtracting the mean pre-stimulus signal. Channels

and trials containing excessive noise were removed based on visual in-

spection; on average, 1.5 channels (SD ¼ 0.6) and 159 trials (SD ¼ 84)

per participant were removed. Blinks and eye movement artifacts were

removed using independent component analysis and visual inspection of

the resulting components. The epoched data were downsampled to

200Hz.

2.5. Measuring representational similarity

To track the representations of individual fragments across time, we

used representational similarity analysis (RSA; Kriegeskorte et al., 2008).

First, we created neural representational dissimilarity matrices (RDMs)

for each time point in the EEG epochs (5 ms resolution), reflecting the

pairwise dissimilarity of the fragments’ brain representations. Second,

we modeled the organization of the neural RDMs in a regression

approach (Kaiser et al., 2019b; Proklova et al., 2016, 2019), which

allowed us to track when representations are explained by the fragments’

vertical and horizontal location within the full scene as well as the

scene’s category.

To construct neural RDMs, we computed the pairwise dissimilarity of

all fragments at each time point using the CoSMoMVPA toolbox (Oos-

terhof et al., 2016). This analysis was done separately for each partici-

pant. For this, we used response patterns across 17 posterior electrodes

(Kaiser et al., 2019b) in our EEG montage (O1, O2, Oz, PO3, PO4, PO7,

PO8, POz, P1, P2, P3, P4, P5, P6, P7, P8, Pz); results for central and

anterior electrode groups can be found in Supplementary Fig. S1. For

each of the 840 fragments, we computed the response pattern to the

fragment by averaging across the two repetitions of the fragment. If after

trial rejection during preprocessing only one trial was left for a fragment,

we used the response pattern from this one trial. If after preprocessing no

trial was left for a fragment, this fragment was excluded from the analysis

(i.e., removed from all RDMs of the respective participant). Neural

dissimilarity was computed by correlating the response patterns to each

individual fragment in a pairwise fashion and subtracting the resulting

correlations from 1, yielding an index of neural dissimilarity (0: mini-

mum dissimilarity, 2: maximum dissimilarity). Computing this index for

each pairwise comparison of fragments, we obtained an 840-by-840

neural RDM for each time point.

2.6. Modelling representational similarity

To quantify how well the neural organization is explained by the

fragments’ vertical and horizontal location within the full scene and by

the original scene’s category, we modeled the neural RDMs in general

linear models (GLMs) with three predictors: (1) a vertical location RDM,

in which each pair of conditions is assigned either a value of 0, if the

fragments stem from the same vertical location (e.g., both from the top),

or the value 1, if they stem from different vertical locations (e.g., one

from the top and one from the bottom), (2) a horizontal location RDM, in

which each pair of conditions is assigned either a value of 0, if the

fragments stem from the same horizontal location (e.g., both from the

left), or the value 1, if they stem from different horizontal locations (e.g.,

one from the left and one from the right), and (3) a category RDM, in

which each pair of conditions is assigned either a value of 0, if the

fragments stem from the same scene category (e.g., both fragments

stemming from scenes showing bridges), or the value 1, if they stem from

different categories (e.g., one stemming from a bridge and one stemming

from a living room).

GLMs were constructed with the neural RDMs as the regression cri-

terion and the vertical and horizontal location RDMs as well as the

category RDM as predictors. For these GLMs, the neural RDMs and pre-

dictor RDMs were vectorized by selecting all lower off-diagonal elements

– the rest of the entries, including the diagonal, were discarded. Values

for the neural RDMs were z-scored. Estimating these GLMs yielded three

beta weights for each time point and participant. We subsequently tested

these beta weights across participants against zero, which revealed

whether the fragments’ vertical location, horizontal location, and their

category significantly explained the neural organization at each time

point.

2.7. Controlling for shared properties among indoor and outdoor scenes

We additionally performed two control analyses. In the first control

analysis, we aimed at eliminating visual and conceptual features that are

common to either indoor or outdoor scenes (e.g., the top fragments from

outdoor scenes often show blue skies). We thus constructed RDMs for

horizontal and vertical location information which only contained

comparisons across indoor and outdoor scenes. These RDMs were con-

structed in the same way as explained above, but now all comparisons

within the same scene type (e.g., comparisons of different indoor scene

fragments) were removed. We then repeated the original GLM analysis

(see above) with these restricted RDMs, allowing us to see if the orga-

nization according to vertical location persists when only comparisons

between indoor and outdoor scenes are considered.

2.8. Controlling for categorization-related visual features

In the second control analysis, we investigated whether visual fea-

tures related to scene categorization predicted the fragments’ location-

specific organization. To model the extraction of visual features during

scene processing, we used a deep neural network (DNN). DNNs provide

the current state of the art in modelling representations in the human

visual system (Cichy and Kaiser, 2019; Kietzmann et al., 2018; Krie-

geskorte, 2014), and they capture a variety of features extracted during

cortical scene processing (Cichy et al., 2017; Groen et al., 2018). Here, we

used a ResNet50 network (He et al., 2016), pretrained on scene catego-

rization using the Places365 dataset (Zhou et al., 2016), as implemented

in PyTorch. ResNet50 consists of 4 residual layer modules, each

composed of multiple blocks of convolutional layers. These modules are

followed by a single fully-connected layer (see Fig. 4a for a schematic of

the architecture). We ran all fragments through the DNN and extracted

RDMs along the network. The entries in these RDMs reflected pairwise

distances (1-correlation) between the fragments’ DNN activation vectors

obtained from a given layer. In this way, a separate RDM was computed

for the final layer of each residual module (layers res2c, res3d, res4f, and

res5c) and for the fully-connected layer, yielding 5 RDMs in total.

To assess whether RDMs across different depths of the DNN could

explain the category and location organizations in the neural RDMs, we

performed model comparison analyses. We conducted analyses sepa-

rately for each participant and for each time point of the epoched EEG

data. For each of these analyses, we devised a full model that modeled the

neural RDMs as a combination of a set of predictors: (1) the vertical

location RDM, (2) the horizontal location RDM, and (3) the category

RDM. Additionally, the model could either contain one of the DNN RDMs

or all of the DNN RDMs, yielding seven different types of models (no DNN

layer included, one of the five DNN layers included, or all DNN layers

included). We compared each full model to a reduced model, where the

predictor of interest was not included: for instance, to see whether the

category RDM added information beyond the vertical location, hori-

zontal location, and DNN RDM(s), we devised a model that contained all

predictors from the full model, but not the category predictor. To

compare the full model and the reduced model, we computed adjusted R2

values (which reflect the amount of variance explained by the model,

adjusted for the number of predictors) for both models. By subtracting

the R2 value of the reduced model from the R2 value of the full model, we

obtained an index of how much additional variance is explained by the

predictor left out in the reduced model.

In Supplementary Fig. S2, we additionally report R2 values indexing

the fit of each of the three key predictors (vertical location, horizontal

D. Kaiser et al. NeuroImage 219 (2020) 117045
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location, and category) to the data and the fit of the different DNN layers

to the data. To put these R2 values into perspective, we computed an

empirical noise ceiling which reflected the lower bound of explicable

variance in the neural data. For every participant, we correlated this

participant’s RDM with the average RDM of all other participants. These

correlation values were then squared to obtain an R2 value for each

participant and time point. Averaging across participants yielded a time-

resolved empirical noise ceiling.

2.9. Statistical testing

To test whether GLM beta weights (or differences in R2 values) were

significantly greater than zero, we used a threshold-free cluster enhance-

ment procedure (Smith and Nichols, 2009) and multiple-comparison

correction based on a sign-permutation test (with null distributions

created from 10,000 bootstrapping iterations), as implemented in CoS-

MoMVPA (Oosterhof et al., 2016). The resulting statistical maps were

thresholded at z> 1.64 (i.e., pcorr<.05). For all peaks in the time series, we

additionally report results of conventional one-sided t-tests against zero. To

estimate the robustness of peak latencies we performed a bootstrapping

analysis. In this analysis, we created 1000 samples of 20 randomly chosen

datasets each (with possible repetitions). For each random sample, we

computed the peak latency (i.e., the highest beta estimate in the average

time course). We then computed a confidence interval (ci) by selecting the

central 95% of the distribution across the 1000 random samples. Given the

clear two-peak structure in vertical location information, we performed the

bootstrapping analysis separately for the early and late peaks, by splitting

the data for each random sample along the minimum beta value between

100 ms and 200 ms.

2.10. Data availability

Data and stimuli are publicly available on OSF (doi.org/10.17605/

OSF.IO/D7P8G). Other materials are available upon request.

3. Results

Tomodel the fragments’ cortical representations across time, we ran a

GLM analysis with three predictors capturing the fragments’ vertical and

horizontal locations within the full scene and the full scene’s category

(Fig. 2a). This analysis revealed three key insights. First, the fragments’

cortical organization was explained by their vertical location within the

scene (Fig. 2b), from 70 ms to 625 ms (peaking at 110 ms, peak t[19] ¼

4.11, p < 0.001, pcorr<0.05, ci ¼ [85 ms, 115 ms], and at 200 ms, peak t

[19] ¼ 3.54, p¼ 0.001, pcorr<0.05, ci ¼ [190 ms, 205 ms]). This suggests

that fragmented scene information is sorted by its typical origin within

the visual world. Second, the fragments’ horizontal location did not

significantly predict their neural organization, suggesting that the more

rigid real-world location along the vertical axis is more strongly reflected

in cortical signals. Third, the fragments’ category (i.e., which of the 14

scene categories a fragment stemmed from) was also reflected in their

neural organization, from 85 ms to 800 ms (peaking at 290 ms, peak t

[19]¼ 4.94, p< 0.001, pcorr<0.05, ci¼ [100 ms, 447.5 ms]). This finding

supports previous studies showing that scene category can be decoded

from rapidly emerging EEG signals (Dima et al., 2018; Kaiser et al.,

2019b; Lowe et al., 2019).

Together, these results suggest that fragmented visual information is

organized with respect to its typical vertical location in the world. To test

how flexible this organization is with respect to visual and conceptual

properties of individual scenes, we additionally performed two control

analyses.

In the first control analysis, we tested whether the sorting of frag-

mented information is independent of visual information shared among

the indoor or outdoor scenes. In this analysis, we restricted our models to

comparisons between indoor and outdoor scenes (i.e., all comparisons

within the same scene type were removed from all RDMs). The com-

parisons between indoor and outdoor scenes share fewer visual and

conceptual properties than the comparisons of scenes from the same type

(Fig. 3a): For example, two fragments from the upper part of outdoor

scenes often share both visual properties (e.g., they tend to be blue-

colored) and conceptual content (e.g., they tend to contain the same

objects, such as clouds or tree tops).

This analysis revealed significant vertical location information

(Fig. 3b), from 75 ms to 120 ms (peaking at 105 ms, peak t[19] ¼ 2.95, p

¼ 0.004, pcorr<0.05, ci ¼ [80 ms, 120 ms]) and from 150 ms to 220 ms

(peaking at 200 ms, peak t[19] ¼ 3.07, p ¼ 0.003, pcorr<0.05, ci ¼ [190

ms, 207.5 ms]), but no horizontal location information. This suggests

that the cortical sorting of information according to the fragments’ ver-

tical location occurs similarly for visually and conceptually diverse

scenes. Note that – as within-category comparisons were removed – no

category information could be computed in this analysis.

In the second control analysis, we used a ResNet50 DNN (He et al.,

Fig. 2. Analysis approach and main result. a) We first extracted neural RDMs from EEG signals in a time-resolved manner. That is, for each time point in an epoch we

correlated the response patterns evoked by each one fragment with the response pattern evoked by each other fragment, yielding an 840-by-840 matrix of pairwise

neural dissimilarities. The neural RDMs were then modeled as a combination of three predictor RDMs that captured the fragments’ dissimilarity in vertical location

(e.g. different fragments from the same vertical location were considered similar), horizontal location (e.g. different fragments from the same horizontal location were

considered similar), and category (e.g. different fragments from the same category, such as both from bridges, were considered similar). Estimating this model for each

time point yielded three time courses of beta estimates, indicating how well the neural organization matched each of the predicted organizations. b) The fragments’

vertical location (but not their horizontal location) predicted neural organization between 70 ms and 625 ms, suggesting a sorting of information according to typical

real-world locations. Additionally, the fragments’ category predicted their neural organization between 85 ms and 800 ms. Significance markers denote pcorr<0.05.

Shaded margins represent standard errors of the mean.
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2016) trained on scene categorization to quantify the organization of

categorization-related visual features across the fragments. We first

computed RDMs for five layers at different depths of the DNN (Fig. 4a).

These RDMs showed moderate correlations with the vertical location

predictor RDM (from layer 1 to 5: r ¼ 0.25, r ¼ 0.30, r ¼ 0.37, r ¼ 0.46, r

¼ 0.01) and with the category predictor RDM (from layer 1 to 5: r¼ 0.12,

r ¼ 0.14, r ¼ 0.18, r ¼ 0.35, r ¼ 0.36), but not with the horizontal

location predictor RDM (all r< 0.02) (Fig. 4b). We then performedmodel

comparison analyses, in which we investigated whether the fragments’

vertical location, their horizontal location, and their category explained

variance in the neural data, beyond the variance explained by the fea-

tures extracted by the DNN. In these analyses, we compared full models

that contained the DNN predictors and the three key predictors (vertical

location, horizontal location, and category) with reduced models that

lacked the predictor of interest (e.g., vertical location). Comparing the

variance explained by the full model and the reduced model allowed us

to quantify howmuch variance the left-out predictor of interest explained

beyond the variance already explained by the other predictors (see Ma-

terials and Methods for further details on these model comparison

analyses).

When comparing models that contained the vertical location predic-

tor and models that did not contain the vertical location predictor, we

found that the inclusion of the predictor improved the model fit for all

models tested (Fig. 4c): Independently of which DNN layers were

included in the model, the difference in the R2 values of the full and

reduced models remained significant (Fig. 4f), with two consistent peaks

in vertical location at around 110ms and 200ms (timings and confidence

intervals for these peaks can be found in Supplementary Table S1).

Critically, even when all DNN layers were included in the model, vertical

location explained additional variance between 90 ms and 135 ms, and

again from 165 ms. By contrast, horizontal location never explained any

additional variance, for all the models tested (Fig. 4d/g). Finally, cate-

gory information did not explain much variance beyond the DNN model

(Fig. 4e): When layers 1 or 2 were included in the model, including the

category predictor explained additional variance between 320 ms and

485 ms (Fig. 4h). However, when deeper layers or all layers together

were included in the model, the category predictor added no additional

variance beyond the DNN, showing that the DNN accurately captures the

visual features that the brain uses for categorization. Remarkably, these

features were unable to explain the fragments’ cortical organization

according to vertical location.

Together, our results suggest that fragmented information is sorted

according to its typical vertical location in the world, providing a

mechanism for the contextualization of incomplete visual information.

Even when controlling for visual and conceptual scene attributes, this

mechanism can rapidly structure the cortical organization of incoming

information.

4. Discussion

During natural vision the brain is constantly faced with incomplete

snapshots of the world from which it needs to infer the structure of the

whole scene. Here, we show that in order to meet this challenge, the

visual system rapidly contextualizes incoming information according to

its typical place in the world: within the initial 100 ms of processing and

most strongly after 200 ms, fragmented scene information is sorted ac-

cording to its real-world location. By using a large stimulus set

(comprising 840 unique fragments) we provide compelling evidence that

this mechanism supports spatial contextualization across diverse visual

environments.

Which features allow the visual system to make such inferences about

a fragment’s typical position within the environment? Across all ana-

lyses, the strongest vertical-location organization was found after 200 ms

of processing. At this time, the amount of variance explained by the

vertical location predictor was also highest (see Supplementary Fig. S2).

Further, this timing solidifies our previous results (Kaiser et al., 2019b),

where the strongest vertical location organization in EEG signals became

apparent at around 200 ms after onset. At this time higher-level scene

attributes – such as the scene’s clutter or openness (Cichy et al., 2017;

Harel et al., 2016) – are analyzed, suggesting that the sorting of infor-

mation according to real-world locations is determined by more complex

scene properties, rather than low-level visual features. This is consistent

with previous fMRI results which demonstrated a vertical location or-

ganization in the occipital place area, but not in early visual cortex

(Kaiser et al., 2019b).

We additionally found a very rapid onset of vertical location infor-

mation with the first peak after 100 ms. Further, we found that the frag-

ments’ vertical location correlated with visual attributes extracted at

different levels of a DNN model, including representations emerging in

early processing stages (see Fig. 4b). However, contrary to our previous

study (Kaiser et al., 2019b), this early effect was not fully explained by

categorization-related features as quantified by a DNN model (see

Fig. 4c/f). This discrepancy may be related to the limited stimulus set in

our previous study, which was unlikely to cover all low- and mid-level

feature differences that are diagnostic of a fragment’s vertical location

in the world. What the current result suggests is that there are visual

features that are analyzed early on and which are used to spatially

contextualize visual information. Their cortical organization is not fully

explained by our DNN model, which suggests that these features are not

analyzed in the same way during categorization – instead, they may be

particularlyuseful for spatially contextualizing inputs. Such features could

comprise particular distributions of spatial frequency content or texture

information (Dima et al., 2018; Groen et al., 2013, 2017). Alternatively,

these early effects could reflect the rapid analysis of scene geometry

(Henriksson et al., 2019). Future studies need to explicitly isolate the

contributionofdifferent visual features to the sortingof visual information

by real-world location at different processing times.

Previous research has demonstrated that the representation of indi-

vidual naturalistic stimuli depends on whether their current position in

the visual field matches their typical position in the world (Chan et al.,

2010; de Haas et al., 2016; Mannion, 2015; Kaiser and Cichy, 2018;

Kaiser et al., 2018). For instance, when face parts (e.g., an eye) or objects

(e.g., a lamp) are presented in their typically experienced visual-field

position (e.g., the upper visual field), they evoke more efficient cortical

representations (de Haas et al., 2016; Kaiser and Cichy, 2018). This

suggests that across diverse visual contents cortical representations of a

Fig. 3. Controlling for visual similarity among indoor or outdoor scenes. a) In

this analysis, we removed all pairwise comparisons between the fragments of

the same type (i.e., both indoor or both outdoor) from the neural and predictor

RDMs. This allowed us to control for visual and conceptual features shared by

fragments stemming from the same location (e.g., fragments from the upper part

of outdoor scenes often contain skies and clouds). d) Removing these compar-

isons did not abolish vertical location information, which remained significant

between 75 ms and 120 ms, and between 150 ms and 220 ms. This indicates that

the sorting of fragments according to their vertical location in the world is

flexible with regards to visual and conceptual attributes shared among the in-

door or outdoor scenes. Significance markers denote pcorr<0.05. Shaded margins

represent standard errors of the mean.
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stimulus are entwined with preferences for its typical location (Kaiser

and Haselhuhn, 2017; Kaiser et al., 2019a). Here we show that the

pairing of visual representations and location information is apparent

even when objects do not appear in their expected locations: although in

the current study all fragments were presented in the same central

location, their representations were still organized by their typical

location. This shows that even in the absence of location information the

brain can use the characteristic spatial distribution of visual contents to

organize their representation in an efficient way. A related effect of

real-world structure on individual object representations was previously

reported in face processing, where representations of individual face

fragments are grouped according to their position within a face (Hen-

riksson et al., 2015). Together, these results suggest that information

across different types of fragmented visual contents can be contextual-

ized on the basis of real-world structure.

How does this contextualization mechanism aid perception under

naturalistic conditions? The mechanism may be particularly beneficial

across a variety of situations where visual inputs are incomplete. Such

situations include partially occluded objects, fast-changing and dynamic

environments, and fragmented information arising from eye movements

across a scene. In each of these situations, matching the input with its

typical position in the context of the current environment can facilitate

the understanding of the incomplete information available at every point

in time. Future studies need to connect the rapid sorting process

described here and behavioral benefits in the aforementioned situations.
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