
This is a repository copy of Path planning with user route preference - A reward surface
approximation approach using orthogonal Legendre polynomials.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/162141/

Version: Accepted Version

Proceedings Paper:
Srinivasan, AR orcid.org/0000-0001-9280-7837 and Chakraborty, S (2016) Path planning
with user route preference - A reward surface approximation approach using orthogonal
Legendre polynomials. In: Proceedings of 2016 IEEE International Conference on
Automation Science and Engineering (CASE). 2016 IEEE International Conference on
Automation Science and Engineering (CASE), 21-25 Aug 2016, Fort Worth, Texas, USA.
IEEE . ISBN 978-1-5090-2409-4

https://doi.org/10.1109/coase.2016.7743527

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Path planning with user route preference - A reward surface

approximation approach using orthogonal Legendre polynomials

Aravinda Ramakrishnan Srinivasan, and Subhadeep Chakraborty Member, IEEE

Abstract— As self driving cars become more ubiquitous, users
would look for natural ways of informing the car AI about their
personal choice of routes. This choice is not always dictated by
straightforward logic such as shortest distance or shortest time,
and can be influenced by hidden factors, such as comfort and
familiarity. This paper presents a path learning algorithm for
such applications, where from limited positive demonstrations,
an autonomous agent learns the user’s path preference and
honors that choice in its route planning, but has the capability
to adopt alternate routes, if the original choice(s) become
impractical. The learning problem is modeled as a Markov
decision process. The states (way-points) and actions (to move
from one way-point to another) are pre-defined according to the
existing network of paths between the origin and destination
and the user’s demonstration is assumed to be a sample of the
preferred path. The underlying reward function which captures
the essence of the demonstration is computed using an inverse
reinforcement learning algorithm and from that the entire path
mirroring the expert’s demonstration is extracted. To alleviate
the problem of state space explosion when dealing with a large
state space, the reward function is approximated using a set
of orthogonal polynomial basis functions with a fixed number
of coefficients regardless of the size of the state space. A six
fold reduction in total learning time is achieved compared to
using simple basis functions, that has dimensionality equal to
the number of distinct states.

I. INTRODUCTION

With the advent of autonomous cars, there is need for a

more user-centric path planning paradigm, one that is capable

of incorporating user route preferences into the planning

algorithm in a natural way, while still accommodating for

external factors which might necessitate a deviation from

the preferred route. A human driver takes into account

several criteria subconsciously and it is often impossible

and probably cumbersome for the individual to account for,

list and quantify all the factors which motivate a particular

decision. It is simpler and more natural to provide a positive

demonstration of the preferred routes. The agent learns the

implicit policy for which the demonstrated route is optimal

and then implements the same when it is tasked to plan and

execute the path the next time. In a sense, our vision is of

an autonomous car/agent functioning as an apprentice to the

human driver. Just like an apprentice, the agent first learns

the user preferred path from a demonstration. It can then

extrapolate the known solution space to find alternate path,

if the original solution is rendered unusable due to changed

A.R.K. Srinivasan and S. Chakraborty are with the Department of Me-
chanical Aerospace and Biomedical Engineering, University of Tennessee,
Knoxville, TN 37996 USA

email: asriniv2@vols.utk.edu
email: schakrab@utk.edu

circumstances. Essentially, the agent has to be capable of

automated path planning/executing while taking into account

user preferences.

Autonomous path planning has a long and illustrious

history - algorithms can be traced back to Dijkstra algo-

rithm [1] [2], used to find the shortest path from an origin

node to destination node in a connected graph. This was

followed by the goal directed search algorithm (A*) [3].

This incorporated formal methods to modify the weight of

the edges in the connected graph to achieve quicker path

planning. More recent development tries to incorporate the

time dependency into route planning agent [4]. The goal is

to take into account the departure time to find the minimum

travel time to destination. Kriegel et.al. [5] tried to take user’s

preference into route planning. This is based on the skyline

operator for searching a database to rank various results

according to user preferences. Here the user preferences has

to be explicitly specified in order to find the desired route.

The work presented in this paper takes into account the user

preferences implicitly from the demonstration provided by

the user.

Learning from demonstration is an interesting paradigm

usually studied in the robotics context and has been tackled

by many researchers. Most of the prior work have tried

to address it from the viewpoint of database building and

searching in the database for the current situation and ex-

ecuting the script from the database [6]. Initiated in late

1980s as imitation learning, the target of early research in

reinforcement learning was to make manipulators follow

similar path from start to goal as previously demonstrated

by an expert. Segre and Dejong [7] extracted a set of ‘if-

then’ sequences to achieve the path imitation. Given the

limitations of available computing resources in the late 80′s,

this itself was a compelling feat. As the computing power and

sensor technology continued to improve, researcher began to

develop systems that are more intelligent. Latest imitation

learning technique as reported in [8] tries to incorporate

both position and force profile into the learning domain.

Another work [9] tries to use Gaussian Mixture Model

and Gaussian Mixture Regression to learn the way-points

to either lead/follow in the task of picking up an object

alongside a human. Also a recent work by Billard’s group

trained a manipulator both in simulation and in real-time to

catch a flying object [10], [11].

Another body of work by Veloso’s group introduced a

new method called confidence based autonomy [12], [13].

The basic building block of their algorithm was a robust

database where each distinct state action pair is stored. Thus,

whenever in real time execution, a state is encountered, the

agent queries the database for a suitable action which then

returns a suitable action along with a confidence parameter.

Each of the techniques for learning from demonstration

described above has its own unique advantages and disad-

vantages. The problem with database-oriented technique is

the storage of all the relevant information from training in

an intelligent manner for it to be quickly accessible. If the

information becomes too large then real time fetching will

become time consuming. There is a similar state space ex-

plosion problem associated with Markov decision processes.

The time to find the optimal solution scales exponentially

with the number of distinct states.

There has been a body of work by Ng’s group [14]–[16]

on modeling the learning problem as a Markovian process.

The demonstrations are assumed to be executed according

to an expert’s policy, which is considered as the optimal

solution to the implicit Markov Decision Process (MDP)

with unknown reward functions. The inverse reinforcement

learning algorithm is used to compute the unknown reward

function from the expert’s demonstration(s). In the work by

Kim et.al. [17], [18], the path planning with human input is

accomplished by hand-picking a set of features and learning

the weights for each feature by using inverse reinforcement

learning. Similarly [19] attempts to incorporate human factor

into autonomous path planning by selecting specific features

from the sensor input. The pros and cons of different feature

sets are dealt with in [20]. The failed set of demonstration

were used in [21]. Nguyen et. al. [22] splits the state space

into different region and computed the augmented reward

function by utilizing expectation maximization technique.

Ziebart et.al. [23] utilized maximum entropy method to learn

and predict user’s route preference and destination. There is

also a work by Deisenroth and et.al. [24] wherein they try to

account for incomplete models. In all of these works, domain

expertise is required in order to hand pick the feature set.

In this work, we are also trying to model the agent as an

MDP with unknown reward functions to be learned from

demonstration(s). The difference from the previous work

is that we are trying to circumvent the need for domain

knowledge and hand picking the feature set by utilizing the

orthogonal polynomial functions as basis functions for rep-

resenting the reward structure(the feature set). Additionally,

we can circumvent the problem of state space explosion by

utilizing polynomial function of order lower than that of the

state space. This is largely inspired by image reconstruction

techniques employed in image processing community [25].

Considering the difficulties in implementing a real au-

tonomous vehicle, for proof of concept, the AI agent uti-

lized in this paper is an autonomous mobile robot learning

the operator’s preference for a particular route through re-

ward/inverse reinforcement learning. Section II discusses in

detail about the theoretical principle underlying the inverse

reinforcement learning algorithm. Section III explains the

experimental setup and Section IV elucidates the results

obtained from real-time experiments.

II. INVERSE REINFORCEMENT LEARNING

This paper employs two underlying principles, namely

Markov decision process [26], [27] and inverse reinforcement

learning [14]–[16] developed by Ng’s group. A very succinct

description of the algorithm is provided here for clarity and

completeness.

A Markov decision process M = {S,A,P(sa),γ,R} consists

of the following

S Set of all possible states of the system.

A Set of actions available to the system.

P Transition probability P(s,a,s′) which gives the prob-

ability of transition to state s′ from state s by taking

action a.

R Set of rewards - This indicates the payoff from the var-

ious states of the system. The system’s overall behavior

depends on the rewards.

γ Discount factor ∈ [0,1) - This parameter controls the

relative weights of rewards acquired in near vs. distant

future.

The basic underlying assumption of Markov decision

process is that the current state and the action taken alone

determine the next state, independent of past states or actions.

For an MDP, the policy denoted as π is a prescription of

actions to be taken in given states. A policy is optimal

with respect to maximizing the cumulative discounted future

rewards, if it satisfies the Bellman optimality equation. To

describe the optimality equation, ∀s ∈ S and a ∈ A, the value

function V π and Q function Qπ have to satisfy

V π(s) = R(s)+ γΣs′
(

Psπ(s)(s
′)
)

V π(s′) (1)

Qπ(s,a) = R(s)+ γΣs′
(

Psa(s
′)
)

V π(s′) (2)

The value function and Q function represent the expected

cumulative reward for following the given policy π and a

policy π is an optimal policy π∗ for M if and only if ∀s ∈ S,

π(s) ∈ arg maxa∈AQπ(s,a) (3)

This simply states that at any given state, the action chosen

must result in the system being in the best possible next state

with respect to their calculated value.

In the inverse problem, the agent does not have direct

access to the underlying reward function, but is only shown

positive examples of how a task might be performed. The

assumption is that the demonstrator has an implicit reward

function and the demonstration is a manifestation of the op-

timal policy with respect to that reward function. The inverse

reinforcement learning problem deals with extracting the

reward function that best explains the policy demonstrated

by the expert.

We restrict ourselves to the case of S = R
2, for example,

longitude and latitude can completely specify intersections.

If we consider the state space to be 2-dimensional then

the reward function computed by the inverse reinforcement

learning algorithm has to map from R
2 −→ R. Considering

Y
 d

ire
c
tio

n

X direction

(a)

10

X direction
5

00
Y direction

5

-1

0

0.5

1

-0.5

10

R
e
w

a
rd

 m
a
g
n
it
u
d
e

(b)

Y
 d

ire
c
tio

n

X direction

(c)

Fig. 1. (a) The path demonstrated to the Turtlebot, (b) The extracted reward for the path and, (c) The optimal policy extracted from the reward function

the difficulty of optimizing over this space, a linear approx-

imation for the reward function can be used, where

R(s) = α1φ1(s)+α2φ2(s)+α3φ3(s)+ . . .αnφn(s) (4)

In [14] [16], for the linear approximation of the reward

function, R the expert’s had hand picked the feature set. This

will make it similar to existing techniques for user to input

their route preference [17]–[19], [22]. However, if no such

insight is available, a simple but impractical set of basis

functions with the same dimensionality as the number of

states can be constructed as follows. For instance, an example

basis function array for a space discretized into 2× 2 = 4

distinct states can be
(

1 0

0 0

)

,

(

0 1

0 0

)

,

(

0 0

1 0

)

and

(

0 0

0 1

)

where each matrix represent one of the basis function. This is

the simplest of basis function array which can represent any

reward function shape in 2D for the 2×2 state space. But it

is evident that with increasing number of states this will lead

to exponential increase in computation time for the inverse

algorithm. To alleviate the problem, we take inspiration from

the image processing community [25], where multivariate

orthogonal polynomials are used as basis functions to find

the image moments. One discrete orthogonal polynomial

function that has been tested with success is Legendre

polynomial of different orders. A Legendre polynomial is

given by

Pn(x) =
1

2nn!

dn

dxn

[

(x2 −1)n
]

(5)

where n denotes the order of the polynomial.

The reward function is actually a complex envelope en-

compassing the entire state space and to find the equations

governing that envelope, utilizing a set of orthogonal polyno-

mials reduces the number of variables to be optimized. The

only variables that need to be optimized are a fixed number

of coefficients of the orthogonal polynomials, regardless

of the size of the state space. The orthogonality of the

polynomial function allows to compute the coefficients for

each dimensions separately and then use tensor product to

find the value for a given (x,y) coordinate. This is evident

from the reward envelope (shown in Fig. 1(b)) found by

the modified algorithm for autonomous robot navigation.

The smooth surface of the reward function is the result

of using the weighted sum of orthogonal polynomial basis

function to approximate the original implicit reward function.

If we approximate the reward function, R with Legendre

polynomials, then R is given by

R(s) = α1φ1θ1 +α2φ1θ2 +α3φ1θ3 + . . .αn×nφnθn (6)

where n is order of Legendre polynomial and θ and φ are

the Legendre polynomials of various orders, one for each di-

mension. The αi are the parameter our inverse reinforcement

learning algorithm is trying to compute. Since expectation

is a linear function, the value function, V for the reward

function, R given by equation (6) is

V π = α1V π
1 +α2V π

2 + · · ·+αn×nV π
n×n (7)

Thus Bellman’s optimality equation (3) can be written as

E
s
′
∼Psa1

[V π(s
′
)]≥ E

s
′
∼Psa

[V π(s
′
)] (8)

for all states s and all actions a ∈ A\a1. This merely states

the Bellman equation (3) in another form. From equation (7),

we know that V π(s) is a linear combination of basis function

weighted by αi. Hence we can formulate the problem as

linear programming (LP) to find the constraints (αi).

We utilize the linear programming formulation from Ng

and et.al. work [16]

maximize ∑
s∈S0

mina∈{a2,...,an×n}{

p(E
s
′
∼Psa1

[V π(s
′
)]−E

s
′
∼Psa

[V π(s
′
)])} (9)

s.t.|αi| ≤ 1, i = 1, . . . ,n×n

The αi comes into play through (7) and the penalty

function used here is given by p(x) = x if x ≥ 0, p(x) = 2x

otherwise.

Thus, the current algorithm developed in [14] [16] and

modified to suit the tele-operated system(s) is as follows

• Step 1: Initialize with a set of basis functions. A set of

Legendre polynomial with fixed order is chosen in this

paper.

• Step 2: Calculate the value of the states using value

iteration algorithm for the expert’s policy.

• Step 3: Randomly pick a policy and add it to set of

policies. (A random policy is used to seed the algorithm)

• Step 4: Calculate the value of the states using value

iteration algorithm with each of the basis function for

all the policies in the set.

• Step 5: Maximize the weighted difference between the

expert’s policy value and the average value from the set

of policies.

• Step 6: Use the maximized weight to find a reward

function.

• Step 7: Utilize the Q-Value, find the respective policy

for the reward function, and add it to the set containing

the random initial policy.

• Step 8: Run step 4 through 7 until a reward function

satisfying the expert’s policy is obtained.

The weighted difference between expert’s policy and aver-

age value from the all other policies in the set is maximized,

in a sense we are trying to find a reward function that

maximally differentiates between expert’s policy and all

other possible policies. The extracted weight/reward function

can be utilized to find the complete policy of the expert. The

order of the polynomial is found by starting with order 2

and increasing in steps of 1 till a sufficient representation of

reward function is achieved. In our test case with 100 distinct

states in 2D space, a pair of Legendre polynomial with order

6 was sufficient to find reward function for all of the test

paths. Thus instead of a maximization problem posed over

100 coefficients, it is reduced to only 36 (6×6) coefficients.

Thus we circumvent the state space explosion problem by

utilizing orthogonal polynomials of an order much lower in

comparison to the number of distinct states in the system.

III. EXPERIMENTAL SETUP

The experimental setup for the path-planning robot consist

of a Turtlebot and a stargazer indoor GPS system. The

Turtlebot is a low cost robot kit which runs on open source

software ROS (Robot Operating System). The stargazer is a

low cost indoor GPS which works on the principle of infrared

image processing. Markers on the ceiling are read by an

infrared camera on the stargazer and analyzed on board to

provide the estimates of current position and orientation for

the Turtlebot.

A point to be noted is the data from the stargazer is prone

to noise. The same has manifested itself as random points

(a)

(b)

Fig. 2. (a) The Turtlebot platform equipped with a Stargazer indoor GPS.
(b) Turtlebot in the arena. A corner in the arena is blocked to test the ability
to adaptively re-plan.

in the reconstructed path. Also the stargazer sensor has been

mounted off-center on the Turtlebot (figure 2(a)) which has

lead to small loops in the reconstructed trajectories whenever

the Turtlebot was making turns. The work flow can be simply

stated as follows. First, a demonstration from an expert is

recorded. The state space is divided into rectangular grids and

from the recorded demonstration the state-actions pair are

interpreted. Then the modified inverse reinforcement learning

algorithm is run on the available data and once a suitable

expert policy is extracted, the algorithm is stopped and the

policy is fed back to the autonomous agent.

• The first experiment was designed to show that the

Turtlebot can acquire the human demonstrated path and

follow the same in the autonomous mode. The state

space has been defined as equal sized square on the

arena floor and for the current experiment a total of

25 states were utilized. The action for the Turtlebot are

restricted to rotate left, rotate right, move forward, move

backward and halt. Once a demonstration is recorded

the GPS data are utilized to extract the states and

the state transition in the demonstrated path. Then the

modified inverse reinforcement learning algorithm is

run and the expert’s unknown reward function and the

complete policy is calculated.

– As a next step, a corner that comes in the path

is cordoned off and the ability of the algorithm to

come up with an alternate policy which matches the

expert’s path as much as physically possible is tested.

For this step, the state transition into the blocked

corner is voided.

• The next experiment is to demonstrate a complex path

to the Turtlebot and then once a policy is extracted by

the algorithm, the Turtlebot is started from a different

start point to test the ability of the robot to still

follow the expert’s demonstrated path. This experiment

was to show the ability of the algorithm to extract a

reward function for a complex policy and also reach

the destination from a different start point and match

the expert’s policy in an intelligent way.

• The last set of experiments is done to show the ad-

vantage of utilizing the polynomial basis function. For

this, the complex path (path with maximum number of

permissible turns) is taken. The learning algorithm is

run for different number of distinct states with both

the simple basis function set (has dimensionality equal

to the number of states) and polynomial basis function

(fixed number of coefficients regardless of the number

of states). The time complexity graphs showing the

results are generated.

IV. RESULTS AND DISCUSSION

Figure 3 shows the path demonstrated by an expert to the

Turtlebot (in blue). The path followed in autonomous mode

after the policy is extracted using the inverse reinforcement

learning algorithm is similar to the demonstrated path, thus

validating that the extracted policy tries to mirror expert’s

X direction
-1.5 -1 -0.5 0 0.5 1 1.5

Y
 d

ire
ct

io
n

-1.5

-1

-0.5

0

0.5

1

1.5
Demo path
Auto mode(corner blocked)

(a)

X direction

10-1-10

Y direction

1

0.5

-0.5

1

0

R
e
w

a
rd

 m
a
g
n
it
u
d
e

(b)

Y
 d

ire
c
tio

n

X direction

(c)

Fig. 3. (a) The demonstrated path (blue) and the path followed by the Turtlebot in autonomous mode (red) when a corner in the demonstrated path is
made inaccessible, (b) The extracted reward for the demonstrated path and, (c) The optimal policy extracted from the reward function

X direction
-1.5 -1 -0.5 0 0.5 1 1.5

Y
 d

ir
e
c
ti
o
n

-1.5

-1

-0.5

0

0.5

1

1.5
Demo mode

Auto mode - Different start point

(a)

1

X direction
0

-1
-1Y direction

0

1

1.5

-0.5

0

0.5

1

R
e
w

a
rd

 m
a
g
n
it
u
d
e

(b)

Y
 d

ire
c
tio

n

X direction

(c)

Fig. 4. (a) The path demonstrated and followed from a different starting point by the Turtlebot, (b) The extracted reward for the path and, (c) The optimal
policy extracted from the reward function

path. The arrow in the policy graph corresponds to the

desired direction of movement as extracted by the algorithm.

Figure 3 shows the ability of the robot to maneuver the

cordoned off corner and follow the expert’s path as much

as physically possible (shown in red).

Figure 4 shows the ability of the robot to follow even

a complex path from a different starting point. It may be

noted that the learned policy tries to keep to as much of the

demonstrated path as possible. In other words, even from

a different starting point, the robot joins the demonstrated

path as quickly as it can without violating any physical

constraints.

Figure 5 shows required computation times for different

number of distinct states. Figure 5(a) shows that the average

time to run the complete learning algorithm with the simple

basis function increases exponential with the number of dis-

tinct state. Whereas the average run time with the polynomial

basis function is almost linear with the number of distinct

state. This is result of constant number of variables to be

optimized in case of the polynomial basis function compared

to increasing number of optimization variables in case of

the simple basis function. The linear increase in polynomial

basis function case is the result of running value iteration for

increased number of states. Figure 5(b) shows the average

number of iterations required for the algorithm to find the

expert’s implicit reward function. Figure 5(c) depicts the time

taken by just the optimization routine to find the solution

for given set. Since the number of optimization variables is

constant in the polynomial basis function case, the optimiza-

tion routine time does not change with increasing number

of distinct states. But, in the case of simple basis function,

the optimization routine time increases exponentially with

number of distinct states and thus results in more run time

for the entire learning algorithm. Time is a crucial factor

when running real time systems and the graphs prove that

it is advantageous to approximate the reward function using

polynomial basis functions.

V. CONCLUSIONS

Thus the expert/user can provide a demonstration to the

agent, which is more natural than specifying the user pref-

erences. From that demonstration the underlying implicit

reward function for the user preferences can be extracted

in a timely manner and utilized to autonomously run the

agent. The mental load on the user to explicitly specify their

preferences over the entire state space is removed and the

user can interact with the AI and provide the necessary input

in an intuitive and easy manner. The path planning with

the Turtlebot is a proof of concept experiment to show the

viability of the algorithm to work with larger state space.

From a broader perspective, the results prove that this

research is an important step towards better human-robot

collaboration. If the robot has the ability to learn from a

human demonstration, then the human can start to feel that

the robot is like a coworker. A robot that has learning from

demonstration capability can help in forgoing the need to

Number of distinct states
20 40 60 80 100

A
vg

. a
lg

or
ith

m
 r

un
 ti

m
e

(s
ec

)

0

200

400

600

800

1000

1200
Simple basis function
Polynomial basis function

(a)

Number of distinct states
20 40 60 80 100

A
vg

. #
 o

f i
te

ra
tio

ns

0

5

10

15

20

25

Simple basis function
Polynomial basis function

(b)

Number of distinct states
20 40 60 80 100

A
vg

. O
pt

im
iz

at
io

n
tim

e
(s

ec
)

0.8

1

1.2

1.4

1.6

1.8

2

2.2
Simple basis function
Polynomial basis function

(c)

Fig. 5. (a) Number of distinct states vs. average time taken for the learning algorithm to find the expert’s reward function, (b) Average number of iterations
taken by the algorithm to find the expert’s reward function, (c) The average time taken for the optimizer to find a solution

learn a special language to code a new task in manufacturing

industry. An intelligent rescue robot will be able to plan

according to the situation from previously learned plans. This

will reduce the time to complete the mission, as there will

be no need to plan from scratch. A robot that is capable

of reporting the relevant data from a failure can reduce the

time to debug. This is essentially a flexible communication

framework. Additionally, if the natural language processing

engine is included into the framework, it can bring the

human-robot collaboration experience to the next level.

ACKNOWLEDGMENT

Subhadeep Chakraborty thanks the Startup funds provided

by the Mechanical Aerospace and Biomedical Engineering

Department at the University of Tennessee.

REFERENCES

[1] S. Skiena, “Dijkstra’s algorithm,” Implementing Discrete Mathematics:

Combinatorics and Graph Theory with Mathematica, Reading, MA:

Addison-Wesley, pp. 225–227, 1990.
[2] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959. [Online].
Available: http://dx.doi.org/10.1007/BF01386390

[3] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” Systems Science and Cyber-

netics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, July 1968.
[4] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering route

planning algorithms,” in Algorithmics of large and complex networks.
Springer, 2009, pp. 117–139.

[5] H.-P. Kriegel, M. Renz, and M. Schubert, “Route skyline queries:
A multi-preference path planning approach,” in Data Engineering

(ICDE), 2010 IEEE 26th International Conference on. IEEE, 2010,
pp. 261–272.

[6] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous

systems, vol. 57, no. 5, pp. 469–483, 2009.
[7] A. M. Segre and G. DeJong, “Explanation-based manipulator learning:

Acquisition of planning ability through observation,” in Robotics and

Automation. Proceedings. 1985 IEEE International Conference on,
vol. 2. IEEE, 1985, pp. 555–560.

[8] P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation learning of
positional and force skills demonstrated via kinesthetic teaching and
haptic input,” Advanced Robotics, vol. 25, no. 5, pp. 581–603, 2011.

[9] P. Evrard, E. Gribovskaya, S. Calinon, A. Billard, and A. Kheddar,
“Teaching physical collaborative tasks: Object-lifting case study with
a humanoid,” in Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-

RAS International Conference on. IEEE, 2009, pp. 399–404.
[10] S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,”

Robotics, IEEE Transactions on, vol. 30, no. 5, pp. 1049–1065, 2014.

[11] S. Kim and A. Billard, “Estimating the non-linear dynamics of free-
flying objects,” Robotics and Autonomous Systems, vol. 60, no. 9, pp.
1108–1122, 2012.

[12] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” Journal of Artificial Intelligence Re-

search, vol. 34, no. 1, p. 1, 2009.

[13] ——, “Multi-thresholded approach to demonstration selection for
interactive robot learning,” in Human-Robot Interaction (HRI), 2008

3rd ACM/IEEE International Conference on. IEEE, 2008, pp. 225–
232.

[14] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international

conference on Machine learning. ACM, 2004, p. 1.

[15] ——, “Exploration and apprenticeship learning in reinforcement learn-
ing,” in Proceedings of the 22nd international conference on Machine

learning. ACM, 2005, pp. 1–8.

[16] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning.” in Icml, 2000, pp. 663–670.

[17] B. Kim and J. Pineau, “Socially adaptive path planning in human envi-
ronments using inverse reinforcement learning,” International Journal

of Social Robotics, pp. 1–16, 2015.

[18] ——, “Human-like navigation: Socially adaptive path planning in
dynamic environments,” in RSS 2013 Workshop on Inverse Optimal

Control and Robotic Learning from Demonstration, 2013.

[19] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in Robotics and Automation (ICRA),

2010 IEEE International Conference on. IEEE, 2010, pp. 981–986.

[20] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement learning
algorithms and features for robot navigation in crowds: an experimen-
tal comparison,” in Intelligent Robots and Systems (IROS 2014), 2014

IEEE/RSJ International Conference on. IEEE, 2014, pp. 1341–1346.

[21] K. Shiarlis, J. Messias, M. van Someren, and S. Whiteson, “Inverse
reinforcement learning from failure,” in RSS 2015: Proceedings of

the 2015 Robotics: Science and Systems Conference, Workshop on

Learning from Demonstration: Inverse Optimal Control, Reinforce-

ment Learning, and Lifelong Learning, July 2015.

[22] Q. P. Nguyen, B. K. H. Low, and P. Jaillet, “Inverse reinforcement
learning with locally consistent reward functions,” in Advances in

Neural Information Processing Systems, 2015, pp. 1738–1746.

[23] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in AAAI, 2008, pp. 1433–
1438.

[24] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th

International Conference on machine learning (ICML-11), 2011, pp.
465–472.

[25] H. Zhu, “Image representation using separable two-dimensional
continuous and discrete orthogonal moments,” Pattern Recognition,
vol. 45, no. 4, pp. 1540–1558, 2012.

[26] M. L. Puterman, Markov decision processes: discrete stochastic dy-

namic programming. John Wiley & Sons, 2014.

[27] R. Bellman, “The theory of dynamic programming,” DTIC Document,
Tech. Rep., 1954.

