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Entropic Dynamic Time Warping Kernels for
Co-evolving Financial Time Series Analysis

Lu Bai, Lixin Cui, Lixiang Xu, Zhihong Zhang, Yue Wang, Edwin R. Hancock, IEEE Fellow

Abstract—Network representations are powerful tools to mod-
elling the dynamic time-varying financial complex systems con-
sisting of multiple co-evolving financial time series, e.g., stock
prices, etc. In this work, we develop a novel framework to
compute the kernel-based similarity measure between dynamic
time-varying financial networks. Specifically, we explore whether
the proposed kernel can be employed to understand the structural
evolution of the financial networks with time associated with
standard kernel machines. For a set of time-varying financial
networks with each vertex representing the individual time series
of a different stock and each edge between a pair of time series
representing the absolute value of their Pearson correlation, our
start point is to compute the commute time matrix associated
with the weighted adjacency matrix of the network structures,
where each element of the matrix can be seen as the enhanced
correlation value between pairwise stocks. For each network,
we show how the commute time matrix allows us to identify
a reliable set of dominant correlated time series as well as
an associated dominant probability distribution of the stock
belonging to this set. Furthermore, we represent each original
network as a discrete dominant Shannon entropy time series
computed from the dominant probability distribution. With the
dominant entropy time series for each pair of financial networks
to hand, we develop an Entropic Dynamic Time Warping Kernels
through the classical dynamic time warping framework, for
analyzing the financial time-varying networks. We show that the
proposed kernel bridges the gap between graph kernels and the
classical dynamic time warping framework for multiple financial
time series analysis. Experiments on time-varying networks
extracted through New York Stock Exchange (NYSE) database
demonstrate that the proposed method can effectively detect
abrupt changes in networks as time series structures and can
be used to characterize different stages in time-varying financial
network evolutions.

Index Terms—Time-varying Financial Networks, Graph En-
tropy, Graph Kernels, Time Series.

I. INTRODUCTION

There have been a surge of research interests to employ
machine learning algorithms for the analysis of dynamic
networks, due to their potential applications in many practical
systems, such as social systems, neural networks [1], uncertain
systems [2], financial market systems [3], etc. Among these
common systems, the financial market can be considered as a
complex time-varying system consisting of multiple interact-
ing financial components [4], e.g., the stock trade price and
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return rate. Due to the evolution of these financial variables
with time, multiple co-evolving financial time series can be
generated from the original data.

To analyze the time-varying financial market crisis or risk,
change point detection has played an important role to identify
abrupt changes in the time series properties [5]. Unfortunately,
detecting such crucial points remains challenging, since it is
difficult to detect the changes that cannot be easily observed
for a system consisting of complex interactions between its
constituent co-evolving time series [6]. One way to overcome
this problem is to represent multiple co-evolving financial
time series as a family of dynamic time-varying networks [7].
Specifically, for each dynamic network at time step ¢, each
vertex represents an individual time series of a stock (e.g.,
stock trading prices over a time window of past W time
steps ending at time step ¢) and each edge between a pair
of co-evolving financial time series indicates their correlation
(i.e., the absolute value of their Pearson correlation). Note
that, this is an effective way to represent multiple co-evolving
financial time series as dynamic networks and has been widely
employed in most real-world applications [6], [8], [9], [10],
[11]. Under this scenario, network-based approaches can be
directly employed for the structural analysis of financial risks.

In machine learning, graph kernels are effective approaches
to characterize graph structures in a high dimensional Hilbert
space for structure analysis [12], [13]. The aim of this paper is
to develop a new kernel approach for analyzing multiple co-
evolving financial time series that are represented as network
structures. Our work is based on representing each financial
network as discrete entropy time series as well as the clas-
sical dynamic time warping measure between the series. The
proposed approach bridges the gap between graph kernels and
the dynamic time warping framework for time series analysis.

A. Literature Review

Network representations have been widely employed for
the analysis of time-varying complex systems consisting of
multiple co-evolving time series [8], [9], [10], [6], [11], e.g.,
the stock market with trade price, climate data, and functional
magnetic resonance images. These approaches are based on
the idea that the structure of so-called time-varying complex
networks [14] inferred from the corresponding time series of
the system can represent physical interactions between system
entities that are richer than the original individual time series.
According to this approach, one of the main objectives is to
identify the extreme events which may considerably change
the network structure. For example, in time-varying financial
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Fig. 1. The architecture to compute the proposed kernel. Given a pair of time-varying financial networks, for each of them we (1) compute
the commute time (CT) matrix, (2) identify the set of dominant correlated time series represented by vertices through CT, (3) compute the
dominant probability distribution and represent each network as dominant entropy time series, and finally (4) compute the kernel between

the dominant entropy time series of two networks.

networks, extreme events corresponding to the financial in-
stability of the stock are of particularly interest [6] and can
be inferred by detecting the anomalies in the corresponding
networks [11]. The network structure before and after an
extreme event should be significantly different.

Broadly speaking, most existing approaches aim to charac-
terize networks based on two principal approaches, namely a)
derive network characteristics using connectivity structures, or
statistics capturing connectivity structures and b) characterize
the networks using statistical physics. Proponents of the for-
mer approach focus on capturing network substructures using
communities, hubs and clusters [15], [16], [17]. On the other
hand, proponents of the latter approach describe the network
structures based on the partition function to characterize the
network structures, and the corresponding temperature, energy,
and entropy measures can be calculated in terms of this func-
tion [18], [19], [20], [21], [11]. Unfortunately, both approaches
tend to approximate structural relationships of networks in a
low dimensional pattern space, hence leading to substantial
loss of information. This shortcoming affects the effectiveness
of existing network methods for time series analysis. One
principal approach to address this drawback is to adopt graph
kernels. In machine learning, graph kernels are powerful tools
for analyzing graph-based structural data. The main advantage
of adopting graph kernels is that they provide an effective way
of mapping graph structures into a high dimensional Hilbert
space and thus better encapsulate the structural information.

Most existing state-of-the-art graph kernels fall into the
scenario of R-convolution kernels, that are originally proposed
by Haussler in 1999 [22]. The main idea underpinning R-
convolution kernels is based on decomposing graphs into
substructures and measuring the similarity between each pair
of input graphs in terms of their isomorphic substructures,
e.g., graph kernels based on comparing pairs of isomorphic
a) walks, b) subgraphs, and c) subtrees. Representative R-
convolution graph kernels based on substructures include the
Weisfeiler-Lehman subtree kernel [23], the tree-based contin-
uous attributed kernel [13], the aligned subtree kernel [24],
the Jensen-Tsallis g-difference graph kernel [25], the optima
assignment Weisfeiler-Lehman kernel [26], the core variants-
based shortest path kernel [27], the random walk graph ker-
nel [28], etc. Unfortunately, directly employing these graph

kernels to analyze time-varying network structures inferred
from the original time series tends to be difficult. Because
such network structures in most real-world applications are by
nature complete weighted graphs, i.e., each vertex is adjacent
to all remaining vertices, whereas the edge weights between
the vertices may be rather different. It is difficult to decompose
such a graph into substructures. This in turn influences the
effectiveness of most existing graph kernels.

One way to address the problem is to discard the less
interacted information between a pair of vertices and adopt the
sparser versions of the original time-varying networks, i.e., the
sparser networks only preserve the original edges indicating
pairs of more interacted vertices. Under this scenario, Ye et
al. [11], Silva et al. [6] and Wang et al. [29] have taken the
widely adopted threshold-based methods and preserved the
edges whose weights fall into the larger 10% of correlation-
based weights. Although this strategy provides a way of
directly employing existing graph kernels to accommodate
time-varying networks for multiple co-evolving time series
analysis, these sparse structures rely on the selection of the
threshold. Thus, it is not clear how to preliminarily select
a suitable threshold. Moreover, these sparser structures also
lead to significant information loss, because many weighted
edges are discarded. To further reveal this weakness, assume
a sample financial network exhibited by Figure 2, where each
vertex represents a stock and each edge corresponds to the
correlation value between a pair of stocks. Clearly, one can
only preserve 2 edges (i.e., 10% of the edges) through the
above threshold-based strategy. In summary, analyzing time-
varying networks associated with state-of-the-art graph kernels
remains challenges.

B. Contributions

The objective of this paper is to address the aforementioned
problems and develop a new kernel-based approach for ana-
lyzing multiple co-evolving financial time series. Specifical-
ly, we propose an Entropic Dynamic Time Warping Kernel
(EDTWK) for time-varying financial networks, with each
vertex representing the individual time series of a different
stock (e.g., stock trading price) and each edge between a pair
of co-evolving financial time series representing the absolute
value of their Pearson correlation. One key innovation of
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the proposed EDTWK kernel is the automatic identification
of the dominant correlated vertex subset for each of the
financial networks, i.e., the proposed kernel incorporates the
process of identifying the most mutually correlated stocks
specified by the vertex subset. In contrast, the aforementioned
methods through the threshold-based strategy cannot guarantee
that the preserved vertices correspond to a more mutually
correlated vertex subset. This is because these methods tend to
individually select each edge with a higher correlation weight
and many edges between the preserved vertices may not
exist. Based on financial risk theory [30], the financial crises
are usually caused by a set of the most mutually correlated
stocks while having less uncertainty. As a result, the proposed
EDTWK kernel not only overcomes the shortcoming of heuris-
tically selecting the threshold value that arises in the threshold-
based approach for time-varying network analysis [11], [6],
but also captures more reliable information concerning the
evolution of the financial system to hand. The computational
framework of the proposed EDTWK kernel is shown in Fig.1.
Specifically, the main contributions of this work are threefold.

First, for a family of time-varying financial networks, our
start point is to compute the commute time matrices associated
with their original weighted adjacency matrices, i.e., the abso-
lute Pearson correlation based matrices. The reason of using
the commute time matrix as the representation of each network
structure is that each element of this matrix represents the
average path length between a pair of vertices over all possible
paths residing on the original weighted edges [31]. Thus, the
commute time can be seen as the enhanced absolute Pearson
correlation value between the time series of pairwise stocks,
i.e., it integrates the effectiveness of all possible correlation-
based paths between a pair of vertices of the original network.
Moreover, the commute time is robust under the perturbation
of the network structure (e.g., the changes of edges or path-
s [31]). As a result, the commute time matrix can provide a
more stable representation for the financial network structure
that may accumulate a lot of noises over time. In summary,
the commute time matrix offers an elegant way to probe
the original structure of the time-varying financial networks
(see details in Section II-A). More specifically, the proposed
approach associated with the commute time matrix will be
more effective than that associated with the original absolute
Pearson correlation matrix (see details in Section IV-B and
Section IV-C).

Second, with the commute time matrix of each time-varying
financial network to hand, we employ this matrix to auto-
matically identify a set of dominant correlated vertices in the
network structure (i.e., a set of the most mutually correlated
time series represented by the set of vertices), by maximizing a
quadratic programming problem associated with the commute
time matrix. Specifically, we compute a dominant probability
distribution of these time series belonging to the most mutually
correlated set. We show that this strategy not only overcomes
the shortcoming of existing threshold-based approaches [11],
[6] that roughly select pairs of relatively more correlated time
series, but also encapsulates reliable information in terms of
the evolution of the financial system to hand. Furthermore,
we transform each original time-varying financial network

into a discrete dominant entropy time series associated with
the dominant probability distribution, i.e., we characterize the
uncertainty of each network structure within the financial
system to hand in terms of the classical Shannon entropy
associated with the probability distribution. With each pair
of entropy time series to hand, we compute the EDTWK
kernel through the classical dynamic time warping framework.
We show that the proposed kernel not only accommodates
the complete weighted graphs through the commute time
matrix, but also bridges the gap between graph kernels and
the classical dynamic time warping framework for time series
analysis (see details in Section III-B).

Third, we perform the proposed kernel on time-varying
financial networks extracted from New York Stock Exchange
(NYSE) data. Experimental results demonstrate that the pro-
posed method can preserve the ordinal arrangement of the
time-varying financial networks, and thus well understand
the structural evolution of the networks with time, i.e., the
proposed kernel can effectively detect abrupt changes in net-
works as time series structures and can be used to characterize
different stages in time-varying financial network evolutions.

C. Paper Outline

This paper is organized as follows. Section II reviews the
preliminary concepts. Section III defines the EDTWK kernel
for time series analysis. Section IV provides the empirical
evaluation results. Section V provides the conclusion and
future work of this paper.

II. PRELIMINARY CONCEPTS

In this section, we briefly review preliminary concepts
which will be utilized in this paper. We first review the concept
of the commute time. Furthermore, we review the concept of
a dynamic time warping framework inspired kernel.

A. Commute Time on Graphs

As we have stated, one main objective of this work is to
automatically identify a set of the most mutually correlated
stocks in terms of their time series. To this end, we require
a correlation matrix as the weighted vertex adjacency matrix
of the corresponding time-varying financial network to rep-
resent the physical interactions between multiple co-evolving
time series. Broadly speaking, most state-of-the-art approaches
adopt the aforementioned absolute Pearson correlation based
matrix as the network representation [11], [29], [6]. In order
to capture a reliable and robust mutually correlated stock set,
in this work we propose to utilize the commute time matrix
associated with the original correlation matrix as the network
representation.

The main reasons of employing the commute time matrix
are threefold. First, the commute time averages the time taken
for a random walk to travel between a pair of vertices over
all connecting paths residing on the original correlation based
weighted adjacency matrix. Thus, the commute time can be
considered as the enhanced correlation matrix. Second, since
the commute time amplifies the correlation based affinity
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between a pair of vertices, it is robust under the perturbation
of the graph structure, e.g., the changes of edges or paths.
Thus, the commute time based enhanced correlation matrix
is robust and provides a stable correlation representation for
the time-varying financial network that may accumulate a lot
of noises over time. Third, the commute time is calculated
through the Laplacian matrix of the original correlation based
weighted adjacency matrix. In Section III, we will show how
the commute time matrix can be employed to identify a set
of the most mutually correlation stocks specified by a set of
dominant vertices, associated with a quadratic problem.

In this subsection, we briefly introduce the concept of the
commute time. Assume G(V, E, A) is a complete weighted
graph, where E is the edge set, V is the vertex set, and
each vertex of V' is connected by all the remaining vertices.
Let A be the associated weighted adjacency matrix of G. If
A(u,v) = A(v,u) > 0, we say that the vertices v € V' and
uw € V are adjacent. Let D denote the degree matrix of G. D
is a diagonal matrix and each of its diagonal element D(u, )
corresponds to the sum of the corresponding row or column of
A,ie., D(u,u) =), A(u,v). Then, the graph Laplacian ma-
trix L is computed by L. = D — A. The spectral decomposition
of L is defined as L = ®A®T, where A = diag(\1, A2, ..., Ap)
is a |V| x |V| diagonal matrix with ascending eigenvalues as
elements, ie., 0 = A1 < Ao < ... < Ay, and @ is a [V] x |V]
matrix ® = (¢1|¢p2|...|¢v|) with the corresponding ordered
eigenvectors as columns. For G, the hitting time H (u,v)
between each pair of vertices v and w is computed as the
expected number of steps taken by a classical random walk
commencing from u and ending at v. Likewise, the commute
time C(u, v) is defined as the expected number of steps of the
random walk commencing from » and ending at v, and then
coming back to u again, i.e., C(u,v) = H(u,v) + H(v,u).
Thus, the commute time C'(u,v) can be calculated through the
unnormalized Laplacian eigenvalues and eigenvectors [31] as

V]

Clu,v) = 3 D) Y jj(@-(u) — )2 ()

ueVv j=2

Remarks: The commute time has been proven to be a
powerful tool to extract rich characteristics from complete
weighted graphs. In previous works, Bai et al. [32] have
employed the commute time matrix to develop a new quantum-
inspired kernel for dynamic financial network analysis. Specif-
ically, for the original complete weighted adjacency matrix
of each financial network, they commence by abstracting
the minimum or maximum spanning tree associated with the
commute time matrix. For a pair of complete weighted graphs
to be compared, the resulting quantum kernel is defined by
measuring the similarity between their associated commute
time spanning tree structures in terms of a new developed
evolving model of discrete-time quantum walks. This approach
significantly reduces the problem of information loss that
arises in previously mentioned threshold-based methods for
financial network analysis [11], [29], [6]. This is because the
weights of the preserved edges on spanning tree structures
correspond to the commute time values between corresponding
pairs of vertices, and the commute time values integrates the

effectiveness over all possible paths residing on the original
weighted edges. However, similar to these threshold-based
approaches [11], [29], [6], the quantum kernel [32] cannot
guarantee that the preserved vertices correspond to a more
mutually correlated vertex subset, since the spanning tree is
a very sparse structure (only n — 1 edges preserved for the
network with n vertices) and many edges between the vertices
do not exist. In other words, this kernel approach cannot
reflect the most mutually correlated time series specified by the
vertices, and will influence the effectiveness. To overcome this
problem, in Section III, we will develop a new kernel-based
approach for financial network analysis that can integrate the
process of adaptively identifying the most mutually correlated
financial time series of stocks associated with the commute
time matrix.

B. The Dynamic Time Warping Framework

We review the global alignment kernel that is defined
through the classical dynamic time warping framework [33].
Assume T is a set of discrete time series that take values
in a space AX'. For each pair of discrete time series P =
(p1,-.-,pm) € Tand Q = (¢1,...,¢n) € T with lengths
m and n respectively, the alignment 7 between P and Q is
computed as a pair of increasing integral vectors (7, m,) of
length [ < m +n — 1, where

l=m(l) <---<m(l)=m

and
l=my(1) <--- <me(l) = n

such that (mp,m,) is assumed to possess unitary increments
and no simultaneous repetitions. For P and Q, each of their
elements can be an observation vector with fixed dimensions
at a corresponding time step. For any index ¢ that is between
landl—1 (i.e,, 1 <7 <[ —1), the following condition holds
for the increment vector of m = (mp, M), i.€.,

) o

(2 <[(2) ().

(i + 1) — mg(4)

Within the framework of the classical dynamic time warp-
ing [33], the coordinates 7, and 7, of the alignment 7 define
the warping function. Assume .A(m,n) corresponds to a set
of all possible alignments between P and Q, Cuturi [33] has
proposed a dynamic time warping inspired kernel, namely
the Global Alignment Kernel, by considering all the possible
alignments in A(m,n). The kernel is defined as

kaa(P,Q) = >

TeA(m,n)

e Pralm, (3)

where Dp q(7) is the alignment cost given by

||

Dp q(m) = Z@(pwp(i),qnq(i)% “
i=1

and is defined through a local divergence ¢ that quantifies
the discrepancy between each pair of elements p; € P and
¢; € Q. In general, ¢ is defined as the squared Euclidean
distance [33]. Note that, the kernel kg measures the quality
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of both the optimal alignment and all other alignments
m € A(m,n), thus it is positive definite. Moreover,
kca provides richer statistical measures of similarity by
encapsulating the overall spectrum of the alignment costs
{Dp,q(n),m € A(m,n)}.

Remarks: The dynamic time warping based global alignment
kernel kg has been proven to be a powerful tool of analyzing
vectorial time series [33]. To extend the effective kernel kga
for time series analysis domain into the graph kernel domain,
Bai et al. [34] have developed a family of nested graph kernels
through kga. Specifically, they commenced by decomposing
each graph structure into a family of K '-layer expansion sub-
graphs rooted at the centroid vertex. The nested depth-based
complexity trace of each graph is computed by measuring
the entropy on the family of K-layer expansion subgraphs.
Since the parameter K varies from 1 to K, this complexity
trace naturally forms a one-dimensional sequence-based char-
acterization vector, that is similar to the one-dimensional time
series vector. As a result, for a pair of graphs the resulting
dynamic time warping based kernel can be directly computed
by measuring the global alignment kernel kga between their
complexity traces. Although, they demonstrated that the nested
graph kernels outperform state-of-the-art graph kernels [28],
[35], [36] on graph classification tasks. Unfortunately, as we
have stated, the financial networks are by nature complete
weighted graphs and it is difficult to decompose such network
structures into the required expansion subgraphs rooted at the
centroid vertex. As a result, directly preforming the dynamic
time warping inspired kernel kga for time-varying financial
networks tends to be elusive and remains challenges.

III. THE KERNEL FOR TIME-VARYING NETWORKS

In this section, we propose a kernel-based similarity mea-
sure for time-varying networks representing multiple co-
evolving financial time series. Specifically, we commence by
identifying a set of the most mutually correlated time series
through maximizing a quadratic programming method on the
commute time matrix. We exhibit how this allows us to
compute a probability distribution for the time series belonging
to the dominant set. Finally, we characterize each time-varying
network as a discrete dominant entropy time series through the
Shannon entropy associated with the probability distribution,
and in turn develop a new kernel-based approach in terms of
the classical dynamic time warping framework [33].

A. Identifying Dominant Correlated Time Series

We identify a set of the most mutually correlated time
series for each time-varying financial network. Let G =
{G1,...,G¢,...,Gp} be a family of time-varying finan-
cial networks extracted from a complex system S, and
G(V;, E;, A;) be the sample network extracted from the
system at time step ¢ based on the absolute Pearson correlation
measure stated earlier (i.e., the corresponding statement in
Section I). Note that, in this work we assume that the time-
varying network structures have fixed numbers of vertices,
i.e., these networks have the same vertex set V;, whereas the

0.15

0.25 020

OS =0

Fig. 2. The subset of financial
vertices{v1, v2,vs} is dominant.

time series specified by

edge sets F, are quite different with time ¢. In real-world
application, this a very common situation and usually appears
where the time-varying networks are extracted from complex
systems with a specified set of co-evolving time series, i.e.,
the system S has a fixing number of components co-evolving
with time.

For each network G, we first compute its commute time
matrix as C,; associated with its original absolute Pearson cor-
relation based adjacency matrix. As we have stated previously,
the commute time not only reflects the integrated effectiveness
of all possible weighted paths between a pair of vertices of
the original network structure, but is also robust with the
perturbation of the network structure (i.e., the changes of edge
weight on the original weighted adjacency matrix). As a result,
the commute time matrix C; can be seen as a reliable enhanced
absolute Pearson correlation matrix for G;. In other words,
the commute time matrix provides a stable representation to
further characterize the dynamic network G; associated with
time-varying correlations between vertices.

With the commute time matrix C; of each network G to
hand, we automatically identify a set of dominant correlated
time series through the dominant set problem proposed by
Pavan et al. [37]. The definition of the dominant set simul-
taneously emphasizes internal homogeneity and together with
external inhomogeneity, and can be employed as a general
definition of a cluster. An instance is exhibited in Fig.2.
Here, assume a time-varying financial network consisting of 5
vertices denoted as vy, ve, v3, v4 and vs. Each weight of this
network represents the correlation between pairwise vertices.
For this instance, the subset DS = {v;,vq,v3} forms the
dominant set, i.e., the internal set. This is because the sum
of the edge weights between the internal set {vq,vq,vs} is
larger than the sum of those between the internal and external
sets. Here, the edges between the internal set {vq, vy, v3} are
marked as red color. As a result, the time series specified by
DS can seen as the set of the most mutually correlated time
series. To automatically identify the most mutually correlated
time series from G4, we can solve the corresponding dominant
set problem by maximizing a quadratic program problem [37].
More specifically, associated with C;, we compute the solution
a of the following quadratic program problem [37]

1
argmax §aTCta )

subject to a € RVt q; > 0 and Z‘Zg a; = 1. The solution
vector a of Eq.(5) is an |V;|-dimensional vector. When a; > 0,
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the i-th time series represented by the vertex v; € V; belongs
to the most correlated time series subset of ;. Thus, the
number of the selected time series n is specified by counting
the number of all positive components of a. Based on the
definition of Pavan and Pelillo [37], we can solve the local
maximum of f(a) by

(Cialk));
a(k)TCia(k)
where a; (k) corresponds to the i-th time series represented by
v; € V; at iteration k. Based on the element value of a, all

time series represented by the vertices vy, ..., v}y, fall into
two disjoint subsets, i.e.,

Sl(a):{vith | ai>0}

and
SQ(CL) = {’Uj eV ‘ a; = 0}

Clearly, the set S; with nonzero values indicates the set
of dominant correlated time series, i.e., the set of the most
mutually correlated time series. Finally, note that, the solution
vector a also corresponds to a probability distribution of
the time series belonging to the dominant set S;, i.e., each
element a; corresponds to the probability of the i-th time series
belonging to S;.

B. The Entropic Dynamic Time Warping Kernel

In this subsection, we develop a new kernel method for an-
alyzing time-varying financial networks based on the classical
dynamic time warping framework. To this end, we commence
by representing the complex networks as discrete dominant
entropy time series using the Shannon entropy through the
most mutually correlated time series set introduced in Section
III-A. The reason of characterizing the network using the
entropy measure is that the Shannon entropy is an effective
way of measuring the uncertainty in the corresponding finan-
cial system, associated with the probability distribution of the
stocks belonging to the correlated set. Specifically, for each
sample network G¢(V;, E:) from G at time step ¢, we first
compute the associated commute time matrix C;. Moreover, by
solving the quadratic program problem [37] on the commute
time matrix C;, we identify the set of dominant correlated time
series S and compute the associated probability distribution a
of the time series belonging to S;. Based on Section III-A, the
remaining non-dominant correlated time series are included in
the set So. With the probability distribution a to hand, based
on [38] we compute a dominant Shannon entropy for G as

[Vil
Hs(a) = —Zailogai, (7)
i=1

where a; is the probability of the i-th time series represented
by vertex v; € V;. Eq.(7) indicates that the dominant Shannon
entropy is computed by the sum of elements —a; log a;, thus
each element —a;loga; can be seen as a dominant sub-
entropy Hs(v;) of the i-th time series represented by v;, i.e.,

Hg(v;) = —a;loga;. 8)

0.70 0.15

o ' 0

0.60 0125 Vi V2o V3 Vg Vs

0.24 040 036 0 0
0.90 0.25_ 025 050

[ R0

a) A Sample Dynamic Network G, at
Time Step ¢ (The Commute Time Matrix)

b) The Probability Distribution of the Vertices
Belonging to the Dominant Set

V,ova vz vy Vs Vi V2 V3 Vg Vs
E., 034 10.14 |0 035 0

E= 034 037 036 0 0
s= 1 E, 023 [036 |030 0 o0
E, 034 1036 1036 0 0

¢) The Dominant Entropy Characteristics yin
Vector E, for G,

d) The Dominant Entropy Time
Series S, for G,

varying
direction

Fig. 3. Instance of Characterizing the Time-varying Networks as the
Dominant Entropy Time Series. The procedure of characterizing each
time-varying network Gy € G at time ¢ consists of three steps.
1) The first step computes probability distribution of the dominant
correlated time series over the commute time matrix representation
based on Eq.(6). These dominant correlated time series are marked
by the red color. 2) The second step computes the dominant entropy
characteristics vector E; of G+ based on Eq.(9). Here, each element
of the vector indicates the dominant sub-entropy of each vertex
associated with its probability belonging to the dominant correlated
time series, based on Eq.(8). 3) Assume the value of the time interval
w is 3, the third step computes the resulting dominant entropy time
series of G; as S;, where each rows corresponds to the dominant
entropy characteristics vector of the network between time ¢t —2 to ¢
(i.e., the dominant entropy characteristics vectors of the recent 3 time
steps ending to time step t). Here, each column of S; corresponds to
the entropy time series of the stock represented by the corresponding
vertex. For instance the column marked by green color corresponds
to the series of the stock represented by vertex vz, and the red arrow
indicates the time-varying direction.

Note that, if a; = 0, we say that the ¢-th time series does
not belong to S; and we set —a;loga; = 0. With the sub-
entropies of all vertices to hand, we compute the dominant
entropy characteristics for each network G at time step ¢ as

Et:{ﬁs(vl),...7ﬁs(vi),...,ﬁg(vv)}T, (9)
where

a; >0, e, v; € S
a; =0, ie., v; €Sy

s (1) —{ Jilosai (10)
07

Eq.(10) indicates that we only compute the sub-entropies for

the dominant correlated time series in S;, and do not consider

the non-dominant correlated time series in Ss.

With the dominant entropy characteristics to hand, we
further characterize each network G as entropy time series.
To this end, we move a time interval of w time steps over all
the time-varying networks of the financial system to construct
a time-varying dominant entropy time series for each network
G} at time step t. In this work, we set the value of w as 28.
Specifically, for each network G, we compute its dominant
entropy time series S; associated with its time interval s as

St - {Et7w+1‘Et7w+2|~~~|Es|~'~|Et}7 (11)


bailu
高亮

bailu
高亮


JOURNAL OF KIgX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

where s € {t —w+ 1,t —w + 2,...,t}, and each column
E, of &, is the entropy characteristics vector of each network
Gs € G at time step s and is defined by Eq.(9). Clearly,
the dominant entropy time series S; of the network G
encapsulates the w time-varying entropy characteristics vectors
of the networks G¢_,,41 at time t — w + 1 to Gy at time {.
An instance of characterizing the time-varying network G; at
time step ¢ is exhibited in Figure 3

Assume G, € G and G, € G are a pair of time-
varying networks at time steps p and q respectively, and their
associated entropy time series are

Sp = {Ep7w+1|Ep7w+2‘ s |Ep}

and
Sq = {Eq—w+1|Eg—w+2| .- [Eq}.

We define the Entropic Dynamic Warping Kernel (EDTWK)
between G, and G, as

kpcete(Gp, Gy) = kaa(Sp, Sq)

= Z e*Dpvq(ﬂ')’

TeA(w,w)

12)

where kga is the dynamic time warping inspired Global
Alignment Kernel (GAK) defined in Eq.(3), 7 is the warping
alignment between the entropy time series of G, and G,
A(w,w) is all possible alignments and Dy, () refers to the
alignment cost obtained via Eq.(4).
Remarks: Although the proposed EDTWK kernel is related
to the general principles of the GAK kernel. However, the
proposed kernel has two distinct theoretical differences. First,
the original GAK kernel is only designed for vectorial time
series and cannot capture intrinsic relationships between time
series. In contrast, our proposed kernel is explicitly designed
for time-varying financial networks that reflect correlations
between pairs of time series. Second, only the proposed
EDTWK kernel can identify the dominant correlated time
series through the analysis over the commute time matrix.
Based on financial risk theory [30], financial crises are usually
caused by a set of the most correlated stock time series having
less uncertainties. Therefore, only the proposed kernel is able
to capture more reliable financial information.

In summary, the proposed kernel provides an effective way
of incorporating the structural correlations between time series
into the process of multiple co-evolving time series analysis.

C. Time Complexity

For a pair of networks, the proposed kernel kpcTg requires
time complexity O(n3 + w?). The reasons are as follows.
Assume a family of time-varying networks and each network
has n vertices. Computing the dominant commute time entropy
kernel k between a pair of networks associated with a time
window of w steps requires time complexity O(n® + w?).
Because computing the required entropy time series is based
on the computation of the commute time. This computation
relies on the spectral decomposition of the Laplician matrix
and thus requires time complexity O(n?). Moreover, comput-
ing all possible warping alignments over w time steps requires

time complexity O(w?). Thus, the whole time complexity of
the proposed kernel & is O(n3 + w?).

D. Related Works to The Proposed Kernel

Comparing to some state-of-the-art approaches, the pro-
posed EDTWK kernel has a number of advantages.

First, unlike the dynamic time warping inspired GAK
kernel [33], the proposed kernel is developed for time-varying
complex networks. Since the network encapsulates rich co-
relationship between pairwise co-evolving time series, the
proposed kernel can reflect richer correlated information than
the classical dynamic time warping framework for original
vectorial time series.

Second, the proposed kernel is based on the new dominant
entropy time series that is computed through a quadratic
programming method on the commute matrix to identify
the most correlated time series subset. As a result, unlike
the existing threshold-based approaches [6], [11], [29] that
roughly select pairs of relatively more correlated time series,
the proposed kernel can reflect reliable dominant correlated
information between time series through the dominant entropy
time series. Furthermore, the commute time encapsulates the
integrated effectiveness of all possible paths between a pair
of vertices. As a result, the dominant entropy time series
computed through the commute time matrix can potentially
encapsulate the weighted information over all edges, and
overcome the shortcoming of information loss arising in the
threshold-based approaches.

Third, as we have stated, the time-varying networks are
usually complete weighted networks. Most existing graph k-
ernels are designed based on the concept of R-convolution [22]
and cannot directly accommodate such network structures
and need to transform them into sparse structures [6]. Un-
fortunately, these sparse structures discard many weighted
edges and certainly lead to information loss. By contrast,
the commute time is computed through the Laplacian matrix
that can directly accommodate complete weighted graphs.
Thus, the proposed kernel encapsulates the whole structural
information residing on all weighted edges. On the other
hand, the discrete-time quantum walk kernel [32] can also
accommodate complete weighted graphs through the commute
time and has been demonstrated effective for time-varying
financial network analysis. However, similar to the aforemen-
tioned approaches, this quantum kernel also needs to extract
the minimum spanning trees over the commute time matrix
as the sparser network structure. Since the number of the
preserved edges is always equivalent to that of the vertices,
this process cannot adaptively determine the most correlated
time series. Thus, unlike the proposed kernel, this quantum
kernel cannot reflect reliable characteristics of the financial
network structures.

Fourth, Cuturill [33] has shown that the dynamic time
warping inspired GAK kernel is both faster and more efficient
than other kernel approaches based on the dynamic time
warping framework. Since the proposed kernel is based on
measuring the GAK kernel between the entropic time series
for a pair of time-varying networks, the proposed kernel can
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Fig. 4. Evaluation of Dominant Shannon Entropy.

naturally inherit these advantages of the GAK kernel. On
the other hand, with the entropic time series to hand, any
other state-of-the-art kernel approach designed for vectorial
time series can be directly employed for the analysis of time-
varying networks, e.g., the time series cluster kernel [39].
However, it has been shown that the cluster kernel is associated
with a lot of parameters. Selecting a set of suitable parameters
usually tends to be a complicated problem if there is no priori
knowledge. By contrast, the associated GAK kernel of our
approach only needs little parameters and is more applicable
for time-varying network analysis.

In summary, the proposed kernel bridges the gap between
state-of-the-art graph kernels and the classical dynamic time
warping framework for time-varying networks, providing a
new alternative way for analyzing time series more effectively.

IV. EXPERIMENTS OF TIME SERIES ANALYSIS

We empirically validate the effectiveness of the proposed
kernel approach on a family of time-varying financial net-
works extracted from the New York Stock Exchange (NYSE)
dataset [6], [11]. The NYSE dataset consists of 347 stocks
associated with their daily closing prices over 6004 transaction
days starting from January 1986 to February 2011. These
prices are all collected from the public financial dataset on
Yahoo (http://finance.yahoo.com). To abstract the time-varying
financial network structures, we employ a time window W of
fixed size (i.e., 28 days) that has been stated in Section I. We
slide this fixed sized window along time to derive a sequence
from the 29th trading day to the 6004th trading day, where

each temporal time window encapsulates a set of 347 co-
evolving daily stock price time series of the 347 stocks over
28 days. We characterize the trades between various stocks as
a network structure with each stock as the vertex. Specifically,
for each time window we calculate the absolute value of the
Pearson correlation between the time series for pairwise stocks
as their edge weight. This in turn generates a family of time-
varying financial network with a fixed number of 347 vertices
and varying edge weights for the 5976 trading days. The aim
of this study is to investigate whether the proposed kernel
approach can be used to detect fluctuations in trading network
structure due to global political or economic events.

A. Evaluation of The Entropy Time Series

We commence by exploring whether the dominant entropy
time series can significantly characterize the time-varying
financial networks, since these new developed time series
play an important role for the proposed kernel. Specially,
we investigate the evolutionary behavior of the NYSE stock
market through calculating the dominant Shannon entropy on
the time-varying financial networks at each time step, i.e., we
investigate how the sum of the dominant sub-entropies of the
network varies with increasing time ¢. We exhibit the results in
Fig.4, where the x-axis corresponds to the date (time) and the
y-axis corresponds to the dominant Shannon entropy values.
Fig.4 shows that the dominant Shannon entropy is sensitive
to different financial crises (i.e., Black Monday [40], Dot-
com Bubble Burst [41], Bankrupt of New Centry Financial,
Lehman Crisis in Sub-prime Crisis Period [42], Enron Crisis,
and 1997 Asian Financial Crisis), and the entropy values
usually lead to a rapid decrease even many days before the
significant financial event. In other words, each significant
fluctuation of the dominant Shannon entropy values corre-
sponds to a financial crisis, and provides early warning before
the crisis occurs. The reason for the effectiveness is that the fi-
nancial networks are constructed by computing the correlation
between pairwise stock time series and the dominant Shannon
entropy is computed based on the dominant correlated time
series subset that is identified through the commute time
matrix. Based on the financial risk theory stated by [30], the
financial crisis is usually caused by a set of the most correlated
stocks having less uncertainties. Thus, the dominant Shannon
entropy, that characterizes the the dominant correlated stocks,
tends to significantly drop down before a financial crisis. The
experiments demonstrates that the proposed dominant entropy
time series through the commute time can capture significant
financial information, satisfying financial theory.

Note that, although Fig.4 indicates that the dominant Shan-
non entropy is effective for identifying the extreme financial
events in the evolution of the time-varying fina