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Abstract
A key component of many robotics model-based planning and control algorithms is physics predictions, that is, forecasting a
sequence of states given an initial state and a sequence of controls. This process is slow and a major computational bottleneck
for robotics planning algorithms. Parallel-in-time integration methods can help to leverage parallel computing to accelerate
physics predictions and thus planning. The Parareal algorithm iterates between a coarse serial integrator and a fine parallel
integrator. A key challenge is to devise a coarse model that is computationally cheap but accurate enough for Parareal to
converge quickly. Here, we investigate the use of a deep neural network physics model as a coarse model for Parareal in the
context of robotic manipulation. In simulated experiments using the physics engine Mujoco as fine propagator we show that
the learned coarse model leads to faster Parareal convergence than a coarse physics-based model. We further show that the
learned coarse model allows to apply Parareal to scenarios with multiple objects, where the physics-based coarse model is not
applicable. Finally, we conduct experiments on a real robot and show that Parareal predictions are close to real-world physics
predictions for robotic pushing ofmultiple objects. Code (https://doi.org/10.5281/zenodo.3779085) and videos (https://youtu.
be/wCh2o1rf-gA) are publicly available.

Keywords Parallel-in-time · Parareal · Manipulation · Robotics · Planning · Neural network · Model-predictive control ·
Learning

1 Introduction

Wepresent amethod for fast and accurate physics predictions
during non-prehensile manipulation planning and control.
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An example scenario is shown in Fig. 1, where a robot arm
pushes the marked cylindrical object into a target zone with-
out pushing the other three objects off the table. We are
interested in predicting the motion of the objects in a fast
and accurate way.

Physics engines like Mujoco [37] and Drake [36] solve
Newton’s equation to predict motion. They are accurate but
slow. Coarse models can be built by introducing simplifying
assumptions, trading accuracy for solution speed but their
lack of precision will eventually compromise the robot’s
chance of completing a given task successfully.

Given an initial state and a sequence of controls, the
problem of predicting the resulting sequence of states is a
key component of a variety of model-based planning and
control algorithms [18,21,22,39]. Mathematically, such a
prediction requires solving an initial value problem. Typi-
cally, those are solved through numerical integration over
time-steps using e.g. semi-implicit Euler’smethod orRunge–
Kutta methods and an underlying physics model to provide
the forces. However, the speed with which these accurate
physics-based predictions can be performed is still slow [9].
Faster physics-based predictions can contribute significantly
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Fig. 1 Example of a robotic manipulation planning and control task
using physics predictions. The robot controls the motion of the green
object solely through contact. The goal is to push the green object into

the target region marked X . The robot must complete the task without
pushing other objects off the table or into the goal region

to contact-based/non-prehensile manipulation planning and
control—especially during re-planning or model-predictive
control (MPC) where a robot executes an action in the real-
world, gets the resulting state and then has to generate a new
physics-based plan. Such MPC methods have been used in
prior work to achieve manipulation robustness to parameter
uncertainty [1], stabilize complex humanoid behaviours [35],
and visually manipulate fabric [19].

In a previous paper [4], we demonstrated that predic-
tions for a robot pushing a single object can be made
faster by combining a fine physics-based model with a sim-
ple, coarse physics-based model using the parallel-in-time
method Parareal. Using 4 cores, Parareal was about a factor
two faster than the fine physics engine alone while providing
comparable accuracy and the same success rate for a push
planning problem with obstacle avoidance. Here, we extend
these results by investigating a deep neural network as coarse
model and show that it leads to faster Parareal convergence.
We also demonstrate that Parareal can be used to speed up
physics prediction in scenarios where the robot pushes mul-
tiple objects.

2 Related work

Parareal has been used in many different areas. Trindade and
Pereira [38], for example, use it to simulate incompressible
laminar flows. Maday and Turinici [27] have tested it for to
simulate dynamics in quantum chemistry. The method was
introduced by Lions et al. [25]. Combinations of parallel-
in-time integration and neural networks have not yet been
studied widely. Very recently, Yalla and Enquist [40] showed
the promise of using amachine learnedmodel as coarse prop-
agator for test problems. Going the other way, Schroder [32]
and Günther et al. [14] recently showed that parallel-in-time
integration can be used to speed up the process of training
neural networks.

Results on how Parareal performs for differential alge-
braic equations (DAEs) are scarce. Guibert and Tromeur-
Dervout [13] demonstrate that Parareal can solve DAEs, but

can experiences issues with stability for very stiff problems.
Cadeau andMagoules [8] propose a combination of Parareal
withwaveform relaxation to introduce additional parallelism.
For a DAE system of size 100,000, they demonstrate that
adding Parareal does provide speedup beyond the saturation
point of waveform relaxation alone.

Physics predictions play a major role in robotic manipu-
lation planning and control—to generate uncertainty averse
robotic pushing plans [6], to manipulate objects in clutter
through online re-planning [2], to rearrange objects in clutter
through dynamic actions [17], and also to use human guid-
ance to generate pushing motions [30]. However, planning
is slow since physics predictions are computationally expen-
sive. Parareal’s potential to speed up simulations for robotic
manipulation in single-object scenarios using a physics-
based coarse model was recently demonstrated by Agboh
et al. [4].

Furthermore, physics predictions are essential in learning
physics-based manipulation policies. For example, learning
gentle object manipulation through curiosity [20], learning
long-horizon robotic agent behaviours through latent imag-
ination [15], learning visuo-motor policies by formulating
exploration as a latent trajectory optimization problem [26],
learning policies for manipulation in clutter [7], smoothing
fabric with a da Vinci surgical robot through deep imitation
learning [33], and learning human-likemanipulation policies
through virtual reality demonstrations [16]. The training time
for these policies can potentially be reduced with a parallel-
in-time approach to physics predictions.

Combining different physicsmodels for roboticmanipula-
tion has been the topic of recent research, although not with a
focus on improving prediction speed.Kloss et al. [23] address
the question of accuracy and generalization in combined
neural-analytical models. Ajay et al. [5] focus on modeling
the inherent stochastic nature of the real world physics, by
combining an analytical, deterministic rigid-body simulator
with a stochastic neural network.

We can make physics engines faster by using larger sim-
ulation time steps. However, this decreases the accuracy and
can result in unstable behavior where objects have unreal-
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istically large accelerations. To generate stable behaviour
at large time-step sizes, Pan and Manocha [29] propose an
integrator for articulated body dynamics by using only posi-
tion variables to formulate the dynamic equation. Moreover,
Fan et al. [10] propose linear-time variational integrators
of arbitrarily high order for robotic simulation and use
them in trajectory optimization to complete robotics tasks.
Recent work has focused on making the underlying plan-
ning and control algorithms faster. For example, Giftthaler
et al. [12] introduced a multiple-shooting variant of the tra-
jectory optimizer—iterative linear quadratic regulator [24]
which has shown impressive results for real-time nonlinear
optimal control of complex robotic systems [28,31].

3 Robotic manipulation with parareal

3.1 Robotic manipulation

Consider the scene shown in Fig. 1. The robot’s manipulation
task is to control the motion of the green goal object through
pushing contact from the cylindrical pusher in the robot’s
gripper. The robot needs to push the goal object into a goal
region marked with an X . It is allowed to make contact with
other sliders but not to push them off the table or into the
goal region.

The system’s state at time point n consists of the pose q
and velocities, q̇ of the pusher P and Ns sliders, Si . . . SNs :

xn = [qP
n ,qSi

n , . . . ,qSNs
n , q̇P

n , q̇Si
n , . . . , q̇SNs

n ].

The pose of slider i consists of its position and orien-

tation on the plane: qSi = [qSix , qSiy , qSiθ ]T . The pusher’s
pose is qP = [qPx , qPy ]T and control inputs are velocities
un = [uxn, uy

n]T applied on the pusher at time n for a control
duration of Δt .

A robotics planning and control algorithm takes in an ini-
tial state of the system x0, and outputs an optimal sequence of
controls {u0,u1, . . . ,uN−1}. However, to generate this opti-
mal sequence, the planner needs to simulate many different
control sequences and predict many resulting sequences of
states {x1, x2, . . . , xN }.

The planner makes these simulations through a physics
model F of the real-world that predicts the next state xn+1

given the current state xn and a control input un

xn+1 = F(xn,un,Δt). (1)

We use the general physics engine Mujoco [37] to model F .
It solves differential algebraic equations of motion for the
complex multi-contact dynamics problem

M(q)dv = (b(q, v) + τ) dt + JE (q)T fE (q, v, τ )

+ JC (q)T fC (q, v, τ ) (2)

where q, v, and M are position vector, velocity vector, and
inertia matrix respectively in generalized coordinates. b con-
tains bias forces (Coriolis, gravity, centrifugal, springs), fE
and fC are impulses caused by equality constraints and con-
tacts respectively and JE and JC are the corresponding
Jacobians and τ are external/applied forces. The equations
are then solved numerically. Mujoco obtains a discrete-time
systemwith two options for integrators—semi-implicit Euler
or 4th order explicit Runge–Kutta.

3.2 Parareal

Normally, computing all states xn happens in a serial fashion,
by evaluating (1) first for n = 0, then for n = 1, etc. Parareal
replaces this inherently serial procedure by a parallel-in-time
integration process where some of the work can be done in
parallel. For Parareal, we need a coarse physics model

xn+1 = C(xn,un,Δt). (3)

It needs to be computationally cheap relative to the finemodel
but does not have to be very accurate. Parareal begins by
computing an initial guess xk=0

n of the state at each time
point n of the trajectory using the coarse model.

This guess is then corrected via the Parreal iteration

xk+1
n+1 = C(xk+1

n ,un,Δt) + F(xkn,un,Δt) − C(xkn,un,Δt),

(4)

for all timesteps n = 0, . . . , N − 1. The newly introduced
superscript k counts the number of Parareal iterations. The
key point in iteration (4) is that evaluating the fine physics
model can be done in parallel for all n = 0, . . . , N −1, while
only the fast coarse model has to be computed serially.

After one Parareal iteration, x11 is exactly the fine solu-
tion. After two iterations, x11 and x22 are exactly the fine
solutions. When k = N , Parareal produces the exact fine
solution [11,25]. However, to produce speed up, we need to
stop Parareal at much earlier iterations. This way, Parareal
can run in less wall-clock time than running the fine model
serially step-by-step. Below, we demonstrate that even after a
small number of iterations, the solution produced by Parareal
is of sufficient quality to allow our robot to succeed with dif-
ferent tasks. Note that, for the sake of simplicity, we assume
here that the number of controls N and the number of pro-
cessors used to parallelize in time are identical, but this can
easily be generalised.
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4 Coarsemodels

In this section, we introduce two coarse physics models for
Parareal - a learned coarse model and the analytical coarse
model from Agboh et al. [4].

4.1 Learned coarse model

As an alternative to the coarse physics model, we train a deep
neural network as a coarse model for Parareal for robotic
pushing.

4.1.1 Network architecture

The input to our neural network model is a state xn and a
single action un . The output is the change in state Δx which
is added to the input state to obtain the next state xn+1. We
use a feed-forward deep neural network (DNN) with 5 fully
connected layers. The first 4 contain 512, 256, 128 and 64
neurons, respectively, with ReLU activation function. The
output layer contains 24 neurons with linear activation func-
tions.

4.1.2 Dataset

Wecollect trainingdata using thephysics engineMujoco [37].
Each training sample is a tuple (xn,un, xn+1). It contains a
randomly1 sampled initial state, action, and next state. We
collect over 2 million such samples from the physics simu-
lator.

During robotic pushing, a physics model may need to pre-
dict the resulting state even for cases when there is no contact
between pusher and slider. We include both contact and no-
contact cases in the training data.

We train a single neural network to handle one pusher
with at least one and at most Ns objects being pushed (also
called sliders). While collecting data for a particular number
of sliders, we placed the unused sliders in distinct fixed posi-
tions outside the pushing workspace. These exact positions
must be passed to the neural network at test time if fewer
than Ns sliders are active. For example, if Ns = 4, to make a
prediction for a 3 slider scene, we place the last slider at the
same fixed position used during training.

4.1.3 Loss function

The standard loss function for training is the mean squared
error between the network’s prediction and the training data.
On its own, this leads to infeasible state predictions where
there is pusher-slider or slider-slider penetration. We resolve

1 We use rejection sampling to ensure that sampled states do not have
objects in penetration, i.e. fulfill the algebraic constraints of Eq. 2.

this by adding a no penetration loss term such that the final
loss function reads:

fl = WF ·
Ns∑

i=1

Ns∑

j=i+1

min(||pNN
i − pNN

j || − (ri + r j ), 0)
2

+ WF ·
Ns∑

i=1

min(||pP − pNN
i || − (rp + ri ), 0)

2

+ ||x f − xNN ||2. (5)

Here, WF is a constant weight, x f is the next state predicted
by the finemodel, xNN is the next state predicted by theDNN
model. pNN

i and pNN
j are the new positions of sliders i and

j predicted by the DNN model, respectively, and pP is the
position of the pusher. rp is the radius of the pusher, and ri , r j
represent the radius of sliders i and j , respectively. The first
line of Eq.5 penalizes slider-slider penetration, the second
line penalizes pusher-slider penetration, and the third line is
the standard mean squared error.

Finally, the network makes a single step prediction.
However, robotic manipulation typically needs a multi-step
prediction as a result of a control sequence. To do this, we
start from the initial state and apply the first action in the
sequence to get a resulting next state. Then, we use this next
state as a new input to the network together with the second
action in the sequence and so on. This way, we repeatedly
query the network with its previous predictions as the current
state input.

4.2 Analytical coarse model

Agboh et al. [4] have proposed a simple, kinematic coarse
physics model for pushing a single object. The model moves
the slider with the same linear velocity as the pusher as long
as there is contact between the two. We give details below
for completeness:

qS
n+1 = qS

n + [uxn, uy
n, ω]T · pc · Δt (6)

pc = dcontact
dcontact + dfree

, ω = Kω · ||un|| · sin θ

||rc|| (7)

q̇S
n+1 = {[uxn, uy

n, ω]T if pc > 0, q̇S
n otherwise} (8)

qP
n+1 = qP

n + un · Δt, q̇P
n+1 = un . (9)

Here, pc is the ratio of contact distance dcontact travelled
by the pusher when in contact with the slider and the total
pushing distance, rc is a vector from the contact point to the
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object’s center at the current state qS
n , θ is the angle between

the pushingdirection and the vector rc,ω is the coarse angular
velocity induced by the pusher on the slider. Kω is a positive
constant.

5 Planning and control

We use the predictive model based on Parareal described
above in a planning and control framework for pushing
an object on a table to a target location. We take an opti-
mization approach to solve this problem. Given the table
geometry, goal position, the current state of the pusher and
all sliders x0, and an initial candidate sequence of con-
trols {u0,u1, . . . ,uN−1}, the optimization procedure outputs
an optimal sequence {u∗

0,u
∗
1, . . . ,u

∗
N−1} according to some

defined cost.
The predictive model is used within this optimizer to roll-

out a sequence of controls to predict the states {x1, . . . , xN }.
These are then used to compute the cost associatedwith those
controls. The details of the exact trajectory optimizer can be
found in Agboh and Dogar [3]. The cost function we use
penalizes moving obstacle sliders and dropping objects from
the table but encourages getting the goal object into the goal
location.

We use the trajectory optimizer in a model-predictive
control (MPC) framework. Once we get an output con-
trol sequence from the optimizer, we do not execute the
whole sequence on the real-robot serially one after the other.
Instead, we execute only the first action, update x0 with the
observed state of the system, and repeat the optimization to
generate a new control sequence.We repeat this process until
the task is complete.

Such an optimization-based MPC approach to pushing
manipulation is frequently used to handle uncertainty and
improve success in the real-world [2,6,18,23]. Here, our
focus is to evaluate the performance of Parareal with learned
coarse model for planning and control.

6 Experiments and results

In our experiments, we investigate three key issues. First,
we investigate how fast Parareal converges to the fine solu-
tion for robotic pushing tasks with different coarse models.
Second, we investigate the physics prediction accuracy of
Parareal with respect to real-world pushing data. Finally, we
demonstrate that the Parareal physics model can be used to
complete real-robot manipulation tasks.

In Sect. 6.1 we provide preliminary information used
throughout the experiments. Section6.2 investigates con-
vergence of Parareal for two different coarse models—the
analytical coarse model for single object pushing and a

learned coarse model for both single and multiple object
pushing. In Sect. 6.3 we present results from real-robot
experiments. First, we compare the accuracy of Parareal
predictions against real-world pushing physics. Then, we
show several real-robot plan executions using Parareal with
a learned coarse physics model as predictive model.

6.1 Preliminaries

To generate physics-based robotic manipulation plans as fast
as possible, we run Mujoco at the largest possible time-step
(1ms) in all our experiments. Beyond this time-step the simu-
lator becomes unstable, leading to unrealistically large object
accelerations and breakdown of the simulator.We use the 4th
order Runge–Kutta integrator for Mujoco. All computations
run on a standard Laptop PC with an Intel(R) Core (TM)
i7-4712HQ CPU @2.3GHz with N = 4 cores. Our control
sequences consist of four or eight actions, each applied for a
control duration Δt = 1s.

The software version used to create training data and run
experiments was Mujoco 2.00 with DeepMind DM Control
bindings to Python 3.5 [34]. To develop, train and test the
coarse model the Keras API was used, which is built in to
TensorFlow 2.0. We used a learning rate of 5e-4 with 100
epochs and a batch size of 1024 to train the neural network
model.

Our real robot setup is shown in Fig. 1. We have a Robotiq
two-finger gripper holding the cylindrical pusher of radius
1.45 cm.We place markers on the pusher and sliders to sense
their full pose in the environment with an OptiTrack motion
capture system. Section3.1 states were defined to include
orientation of objects but, to keep experiments simple, we
use cylindrical objects such that only positions play a major
role. The slider radius used in all experiments is 5.12 cm.

6.2 Parareal convergence

Parareal produces the exact fine physics solution when the
number of iterations is equal to the number of timeslices
regardless of the coarse physics model [11,25]. The con-
vergence rate for scalar ordinary differential equations was
theoretically shown to be superlinear on bounded inter-
vals [11]. However, for the differential algebraic equations in
Eq.2 that describe the multi-contact dynamics problem, no
such theoretical result exists and we study the convergence
rate numerically.

We investigate through experiments how fast Parareal con-
verges using two coarse models—the analytic model for
single object pushing and the learned model for both sin-
gle object and multi-object pushing. At each iteration, we
compute a root mean square (RMS) error between Parareal’s
predictions and the fine model’s predictions of the corre-
sponding sequence of states. We compute the RMS error
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Analytical coarse model
single-step prediction

Learned coarse model
single-step prediction

Coarse prediction
Fine prediction
Pusher

Fig. 2 Root mean square error (in log scale) of Parareal along the full
trajectory for single object pushing using both a learned and an analyt-
ical coarse model (left). These results are for a control sequence with
4 actions where the average object displacement is 0.043 ± 0.033 m.
The error at iteration four is 0. The learned coarse model gives a bet-

ter Parareal convergence rate. Sample motions for the learned coarse
model (center) and the analytical coarse model (right). The learned
coarse model’s prediction is closer to the fine model prediction shown
in green

over only positions since we used cylindrical objects in all
experiments.

6.2.1 Single object pushing

We randomly sample an initial state for the pusher and slider.
We also randomly sample a control sequence where the
pusher contacts the slider at least once during execution.
Thereafter, we execute the control sequence starting from the
initial state using Parareal. For the sample state and control
sequence, we perform two runs, one using the learned model
and the other using the analytical model as coarse propagator
in Parareal.

We collect 100 state and control sequence samples. The
analytical model makes a single step prediction 227.1 times
faster than the finemodel on average,while the learnedmodel
is 228.4 times faster on average. For example, to predict a
4 s long trajectory, the fine model requires 1.22 s while one
iteration of Parareal requires only 0.31 s (for both models)
on average. We see that both coarse models are so fast that
our actual speedup in using Parareal is almost completely
governed by the number of iterations.

Furthermore, for these samples, we also compute theRMS
error between Parareal and the fine model run in serial. The
results are shown in Fig. 2 (left) for a control sequence with
4 actions where the average object displacement is 0.043 ±
0.033 m.

We see that the learned model leads to faster convergence
of Parareal than the analytical model for single object push-
ing. One reason for this could be that, in general, more
accurate coarse models lead to better convergence. The
single-step prediction of the learned model, shown in read
in Fig. 2 (right), is much closer to the fine prediction shown
in green than the analytical model shown in Fig. 2 (center).

6.2.2 Multi-object pushing

We randomly sample a valid initial state for the pusher and
multiple sliders. Then, similar to the single object pushing
case, we also sample a random control sequence that makes
contact with at least one slider. We then predict the corre-
sponding sequence of states using Parareal. However, for
multi-object pushing we use only the learned model as the
coarse physics model within Parareal. The analytical model
for single-object pushing would need significant modifica-
tions to work for the multi-object case. Again, we collect
100 state and control sequence samples and run Parareal for
each of them. Our results are shown in Fig. 3.

Figure3 (left) shows the RMS error per slider for each
Parareal iteration.While there are differences in the accuracy
of the predictions for different slides, all errors decrease and
Parareal converges at a reasonable pace.

These results are for a control sequence with 4 actions and
where average object displacement is 0.015±0.029m. Some
sample predictions are shown for a 4 slider environment in
Fig. 3 (center), and for a 2-slider environment in Fig. 3 (right).
In both scenes, the pusher moves forward making contact
with multiple sliders and Parareal is able to predict how the
state evolves.

We also investigate Parareal convergence for a longer con-
trol sequence of 8 actions. We do this for single object and
multi-object pushing where all other conditions are the same
as for the 4-action control sequence. Results can be found
in Fig. 4 (left) for multi-object pushing and Fig. 4 (right) for
single object pushing. The average object displacement for
multi-object pushing is 0.034±0.082m and for single object
pushing it is 0.046 ± 0.040 m. In general we find a similar
convergence trend for both learned and analytical models for
single and multi-object pushing.
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4-slider
Parareal prediction

2-slider
Parareal prediction

Fig. 3 Root mean square error (in log scale) along the full trajectory
per slider in a 4-slider pushing experiment (left) using only the learned
model. Two sample motions are illustrated (center and right) for multi-
object physics prediction. These results are for a control sequence with

4 actions where the average object displacement is 0.015 ± 0.029 m.
The error at iteration four is 0 except for accumulation of round-off
errors.We find that the learned model enables Parareal convergence for
the multi-object case

Fig. 4 Root mean square error (in log scale) along the full trajectory
per object for single object pushing (right) and multiple object pushing
(left) using only the learnedmodel. Herewe consider a control sequence
of 8 actions. The average object displacement for multi-object pushing

is 0.034± 0.082 m and for single object pushing it is 0.046± 0.040 m.
The error at iteration eight is 0.We find that the convergence of Parareal
appears similar even with a longer control sequence

Note that the shapes and sizes of the objects used are
known and in fixed order. Therefore the learned model natu-
rally does not generalize to new objects. However, it can still
be used to make rather coarse predictions for similar objects.

6.3 Real robot experiments

In this section we investigate the physics prediction accuracy
of Parareal with respect to real-world pushing physics. We
do this for the multi-object case. In addition, we show real-
world demonstrations for robotic manipulation where we use
Parareal for physics prediction.

6.3.1 Parareal prediction versus real-world physics

Our coarsemodel neural networkwas trainedusing simulated
data. Here, we demonstrate that Parareal using the trained
coarse model is also able to predict real-world states. We
randomly set an initial state in a real-world example by select-

ing positions for the pusher and sliders. This state is recorded
using our motion capture system. Next, we sample a control
sequence and let the real robot execute it. Again, we record
the corresponding sequence of states using motion capture.
Then, for the recorded initial state and control sequence pair,
we use Parareal to produce the corresponding sequence of
states and compare the result against the states measured for
the real robot with optical tracking.

Figure 5 shows the RMS error between Parareal’s predic-
tion at different iteration numbers and the real-world pushing
data. Vertical red bars indicate 95% confidence intervals.

Parareal’s real-world error decreases with increasing iter-
ation numbers and it is eventually twice as accurate as the
coarse model. These results indicate that Parareal’s predic-
tions with a learned coarse model are indeed close to the
real-world physics predictions. Figure 6 shows snapshots of
the experiments.
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Fig. 5 Root mean square error along the full trajectory for all 4 sliders
measured with respect to the real-world pushing data. The vertical bars
indicate a 95% confidence interval of the mean. The learned coarse
physics model at iteration 0 has the largest error and the fine model
provides the best prediction w.r.t the real-world pushing physics

6.3.2 Planning and control

We use the Parareal predictive model for robotic manipula-
tion to generate plans faster than using the finemodel directly.
In this section, we complete 3 real robot executions with
Parareal at 1 iteration.We use the learnedmodel as the coarse
model in all cases.

As can be seen in Fig. 7, the robot’s task is to push the
green slider into the target region marked with X . The robot
is allowed to make contact with other sliders. An execution
fails when a non-goal object is pushed into the goal region
or over the edge of the table.

The robot was successful for all 3 sample scenes. Some
sample plans for two scenes are shown in Fig. 7. The third
scene is shown in Fig. 1. We find that using Parareal with
a learned coarse model for physics predictions, a robot can
successfully complete complex real-world pushing manipu-
lation tasks involving multiple objects. At 1 Parareal itera-
tion, we complete the tasks about 4 times faster than directly
using the fine model.

In general, we trade-off physics prediction accuracy with
respect to time. An important question then is how many
iterations of Parareal to use for physics-based robotic manip-
ulation i.e. how accurate should the physics predictions be?
This depends on the manipulation task. For example, physics
prediction accuracy should be higher when a robot is tasked
with pushing an object on a narrow strip versus a large table
where the chances of failure are lower.

Figure5 shows coarse physics errors (iteration 0) w.r.t. the
real-world data of up to 5cm which is about the radius of a
slider. Therefore, we conclude that the coarse model alone
is not sufficient to complete the robotic manipulation task

Fig. 6 The resulting sequence of states for applying a random con-
trol sequence starting from some random initial state in the real-world.
Our goal is to assess the accuracy of the Parareal physics models with

respect to real-world physics. We collect 50 such samples. These are
some snapshots for 3 of such scenes—one per row with initial state on
the left and final state on the right
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Fig. 7 Robotic manipulation planning and control for 2 different scenes. The robot succeeds in all scenes using Parareal with a learned coarse
model for physics predictions. The third planning and control scene is in Fig. 1

considered here—an object can easily fall-off the table due
to an inaccurately planned action.

Furthermore, there is uncertainty during robotic pushing
in the real-world [41]. Agboh et al. [4] showed that physics
predictions with errors below real-world stochasticity (e.g.
position standard deviation at the end of a real-world push)
have similar planning success rates. Hence it is usually point-
less to have physics predictions as accurate as the fine model.

7 Summary

We demonstrate the promise of using Parareal to parallelize
the predictive model in a robot manipulation task involv-
ing multiple objects. As coarse model, we propose a neural
network, trained with a physics simulator. We show that
for single object pushing, Parareal converges faster with
the learned model than with a coarse physics-based model
we introduced in earlier work. Furthermore, we show that
Parareal with the learned model as coarse propagator can
successfully complete tasks that involve pushing multiple
objects. We also show that although a simulator is used to
provide training data, Parareal with a learned coarse model
can accurately predict experiments that involve pushing with
a real robot.
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