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ABSTRACT 1 

Recent accounts of large-scale cortical organisation suggest that the default mode network 2 

(DMN) is positioned at the top of a principal gradient, reflecting the separation between 3 

heteromodal and unimodal sensory-motor regions in patterns of connectivity and in geodesic 4 

distance along the cortical surface (Margulies et al., 2016). This isolation of DMN from external 5 

inputs might allow the integration of disparate sources of information that can constrain 6 

subsequent cognition. We tested this hypothesis by manipulating the degree to which 7 

semantic decisions for ambiguous words (e.g. JAM) were constrained by preceding visual cues 8 

depicting relevant spatial contexts (e.g. SUPERMARKET or ROAD) and/or facial emotions (e.g. HAPPY 9 

vs. FRUSTRATED). We contrasted (i) the effects of a single preceding cue with a no-cue condition 10 

employing scrambled images, and (ii) convergent spatial and emotion cues with single cues. 11 

Single cues elicited stronger activation in the multiple demand network relative to no cues, 12 

consistent with the requirement to maintain information in working memory. The availability 13 

of two convergent cues elicited stronger activation within DMN regions (bilateral angular 14 

gyrus, middle temporal gyrus, medial prefrontal cortex, and posterior cingulate), even though 15 

behavioural performance was unchanged by cueing – consequently task difficulty is unlikely to 16 

account for the observed differences in brain activation. A regions-of-interest analysis along 17 

the unimodal-to-heteromodal principal gradient revealed maximal activation for the 18 

convergent cue condition at the heteromodal end, corresponding to the DMN. Our findings 19 

are consistent with the view that regions of DMN support states of information integration 20 

that constrain ongoing cognition and provide a framework for understanding the location of 21 

these effects at the heteromodal end of the principal gradient.  22 

Keywords: default mode, integration, principal gradient, semantics, cueing 23 

24 
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1. INTRODUCTION 25 

The context in which we encounter concepts in our daily life influences the manner in 26 

which we think about them. Hearing the word jam at the kitchen table, for example, one might 27 

activate a number of concepts related to food, its taste and emotional valence. The same word 28 

jam on the traffic news, however, might bring up very different thoughts and emotions. 29 

Although studies have manipulated sentence contexts to constrain the interpretation of 30 

ambiguous words (e.g. Noonan et al., 2010; Rodd et al., 2016; Rodd et al., 2005; Rodd et al., 31 

2004; Rodd et al., 2013; Vitello & Rodd, 2015), cues beyond language have rarely been 32 

employed (for an exception see Lanzoni et al., 2019). Consequently, relatively little is known 33 

about how non-verbal cues, such as spatial location and affect, constrain meaning retrieval or 34 

the neural mechanisms that underlie this effect. The current study addressed this issue by 35 

manipulating the availability of spatial and facial emotion cues prior to semantic decisions 36 

about ambiguous words.  37 

Contemporary models of semantic cognition suggest that retrieval is supported by a 38 

dynamic interplay of conceptual knowledge with retrieval processes (Hoffman et al., 2018; 39 

Jefferies, 2013; Lambon Ralph et al., 2016). Conceptual representations are rich and comprise 40 

features from multiple sensory modalities (e.g. an apple is a sweet fruit, with a rounded shape 41 

and a smooth hard surface which is often red, yellow or green). According to the Hub and Spoke 42 

model of conceptual representation, the ventrolateral anterior temporal lobe (ATL) ‘hub’ 43 

integrates features encoded in sensory-motor cortical ‘spokes’ to generate coherent 44 

representations – e.g. our concept 'apple' (Chiou & Lambon Ralph, 2019; Patterson et al., 2007; 45 

Lambon Ralph et al., 2016). However, hub and spoke representations are not sufficient to 46 

support flexible semantic cognition; we also dynamically vary the aspects of knowledge that 47 

we retrieve about concepts depending on the context. Semantic processing may draw on 48 

different large-scale networks depending on whether retrieval is usefully constrained or 49 

miscued by the context.  50 

In line with this view, semantic sites have been shown to overlap with distinct large-51 

scale networks that are recruited differentially depending on the task demands. When non-52 

dominant associations are required by a task, or the prior context is unhelpful, a ‘semantic 53 

control network’ is recruited (including left inferior frontal gyrus and posterior middle temporal 54 

gyrus), which may shape retrieval to suit the circumstances (Badre & Wagner, 2005, 2006; 55 
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Davey et al., 2016; Hallam et al., 2016; Krieger-Redwood et al., 2015; Noonan et al., 2013; 56 

Whitney et al., 2011). In contrast, other key sites for semantic cognition, such as lateral ATL 57 

and angular gyrus (AG), have patterns of intrinsic connectivity that are partially overlapping 58 

with aspects of the Default Mode Network (DMN) (Davey et al., 2016; Humphreys & Lambon 59 

Ralph, 2014; Jackson et al., 2016; Seghier et al., 2010). The role of DMN regions in semantic 60 

cognition remains controversial: a meta-analysis by Binder and colleagues (2009) found peak 61 

activation for semantic tasks in AG, while other researchers have characterized AG as a task-62 

negative region which deactivates across semantic and non-semantic tasks (Humphreys et al., 63 

2015; Humphreys & Lambon Ralph, 2014; Mollo et al., 2017). DMN regions, including AG, 64 

typically show anti-correlation with task-positive regions within the multiple demand network 65 

(MDN; Blank et al., 2014; Davey et al., 2016; Fox et al., 2005). Nevertheless, TMS studies have 66 

shown that AG plays a critical role in the efficient retrieval of dominant aspects of knowledge 67 

(Davey et al., 2015). There are also demonstrations of a role for the DMN in semantic retrieval 68 

even when tasks are relatively hard. For example, Murphy et al. (2018) found greater DMN 69 

recruitment both when participants made judgements based on their memory of preceding 70 

trials (as opposed to stimuli present on the screen), and when the decisions involved semantic 71 

categories as opposed to perceptual features. 72 

Recent studies have suggested that semantic regions allied to DMN, including AG, 73 

support the combination of concepts into meaningful and more complex representations (e.g. 74 

Price et al., 2015; for a review see Pylkkänen, 2019). These regions show a stronger response 75 

when coherent conceptual combinations or heteromodal features are presented (Bemis & 76 

Pylkkänen, 2011; Price et al., 2015; 2016; Pylkkänen, 2019; Teige et al., 2018; 2019). The 77 

suggested critical role of the DMN in conceptual integration fits well with the observation that 78 

the DMN lies at the top of a cortical hierarchy. Through decomposition of resting-state 79 

connectivity, Margulies et al. (2016) identified a principal gradient of macroscale organization, 80 

anchored at one end by sensory regions and at the other end by heteromodal cortex, 81 

corresponding to the DMN. This separation of DMN from unimodal cortex in intrinsic 82 

connectivity relates to geodesic distance – DMN sites are located relatively far away from 83 

primary sensory-motor cortex along the cortical surface (Margulies et al., 2016). Greater 84 

distance along the gradient might allow the brain to support forms of cognition that rely on 85 

memory, as opposed to information in the external environment (Murphy et al., 2019). 86 
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Distance might also support increasing levels of abstraction from sensory-motor features, 87 

allowing the formation of heteromodal conceptual representations from the integration of 88 

these diverse sources of information (Buckner & Krienen, 2013; Mesulam, 1998; Patterson et 89 

al., 2007; Smallwood, 2013). In line with this idea, default mode regions might show a greater 90 

response in semantic tasks when multiple aspects of a concept are activated during retrieval. 91 

In the present study, we tested the view that semantically-relevant regions within the 92 

DMN, in particular AG, contribute to conceptual integration. We adopted a paradigm recently 93 

developed to assess the impact of non-verbal cues in patients with semantic aphasia, who have 94 

deficits of semantic control (Lanzoni et al., 2019). Participants were shown 0, 1 or 2 cues that 95 

were relevant to the subsequent interpretation of an ambiguous word: they saw photographs 96 

of spatial contexts, facial emotions or scrambled meaningless versions of these cues. The cues 97 

alone were not sufficient to prime the concepts and did not influence behavioural performance 98 

(for example, SUPERMARKET and HAPPY FACE can be linked in many ways and do not strongly 99 

anticipate JAM AS FOOD). Nevertheless, the cues allowed the subsequent semantic decisions to 100 

unfold in a conceptually-rich context. If semantic integration occurs in the DMN, comparing 101 

semantic decisions in the context of multiple convergent cues as opposed to single cues should 102 

reveal increased activation within this network and in particular in AG – even though semantic 103 

decisions to ambiguous words are relatively cognitively effortful. In contrast, brain regions that 104 

selectively encode and maintain semantic cue information prior to integration should be 105 

spatially distinct from DMN: the neural basis of cue maintenance might be maximally revealed 106 

by a contrast of single cue over no cue trials (as this contrasts situations where there are 107 

working memory demands versus no requirement to maintain information). MDN is a 108 

candidate network for attentional and working memory components of the cueing task, since 109 

this network is associated with executively demanding aspects of cognition, including working 110 

memory and the maintenance of task rules, across domains (e.g. Owen et al., 2005; Naghavi & 111 

Nyberg, 2005; Dosenbach et al., 2006). For example, a study by Dumontheil et al. (2010) found 112 

activation in several parts of MDN during the presentation of task instructions, which might 113 

reflect the creation of a task-model or framework for ongoing cognition.  114 

Additionally, we predicted that the effect of conceptual integration but not cue load 115 

would be located at the heteromodal end of the principal gradient (Margulies et al., 2016), 116 

providing a framework for understanding why information integration effects occur where 117 
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they do within the cortex: these effects should be greatest at the DMN apex of the gradient, 118 

which is maximally separated (both in terms of physical distance and in connectivity terms) 119 

from unimodal input or ‘spoke’ regions associated with processing specific features. In contrast 120 

to our standard whole-brain cluster-corrected contrasts, the focus of this analysis was not on 121 

the functional contribution of specific regions, such as AG, to cue integration, but instead on 122 

whole-brain patterns that include similar functional transitions between heteromodal and 123 

unimodal cortex in distant cortical regions.  124 

 125 

2. MATERIALS AND METHODS 126 

2.1 Participants 127 

Twenty-seven healthy right-handed native English-speaking participants with normal or 128 

corrected-to-normal vision were recruited from the University of York (9 males, mean age 21.5, 129 

SD 2.9, range 19-30). Participants received monetary compensation or course credits. One 130 

dataset was excluded due to technical problems that resulted in no behavioural responses 131 

being recorded, leaving 26 subjects in the final sample. In a subsequent analysis we examined 132 

resting-state fMRI data from 86 participants (22 males; mean age 20.3, range 18–32 years), 133 

twelve of whom were also in the main sample. The research was approved by the York 134 

Neuroimaging Centre Ethics Committee and participants provided written informed consent. 135 

2.2 Materials 136 

The cueing paradigm, adapted from Lanzoni et al. (2019), presented pictures of facial 137 

expressions and spatial locations prior to semantic judgements about ambiguous words. The 138 

stimuli are available on the Open Science Framework (https://osf.io/wp6a7/)1. Thirty English 139 

homonyms were selected from the Free Association Norms of Twilley et al. (1994), and the 140 

Gawlick-Grender & Woltz norms (1994). We chose items where the different interpretations 141 

were associated with different facial expressions (e.g. JAM with traffic is associated with 142 

frustration while JAM with strawberry is associated with pleasure). We also chose items where 143 

different interpretations were associated with different locations (e.g. a motorway for traffic 144 

JAM and a supermarket for strawberry JAM). We then generated four target words for each 145 

                                                           
1 The images of spatial locations are not included in the collection due to potential copyright restrictions. 

https://osf.io/wp6a7/
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probe, two for each interpretation. This resulted in 120 probe-target pairs. For instance, the 146 

probe JAM appeared in four trials, twice paired with a target referring to traffic (JAM-horn or 147 

JAM-delay) and twice paired with a target referring to the alternative interpretation (JAM-spoon 148 

or JAM-bread). Although we did not manipulate the difference in frequency between the two 149 

alternative meanings, one interpretation of the homonym was dominant over the other (i.e., 150 

a larger proportion of subjects generated words linked to that interpretation, as reported in 151 

Twilley et al., 1994). Dominance was controlled by counterbalancing the assignment of each 152 

interpretation to the different experimental conditions across participants. For each 153 

combination of probes and targets, two unrelated distractors were selected. Latent Semantic 154 

Analysis (as implemented in lsa.colorado.edu) was used to calculate the similarity in semantic 155 

space between the probe and the targets vs. probe and distractors (parameters used: space – 156 

General reading up to 1st year college, comparison type - term to term, number of factors – 157 

maximum). This confirmed that the strength of the relationship between probe and distractor 158 

(M = .08, SD = .04) was significantly weaker compared to the association between probe and 159 

target (M = .22, SD = .10; t (29) = 7.17, p < .001). Distractors and target words were matched 160 

for lexical frequency (SUBTLEX-UK database, van Heuven et al., 2014; t = .89, p = .380), word 161 

length (t = -1.44, p = .154), and concreteness (Brysbaert et al., 2014; t = .58, p = .564).  162 

Pictures of facial emotional expressions and spatial locations were used to prime the 163 

relevant meaning of the homonym. Each picture was used only once across the entire 164 

experiment, making it impossible for participants to predict the following probe word on the 165 

basis of the cue.  Images of facial expressions were chosen from the Radboud Faces Database 166 

(Langner et al., 2010) and included eight basic emotions: happy, angry, sad, disgusted, 167 

contemptuous, surprised, neutral, fearful. In selecting the affect cues we ensured that the 168 

same face from the Radboud Database would not be presented in the same emotional 169 

expression in other trials. Therefore, for trials that required the same emotional expression we 170 

chose different actors. Pictures of spatial contexts were downloaded from Google images.  171 

The emotion and location cues could appear together in the same trial (2 cues 172 

condition), they could be presented alone (1 cue affect or location conditions), in which case 173 

they were paired with one meaningless scrambled image, or two scrambled images were 174 

provided (no-cue condition). Images were converted to greyscale, matched for luminance and 175 

scrambled using the SHINE toolbox (Willenbockel et al., 2010). Images were also brought to a 176 

http://lsa.colorado.edu/
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fixed dimension (600 x 400 pixels for location and 260 x 400 for affect cues) using Matlab (The 177 

MathWorks Inc., Natick, MA, US). Figure 1B shows the 4 cue conditions, which were used to 178 

examine three levels of constraint on semantic retrieval. The location of the emotion and 179 

location cues (to the left or right of the screen) was counterbalanced within each run. Finally, 180 

to ensure that people could not make their decisions based only on the cue, in each trial one 181 

of the distractors was related to either the emotional cue or the visuo-spatial cue presented 182 

before the semantic task (in Figure 1A, the distractor ‘bag’ is related to the location cue – 183 

supermarket). The assignment of the emotion-related and location-related distractors to the 184 

different conditions was counterbalanced within participants, such that each probe appeared 185 

twice with an emotion-related distractor and twice with a location-related distractor. 186 

2.3 Procedure 187 

The MRI session included a high-resolution structural scan, a FLAIR sequence and four 188 

functional runs of approximately nine minutes each. Each trial started with a fixation cross of 189 

random duration between 1500 and 3000ms (Figure 1A). Two cue pictures or scrambled cues 190 

were then presented for 1s, followed by another jittered inter-stimulus interval (ISI: 1500 – 191 

3000ms). Participants were asked to pay attention to the cues, and they were told that these 192 

would be helpful images on some trials, and meaningless images on other trials. Next, four 193 

words appeared on screen – a probe word at the top and three response options underneath, 194 

marking the start of the semantic task. Participants were asked to decide which of the three 195 

options had the strongest semantic relationship to the probe, and they were encouraged to 196 

make the semantic decision based on the words and not on the previously seen images. 197 

Although the time to respond was fixed (4s), participants were asked to respond as quickly and 198 

accurately as possible. Each of the 30 probes was presented once within each run, resulting in 199 

30 semantic trials. The order of presentation was randomized and stimuli were 200 

counterbalanced so that, across all participants, each probe-target combination appeared in 201 

all four cue conditions. Each run had a total of eight non-semantic trials, in which words were 202 

replaced with strings of the letter ‘X’ matched in length to the words. Here the task was to 203 

press any key. The scrambled images used in non-semantic trials were created equally often 204 

from face and location photos. Two null trials were also included to improve task modelling. 205 

During null trials participants saw a blank screen for the same duration of 4 seconds. 206 
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 207 

Figure 1. A. After an initial fixation cross (1500 – 3000 ms), participants were presented with cue images for 1000 208 

ms, before moving to a blank screen (1500 – 3000 ms). Following that, a probe word was presented above a target 209 

and two unrelated distracters, triggering the onset of the decision-making period. The probe and choices 210 

remained visible for a fixed interval of 4000 ms. B. The four levels of the variable cue are shown.  211 

2.4 fMRI acquisition  212 

Whole brain fMRI data acquisition was performed using a GE 3 Tesla HDx Excite MRI scanner. 213 

Structural MRI data acquisition in all participants was based on a T1-weighted 3D fast spoiled 214 

gradient echo sequence (TR = 7.8ms, TE = minimum full, flip-angle = 20°, matrix size = 256x256, 215 

176 slices, voxel size = 1.13×1.13×1 mm). A gradient-echo EPI sequence was used to collect 216 

functional data from 60 interleaved bottom-up axial slices aligned with the temporal lobe (TR 217 

= 3s, TE = 18.9 ms, FOV = 192x192x180 mm, matrix size = 64x64, slice thickness = 3mm, slice-218 

gap = 3mm, voxel size = 3x3x3 mm3, flip-angle = 90°). An intermediary FLAIR scan with the same 219 

orientation as the functional scans was collected to improve the co-registration between 220 

subject-specific structural and functional scans. 221 

2.5 Data preprocessing 222 

2.5.1 Behavioural pre-processing and analysis 223 

We examined accuracy, median response time (RT), RT variability and response efficiency in 224 

separate repeated-measures ANOVAs to characterise differences in performance across the 4 225 

semantic conditions (0 cues, 1 cue affect, 1 cue location, 2 cues: affect and location). One 226 

keypress was not recorded for two participants and these missing RT values were replaced with 227 

the group median for that condition. Response efficiency scores were used to account for any 228 

speed-accuracy trade-offs: the median RT for correct responses for each subject in each 229 
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condition was divided by the mean accuracy in the same condition (Townsend & Ashby, 1983). 230 

We also examined trial-to-trial variability, using the standard deviation of RT for each 231 

participant in each condition.  232 

2.5.2 MRI data pre-processing 233 

FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 6.0, part 234 

of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Registration of the high resolution 235 

structural to standard space (Montreal Neurological Institute – MNI) was carried out using 236 

FLIRT (Jenkinson et al., 2002; Jenkinson & Smith, 2001). Pre-processing of the functional image 237 

included motion correction using MCFLIRT (Jenkinson et al., 2002), slice-timing correction 238 

using Fourier-space time-series phase-shifting (interleaved), non-brain removal using BET 239 

(Smith, 2002), spatial smoothing using a Gaussian kernel of FWHM 5mm, grand-mean intensity 240 

normalisation of the entire 4D dataset by a single multiplicative factor, and high-pass temporal 241 

filtering (Gaussian-weighted least-squares straight line fitting, with sigma=50.0s).  242 

2.6 Statistical modelling 243 

Pre-processed time series were modelled using a general linear model using FILM correcting 244 

for local autocorrelation (Woolrich et al., 2001). We used an event-related design. We built 245 

two separate models, a semantic decision model to look for brain changes during semantic 246 

decisions following different levels of cueing, and a cue model to identify brain regions that 247 

responded to the presentation of the cues. Our key focus was on the semantic decision model, 248 

since this established whether specific networks or gradient patterns were associated with 249 

making semantic decisions in the context of single or convergent cues. The semantic decision 250 

model included 8 EVs: correct semantic decisions following each of the 4 experimental 251 

conditions (0 cues, 1 cue affect, 1 cue location, 2 cues), non-semantic trials where strings of 252 

“Xs” were presented, remaining time in the semantic trials after making a decision before the 253 

start of a new trial, cue presentation period (combining all the cue presentation events, 254 

irrespective of the cue condition), and incorrect semantic trials. Given that this model revealed 255 

two distinct networks associated with the maintenance of single cues as opposed to no cues, 256 

and the convergence of multiple cues vs. a single cue, we then elected to examine the response 257 

during cue presentation in a second stage of the analysis. The cue model included 6 Explanatory 258 

Variables (EVs) corresponding to the 4 cue conditions (0 cue condition containing scrambled 259 
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images, 1 face cue + scrambled image, 1 location cue + scrambled image, 2 cues: face and 260 

location), the semantic task, and the non-semantic task. The cue model established whether 261 

MDN regions responding to one > no cues showed load-dependent effects during cue 262 

encoding, consistent with increasing working memory demands of cue maintenance. However, 263 

it is important to acknowledge that the study was not designed to examine the cue phase in 264 

this fashion, and there are limitations of this exploratory analysis – in particular, the study did 265 

not de-confound the order of the cue presentation and semantic decision phases, as cues were 266 

always followed by the semantic task (albeit separated by a jittered interval; see limitations in 267 

Discussion). All regressors were modelled using a variable epoch model, with the appearance 268 

of the words (or the cue images, for the cue model) as the start of the event and the response 269 

time (or the duration of the cue presentation) as the duration of the event. Convolution of the 270 

hemodynamic response was achieved using a Gamma function (phase = 0, SD = 3, mean = 6). 271 

Temporal derivatives were added to each regressor. Nuisance regressors included standard + 272 

extended motion parameters. Absolute framewise displacement ranged from 0.05 mm to 0.64, 273 

with a mean value of 0.21 mm across the 4 runs.  274 

We then averaged contrast estimates over the four runs within each subject using a fixed 275 

effects model, by forcing the random effects variance to zero in FLAME (FMRIB's Local Analysis 276 

of Mixed Effects) (Beckmann et al., 2003; Woolrich, 2008; Woolrich et al., 2004). The group 277 

analysis was carried out using FLAME (FMRIB's Local Analysis of Mixed Effects) stage 1 278 

(Beckmann et al., 2003; Woolrich, 2008; Woolrich et al., 2004). Z (Gaussianised T/F) statistic 279 

images were thresholded using clusters determined by z > 3.1 and a (corrected) cluster 280 

significance threshold of p = 0.05 (Worsley, 2001). Our analysis focused on the comparison 281 

between semantic decisions which followed different levels of cue: 2 cues > 1 cue (collapsing 282 

across emotion and location cues) and 1 cue > 0 cues. 283 

Cognitive decoding of the main contrasts of interest was performed in Neurosynth, an 284 

automated meta-analysis tool (Yarkoni et al., 2011). Unthresholded z maps were uploaded to 285 

Neurosynth to obtain psychological terms associated with the patterns of activation in our 286 

results. Where multiple terms had the same meaning (e.g. default, default mode, DMN, 287 

network DMN, default network), only the word with the highest correlation value was retained. 288 

This analysis provides additional evidence about the functional role of the regions within 289 
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different maps, by comparing the results to previous studies which have reported similar 290 

patterns of activation. 291 

Finally, we wanted to examine whether the observed pattern of BOLD response in DMN 292 

regions reflected the macroscale cortical organization captured by the principal gradient 293 

(Margulies et al., 2016). In line with previous studies by our group (Murphy et al., 2018, 2019), 294 

this analysis leverages the explanatory power of the unimodal to heteromodal gradient to 295 

account for differences between experimental conditions. Consistently with our predictions of 296 

greater DMN recruitment during information integration, we expected to observe a higher 297 

response in regions towards the heteromodal end of the gradient in the 2>1 contrast. Decile 298 

bins along the gradient were calculated using the methods outlined by Margulies et al. (2016). 299 

The original gradient map provided values from 0 to 100 for each voxel in the brain (0 = 300 

unimodal end; 100 = DMN). This map was then divided into ten-percentile bins: all voxels with 301 

values 0–10 were assigned to bin1; voxels with values 11–20 to bin 2, etc., yielding 10 bins in 302 

total. The total number of voxels in each bin was near-identical (each contained 6133 to 6135 303 

voxels). This analysis provides unique insights by focusing on whole-brain patterns associated 304 

with particular aspects of cued semantic retrieval, as opposed to the role of specific brain 305 

regions. The analysis can establish whether peaks associated with cue integration across the 306 

cortex are located at the apex of the gradient from heteromodal to unimodal processing, in 307 

line with the expectation that heteromodal cortex supports information convergence. 308 

 309 

3. RESULTS 310 

3.1 Behavioural results 311 

A repeated measures ANOVA examining response efficiency revealed no significant differences 312 

across conditions [F(3,75) = .62, p = .605, η2 = .02], indicating that semantic decisions following 313 

two cues were not easier than trials with less contextual support (one cue or no cue). The 314 

means and standard error for each condition are provided in Figure S1 and Table S1 315 

(Supplementary Materials). There were also no significant differences between conditions in 316 

accuracy [F(3,75) = .14, p = .939, η2 = .01], median response time [F(3,75) = .95, p = .420, η2 = 317 

.04] or response time variability [F(3,75) = 1.26, p = .296, η2 = .05]. All statistical values are 318 

provided in Table S2. 319 
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3.2 fMRI results 320 

First, we report the whole-brain univariate results for models examining (i) how the BOLD 321 

response during semantic decision-making changes as a consequence of cues (semantic 322 

decision model) and (ii) the response to cue presentation (cue model). The coordinates for 323 

cluster peaks are reported in Table S3 (Supplementary Materials) and statistical maps are 324 

available in Neurovault (https://neurovault.org/collections/6198/). Next, to test one account of 325 

the response to single cues vs. no cues during semantic decision-making, we present a region 326 

of interest (ROI) analysis examining the response to different numbers of cues during cue 327 

presentation, in regions defined by the semantic decision model. This exploratory analysis 328 

establishes whether these regions behave in a load-dependent manner during cue encoding. 329 

Finally, we examine whether integration effects in DMN regions are captured by a macroscale 330 

gradient of cortical organization, using a series of ROIs positioned from the heteromodal to the 331 

unimodal end of this gradient. Figures were created using BrainNet Viewer (Xia et a., 2013; 332 

http://www.nitrc.org/projects/bnv/) and Surf Ice (https://www.nitrc.org/projects/surfice/). 333 

3.2.1 Whole-brain results 334 

Semantic decision model 335 

Figure 2A shows the contrast between uncued semantic decisions and responses to letter 336 

strings (also uncued), while Figure 3 shows the response to different cue contrasts (1 cue vs. 0 337 

cues; 2 cues vs. 1 cue). The supplementary materials provide contrasts between semantic and 338 

letter string trials for each of the cue conditions separately (Figure S3). These maps show a 339 

similar semantic response across conditions, which resembles the contrast of 0 cues over letter 340 

strings.   341 

The contrast between semantic decisions without cues and non-semantic trials revealed 342 

activation in brain areas previously associated with semantic cognition (in studies that largely 343 

did not employ cues; e.g. Binder et al., 2009; Noonan et al., 2013; Seghier et al., 2004; Bright 344 

et al., 2004; Gold et al., 2005; Chee et al., 2000; for reviews see Lambon Ralph et al., 2016; 345 

Jefferies, 2013; Hoffman et al., 2018), in left-hemisphere semantic areas such as inferior frontal 346 

gyrus and posterior temporal gyrus, as well as in medial temporal lobes, medial prefrontal and 347 

posterior cingulate cortex (Figure 2A).  348 

https://neurovault.org/collections/6198/
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 349 

Figure 2. A. Basic effect of uncued semantic decision (semantic no cue > letter strings at decision time period). B. 350 

Basic effect of cue presentation (2 cues + 1 cue > 0 cue at cue time period). Coordinates of cluster peaks for these 351 

basic comparisons are reported in Table S3. 352 

We then explored cueing effects by contrasting semantic decisions in the presence of different 353 

levels of constraint. The contrast of semantic decisions following 1 cue > 0 cues identified 354 

clusters in task-positive regions overlapping with the MDN (Duncan, 2010), consistent with the 355 

cognitive demands of maintaining cues. We found recruitment of inferior and middle frontal 356 

gyrus (with the peak in inferior frontal sulcus), precentral gyrus, bilateral paracingulate gyrus 357 

and pre-supplementary motor area, temporo-occipital cortex and visual cortex. Interestingly, 358 

the effect of multiple cues compared with a single cue (2>1) did not elicit stronger activation 359 

within these regions, even though the amount of information to be maintained was increased. 360 

Instead, this contrast elicited activation in regions overlapping with the DMN, including in 361 

bilateral angular gyrus/lateral occipital cortex, middle temporal gyrus, medial prefrontal 362 

cortex, posterior cingulate cortex, and left middle frontal gyrus. The thresholded maps for the 363 

two contrasts can be found in Figure 3 (top panel). Parameter estimates for the three 364 

conditions over the implicit baseline were extracted in both the 1>0 cue and 2>1 cue regions 365 

(see Supplementary Figure S4). Overall, 1>0 regions showed task-related activation (with more 366 

activation when cues had to be maintained in working memory, compared with the no cue 367 

condition) while 2>1 regions exhibited task-related deactivation (with less deactivation when 368 

people made semantic decisions following 2 convergent cues compared with 0 or 1 cue).  369 
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We examined the overlap of the contrast maps with published maps of the MDN (Duncan, 370 

2010) and DMN (Yeo et al., 2011; Figure 3 - bottom). Consistent with the hypothesized role of 371 

DMN in semantic integration, 36.2% of the total voxels in the 2>1 cue map overlapped with 372 

the DMN, while only 1% of voxels overlapped with MDN. For the 1>0 cue map, the opposite 373 

pattern was observed, with 31.8% of total voxels overlapping with MDN and only 2.4 % with 374 

DMN. We submitted the unthresholded z maps for the 2>1 and 1>0 cue contrasts to 375 

Neurosynth for cognitive decoding and produced word clouds using the top 10 terms positively 376 

associated with the maps (Figure 3 – middle). The terms recovered for the 2>1 and 1>0 cue 377 

maps suggest the involvement of DMN and MDN respectively. The contrast of 2 > 0 cues 378 

(Figure S3), shows activation in regions overlapping with 1 > 0, such as left middle and inferior 379 

frontal gyrus, left middle temporal gyrus, but also in regions within the 2 > 1 map, such as left 380 

angular gyrus. This pattern of activation suggests that both cue mainteinance and cue 381 

integration might be visible in this map. 382 

As the DMN is known to show anti-correlation with task-positive regions captured by the MDN 383 

(Blank et al., 2014; Davey et al., 2016; Fox et al., 2005), we also explored whether this would 384 

be the case for our contrast maps. In an independent sample of 86 participants, whole-brain 385 

connectivity maps for the 2>1 and 1>0 contrasts were generated using CONN (Whitfield-386 

Gabrieli & Nieto-Castanon, 2012). Full methods are in the Supplementary Materials. The 387 

analysis revealed two functionally distinct and anti-correlated networks, comprising DMN for 388 

the 2>1 cue contrast and MDN regions involved in domain-general executive control for the 389 

1>0 cue contrast (Figure S5).  390 
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 391 

Figure 3. Results for the main contrasts of interest in the semantic decision model: the left side of the figure 392 

contains results for 1 cue > 0 cues, while the 2 cues > 1 cue contrast is shown on the right. A. Contrast maps 393 

thresholded at z > 3.1. B. Word clouds produced by plotting the top 10 terms positively associated with the 394 

contrast map. C. Overlap of the 1 > 0 contrast with the multiple demand network (Duncan et al., 2010) and the 395 

contrast of 2 >1 with the default mode network (Yeo et al., 2011). 396 

Cue model 397 

To check whether the two distinct networks identified as relevant for conceptual cueing also 398 

showed different responses to load during the encoding of cue information, we constructed a 399 

second model to look at the cue presentation period. This was an exploratory analysis, since 400 

our main focus was on how cues modulate the neural basis of semantic decisions. Our 401 
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paradigm was not designed to deconfound the order of the cues and the semantic decisions. 402 

Nevertheless, if the regions showing a stronger response to semantic decisions following 1 vs. 403 

0 cues reflect the working memory demands of cue maintenance, we would expect to see load-404 

dependent effects from cue encoding in these regions – i.e. stronger responses when more 405 

cues are presented.  406 

First, we used a contrast of 2 cues + 1 cue > 0 cues across the whole brain to define the basic 407 

effect of cue presentation (see Figure 2B). This elicited bilateral activation in occipital visual 408 

regions, extending into the posterior ventral stream in the left hemisphere. In addition, we 409 

found bilateral recruitment of the inferior frontal sulcus (IFS), within the multiple demand 410 

network, and the inferior frontal gyrus, in line with the idea of load demands of processing and 411 

maintaining cues (this interpretation is further explored in paragraph 3.2.2 ‘ROI analysis of cue 412 

load). Activation in the left hemisphere was also observed in AG.  413 

The Supplementary Figure S2 shows other cue presentation contrasts. The contrast of 2 > 0 414 

cue presentation revealed activation in occipital cortex and in left-hemisphere control regions. 415 

Similar control regions were recruited by the contrast of 2 > 1 cue presentation, although this 416 

map had less extensive activation overall. The contrast of 1 cue > 0 cue presentation revealed 417 

activity in visual regions largely overlapping with 2 cues > 0 cues, and a cluster in left angular 418 

gyrus. Finally, the contrast of 1 cue location > 1 cue affect recruited visual regions in occipital 419 

cortex and bilateral paracingulate gyrus, while the reverse contrast did not yield significant 420 

results. 421 

3.2.2 ROI analysis of cue load 422 

To test possible accounts of the different patterns of activation observed in the decision-423 

making phase (semantic decision model) for the contrasts of 2 > 1 and 1 > 0 cues, we conducted 424 

a post-hoc ROI analysis of the activation in these regions prior to the decision, when the cues 425 

were on the screen (cue model). The recruitment of cognitive control areas (i.e. inferior and 426 

middle frontal gyrus, inferior frontal sulcus, precentral gyrus, anterior cingulate gyrus, and pre-427 

supplementary motor area, falling within the multiple demand network) for semantic decisions 428 

that followed the presence vs. absence of cues (1 > 0 cues) suggests that these regions might 429 

be engaged in active maintenance of task-relevant information; in which case, cues might be 430 

processed in a load-dependent way during the cue period. To test this idea, the regions that 431 
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responded to the contrasts of 1>0 and 2>1 cues during the semantic task (semantic decision 432 

model) were used to mask the BOLD response for cue presentation (cue model). We extracted 433 

and compared the parameter estimates for the three conditions against the implicit baseline: 434 

no cues (scrambled images), one cue (average of face emotion and location cue) and two cues 435 

(both face emotion and location image presented). If the semantic task activation observed for 436 

the 1>0 contrast reflects a demand-relevant state associated with maintaining the cues, then 437 

the activation of these regions during cue presentation should increase as the number of cues 438 

is increased; i.e. 2 cues > 1 cue, 1 cue > 0 cues. This is because information about the cues is 439 

required to be maintained from their onset. In contrast, regions responding more to semantic 440 

decisions following multiple cues (2>1 cues) might not be expected to show a load-dependent 441 

effect during the cue period. These regions responded more when multiple sources of 442 

information could be used to constrain semantic retrieval – and this form of information 443 

integration is unlikely to occur prior to the onset of the semantic decision (since the cues 444 

themselves were not easy to link in the absence of the probe concept – for example HAPPY FACE 445 

and SUPERMARKET are consistent with a wide range of concepts and do not strongly prime JAM). 446 

Consistent with these predictions, we found that activation in the 1>0 cue regions increased in 447 

a linear fashion with a higher number of cues [F (1, 25) = 48.39, p < .001, η2 = .66] (Figure 4A). 448 

However, there was no significant difference between cue conditions within regions 449 

responsive to the 2>1 cue contrast [F (2, 50) = .39, p = .682, η2 = .02] (Figure 4D).  450 

The results of this ROI analysis show that regions responding more to semantic decisions 451 

following 1 > 0 cues also respond in a load-dependent way during the encoding of cue 452 

information. However, this ROI map includes both cognitive control regions within MDN and 453 

visual cortex, making it difficult to separate the effects of increasing visual stimulation from 454 

cognitive load. To further characterize the effect, we divided the 1 > 0 semantic decision map 455 

into regions that fell within the occipital cortex (Harvard-Oxford probabilistic map – 25%) and 456 

outside MDN regions (1997 voxels – Figure 4B), and within MDN after masking out occipital 457 

regions (10658 voxels – Figure 4C). The BOLD response showed a similar linear increase with 458 

the number of cues presented on the screen in visual cortex (F (1, 25) = 54.96, p < .001, Ƞ2 = 459 

.69) and in MDN (F (1, 25) = 53.73, p < .001, Ƞ2 = .68).  460 
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 461 

Fig 4. ROI analysis extracting the parameter estimates (PE) for the three levels of cue processing over the implicit 462 

baseline (cue model) in the 1 > 0 and 2 > 1 maps obtained in the semantic decision model. Three separate ROIs 463 

were conducted for the 1 > 0 regions (left panel): whole map (A), voxels that fell within the occipital cortex (B) 464 

and voxels that fell in the MDN (C). While the effect of number of cues is present in the 1 > 0 regions across the 465 

different masks used, no effect is observed in the integration regions (D) at the time-point of processing cue 466 

pictures. Bonferroni-corrected pairwise comparisons in the 1 > 0 regions confirmed that PE for 0 cues were 467 

significantly lower than 1 cue, and PE for 1 cue were significantly lower than 2 cues (all p values < .025; p value 468 

corrected for 2 multiple comparisons). 469 

3.2.3 Gradient analysis               470 

To further characterize the involvement of DMN regions in integrating information, we 471 

interrogated the response to semantic decisions along the Principal Gradient (Margulies et al., 472 

2016). Unlike traditional univariate activation maps, which localize activation in certain regions, 473 

this gradient analysis examines how the effect of cueing unfolds along the entire cortical 474 

surface and measures the contribution of different portions of the gradient to the effects of 475 
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interest. This analysis can highlight systematic functional change along the cortical surface, and 476 

explain why similar functional transitions are observed in multiple locations. The gradient map 477 

was divided into 10-percentile bins (see Methods section) and each bin was used as a mask in 478 

ROI analyses where we extracted mean parameter estimates for the contrasts of 2 cues vs. 1 479 

cue and 1 cue vs. 0 cues within each bin (see Figure 5). We then explored the effect of gradient 480 

bin on each univariate contrast using a two-way repeated measure ANOVA with cue contrast 481 

(2 levels: 2 cues vs.1 cue and 1 cue vs. 0 cues) and gradient bin (10 levels) as within-subject 482 

variables. This analysis revealed a significant interaction of cue contrast and gradient bin (F(2, 483 

51) = 28.33, p < .001, η2 = .53), suggesting that the effect of gradient was different for 2 > 1 and 484 

1 > 0 contrasts. Next, we performed two one-way repeated measure ANOVAs looking at the 485 

effect of gradient bin on each contrast separately. For 2>1 cues, we found a significant linear 486 

effect for gradient bin (F(1, 25) = 47.13, p < .001, η2 = .65), as well as complex higher-order 487 

contrast effects (values reported in Table S5). The comparison of semantic decisions following 488 

2 vs. 1 cues elicited maximal activity at the heteromodal end of the gradient, suggesting that 489 

DMN regions at this end of the principal gradient responded more strongly when multiple 490 

sources of information were integrated to support semantic cognition. For 1>0 cues, we found 491 

the opposite pattern, with more activation at the unimodal end of the gradient for the single 492 

cue condition compared to when no cues were provided. Again, the effect of context vs. no-493 

context along the principal gradient was complex, with linear (F(1, 25) = 24.80, p < .001, η2 = 494 

.50), as well as higher-order contrasts reaching significance. Full details of the statistical 495 

outcomes are reported in Supplementary Tables S4, S5, S6.  496 

 497 



20 

 

Figure 5. A. Semantic decisions in the presence of multiple cues (contrast of 2>1 cues) maximally recruited regions 498 

at the heteromodal end of the principal gradient. B. The effect of context vs. no context (contrast of 1>0 cues) 499 

showed an effect in the opposite direction, with maximal activation toward the sensory end of the gradient. ** 500 

Highlights portions of the gradient where the BOLD response is significantly different from 0 when the Bonferroni 501 

correction is applied (all p values ≤ .005), while * denotes p values < .05.  502 

 503 

4 DISCUSSION 504 

Recent accounts of the default mode network (DMN) place this system at the top of a 505 

cortical hierarchy, maximally distant from unimodal sensory regions (Margulies et al., 2016) in 506 

both geodesic and connectivity space. The separation of heteromodal DMN regions from 507 

unimodal cortex may underpin our capacity to form conceptual representations that are not 508 

dominated by a particular type of feature but instead draw on multiple types of information – 509 

including affect or spatial location. To test this idea, we contrasted semantic decisions made 510 

following the presentation of multiple cues (depicting facial emotional expressions and 511 

locations), only one of these cues, or no cues. In this way, we manipulated the extent to which 512 

semantic retrieval occurred in a rich and meaningful context, in which multiple convergent 513 

features were available. Our results indicate that the cueing paradigm involved distinct mental 514 

processes that were supported by different networks. First, from the onset of the cues, 515 

information was maintained in working memory: MDN regions were activated for the contrast 516 

1 cue > 0 cues, and the response of these regions during cue presentation was load-dependent. 517 

These findings are in line with previous research showing that the multiple demand network 518 

supports the maintenance of goal-relevant information (Duncan, 2010; Woolgar et al., 2011). 519 

Secondly, DMN regions were activated by the contrast 2 cues > 1 cue, consistent with a role of 520 

this network in convergent information integration. In line with our prediction that information 521 

integration occurs at the heteromodal end of the Principal Gradient, we found greater 522 

recruitment at this end when semantic decisions occurred in the presence of multiple cues. In 523 

contrast, activation was greater towards the unimodal end of the gradient (in regions 524 

overlapping with visual cortex) when semantic decisions were made in the presence vs. 525 

absence of cues. These novel findings provide important insights into the neural mechanisms 526 

supporting semantic integration and suggest a framework for understanding the location of 527 

these effects at the heteromodal end of the principal gradient.  528 
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According to “task-negative” accounts of the DMN, apparent semantic activation of this 529 

network occurs when an easy task is contrasted with a hard task (Humphreys et al., 2015; 530 

Humphreys et al., 2019; Humphreys & Lambon Ralph, 2014). This account is unlikely to provide 531 

an adequate explanation of our data since we found no behavioural differences between 532 

conditions (unlike other reports of cueing effects; Lanzoni et al., 2019; Noonan et al., 2010; 533 

Rodd et al., 2016, 2013). Our findings are instead consistent with a rich neuroimaging literature 534 

implicating ATL and AG in the formation of conceptual combinations. Integrating items (e.g. 535 

“jacket” and “plaid”) into coherent concepts (i.e. “plaid jacket”) modulates activity in AG 536 

regardless of the modality of presentation, while atrophy in this region results in impaired 537 

conceptual combinations (Price et al., 2015; see also Price et al., 2016). Similarly, 538 

magnetoencephalography (MEG) studies show increased activity in left ATL and AG for 539 

meaningful conceptual combinations (e.g. “red boat”) compared to the same words preceded 540 

by unpronounceable consonant strings (e.g. “xkq boat; Bemis & Pylkkänen, 2011; 2013; 541 

Pylkkänen, 2019), particularly when these combinations are more predictable or share more 542 

overlapping semantic features (Teige et al., 2019). Activation in the left superior ATL is also 543 

observed during semantic decisions following meaningful sentence cues, while IFG shows the 544 

opposite pattern (i.e. increased activation following irrelevant vs. relevant contexts), consistent 545 

with a role in semantic control (Hoffman et al., 2015). Moving beyond the language stimuli 546 

used in previous studies on conceptual combinations, here we show that semantic integration 547 

in DMN occurs for non-verbal material (i.e. pictures), in line with the heteromodal nature of 548 

these regions. Our findings uniquely add to this literature by showing that these effects of 549 

conceptual combination are maximal at the heteromodal end of the principal gradient, which 550 

situates DMN at the top of functional hierarchy (Margulies et al., 2016). Consequently, effects 551 

of information integration are seen not only in classic semantic regions such as AG and anterior 552 

middle temporal gyrus, but also in other DMN regions highlighted by our 2 > 1 cues contrast 553 

(e.g., superior frontal gyrus; medial prefrontal and posterior cingulate cortex).  554 

The role of DMN in semantic cognition appeared to be largely restricted to the impact 555 

of convergent cueing during semantic decision-making: in contrast, a distinct anti-correlated 556 

network overlapping with MDN was associated with the selective attention and working 557 

memory demands of encoding and maintaining individual cues. Moreover, the basic effect of 558 

making semantic decisions in the absence of cues, relative to the letter string trials, did not 559 
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reveal activation in DMN regions. At first, this result may seem at odds with accounts of the 560 

DMN that attribute a crucial role in semantic cognition to this network. However, our semantic 561 

task was considerably more demanding than the letter string baseline: studies have shown that 562 

although DMN regions can respond to the contrast of semantic vs. non-semantic tasks, they 563 

typically do so when the semantic task is not more demanding than the comparison task 564 

(Binder et al., 2009; Humphreys et al., 2015). Moreover, activation in DMN regions is often 565 

associated with ‘automatic’ patterns of retrieval or conceptual combinations (Davey et al., 566 

2016; Teige et al., 2019; Price et al., 2016, Bemis & Pylkkänen, 2011; 2013), while our task 567 

required participants to match an ambiguous words to a target word while discarding 568 

distractors and as such, it might involve more ‘controlled’ aspects of retrieval supported by 569 

regions such as left IFG which lie outside DMN.  570 

In line with other studies, we found that DMN regions responding to cue integration 571 

(i.e. the 2>1 cue contrast during semantic decisions) showed differential deactivation across 572 

conditions, relative to the implicit baseline, while MDN regions responding to cue maintenance 573 

(i.e., the 1>0 cue contrast during semantic decisions) showed differential activation. The 574 

functional significance of task-related deactivation is a topic of considerable debate; while 575 

some authors have interpreted deactivation as suggesting that sites are irrelevant to ongoing 576 

cognition (e.g. Humphreys et al., 2015), another possibility is that deactivation might be 577 

functionally relevant, as it might allow DMN regions to integrate information more selectively 578 

from task-relevant networks (Krieger-Redwood et al., 2016). According to this “cognitive 579 

tuning” hypothesis, we might expect more deactivation of DMN regions when only a limited 580 

set of features are relevant to ongoing cognition (for example, in the 0 and 1 cue conditions, 581 

when emotion and location representations are not necessarily task-relevant). There are 582 

already studies demonstrating that DMN regions can increase their coupling to cognitive 583 

control areas when harder tasks are contrasted with easier tasks, even as they deactivate 584 

(Krieger-Redwood et al., 2016; Vatansever et al., 2015; 2017).  585 

The effect of convergent cueing was not found within one specific semantic region, 586 

such as AG, but across multiple distributed nodes of DMN. We then turned to the Principal 587 

Gradient of intrinsic connectivity to provide a potential explanation for why cue integration 588 

effects were observed where they were across the cortex. The separation between DMN and 589 

unimodal systems, captured by the Principal Gradient, is thought to (i) allow heteromodal 590 
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representations to emerge (cf. Hub and Spoke account) and (ii) support forms of cognition that 591 

require separation from the external environment, such as states that draw on heteromodal 592 

representations in memory. The latter observation is particularly important for explaining the 593 

similarity of our results with recent findings from our group (Murphy et al., 2018, 2019). Using 594 

a 1-back/0-back paradigm, Murphy et al. showed that decisions based on the immediately 595 

available perceptual input (0 back condition) elicited higher activity towards the unimodal end 596 

of the Principal Gradient, while decisions drawing on information from memory (1 back 597 

condition) maximally recruited the heteromodal end of the gradient (Murphy et al., 2019). 598 

Critically, DMN involvement in memory-guided cognition was maximised when the decisions 599 

involved meaningful objects that were not perceptually-identical, increasing reliance on 600 

conceptual knowledge, relative to simpler unidimensional decisions based on colour (Murphy 601 

et al., 2018). Building on these findings, the results of the current study suggest that this 602 

pattern of activation within DMN arises because heteromodal cortex at the top end of the 603 

gradient supports the integration of disparate and convergent sources of information; these 604 

regions are more involved when we match meaningful objects based on their identities 605 

extracted from a multitude of features, as opposed to single features. Nevertheless, Murphy 606 

et al. also showed that tasks based on memory recruit representations at the heteromodal end 607 

of the gradient, even when these tasks only probe a single feature and therefore arguably do 608 

not place strong demands on information integration: this pattern might arise because in the 609 

absence of perceptual inputs, heteromodal regions may play a key role in generating patterns 610 

of cognition needed for the task (i.e., visual imagery). Importantly, the regions at the top of the 611 

gradient responded similarly to memory-based decisions irrespective of whether these 612 

decisions concerned colour or shape; in this way, the function of these sites still reflects the 613 

heteromodal nature of DMN. In contrast, distinct unimodal sites responsive to colour and 614 

shape are expected to support these decisions when perceptual information is present. In 615 

summary, the principal gradient relating to the separation of heteromodal from unimodal 616 

processing can potentially explain both the increased response in heteromodal DMN when 617 

cognition involves multiple convergent features, and the common response in heteromodal 618 

DMN when cognition involves decisions about single features in the absence of perceptual 619 

input.      620 
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There are a number of limitations of this study. It does not fully establish the form of 621 

the relationship between the number of cues and DMN activation at retrieval, since we did not 622 

manipulate cueing parametrically. Activation in DMN regions may not increase linearly with 623 

the number of cues (0, 1, 2 cues). Instead, the contrast of 1 > 0 cues elicits activation in MDN 624 

regions and towards the unimodal end of the principal gradient, suggesting that the presence 625 

vs. absence of context involves additional cue encoding and maintenance in working memory. 626 

A follow up study could use a parametric manipulation of the number of cues to better identify 627 

how responses in MDN and DMN scale with the number of cues. Moreover, in our experiment, 628 

integration unfolded over time, with semantic decisions occurring roughly 2 seconds after the 629 

presentation of the cue. A recent study by Branzi and others (2019) suggests that ventral AG 630 

supports the integration of meanings during time-extended narratives (see also Bonnici et al., 631 

2016; Ramanan et al., 2017). Future research should establish whether semantic integration 632 

that emerges over time leads to a different pattern of activation along the principal gradient 633 

compared with the integration of simultaneously-presented information.  634 

Furthermore, although our cueing paradigm allowed us to recover a set of regions 635 

within DMN recruited during semantic integration, it is unclear whether we would observe the 636 

same pattern of activation with other types of cues. Future studies could examine tasks that 637 

involve simple sensory features, for example, semantic decisions about concrete concepts such 638 

as DOG following visual and auditory feature cues (e.g. image of tail and sound of dog barking) 639 

to establish if a similar integration effect occurs in DMN. The current experiment used complex 640 

stimuli depicting emotional affect and locations, which are known to be relevant to the DMN. 641 

The DMN is closely associated with the classic limbic network for emotional processing (e.g. 642 

Chanes & Barrett, 2016; Greicius et al., 2003; Raichle et al., 2001; Simpson et al., 2000). 643 

Moreover, the hippocampus, which has strong functional ties with the default mode network 644 

(Andrews-Hanna et al., 2010; Kernbach et al., 2018 ; Leech & Sharp, 2014; Raichle et al., 2001) 645 

is known to play a role in representing spatial locations (e.g. Bellmund et al., 2016; Burgess, 646 

2002; Burgess et al., 2002; Robin et al., 2018). Our findings demonstrate that when semantic 647 

decisions are made in the context of both emotional and spatial information, as opposed to 648 

only one of these cue types, DMN ramps up its response in line with its hypothesised role in 649 

higher-order information integration. Contrary to previous literature showing the recruitment 650 

of the parahippocampal place area for spatial scenes (e.g. Epstein & Kanwisher, 1998) and the 651 
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fusiform face area for faces (e.g. Kanwisher et al., 1997), our contrasts of 1 cue type over the 652 

other aligned only partially with previous evidence. The failure to reach statistical significance 653 

for the contrast of 1 cue affect > 1 cue location could reflect a lack of statistical power, since 654 

much of the data acquisition was devoted to the semantic decisions. Moreover, the different 655 

size and aspect ratio of the images (with location images being wider and larger) may have 656 

influenced the results.  657 

A final limitation of the study concerns the statistical model used to examine activation 658 

during cue presentation, which was used to test possible interpretations of the univariate 659 

results in the main model in a post-hoc fashion. As the experiment was not originally designed 660 

to look at the cue presentation, we did not include trials in which facial expressions and 661 

location cues were not followed by semantic decisions. Whenever a meaningful cue picture 662 

was presented, this was always followed by a semantic decision. The inclusion of trials where 663 

cues were followed by a blank screen would have facilitated the temporal separation of the 664 

cue and task events, allowing us to draw stronger conclusions from the cue model. In this way, 665 

future research could directly test the idea that integration requires a component of 666 

maintenance supported by the MDN, in addition to a combination of conceptual features 667 

within DMN.  668 

 669 

670 
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SUPPLEMENTARY MATERIAL 985 

Group behavioural performance  986 

 987 

Figure S1. Accuracy (mean correct responses), median RT for correct trials (milliseconds), response efficiency 988 

scores (median RT/mean correct responses), and RT variability (mean standard deviation per participant per 989 

condition) do not differ significantly across conditions. Error bars show standard error of the mean (SEM). 990 

 991 

 Summary statistics 

  Accuracy Median RT Response efficiency RT variability 

0 cues 0.85 (0.11) 1.88 (0.30) 2.25 (0.49) 0.63 (0.11) 

1 cue affect 0.85 (0.10) 1.95 (0.29) 2.34 (0.54) 0.66 (0.12) 

1 cue location 0.86 (0.11) 1.93 (0.31) 2.27 (0.41) 0.61 (0.10) 

2 cues 0.86 (0.10) 1.89 (0.30) 2.26 (0.54) 0.62 (0.14) 

 992 

Table S1. Descriptive statistics for the cueing task. Mean and (standard deviation) values are provided. 993 

 994 

 995 
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Supplementary behavioural analyses 996 

 1- way repeated measures ANOVAs on cue condition 

  Accuracy Median RT Response efficiency RT variability 

F 0.14 0.95 0.62 1.26 

df 3, 75 3, 75 3, 75 3, 75 

p 0.939 0.420 0.605 0.296 

partial η2 0.01 0.04 0.02 0.05 

 997 

Table S2. Behavioural performance did not differ significantly across cue conditions, as revealed by 1-way ANOVAs 998 

on accuracy, median response time, response efficiency, and response time variability. 999 

 1000 

Univariate contrasts of activation during cue presentation 1001 

Below we report the group-level statistical maps (z > 3.1) for the cue model. In this model we 1002 

looked at changes in the BOLD response in response to the presentation of the visual cues. 1003 

Semantic decisions (which happen subsequently to the presentation of cues) were modelled 1004 

separately; the statistical maps that survived the threshold of z > 3.1 can be seen in the body 1005 

of the manuscript (Figure 2B and 4). 1006 
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 1007 

Figure S2. Univariate results for the cue model (i.e. when the cues were presented, prior to the semantic decision). 1008 

From top to bottom:  2 cues > 1 cue (processing of 2 cues > 1 cue [average of affect and location]), 1 cue > 0 cues 1009 

(processing of 1 cue [average of affect and location] > 0 cues [scrambled images]); 2 cues > 0 cues; 1 cue location 1010 

> 1 cue affect. The reverse contrast (1 cue affect > 1 cue location) yielded no clusters. Coordinates of cluster peaks 1011 

for these comparisons are reported in Table S3. 1012 

Basic effect of semantic decisions 1013 

In the main manuscript we defined the semantic regions recruited during the task using a 1014 

contrast of 0 cues > letter strings (Figure 2A). Below we report the contrasts of each of the 1015 

other task conditions against the presentation of letter strings (i.e. non semantic task). 1016 
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 1017 

Figure S3. A. Basic effect of semantic decisions as estimated by contrasts of the task conditions > letter strings 1018 

(i.e. non-semantic task). These univariate contrasts for the semantic decision model (i.e. when participants were 1019 

making decisions following the presentation of 0, 1, 2 cues) reveal a similar pattern of activation. B. Semantic 1020 

decisions following 2 cues vs. 0 cues. 1021 

 1022 

 1023 
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Figure S4. ROI analysis extracting the parameter estimates (PE) for the three conditions over the implicit baseline 1024 

at the time of making semantic decisions (semantic decision model) in the 1 > 0 and 2 > 1 maps. We ran two 1025 

repeated measures ANOVAs that found that the recruitment is different across cueing conditions in both 1 > 0 [F 1026 

(2,50) = 3.36, p = .043, η2 = .12] and 2 > 1 [F (2,50) = 3.47, p = .039, η2 = .12] regions. Bonferroni-corrected pairwise 1027 

comparisons revealed reduced activation for 0 cue condition compared to 1 cue in 1 > 0 regions [t(25) = -2.59, p 1028 

= .016], and reduced de-activation in 2 cues compared to 1 cue in 2 > 1 regions [t(25) = -3.03, p = .006].  1029 

Peak co-ordinates for clusters identified by the cue model and the semantic decision model 1030 

Contrast Region Voxels 

Z-

score 

MNI coordinates 

(x, y, z) 

Cue model 

2 + 1 > 0 

R. Lingual gyrus, occipital fusiform gyrus, occipital pole 26628 7.49 8 -82 -12 

L. Middle frontal gyrus, superior frontal gyrus 769 4.51 -36 22 54 

L. Frontal pole 766 4.99 -42 54 -4 

L. temporal pole, inferior temporal gyrus (anterior), temporal 

fusiform gyrus (anterior) 130 4.29 -42 4 -42 

2 > 0 

R. Lateral occipital cortex (inferior), occipital pole 21099 7.05 42 -86 -8 

R. Precentral gyrus, inferior frontal gyrus, middle frontal gyrus 
866 5.11 38 10 28 

L. Inferior frontal gyrus (pars opercularis), precentral gyrus, 

middle frontal gyrus 
850 4.63 -40 16 22 

Bilateral precuneus 189 4.11 0 -56 46 

L. Supplementary motor cortex, paracingulate gyrus, superior 

frontal gyrus 
177 4.29 -4 6 54 

2 > 1 

R. Frontal operculum cortex, inferior frontal gyrus (pars 

opercularis), inferior frontal gyrus (pars triangularis) 
940 4.48 46 18 6 

R. Paracingulate gyrus, superior frontal gyrus, cingulate gyrus 

(anterior) 
585 4.38 6 24 44 

R. Middle frontal gyrus, superior frontal gyrus, frontal pole 
267 4.55 28 32 44 

R. Superior temporal gyrus (anterior), middle temporal gyrus 

(anterior), superior temporal gyrus (posterior), middle 

temporal gyrus (posterior) 

199 4.35 54 -6 -16 

L. Insular cortex 152 4.51 -28 20 -6 

1 > 0  

R. Occipital fusiform gyrus, lingual gyrus 21130 7.38 24 -72 -14 

L. Lateral occipital cortex (superior), angular gyrus 229 4 -50 -66 40 

L. Frontal pole 229 4.51 -40 58 2 

R. Cerebellum 198 4.24 28 -74 -44 

1 location 

> 1 affect 

R. Occipital pole, lateral occipital cortex 17891 7.19 36 -88 8 

Bilateral paracingulate gyrus, supplementary motor cortex 411 4.31 0 10 50 

Semantic decision model 

0 > letter 

strings 
L. Inferior frontal gyrus (pars triangularis), frontal pole, middle 

frontal gyrus 
1672 5.92 -54 32 8 
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L. Superior temporal gyrus (posterior), middle temporal gyrus 

(posterior), supramarginal gyrus (posterior) 
953 5.52 -56 -42 4 

R. Cerebellum 644 5.04 10 -82 -36 

L. Temporal fusiform cortex (posterior), parahippocampal 

gyrus (posterior), inferior temporal gyrus (posterior) 
400 4.51 -38 -30 -18 

L. Cerebellum 280 4.62 -8 -60 14 

L. Frontal medial cortex, frontal pole 256 4.66 -4 52 -16 

R. Temporal occipital fusiform, Lingual gyrus, 

parahippocampal gyrus (posterior) 
220 4.91 22 -42 -16 

L. Precentral gyrus, middle frontal gyrus 153 4.7 -38 0 46 

1 affect > 

letter 

strings 

L. Inferior frontal gyrus (pars triangularis), frontal pole, middle 

frontal gyrus 
1684 4.91 -56 32 6 

L. Middle temporal gyrus (temporo-occipital part), middle 

temporal gyrus (posterior) 
926 5.5 -56 -44 4 

R. Cerebellum 571 4.81 10 -82 -36 

L. Temporal fusiform (posterior), parahippocampal gyrus 

(posterior), inferior temporal gyrus (posterior) 
261 4.2 -38 -30 -18 

L. Precuneus, intracalcarine cortex, supracalcarine cortex, 

cingulate gyrus (posterior) 
258 4.65 -8 -60 14 

L. Medial frontal cortex, frontal pole 186 4.6 -2 52 -16 

R. Temporal fusiform (posterior), parahippocampal gyrus 

(posterior), lingual gyrus 
138 4.19 24 -38 -18 

L. Precentral gyrus, middle frontal gyrus 125 4.11 -38 0 44 

1 location 

> letter 

strings 

L. Inferior frontal gyrus (pars triangularis), frontal pole, middle 

frontal gyrus 
2000 5.44 -56 32 8 

L. Middle temporal gyrus (temporo-occipital part), middle 

temporal gyrus (posterior) 
1107 5.04 -58 -44 4 

R. Cerebellum 910 5.12 12 -78 -30 

L. Temporal fusiform (posterior), parahippocampal gyrus 

(posterior), inferior temporal gyrus (posterior) 
773 5.06 -38 -30 -18 

L. Precuneus, intracalcarine cortex, lingual gyrus, 

supracalcarine cortex, cingulate gyrus (posterior) 
723 4.93 -8 -60 10 

R. Lingual gyrus, occipital fusiform gyrus, parahippocampal 

gyrus (posterior), temporal fusiform (posterior) 

375 5.4 20 -40 -16 

L. Medial frontal cortex, frontal pole 230 4.71 -2 52 -16 

L. Precentral gyrus, middle frontal gyrus 205 4.61 -38 0 44 

L. Lateral occipital cortex (superior) 176 3.97 -44 -84 26 

1 > letter 

strings 

L. Inferior frontal gyrus (pars triangularis), frontal pole, middle 

frontal gyrus 
3459 5.65 -54 30 8 

L. Middle temporal gyrus (temporo-occipital part), middle 

temporal gyrus (posterior) 
2493 5.41 -56 -44 4 

R. Cerebellum 1165 6.07 12 -78 -28 

L. Precuneus, lingual gyrus,  intracalcarine cortex, cingulate 

gyrus (posterior), supracalcarine cortex 
371 4.73 -6 -58 8 

L. Paracingulate gyrus, superior frontal gyrus, juxtapositional 

lobule 
337 4.56 -6 14 52 

R. Occipital pole 
275 4.89 18 

-

100 
-12 
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L. Occipital pole 235 4.91 -34 -98 -14 

R. Precuneus, lingual gyrus,  intracalcarine cortex, cingulate 

gyrus (posterior), supracalcarine cortex 
127 4.54 14 -56 6 

R. temporal fusiform (posterior), parahippocampal gyrus 

(posterior), lingual gyrus 
118 4.37 28 -36 -20 

2 > letter 

strings 

L. Inferior frontal gyrus (pars triangularis), frontal pole, middle 

frontal gyrus 
2239 5.51 -56 32 8 

L. Middle temporal gyrus (temporo-occipital), middle 

temporal gyrus (posterior), supra-marginal gyrus (posterior), , 

superior temporal gyrus (posterior) 

1175 5.63 -48 -44 -2 

R. Cerebellum 794 4.79 10 -82 -34 

L. Temporal fusiform (posterior), temporal occipital fusiform, 

parahippocampal gyrus (posterior), lingual gyrus 
695 4.95 -26 -42 -20 

L. Precuneus, lingual gyrus,  intracalcarine cortex, cingulate 

gyrus (posterior), supracalcarine cortex 
458 4.77 -8 -58 10 

R. Temporal occipital fusiform, Lingual gyrus, temporal 

fusiform (posterior), parahippocampal gyrus (posterior) 
367 5.6 22 -40 -16 

L. Angular gyrus, lateral occipital cortex (superior), lateral 

occipital cortex (inferior) 
265 4.4 -40 -60 18 

L. Frontal medial cortex, frontal pole 237 4.82 -2 52 -16 

R. Precuneus, Intracalcarine cortex, cingulate gyrus 

(posterior), lingual gyrus, supracalcarine cortex 
201 4.67 16 -54 8 

2 > 1 

R. Lateral occipital cortex (superior) 5247 5.94 52 -70 30 

R. Frontal pole, paracingulate gyrus, frontal medial cortex 
4395 5.57 4 56 0 

L. lateral occipital cortex (superior), angular gyrus, 

supramarginal gyrus (posterior) 
1639 5.27 -50 -62 42 

R. Precuneus, cingulate gyrus (posterior) 1521 5.17 8 -56 26 

L. Cerebellum 745 4.77 -26 -78 -36 

L. Middle frontal gyrus 304 4.46 -36 26 42 

R. Frontal pole 191 4.35 40 48 -10 

L. Frontal pole 172 4.33 -30 62 -2 

R. Temporo-occipital fusiform, lingual gyrus, parahippocampal 

gyrus 
143 4.72 24 -42 -16 

1 > 0 

R. Cerebellum 30503 6.81 4 -74 -28 

L. Supplementary motor cortex, paracingulate gyrus, superior 

frontal gyrus, cingulate gyrus (anterior) 
2167 6.57 -4 8 52 

R. Inferior frontal gyrus (pars opercularis), middle frontal 

gyrus, inferior frontal gyrus (pars triangularis), precentral 

gyrus 

714 5.59 42 22 20 

L. Middle temporal gyrus (temporo-occipital), supra-marginal 

gyrus (posterior), middle temporal gyrus (posterior), superior 

temporal gyrus 

254 4.85 -56 -46 4 

2 > 0  

L. Lateral occipital cortex (superior), angular gyrus 1431 4.55 -46 -66 32 

R. Lateral occipital cortex (inferior), occipital fusiform gyrus 533 4.55 38 -74 -24 

L. Middle frontal gyrus, precentral gyrus, inferior frontal gyrus 

(pars opercularis) 472 4.04 -46 12 40 
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L. Temporal fusiform cortex (posterior), temporal occipital 

fusiform cortex, parahippocampal gyrus (posterior) 441 4.64 -26 -40 -20 

L. Occipital fusiform gyrus 283 4.55 -46 -72 -26 

L. Frontal pole, frontal orbital cortex, inferior frontal gyrus 

(pars triangularis) 153 3.94 -52 40 -8 

L. Middle temporal gyrus (posterior), middle temporal gyrus 

(temporooccipital) 128 3.97 -60 -40 -8 

R. Lateral occipital cortex (superior), angular gyrus 125 3.94 52 -64 24 

 1031 

Table S3. Coordinates of cluster peaks for the main contrasts of interest. From top to bottom: cue model – 2 + 1 1032 

> 0 (processing of cues > scrambles images), 2 > 0 (processing of 2 cues [affect and location] > 0 cues [scrambled 1033 

images]), 2  > 1 (processing of 2 cues [affect and location] > 1 cue [average of affect and location]), 1 > 0 1034 

(processing of 1 cue [average of affect and location] > 0 cues [scrambled images]), 1 affect > 1 location; semantic 1035 

decision model - 0 cues > letter strings (semantic decisions in the absence of a semantic cue > non semantic 1036 

decisions in the absence of cues), 1 affect > letter strings, 1 location > letter strings, 1 > letter strings (semantic 1037 

decision following 1 cue [average of affect and location] > non semantic decisions in the absence of cues), 2 > 1038 

letter strings, 2 > 1 (semantic decisions following multiple cues > semantic decisions following 1 cue), 1 > 0 1039 

(semantic decisions following 1 semantic cue  > semantic decisions in the absence of a semantic cue). The location 1040 

of the peaks is labelled according to the Harvard-Oxford Structural Cortical Atlas tool available in FSL. Caption: R 1041 

= right hemisphere, L = left hemisphere, cluster corrected at z > 3.1.  1042 

 1043 

 1044 

  1045 
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Supplementary analyses examining activation for the semantic task along the Principal 1046 

Gradient 1047 

  
2 (cue contrast: 2 vs. 1, 1 vs. 0) x 10 (gradient bin: bin1 - bin10) ANOVA 

  

 Test of within-subjects effect Test of within-subjects contrasts  

  

Cue 

contrast  

Gradient 

bin 

Cue contrast 

x gradient 

bin 

Cue 

contrast 

Gradient 

bin 

Cue contrast 

x gradient 

bin   

F 0.33 1.82 28.33 0.33 1.53 37.27 Lin
e

ar 

p .571 .164 <.001* .571 .227 <.001* 

partial η2 0.01 0.07 0.53 0.01 0.06 0.60 

F       0.06 12.37 

Q
u

ad
ra

tic 

p       .815 .002* 

partial η2       0.00 0.33 

F       2.26 6.47 C
u

b
ic 

p       .145 .018* 

partial η2       0.08 0.21 

F       0.79 0.28 O
rd

e
r 4

  

p       .382 .601 

partial η2       0.03 0.01 

F       20.44 111.60 O
rd

e
r 5

 

p       <.001* <.001* 

partial η2       0.45 0.82 

F       1.06 9.51 O
rd

e
r 6

 

p       .312 .005* 

partial η2       0.04 0.28 

F       5.07 38.85 O
rd

e
r 7

 

p       .033* <.001* 

partial η2       0.17 0.61 

F       2.50 64.54 O
rd

e
r 8

 

p       .127 <.001* 

partial η2       0.09 0.72 

F       1.07 66.73 O
rd

e
r 9

 

p       .311 <.001* 

partial η2         0.04 0.73 

 1048 

Table S4. Values for the 2-way repeated measure ANOVA on cue contrast (2 levels: 2 cues > 1 cue; 1 cue > 0 cues) 1049 

and gradient bin (10 levels: bin1 – bin10). Degrees of freedom for the Test of Within-subjects Effects: cue 1050 

condition [1, 25]; gradient bin [2.37, 59.16]; cue contrast x gradient bin [2.04, 51.01]. Degrees of freedom for the 1051 

Test of Within-subjects Contrasts: cue contrast, gradient bin, cue contrast x gradient bin [1, 25]. Significant results 1052 

and interactions are marked with *. A Greenhouse-Geisser correction was applied where the assumption of 1053 

sphericity was not met. 1054 

 1055 
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1 way RM ANOVA on 2 cues > 1 cue along the gradient 

 

Test of within-

subjects effect 

Test of within-

subjects contrasts  

  Gradient bin Gradient bin   

F 31.50 47.13 Lin
e

ar 

p <.001* <.001* 

partial η2 0.56 0.65 

F   11.38 

Q
u

ad
ra

tic 

p   .002* 

partial η2   0.31 

F   3.03 C
u

b
ic 

p   .094 

partial η2   0.11 

F   0.06 O
rd

e
r 4

  

p   .813 

partial η2   0.00 

F   70.22 O
rd

e
r 5

 

p   <.001* 

partial η2   0.74 

F   7.66 O
rd

e
r 6

 

p   .010* 

partial η2   0.23 

F   31.30 O
rd

e
r 7

 

p   <.001* 

partial η2   0.56 

F   48.60 O
rd

e
r 8

 

p   <.001* 

partial η2   0.66 

F   50.58 O
rd

e
r 9

 

p   <.001* 

partial η2   0.67 

 1056 

Table S5. Values for the 1-way repeated measure ANOVA on the parameter estimates for the univariate contrast 1057 

of 2 cues > 1 cue extracted along the gradient (10 levels: bin1 – bin10). Degrees of freedom for the Test of Within-1058 

subjects Effects: 2.13, 53.30. Degrees of freedom for the Test of Within-subjects Contrasts: 1, 25. Significant 1059 

results and interactions are marked with *. A Greenhouse-Geisser correction was applied where the assumption 1060 

of sphericity was not met. 1061 

 1062 

 1063 

 1064 
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1 way RM ANOVA on 1 cue > 0 cues along the gradient 

 

Test of within-

subjects effect 

Test of within-

subjects contrasts  

  
Gradient bin Gradient bin 

  

F 21.37 24.80 Lin
e

ar 

p <.001* <.001* 

partial η2 0.46 0.50 

F   11.48 

Q
u

ad
ra

tic 

p   .002* 

partial η2   0.31 

F   7.44 C
u

b
ic 

p   .011* 

partial η2   0.23 

F   0.52 O
rd

e
r 4

  

p   .478 

partial η2   0.02 

F   116.31 O
rd

e
r 5

 

p   <.001* 

partial η2   0.82 

F   8.61 O
rd

e
r 6

 

p   .007* 

partial η2   0.26 

F   40.27 O
rd

e
r 7

 

p   <.001* 

partial η2   0.62 

F   62.44 O
rd

e
r 8

 

p   <.001* 

partial η2   0.71 

F   64.32 O
rd

e
r 9

 

p   <.001* 

partial η2   0.72 

 1065 

Table S6. Values for the 1-way repeated measure ANOVA on the parameter estimates for the univariate contrast 1066 

of 1 cue > 0 cues extracted along the gradient (10 levels: bin1 – bin10). Degrees of freedom for the Test of Within-1067 

subjects Effects: 2.05, 51.22. Degrees of freedom for the Test of Within-subjects Contrasts: 1, 25. Significant 1068 

results and interactions are marked with *. A Greenhouse-Geisser correction was applied where the assumption 1069 

of sphericity was not met. 1070 

 1071 

 1072 

 1073 
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Analysis of intrinsic connectivity 1074 

As there is evidence that DMN is anti-correlated with task-positive regions captured by MDN 1075 

(Blank et al., 2014; Davey et al., 2016; Fox et al., 2005), we predicted that our contrast maps 1076 

of 1 > 0 and 2>1 should fall within regions with distinct patterns of intrinsic connectivity at rest, 1077 

given their spatial similarity with the MDN and with the DMN, respectively. 1078 

Materials and Methods 1079 

Participants 1080 

Whole-brain intrinsic connectivity maps for the two contrasts (1 >0 and 2>1) were produced 1081 

using a sample of 86 participants recruited as part of a different study. The study was approved 1082 

by the Ethics Committees of the York Neuroimaging Centre and the Department of Psychology, 1083 

University of York. Volunteers provided written consent and were debriefed after the 1084 

experiment. 1085 

MRI data acquisition 1086 

Structural and functional MRI data were acquired using a 3T GE HDx Excite MRI scanner at the 1087 

York Neuroimaging Centre, University of York. Structural MRI acquisition was based on the 1088 

same protocol used for the main sample of this experiment (see Materials and Methods– fMRI 1089 

acquisition). Resting-state fMRI data was recorded from the whole brain using single-shot 2D 1090 

gradient-echo-planar imaging (TR=3s, TE=minimum full, flip angle=90°, matrix size=64x64, 60 1091 

slices, voxel size=3x3x3mm3, 180 volumes). Participants were asked to passively view a fixation 1092 

cross and not to think of anything in particular for the duration of the resting-state scan (9 1093 

minutes). A T1 weighted FLAIR scan with the same orientation as the functional scans was 1094 

collected to improve co-registration between subject-specific structural and functional scans 1095 

(TR=2560ms, TE=minimum full, matrix size=64x64, voxel size=3x3x3mm3).  1096 

Pre-processing 1097 

The pre-processing of resting state data was performed using the CONN functional connectivity 1098 

toolbox V.18a (http://www.nitrc.org/projects/conn; Whitfield-Gabrieli & Nieto-Castanon, 1099 

2012). The following steps were performed on the functional volumes: (1) slice-time (bottom-1100 

up, interleaved) and motion-correction, (2) skull-stripping and co-registration to the high-1101 

resolution structural image, (3) spatial normalisation to Montreal Neurological Institute (MNI) 1102 

http://www.nitrc.org/projects/conn
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space using the unified-segmentation algorithm, (4) smoothing with a 6mm FWHM Gaussian 1103 

kernel, and (5) band-passed filtering (0.008-0.09Hz) to reduce low-frequency drift and noise 1104 

effects. Nuisance regressors in the pre-processing pipeline included: (i) motion (12 parameters: 1105 

the six translation and rotation parameters and their temporal derivatives), (ii) scrubbing 1106 

(outliers were identified through the artefact detection algorithm included in CONN based on 1107 

scan-by-scan change in global signal above z=3, subject motion threshold above 5mm, 1108 

differential motion and composite motion exceeding 95% percentile in the normative sample), 1109 

(iii) CompCor components (the first 5) attributable to the signal from white matter and CSF 1110 

(Behzadi et al., 2007), and (iv) a linear detrending term, eliminating the need for global signal 1111 

normalisation (Chai et al., 2012; Murphy et al., 2009).  1112 

 1113 

Figure S5. Intrinsic connectivity maps obtained in a separate sample of 86 participants using the thresholded (z > 1114 

3.1) contrast maps of 2 cues > 1cue and 1 cue > 0 as seeds in a resting state analysis. These reveal two functionally 1115 

distinct and anti-correlated networks, comprising multiple demand regions for 1>0 and default mode regions for 1116 

2>1.  1117 

 1118 

 1119 


