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Evidence for age-related changes in innate and adaptive immune responses
is increasing in wild populations. Such changes have been linked to fitness,
and knowledge of the factors driving immune response variation is impor-
tant for understanding the evolution of immunity. Age-related changes in
immune profiles may be owing to factors such as immune system develop-
ment, sex-specific behaviour and responses to environmental conditions.
Social environments may also contribute to variation in immunological
responses, for example, through transmission of pathogens and stress aris-
ing from resource and mate competition. Yet, the impact of the social
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environment on age-related changes in immune cell profiles is currently
understudied in the wild. Here, we tested the relationship between leuko-
cyte cell composition (proportion of neutrophils and lymphocytes [innate

and adaptive immunity, respectively] that were lymphocytes) and age,
sex and group size in a wild population of European badgers
(Meles meles). We found that the proportion of lymphocytes in early life
was greater in males in smaller groups compared to larger groups, but
with a faster age-related decline in smaller groups. By contrast, the pro-
portion of lymphocytes in females was not significantly related to age or
group size. Our results provide evidence of sex-specific age-related changes
in immune cell profiles in a wild mammal, which are influenced by the
social environment.

lymphocyte
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The immune system involves multiple mechanisms that protect the host against
pathogens [1]. The functioning of the immune system is related to sex [2,3],
changes throughout life [4-9] and has been linked to mortality in the wild
[9]. Investigation of how such factors drive variation in immune responses is
important for understanding the evolution of immunity.

The immune system principally comprises two components: innate and
adaptive immunity [1]. The innate immune response is the first defence against
pathogens, involving phagocytic cells (e.g. neutrophils, macrophages and den-
dritic cells) that detect antigens and produce cytokines, which trigger other
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parts of the immune system [10-14]. The activation of adap-
tive immunity includes the cell-mediated immune response,
with the stimulation of T lymphocytes and humoral immu-
nity, and activated B lymphocytes that differentiate to
produce immunoglobulins against specific antigens [13,15].
The relative components of innate and adaptive immunity
are therefore often reflected in the neutrophil-lymphocyte
ratio, respectively [16-19].

The adaptive immune system generally undergoes an
age-related decline in performance, i.e. immunosenescence,
and evidence for this process has been emerging in wild
populations [4-9]. By contrast, the innate immune response
is usually maintained, or even enhanced with age [4-9].
This enhanced innate immune response can be a consequence
of overstimulation of the immune system, owing to a reduced
T cell repertoire and bias towards CD8+ effector memory
cells, leading to chronic inflammation and accelerated
immunosenescence, as seen in humans [20,21].

The innate and adaptive immune responses, mediated by
genes and hormones, are sex-specific [2,3]. For example, in
the human innate immune response, males typically have
higher neutrophil and macrophage phagocytic activity than
females [22,23], whereas in the adaptive immune response,
females typically have stronger antibody responses, higher
basal immunoglobulin levels and more B cells than males
[22,24]. Such sex differences in immune responses may
become exacerbated with age [3,25]. For example, male
Soay sheep (Ovis aries) exhibit steeper sex-specific changes
in leukocyte cell composition with age [26]. However, such
changes may be species-specific since no sex differences in
leukocyte cell composition with age were detected in roe
deer (Capreolus capreolus; [5]).

Social stress is also emerging as a potential driver of vari-
ation in immune responses in the wild [27-29], with stress
being reflected in the neutrophil-lymphocyte ratio [30]. Gre-
garious individuals often experience greater stress owing to
more social interactions or increased mate competition
[28,31,32]. Testosterone can have a suppressive effect on the
immune system ([33,34], but see [35]), and polygynous
males have more circulating testosterone than conspecific
females or monogamous males. Thus, the social system and
the environment can have a sex-specific effect on immune
cell profiles. Social individuals may also experience greater
costs of pathogen exposure owing to group-living, compared
with solitary individuals [29]. For example, greater early-life
exposure to pathogen variety and intensity within social
groups could prime the immune system and result in
enhanced later-life immunity but with the risk of later-life
auto-immunity [36,37]. However, to date, there has been no
clear evidence for the effects of the social environment on
sex-specific immune cell profiles and their age-related
changes in the wild.

Here, we use blood samples collected from a wild popu-
lation of European badgers (Meles meles; hereafter ‘badger’) to
explore longitudinal changes in sex-specific immune cell pro-
files in relation to social conditions. We quantify the relative
components in the immune system through the proportion
of neutrophils and lymphocytes that are lymphocytes (hence-
forth ‘proportion of lymphocytes’), which reflects the relative
balance between innate and adaptive immunity [16-19].
Specifically, we test whether the proportion of lymphocytes:
(i) changes with age, (ii) exhibits sex differences and (iii) is
linked to group size.

We conducted this study in Wytham Woods, Oxfordshire, UK
(51°46'24" N, 1°20'04” W), a 424 ha semi-natural woodland sur-
rounded by mixed arable pasture [38]. The resident high-
density badger population (mean =s.e.=36+3 badgers/km?
[39]) consists of large mixed-sex social groups (mean group
size =11, range =2-29; [40]). Badgers have a polygynandrous
mating system with high rates of extra-group paternity [41,42],
where males exhibit seasonal peaks in testosterone levels
[43,44]. Badgers are exposed to pathogens, such as coccidia,
that negatively impact development and cause juvenile mortality
[45-47].

Trapping was undertaken three times per year, for three con-
secutive days per social group in 2017 and 2018. Trapped
badgers were anaesthetized using an intra-muscular injection
of 0.2 ml ketamine hydrochloride per kg body weight [48]. Indi-
viduals were identified by a unique tattoo number on the left
inguinal region, with capture date, social group affiliation and
sex recorded. Age was determined as the difference between cap-
ture date and the 14th of February in the birth year, since
implantation and parturition dates are highly synchronous in
badgers [49-51]. Badgers first caught as adults were aged
through tooth wear (scale 1-5), where a score of 2 typically indi-
cates a 1-year-old adult [52]. Blood was collected through jugular
venipuncture into vacutainers with EDTA anticoagulant. Bad-
gers were released at their setts, after full recovery from
anaesthesia. Additionally, bait-marking was conducted period-
ically to delimit social groups [53] and calculate group sizes
using dispersal rules (see electronic supplementary material).

Immediately after blood collection, one drop of blood was
smeared on a microscope slide. Slides were air-dried for 1h
then stained using Kwik-Diff (Thermo Scientific, Manchester,
UK) according to the manufacturer’s protocol. Leukocyte cell
counts were conducted by the same observer (blind to group
size and sex) by counting 100 cells per slide (4 repeats per
slide, not consecutively to avoid bias; n =82 slides, 23 individ-
uals; 9 females, 14 males), at 40x magnification using the
battlement technique [54]. Cells were identified as neutrophils,
eosinophils and basophils (i.e. granulocytes) or lymphocytes
and monocytes (i.e. agranulocytes; [55]). Basophils (< 0.1%), eosi-
nophils (1.4%) and monocytes (3.4%) were rarely observed, thus
we only used neutrophils and lymphocytes to calculate the
lymphocyte proportion from these data [56].

Statistical analyses were conducted in R. 3.3.1 [57], using para-
metric bootstrapping (1 = 5000) as a robust method to determine
significance of predictors and 95% confidence intervals in Ime4
1.1-14 [58-60]. The mixed model had a binomial error distribution
(link =logit), as recommended with a proportional response vari-
able [61] (proportion of lymphocytes), with an offset to account
for the number of cells counted per slide (1 =7 repeats, 5 slides,
where a total of 100 neutrophils and lymphocytes were counted
on a slide). Models were run separately for males and females to
test for a sex-specific effect with both age [3,26] and group size
[62]. To ensure that separating our models by sex did not alter
out conclusions (e.g. owing to reduced statistical power), we
also ran a model with both sexes included.

We first compared the fit of the relationship between age
versus logarithmic age and the proportion of lymphocytes
using AICc values; a negative logarithmic pattern was best sup-
ported in the full dataset (AAICc=-3.8) and males
(AAICc = -2.3), but with little difference in females (AAICc=
0.2). Logarithmic age was therefore included in the mixed
model analysing the full dataset and in the separate models for



Table 1. Parameter estimates and 95% confidence intervals of fixed effects from a mixed model and subsequent parametric bootstrapping testing age and n

group size effects on the proportion of neutrophils and lymphocytes that were lymphocytes in male European badgers. 5 = direction and magnitude of effect,
s.e. = standard error, 95% Cl =95% confidence intervals; reference terms in brackets = reference level for factors; X = interaction. Significant parameters (95%
(l does not overlap zero) are in italics. Random effect estimates (variance): individual ID (<1.000 x 10="2), slide nested in individual ID (1.378 x 10™"), social

group (1.979 x 107?), cohort (<1.000 x 10™"%), observation (1.080 x 107").

parameter (reference level) Y/
intercept —2325
log age —0.211
group size 0.220
year (2017)

2018 0421
season (spring)

summer —0.046

autumn 0.617
body condition index —0.255
log age x group size 0.202

males and females, but the female models were also checked
with linear age. We then used AICc to determine a priori whether
interactions between age, group size and sex (full dataset) and
between age and group size (sex-specific datasets) should be
included (electronic supplementary material, table S1). When
multiple models were plausible (AAICc <7; [63]) and the inter-
action was non-significant, we re-ran the model without the
interaction to also accurately test the first-order effects. We also
included season, year and body condition index (log;oweight/
logiobody length; [44,64]) as fixed effects since these affect
immune cell concentrations [65-67]. Cohort, social group, slide
nested within individual ID and observation (for each unique
measure to account for overdispersion [68]) were included as
random effects.

3. Results

In males, we found an interaction between age and group
size on the proportion of lymphocytes (table 1). Males
living in smaller groups had a higher proportion of lympho-
cytes in early life, which declined more steeply with age than
in males in larger groups, such that the proportion of lym-
phocytes decreased with age by 50% for males in larger
groups compared to 80% for males in smaller groups (figure 1
and table 1). By contrast, for females, the proportion of lym-
phocytes did not differ significantly according to group size
or age (table 2 and electronic supplementary material, table
S2), or when using linear age (electronic supplementary
material, tables S3 and S4). The full dataset showed an inter-
action between age, group size and sex on the proportion of
lymphocytes (electronic supplementary material, table S5),
indicating an interaction between age and group size that dif-
fers between males and females, thus providing similar
results to the models analysing the sexes separately.

4. Discussion

We found that social conditions (i.e. group size) have sex-
specific effects on individual immune cell profiles with age.
In male badgers in larger groups, early life exposure to a
greater diversity, or higher intensity, of pathogens or greater

s.e. 95% Cl

0.127 —2.570 to —2.073
0.095 —0.403 to —0.015
0.087 0.050 to 0.388
0.137 0.148 to 0.693
0.131 —0.310 to 0.215
0.224 0.156 to 1.069
0.097 —0.446 to —0.065
0.052 0.101 to 0.304

stress associated with resource or mate competition could
have possibly led to a stronger bias toward innate over adap-
tive immune cell profiles with age. Male badgers grow to
maturity faster than females, resulting in a slight sexual
dimorphism, and male growth is predominantly affected by
social factors, whereas weather conditions predominantly
affect female development [69]. According to the ‘hygiene-
hypothesis’ [37,70], early life exposure to pathogens could
alleviate the detrimental consequences of increased pathogen
pressure in later life and thus slow age-related changes in
immune cell profiles. In smaller groups, lower exposure to
pathogens in early life could have the opposite effect
[71,72], accelerating changes in immune cell profiles with
age. Moreover, if fewer conspecifics share the pathogen
burden, this could lead to a stronger pressure on the
immune response and rapid changes in the proportion of
lymphocytes. Indeed, we found that the proportion of lym-
phocytes in early life was greater in male badgers living in
smaller social groups, but with a steeper age-related decline.
There was no significant effect in females. This is supported
by a previous study in this same population showing that
coccidiosis caused by Eimera melis has a more severe effect
on male badger cub development [45]. Thus, the greater pro-
portion of neutrophils to lymphocytes that we observed in
males in early life, compared to females, could reflect their
greater immune response to juvenile coccidiosis.

We also found a relative decrease in the proportion of lym-
phocytes with age in males but not females. Possibly, female
badgers develop a stronger immune response against patho-
gens in early life, as observed in Soay sheep, where males
had a steeper decline in lymphocyte proportion with age
than did females [26]. Male badgers, given the polygynan-
drous mating system, have high testosterone levels [43],
particularly compared to monogamous species [44], which
may lead to immunosuppression and stronger decreases in
adaptive immunity (i.e. lymphocytes) with age ([33,34], but
see [35]). The potentially immuno-suppressive effect of testos-
terone in male badgers accords with sex-specific responses to
environmental conditions and associated sex differences in
immune responses seen in other species [2,3].
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Figure 1. The interplay between age and group size on the proportion of neutrophils and lymphocytes that were lymphocytes for males. Raw data points are
shown. Group size was modelled as a continuous variable in the mixed model, but for visualization is shown in small (range = 1-9; n =99 repeats; 25 slides; 9
individuals; brown triangles and dashed line) and large (range = 10—16; n = 96 repeats; 24 slides; 8 individuals; blue circles and solid line) groups. Three males
were part of a large group at one time point and a small group at another time point, hence total sample size differs from the methods section (§2). Fitted lines
represent the model prediction for age interacting with group size, with associated 95% confidence intervals as shaded areas.

Table 2. Parameter estimates and 95% confidence intervals of fixed effects from a mixed model and subsequent parametric bootstrapping testing age and
group size effects on the proportion of neutrophils and lymphocytes that were lymphocytes in female European badgers. 8 = direction and magnitude of effect,
s.e. = standard error, 95% Cl =95% confidence intervals; reference terms in brackets = reference level for factors; X = interaction. Significant parameters (95%
(I does not overlap zero) are in italics. Random effect estimates (variance): individual ID (4.310 x 1072, slide nested in individual 1D (1.879 x 10™"), social

group (<1.000 X 107"), cohort (<1.000 x 10~'2), observation (1.206 x 107").

parameter (reference level) p
intercept —2.284
log age —0.078
group size —0.107
year (2017) ‘ ‘

2018 —0.017
season (spring)

summer 0.137

autumn 0.558
body condition index —0.262
» Ibg age X group size 0015

The greatest changes in immune cell profiles in males
occurred in early life, when the immune response is develop-
ing. Early-life changes may have arisen owing to there being
quantitatively fewer acquired immunity cells, or more innate
cells being produced. The later-life decrease in the proportion
of lymphocytes with age seen in this study has been associ-
ated with age-related reduction in thymus size in humans
[73,74], accompanied by lower numbers of naive T cells [75]
and CD4" T and CD8" subpopulations with age, which
has detrimental implications for effective immune responses

s.e. 95% Cl

0.188 —2.661 to —1.911
0.151 —0.386 to 0.214
0.115 —0.344 t0 0.122
0.211 —0.447 to 0.405
0.194 —0.228 to 0.527
0.317 —0.038 to 1.203
0.143 —0.551 to 0.015
0.117 —0.245 t0 0.210

to new antigens [10,76-80]. Alternatively, innate immune
mechanisms may become more active with age through
increased production of pro-inflammatory cytokines [81].
Such low-grade chronic inflammation in older individuals
has detrimental effects on health and contributes to senescence
and the development of age-related pathologies [21].

While we cannot provide direct evidence of immunose-
nescence, as we measured the proportion of lymphocytes
rather than the absolute number of leukocytes per unit
volume of blood, the relative decrease in adaptive immune
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cells and increase in innate immune cells that we detected
with age accords with previous studies in the wild [4-6]. Fur-
thermore, understanding the changes in immune cell profiles
with age in mammals is important for the interpretation of
leukocyte telomere dynamics [52]. Since granulocytes (e.g.
neutrophils) have longer telomeres than agranulocytes (e.g.
lymphocytes) in humans and baboons [82,83], apparent
changes in telomere length with age could be owing to a
changing leukocyte cell composition, or selective loss of leu-
kocytes, with age, leading to spurious inferences on telomere
shortening.

We were unable to sample individuals until at least three
months of age owing to welfare legislation (Protection of Bad-
gers Act, 1992), and thus we cannot rule out the possibility of
selective disappearance of individuals with poor innate
immune responses, potentially linked to coccidiosis mortality
[45]. Additionally, while we provide evidence of age-related
changes in one immune parameter (i.e. leukocyte cell compo-
sition), immunity is complex and future studies should
analyse multiple immune markers (e.g. specific antibodies,
inflammatory parameters) together to understand trade-offs
and drivers of variation in immune responses. Nonetheless,
our results indicate that age-related changes in immune

profiles are associated with the social environment and
these effects differ between the sexes.

Data are available on Dryad (https://dx.doi.org/10.
5061/dryad.2547d7wmx) [56] and the R code is archived at GitHub
(https://github.com/DugdaleResearchGroup/Leukocyte).

The study was conceived by S.H.J.v.L. and H.L.D.
and developed by E.P.B., M\W.T.M., C.N., C.D.B. and D.W.M,; slides
were prepared by S.H.J.v.L., and analysed by M.\W.T.M,; statistical
analyses were conducted by S.H.J.v.L. with input from E.P.B. and
H.L.D.; the paper was written by S.H.J.v.L., EP.B. and H.L.D.; all
authors revised the paper for important intellectual content. All
authors gave approval for publication and agree to be held accounta-
ble for the content.

We declare we have no competing interests.
S.H.J.v.L was funded by a Leeds Anniversary Research Scho-
larship from the University of Leeds with support from a Heredity
Fieldwork Grant from the Genetics Society and a Priestley Centre Cli-
mate Bursary from the University of Leeds. H.L.D. was supported by
a Royal Society Research Grant (RG170425).

We thank all members of the Wytham badger team,
past and present, for collecting data. We also thank Alexandra Sparks
for comments on an earlier draft of this manuscript, and three anon-
ymous reviewers for their comments which greatly improved the
manuscript.

Hoebe K, Janssen E, Beutler B. 2004 The interface
between innate and adaptive immunity. Nat.
Immunol. 5, 971-974. (doi:10.1038/ni1004-971)

DH. 2019 Senescence in immunity against helminth
parasites predicts adult mortality in a wild
mammal. Science 365, 1296-1298. (doi:10.1126/

resection for hepatocellular carcinoma. Clin. Cancer
Res. 20, 6212—6222. (doi:10.1158/1078-0432.Ccr-
14-0442)

Restif 0, Amos W. 2010 The evolution of sex-specific science.aaw5822) 18. Templeton AJ et al. 2014 Prognostic role of
immune defences. Proc. R. Soc. B 277, 2247-2255.  10.  Weiskopf D, Weinberger B, Grubeck-Loebenstein B. neutrophil-to-lymphocyte ratio in solid tumors: a
(doi:10.1098/rspb.2010.0188) 2009 The aging of the immune system. Transpl. Int. systematic review and meta-analysis. J. Nat/
Klein SL, Flanagan KL. 2016 Sex differences in 22, 1041-1050. (doi:10.1111/j.1432-2277.2009. Cancer Inst. 106, dju124. (doi:10.1093/jnci/
immune responses. Nat. Rev. Immunol. 16, 00927.x) dju124)

626—638. (doi:10.1038/nri.2016.90) 1. Akira S, Uematsu S, Takeuchi 0. 2006 Pathogen 19. van der Willik KD, Fani L, Rizopoulos D, Licher S,
Nussey DH, Watt K, Pilkington JG, Zamoyska R, recognition and innate immunity. Cell 124, Fest J, Schagen SB, Ikram MK, Ikram MA. 2019
McNeilly TN. 2012 Age-related variation in 783-801. (doi:10.1016/j.cell.2006.02.015) Balance between innate versus adaptive immune
immunity in a wild mammal population. Aging Cell ~ 12. Nathan C. 2006 Neutrophils and immunity: system and the risk of dementia: a population-
11, 178-180. (doi:10.1111/.1474-9726.2011. challenges and opportunities. Nat. Rev. Immunol. 6, based cohort study. J. Neuroinflamm. 16, 68.
00771.x) 173-182. (doi:10.1038/nri1785) (doi:10.1186/512974-019-1454-z)

Cheynel L et al. 2017 Immunosenescence patterns ~ 13.  Mantovani A, Cassatella MA, Costantini C, Jaillon S. ~ 20. Sansoni P et al. 2014 New advances in C(MV and
differ between populations but not between sexes 2011 Neutrophils in the activation and regulation of immunosenescence. Exp. Gerontol. 55, 54—62.

in a long-lived mammal. Sci. Rep. 7, 13700. (doi:10. innate and adaptive immunity. Nat. Rev. Immunol. (doi:10.1016/j.exger.2014.03.020)
1038/541598-017-13686-5) 11, 519-531. (doi:10.1038/nri3024) 21, Franceschi C, Garagnani P, Parini P, Giuliani C,
Peters A, Delhey K, Nakagawa S, Aulsebrook A, 14. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Santoro A. 2018 Inflammaging: a new immune-
Verhulst S. 2019 Immunosenescence in wild Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. metabolic viewpoint for age-related diseases. Nat.
animals: meta-analysis and outlook. Ecol. Lett. 22, 2011 Innate or adaptive immunity? The example of Rev. Endocrinol. 14, 576-590. (doi:10.1038/541574-
1709-1722. (doi:10.1111/ele.13343) natural killer cells. Science 331, 44-49. (doi:10. 018-0059-4)

Palacios MG, Winkler DW, Klasing KC, Hasselquist D, 1126/science.1198687) 22. Abdullah M, Chai PS, Chong MY, Tohit ERM,
Vleck (M. 2011 Consequences of immune system 15. lwasaki A, Medzhitov R. 2010 Regulation of Ramasamy R, Pei (P, Vidyadaran S. 2012 Gender
aging in nature: a study of immunosenescence costs adaptive immunity by the innate immune system. effect on in vitro lymphocyte subset levels of

in free-living Tree Swallows. Ecology 92, 952-966. Science 327, 291-295. (doi:10.1126/science. healthy individuals. Cell. Immunol. 272, 214-219.
(doi:10.1890/10-0662.1) 1183021) (doi:10.1016/j.cellimm.2011.10.009)

Schneeberger K, Courtiol A, (zirjak GA, Voigt CC. 16. Fest J, Ruiter R, Ikram MA, Voortman T, van Eijck  23. Spitzer JA. 1999 Gender differences in some host
2014 Immune profile predicts survival and reflects (H), Stricker BH. 2018 Reference values for white defense mechanisms. Lupus 8, 380-383. (doi:10.
senescence in a small, long-lived mammal, the blood-cell-based inflammatory markers in the 1177/096120339900800510)

Greater Sac-Winged Bat (Saccopteryx bilineata). PLoS Rotterdam Study: a population-based prospective 24.  Furman D, Hejblum BP, Simon N, Jojic V, Dekker CL,
ONE 9, €108268. (doi:10.1371/journal.pone. cohort study. Sci. Rep. 8, 10566. (doi:10.1038/ Thiebaut R, Tibshirani RJ, Davis MM. 2014 Systems
0108268) $41598-018-28646-w) analysis of sex differences reveals an

Froy H, Sparks AM, Watt K, Sinclair R, Bach F, 17. Hu B et al. 2014 Systemic immune-inflammation immunosuppressive role for testosterone in the

Pilkington JG, Pemberton JM, McNeilly TN, Nussey

index predicts prognosis of patients after curative

response to influenza vaccination. Proc. Nat/ Acad.


https://dx.doi.org/10.5061/dryad.2547d7wmx
https://dx.doi.org/10.5061/dryad.2547d7wmx
https://dx.doi.org/10.5061/dryad.2547d7wmx
https://github.com/DugdaleResearchGroup/Leukocyte
https://github.com/DugdaleResearchGroup/Leukocyte
http://dx.doi.org/10.1038/ni1004-971
http://dx.doi.org/10.1098/rspb.2010.0188
http://dx.doi.org/10.1038/nri.2016.90
http://dx.doi.org/10.1111/j.1474-9726.2011.00771.x
http://dx.doi.org/10.1111/j.1474-9726.2011.00771.x
http://dx.doi.org/10.1038/s41598-017-13686-5
http://dx.doi.org/10.1038/s41598-017-13686-5
http://dx.doi.org/10.1111/ele.13343
http://dx.doi.org/10.1890/10-0662.1
http://dx.doi.org/10.1371/journal.pone.0108268
http://dx.doi.org/10.1371/journal.pone.0108268
http://dx.doi.org/10.1126/science.aaw5822
http://dx.doi.org/10.1126/science.aaw5822
http://dx.doi.org/10.1111/j.1432-2277.2009.00927.x
http://dx.doi.org/10.1111/j.1432-2277.2009.00927.x
http://dx.doi.org/10.1016/j.cell.2006.02.015
http://dx.doi.org/10.1038/nri1785
http://dx.doi.org/10.1038/nri3024
http://dx.doi.org/10.1126/science.1198687
http://dx.doi.org/10.1126/science.1198687
http://dx.doi.org/10.1126/science.1183021
http://dx.doi.org/10.1126/science.1183021
http://dx.doi.org/10.1038/s41598-018-28646-w
http://dx.doi.org/10.1038/s41598-018-28646-w
http://dx.doi.org/10.1158/1078-0432.Ccr-14-0442
http://dx.doi.org/10.1158/1078-0432.Ccr-14-0442
http://dx.doi.org/10.1093/jnci/dju124
http://dx.doi.org/10.1093/jnci/dju124
http://dx.doi.org/10.1186/s12974-019-1454-z
http://dx.doi.org/10.1016/j.exger.2014.03.020
http://dx.doi.org/10.1038/s41574-018-0059-4
http://dx.doi.org/10.1038/s41574-018-0059-4
http://dx.doi.org/10.1016/j.cellimm.2011.10.009
http://dx.doi.org/10.1177/096120339900800510
http://dx.doi.org/10.1177/096120339900800510

25.

26.

2].

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Sci. USA 111, 869-874. (doi:10.1073/pnas.
1321060111)

Campo JL, Davila SG. 2002 Estimation of heritability
for heterophil:lymphocyte ratio in chickens by
restricted maximum likelihood. Effects of age, sex,
and crossing. Poult. Sci. 81, 1448—-1453. (doi:10.
1093/ps/81.10.1448)

Watson RL et al. 2017 Sex differences in leukocyte
telomere length in a free-living mammal. Mol. Ecol.
26, 3230-3240. (doi:10.1111/mec.13992)

(6té IM, Poulin R. 1995 Parasitism and group-size
in social animals — a meta-analysis. Behav. Ecol. 6,
159-165. (doi:10.1093/beheco/6.2.159)

Creel S, Dantzer B, Goymann W, Rubenstein DR.
2013 The ecology of stress: effects of the social
environment. funct. Ecol. 27, 66—80. (doi:10.1111/j.
1365-2435.2012.02029.x)

Altizer S et al. 2003 Social organization and parasite
risk in mammals: integrating theory and

empirical studies. Annu. Rev. Ecol. Evol. Syst. 34,
517-547. (doi:10.1146/annurev.ecolsys.34.030102.
151725)

Davis AK, Maney DL, Maerz JC. 2008 The use of
leukocyte profiles to measure stress in vertebrates: a
review for ecologists. Funct. Ecol. 22, 760-772.
(doi:10.1111/}.1365-2435.2008.01467.x)

Blumstein DT, Williams DM, Lim AN, Kroeger S,
Martin JGA. 2018 Strong social relationships are
associated with decreased longevity in a
facultatively social mammal. Proc. R. Soc. B 285,
20171934, (doi:10.1098/rspb.2017.1934)

Martin LB. 2009 Stress and immunity in wild
vertebrates: timing is everything. Gen. Comp.
Endocr. 163, 70-76. (doi:10.1016/j.ygcen.2009.
03.008)

Klein SL. 2000 Hormones and mating system affect
sex and species differences in immune function
among vertebrates. Behav. Process. 51, 149-166.
(doi:10.1016/50376-6357(00)00125-X)

Hillgarth N, Wingfield JC. 1997 Testosterone and
immunosuppression in vertebrates: implications for
parasite-mediated sexual selection. In Parasites and
pathogens: effects on host hormones and behaviour
(ed. NE Beckage), pp. 143—155. New York, NY:
Chapman & Hall.

Roberts ML, Buchanan KL, Evans MR. 2004 Testing
the immunocompetence handicap hypothesis: a
review of the evidence. Anim. Behav. 68, 227-239.
(doi:10.1016/j.anbehav.2004.05.001)

Olszak T et al. 2012 Microbial exposure during early
life has persistent effects on natural killer T cell
function. Science 336, 489-493. (doi:10.1126/
science.1219328)

von Mutius E. 2007 Allergies, infections and the
hygiene hypothesis — The epidemiological evidence.
Immunobiology 212, 433—439. (doi:10.1016/j.imbio.
2007.03.002)

Macdonald DW, Newman C. 2002 Population
dynamics of badgers (Meles meles) in Oxfordshire,
UK: numbers, density and cohort life histories, and
a possible role of climate change in population
growth. J. Zool. 256, 121-138. (doi:10.1017/
$0952836902000158)

40.

41.

42.

43.

45.

46.

48.

49.

50.

Macdonald DW, Newman C, Nouvellet PM,
Buesching (D. 2009 An analysis of Eurasian badger
(Meles meles) population dynamics: implications for
regulatory mechanisms. J. Mammal. 90,
1392-1403. (doi:10.1644/08-MAMM-A-356R1.1)

da Silva J, Macdonald DW, Evans PGH. 1994 Net
costs of group living in a solitary forager, the
Eurasian badger (Meles meles). Behav. Ecol. 5,
151-158. (doi:10.1093/beheco/5.2.151)

Dugdale HL, Macdonald DW, Pope L, Burke T. 2007
Polygynandry, extra-group paternity and multiple-
paternity litters in European badger (Meles meles)
social groups. Mol. Ecol. 16, 5294-5306. (doi:10.
1111/j.1365-294X.2007.03571.x)

Annavi G, Newman C, Dugdale HL, Buesching (D,
Sin YW, Burke T, Macdonald DW. 2014
Neighbouring-group composition and within-group
relatedness drive extra-group paternity rate in the
European badger (Meles meles). J. Evol. Biol. 27,
2191-2203. (doi:10.1111/jeb.12473)

Buesching (D, Heistermann M, Macdonald DW.
2009 Seasonal and inter-individual variation in
testosterone levels in badgers Meles meles: evidence
for the existence of two endocrinological
phenotypes. J. Comp. Physiol. A 195, 865-871.
(doi:10.1007/500359-009-0465-0)

Sugianto NA, Newman C, Macdonald DW, Buesching
(D. 2019 Heterochrony of puberty in the European
badger (Meles meles) can be explained by growth
rate and group-size: Evidence for two
endocrinological phenotypes. PLoS ONF 14,
€0203910. (doi:10.1371/journal.pone.0203910)
Newman C, Macdonald DW, Anwar MA. 2001
Coccidiosis in the European badger, Meles meles in
Wytham Woods: infection and consequences for
growth and survival. Parasitology 123, 133-142.
(doi:10.1017/50031182001008265)

Anwar MA, Newman C, MacDonald DW, Woolhouse
MEJ, Kelly DW. 2000 Coccidiosis in the European
badger (Meles meles) from England, an
epidemiological study. Parasitology 120, 255-260.
(doi:10.1017/50031182099005491)

Sin YW, Annavi G, Dugdale HL, Newman C, Burke T,
Macdonald DW. 2014 Pathogen burden, co-infection
and Major Histocompatibility Complex variability in
the European badger (Meles meles). Mol. Ecol. 23,
5072-5088. (doi:10.1111/mec.12917)

McLaren GW, Thornton PD, Newman C, Buesching
(D, Baker SE, Mathews F, Macdonald DW. 2005 The
use and assessment of ketamine-medetomidine-
butorphanol combinations for field anaesthesia in
wild European badgers (Meles meles). Vet. Anaesth.
Analg. 32, 367-372. (doi:10.1111/j.1467-2995.
2005.00206.x)

Canivenc R, Bonnin M. 1979 Delayed implantation is
under environmental control in the badger (Meles
meles L.). Nature 278, 849-850. (doi:10.1038/
278849a0)

Dugdale HL, Ellwood SA, Macdonald DW. 2010
Alloparental behaviour and long-term costs of
mothers tolerating other members of the group in a
plurally breeding mammal. Anim. Behav. 80,
721-735. (doi:10.1016/j.anbehav.2010.07.011)

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Woodroffe R. 1995 Body condition affects
implantation date in the European badger, Meles
meles. J. Zool. 236, 183—188. (doi:10.1111/.1469-
7998.1995.th04486.x)

van Lieshout SHJ, Bretman A, Newman C,
Buesching (D, Macdonald DW, Dugdale HL. 2019
Individual variation in early life telomere length and
survival in a wild mammal. Mol. Ecol. 28,
4152-4165. (doi:10.1111/mec.15212)

Delahay RJ, Brown JA, Mallinson PJ, Spyvee PD,
Handoll D, Rogers LM, Cheeseman CL. 2000 The use
of marked bait in studies of the territorial
organization of the European badger (Meles meles).
Mammal Rev. 30, 73—87. (doi:10.1046/j.1365-2907.
2000.00058.x)

Schalm OW. 1965 Veterinary hematology.
Philadelphia, PA: Lea & Febiger.

Bain BJ. 2015 Blood cells: a practical guide. Oxford,
UK: John Wiley & Sons.

van Lieshout SHJ, Badas EP, Mason MWT, Newman
C, Buesching (D, Macdonald DW, Dugdale HL. 2020
Data from: Social effects on age-related and sex-
specific immune cell profiles in a wild mammal.
Dryad Digital Repository. (doi:10.5061/dryad.
2547d7wmx)

R Development Core Team. 2019 R: a language and
environment for statistical computing. Vienna,
Austria: R foundation for statistical computing.
Bates D, Machler M, Bolker BM, Walker SC. 2015
Fitting linear mixed-effects models using Ime4.

J. Stat. Softw. 67, 1-48. (doi:10.18637/js5.v067.i01)
Nakagawa S, Schielzeth H. 2013 A general and
simple method for obtaining R? from generalized
linear mixed-effects models. Methods Ecol. Evol. 4,
133-142. (doi:10.1111/j.2041-210x.2012.00261.x)
Nakagawa S, Schielzeth H. 2010 Repeatability for
Gaussian and non-Gaussian data: a practical guide
for biologists. Biol. Rev. 85, 935-956. (doi:10.1111/
j.1469-185X.2010.00141.x)

Crawley MJ. 2012 The R book. Chichester, UK: John
Wiley & Sons.

Leech T, Evison SEF, Armitage SAO, Sait SM,
Bretman A. 2019 Interactive effects of social
environment, age and sex on immune responses in
Drosophila melanogaster. J. Evol. Biol. 32,
1082-1092. (doi:10.1111/jeb.13509)

Burnham KP, Anderson DR, Huyvaert KP. 2011 AIC
model selection and multimodel inference in
behavioral ecology: some background, observations,
and comparisons. Behav. Ecol. Sociobiol. 65, 23-35.
(doi:10.1007/500265-010-1029-6)

Noonan MJ, Markham A, Newman G, Trigoni N,
Buesching (D, Ellwood SA, Macdonald DW. 2014
Climate and the individual: inter-annual variation in
the autumnal activity of the European badger
(Meles meles). PLoS ONE 9, e83156. (doi:10.1371/
journal.pone.0083156)

Downs JD, Dochtermann NA, Ball R, Klasing KC,
Martin LB. 2019 The effects of body mass on
immune cell concentrations of mammals. Am. Nat.
195, 107-114. (doi:10.1086/706235)

Moller AP, Erritzoe J, Saino N. 2003 Seasonal
changes in immune response and parasite impact


http://dx.doi.org/10.1073/pnas.1321060111
http://dx.doi.org/10.1073/pnas.1321060111
http://dx.doi.org/10.1093/ps/81.10.1448
http://dx.doi.org/10.1093/ps/81.10.1448
http://dx.doi.org/10.1111/mec.13992
http://dx.doi.org/10.1093/beheco/6.2.159
http://dx.doi.org/10.1111/j.1365-2435.2012.02029.x
http://dx.doi.org/10.1111/j.1365-2435.2012.02029.x
http://dx.doi.org/10.1146/annurev.ecolsys.34.030102.151725
http://dx.doi.org/10.1146/annurev.ecolsys.34.030102.151725
http://dx.doi.org/10.1111/j.1365-2435.2008.01467.x
http://dx.doi.org/10.1098/rspb.2017.1934
http://dx.doi.org/10.1016/j.ygcen.2009.03.008
http://dx.doi.org/10.1016/j.ygcen.2009.03.008
http://dx.doi.org/10.1016/S0376-6357(00)00125-X
http://dx.doi.org/10.1016/j.anbehav.2004.05.001
http://dx.doi.org/10.1126/science.1219328
http://dx.doi.org/10.1126/science.1219328
http://dx.doi.org/10.1016/j.imbio.2007.03.002
http://dx.doi.org/10.1016/j.imbio.2007.03.002
http://dx.doi.org/10.1017/S0952836902000158
http://dx.doi.org/10.1017/S0952836902000158
http://dx.doi.org/10.1644/08-MAMM-A-356R1.1
http://dx.doi.org/10.1093/beheco/5.2.151
http://dx.doi.org/10.1111/j.1365-294X.2007.03571.x
http://dx.doi.org/10.1111/j.1365-294X.2007.03571.x
http://dx.doi.org/10.1111/jeb.12473
http://dx.doi.org/10.1007/s00359-009-0465-0
http://dx.doi.org/10.1371/journal.pone.0203910
http://dx.doi.org/10.1017/S0031182001008265
http://dx.doi.org/10.1017/S0031182099005491
http://dx.doi.org/10.1111/mec.12917
http://dx.doi.org/10.1111/j.1467-2995.2005.00206.x
http://dx.doi.org/10.1111/j.1467-2995.2005.00206.x
http://dx.doi.org/10.1038/278849a0
http://dx.doi.org/10.1038/278849a0
http://dx.doi.org/10.1016/j.anbehav.2010.07.011
http://dx.doi.org/10.1111/j.1469-7998.1995.tb04486.x
http://dx.doi.org/10.1111/j.1469-7998.1995.tb04486.x
http://dx.doi.org/10.1111/mec.15212
http://dx.doi.org/10.1046/j.1365-2907.2000.00058.x
http://dx.doi.org/10.1046/j.1365-2907.2000.00058.x
http://dx.doi.org/10.5061/dryad.2547d7wmx
http://dx.doi.org/10.5061/dryad.2547d7wmx
http://dx.doi.org/10.18637/jss.v067.i01
http://dx.doi.org/10.1111/j.2041-210x.2012.00261.x
http://dx.doi.org/10.1111/j.1469-185X.2010.00141.x
http://dx.doi.org/10.1111/j.1469-185X.2010.00141.x
http://dx.doi.org/10.1111/jeb.13509
http://dx.doi.org/10.1007/s00265-010-1029-6
http://dx.doi.org/10.1371/journal.pone.0083156
http://dx.doi.org/10.1371/journal.pone.0083156
http://dx.doi.org/10.1086/706235

67.

68.

69.

70.

.

72.

on hosts. Am. Nat. 161, 657-671. (doi:10.1086/
367879)

Beaulieu M, Benoit L, Abaga S, Kappeler PM,
Charpentier MJE. 2017 Mind the cell: seasonal
variation in telomere length mirrors changes in
leucocyte profile. Mol. Ecol. 26, 5603—5613. (doi:10.
1111/mec.14329)

Harrison XA. 2014 Using observation-level random
effects to model overdispersion in count data in
ecology and evolution. Peerj 2, e616. (doi:10.7717/
peerj.616)

Sugianto NA, Newman C, Macdonald DW, Buesching
(D. 2019 Extrinsic factors affecting cub development
contribute to sexual size dimorphism in the
European badgers (Meles meles). Zoology 135,
125688. (doi:10.1016/j.z001.2019.04.005)

Strachan DP. 1989 Hay-fever, hygiene, and
household size. Brit. Med. J. 299, 1259-1260.
(doi:10.1136/bmj.299.6710.1259)

Shaw SY, Blanchard JF, Bernstein CN. 2010
Association between the use of antibiotics in the
first year of life and pediatric inflammatory bowel
disease. Am. J. Gastroenterol. 105, 2687—2692.
(doi:10.1038/2jg.2010.398)

Goksor E, Alm B, Thengilsdottir H, Pettersson R,
Aberg N, Wennergren G. 2011 Preschool wheeze -
impact of early fish introduction and neonatal

73.

74.

75.

76.

71.

78.

79.

antibiotics. Acta Paediatr. 100, 1561-1566. (doi:10.
1111/j.1651-2227.2011.02411.%)

Flores KG, Li J, Sempowski GD, Haynes BF, Hale LP.
1999 Analysis of the human thymic perivascular
space during aging. J. Clin. Invest. 104, 1031-1039.
(doi:10.1172/)ci7558)

George AJT, Ritter MA. 1996 Thymic involution with
ageing: obsolescence or good housekeeping?
Immunol. Today 17, 267-272. (doi:10.1016/0167-
5699(96)80543-3)

Fagnoni FF et al. 2000 Shortage of circulating naive
(D8" T cells provides new insights on
immunodeficiency in aging. Blood 95, 2860-2868.
(doi:10.1182/blood.V95.9.2860.009k35_2860_2868)
Goronzy JJ, Weyand CM. 2005 T cell development and
receptor diversity during aging. Curr. Opin. Immunol.
17, 468—475. (doi:10.1016/j.c0i.2005.07.020)

Effros RB, Cai ZL, Linton PJ. 2003 (D8 T cells and
aging. Crit. Rev. Immunol. 23, 45-64. (doi:10.1615/
(ritRevimmunol.v23.i12.30)

Pfister G, Weiskopf D, Lazuardi L, Kovaiou RD, Cioca
DP, Keller M, Lorbeg B, Parson W, Grubeck-
Loebenstein B. 2006 Naive T cells in the elderly: are
they still there? Ann. NY Acad. Sci. 1067, 152-157.
(doi:10.1196/annals.1354.018)

Kohler S, Wagner U, Pierer M, Kimmig S, Oppmann
B, Mowes B, Julke K, Romagnani C, Thiel A. 2005

80.

81.

82.

83.

Post-thymic in vivo proliferation of naive (D4* T
cells constrains the TCR repertoire in healthy human
adults. Eur. J. Immunol. 35, 1987-1994. (doi:10.
1002/€ji.200526181)

Haynes L, Eaton SM, Burns EM, Randall TD, Swain
SL. 2003 (D4 T cell memory derived from young
naive cells functions well into old age, but
memory generated from aged naive cells
functions poorly. Proc. Nat! Acad. Sci. USA

100, 15 053-15 058. (doi:10.1073/pnas.
2433717100)

Fagiolo U, Cossarizza A, Scala E, Fanalesbelasio E,
Ortolani C, Cozzi E, Monti D, Franceschi C, Paganelli
R. 1993 Increased cytokine production in
mononuclear cells of healthy elderly people.

Eur. J. Immunol. 23, 2375-2378. (d0i:10.1002/eji.
1830230950)

Baerlocher GM, Rice K, Vulto |, Lansdorp PM. 2007
Longitudinal data on telomere length in leukocytes
from newborn baboons support a marked drop in
stem cell turnover around 1 year of age. Aging Cell
6, 121-123. (doi:10.1111/j.1474-9726.2006.
00254.%)

Kimura M, Gazitt Y, Cao XJ, Zhao XY, Lansdorp PM,
Aviv A. 2010 Synchrony of telomere length among
hematopoietic cells. Exp. Hematol. 38, 854—859.
(doi:10.1016/j.exphem.2010.06.010)


http://dx.doi.org/10.1086/367879
http://dx.doi.org/10.1086/367879
http://dx.doi.org/10.1111/mec.14329
http://dx.doi.org/10.1111/mec.14329
http://dx.doi.org/10.7717/peerj.616
http://dx.doi.org/10.7717/peerj.616
http://dx.doi.org/10.1016/j.zool.2019.04.005
http://dx.doi.org/10.1136/bmj.299.6710.1259
http://dx.doi.org/10.1038/ajg.2010.398
http://dx.doi.org/10.1111/j.1651-2227.2011.02411.x
http://dx.doi.org/10.1111/j.1651-2227.2011.02411.x
http://dx.doi.org/10.1172/Jci7558
http://dx.doi.org/10.1016/0167-5699(96)80543-3
http://dx.doi.org/10.1016/0167-5699(96)80543-3
http://dx.doi.org/10.1182/blood.V95.9.2860.009k35_2860_2868
http://dx.doi.org/10.1016/j.coi.2005.07.020
http://dx.doi.org/10.1615/CritRevImmunol.v23.i12.30
http://dx.doi.org/10.1615/CritRevImmunol.v23.i12.30
http://dx.doi.org/10.1196/annals.1354.018
http://dx.doi.org/10.1002/eji.200526181
http://dx.doi.org/10.1002/eji.200526181
http://dx.doi.org/10.1073/pnas.2433717100
http://dx.doi.org/10.1073/pnas.2433717100
http://dx.doi.org/10.1002/eji.1830230950
http://dx.doi.org/10.1002/eji.1830230950
http://dx.doi.org/10.1111/j.1474-9726.2006.00254.x
http://dx.doi.org/10.1111/j.1474-9726.2006.00254.x
http://dx.doi.org/10.1016/j.exphem.2010.06.010

	Social effects on age-related and sex-specific immune cell profiles in a wild mammal
	Introduction
	Methods
	Study species and data collection
	Statistical analyses

	Results
	Discussion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


