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Abstract
Some socioeconomic indicators can be represented in alternativeways. For example, as either
attainments (e.g. child survival rates) or shortfalls (e.g. child mortality rates) if the variables
are bounded. The literature has long been concerned with the consistency of inequality com-
parisons across such alternative representations. The case of bounded variables and their two
alternative representations (attainments versus shortfalls) has been largely settled. This paper
addresses the extent of the consistency problem in inequality comparisons involving ratio
indicators which also have two potential representations (e.g. number of people per room or
number of rooms per capita in the case of overcrowding). First, we probe welfare compar-
isons based on the generalised Lorenz curve and find that consistency can be secured in the
presence of rank dominance. Second, we show that robust inequality comparisons based on
all possible Zoli partial orderings (which include all relative and absolute inequality partial
orderings, among others) are inconsistent across alternative representations of ratios. Third,
with the identification of a class of inequality indices based on the ratio of the harmonic to
the arithmetic mean, we show that complete orderings consistent across alternative represen-
tations of ratios do exist. Then we consider and ponder the pros and cons of three alternative
solutions: defending one representation, using inequality indices that combine both repre-
sentations, and functional transformations of the ratio variable. We find that the costs of these
alternatives render them inferior to the class of indices based on the harmonic and arithmetic
means. Both the consistency problem and its preferred proposed solution are illustrated with
an empirical study of intergenerational changes in overcrowding inequality in Mexico.

Keywords Inequality · Lorenz curves · Harmonic mean · Logarithmic transformations

1 Introduction

Some socioeconomic indicators can be represented in alternativeways. For instance, bounded
variables can be represented as either attainments (e.g. child survival rates) or shortfalls
(e.g. child mortality rates). The literature has long been concerned with the consistency
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of inequality comparisons across such alternative representations. In the case of bounded
variables,Micklewright and Stewart [18]were among the first to notice that relative inequality
comparisonswere not consistent when switching from attainment to shortfall representations.
In any given two years, it could happen that cross-country relative inequality in childmortality
rates decreased, while inequality in child survival rates went up.

Several other contributions highlighted the problem and proposed solutions (e.g. see
[1,4–6,8,13,14,16,17,19,20,22]). Most of these solutions involve defending the use of one
particular representation (e.g. [13]), using absolute inequality measurement tools (absolute
inequality indices, absolute Lorenz curves, etc.) which all happen to be consistent (e.g.
[8,16]), inequality indices based on representations [1,17], and so-called normalised inequal-
ity indices [20]. Thus, it seems that this strand of the literature is largely settled.

Some other socioeconomic indicators come in the form of ratios; which means that, in
theory, the numerator and the denominator could switch roles. For instance, several countries
(e.g. the United States, the United Kingdom andMexico [7,12]) measure overcrowding using
the number of people per room, people per bedroom, or some alternative variation thereof
in which the number of potential living quarters appears in the denominator. By contrast,
the European Union uses a more complex measure that consists of counting the number
of rooms available for particular groups of people under specific circumstances (e.g. there
should be at least one room for each single person aged 18 or older, etc.) [9]. In essence,
the EU’s overcrowding measure has number of rooms in the numerator. Meanwhile, perhaps
less conspicuously, other popular socioeconomic indicators like infection rates or household
income per capita are also ratios.

This paper addresses the extent of the consistency problem in inequality comparisons
involving ratio indicators. Are inequality comparisons consistent when we switch the numer-
ator with the denominator (i.e. across the two alternative representations)? As a preamble
assessment, we probe dispersion-sensitive welfare comparisons based on the generalised
Lorenz curve and find that consistency can be secured in the presence of rank dominance.
Then we move onto proper inequality assessments and show that comparisons based on
all possible Zoli partial orderings (which includes all relative and absolute inequality par-
tial orderings, plus a wide array of intermediate ones; see [16,25]) are inconsistent across
alternative representations of ratios.

Having established these “impossibility” results, we ask whether consistent complete
orderings are still possible with some inequality indices.We find that a class of scale-invariant
indices based on the ratio of the harmonic mean to the arithmetic mean does yield inequal-
ity comparisons that are consistent across alternative representations of the ratio indicator.
Moreover, this class satisfies all desirable properties for inequality measurement: chiefly
the transfers principle, but also the population principle and suitable normalisation. Perhaps
the most salient member of this class is the Atkinson index that ensues when the equally-
distributed-equivalent “income” is computed using the harmonic mean.

Additionally we propose and ponder the pros and cons of three potential alternative solu-
tions including: defending one representation, using inequality indices that combine both
representations, and functional transformations of the ratio variable. More specifically, in
the first proposed solution, we discuss the suitability for ratios of the arguments put forward
by Kenny [13] to defend the use of attainments over shortfall representations. We add other
potential criteria including popular intuition and the mean value of the socioeconomic indi-
cator. Regarding the second solution we test the appropriateness of adapting the inequality
indices combining both representations proposed by Lasso de la Vega and Aristondo [17]
and Aristondo and Lasso de la Vega [1] originally for bounded variables. We find that these
composite inequality indices do restore consistency, but at the expense of violating the trans-
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fer principle. Finally, we explore functional transformations of the ratio variable that restore
consistency in inequality comparisons. We find that the logarithmic transformation converts
ratios into bounded variables. Thence the solutions proposed for bounded variables apply
to the logarithm of a ratio, but at the expense of losing some intuition since the principle
of transfers can no longer be applied to the original variable (echoing Foster and Ok [10]
regarding the variance of logarithms).

We explore the practical extent of the inconsistency problem in an empirical illustration
on intergenerational inequality comparisons in overcrowding in Mexico. Focusing on eight
birth cohorts of adults heads of households and spouses divided into four samples by urban-
isation status (combining urban-rural residence at age 14 with present urban-rural residence
in 2017), we first find plenty of cases of rank dominance among the cohort-urbanisation
sample combinations. Hence a significant scope for ordering past and present overcrowding
distributions by the generalised Lorenz criterion (favouring present distributions of rooms per
capita). By contrast, when moving to the inequality assessment, we find that most intergen-
erational comparisons are inconsistent between the two representations of the overcrowding
ratio, namely people per room and rooms per capita, when using two inequality indices which
are not functions of the ratio of the harmonic to the arithmetic mean (the standard deviation
and the coefficient of variation). When we apply the Atkinson inequality index based on
the harmonic mean, thereby restoring consistency, we find consistent reductions in relative
inequality across birth cohorts (from older to younger) in most samples, but without any
discernible trend in structural mobility within cohorts.

The rest of the paper proceeds as follows. Section 2 starts assessing consistency in the con-
text of first-order and second-order dominance comparisons. Then it moves onto presenting
the key “impossibility” result showing the inconsistency of robust inequality comparisons
based on Zoli partial orders applied to ratios. Finally, this section provides a solution ensuring
consistent complete orderings based on a class of inequality indices based on the ratio of
the harmonic mean to the arithmetic mean. Section 3 proposes and discusses the merits and
limitations of three potential alternative solutions to the inconsistency problem in inequality
comparisons with ratios. Section 4 provides the empirical illustration on intergenerational
comparisons of inequality in overcrowding inMexico. Finally Sect. 5 offers some concluding
remarks.

2 Consistency of inequality measurement with ratios

2.1 Preliminaries and desirable properties

Let X = {x1, x2, . . . , xn} ∈ R
n++ be a vector of n strictly positive real numbers such that

x1 ≤ x2 ≤ · · · ≤ xn .1 Likewise let X−1 = {x−1
1 , x−1

2 , . . . , x−1
n }. Therefore: x−1

1 ≥ x−1
2 ≥

· · · ≥ x−1
n . m(X) ≡ 1

n

∑n
i=1 xi is the arithmetic mean function.

We define an inequality index as a non-negative real-valued function such that I : Rn →
R+. In general we will consider continuous at least twice-differentiable functions for I . Now
we introduce a set of desirable axioms for I :

1 We need strictly positive numbers, otherwise ratios become indeterminate as soon as we swap roles between
numerator and denominator.

123



196 G. Yalonetzky

Axiom 2.1 Anonymity: I (X) = I (Y ) where Y = X P and P is a n × n permutation matrix.

Anonymity requires I to pay attention only to the elements in X (or Y ), but not to any
other characteristics associated with them.

Axiom 2.2 Respect of Zoli-λ-μ partial ordering: I respects the Zoli-λ-μ partial ordering [25]
if, for some pair λ ∈ [0, 1], μ ∈ [0, 1] and every pair of distributions X and Y (both elements
ofRn++), I (X) ≤ I (Y ) if

∑k
i=1

xi−m(X)

(μm(X)+1−μ)λ
≥ ∑k

i=1
yi−m(Y )

(μm(Y )+1−μ)λ
for all k = 1, 2, . . . , n.

An inequality index respecting the Zoli-λ-μ partial ordering ranks a pair of distributions
equally after some common transformations of their elements. For example, if Y is obtained
from X such that yi = xiγ for all i = 1, . . . , n with γ > 0 then I (X) = I (Y ) if I respects
the Zoli-1-1 partial order. So, for instance, if I were the variance we would get I (X) �= I (Y )

because the variance respects the Zoli-λ-μ partial ordering for any pair λ ∈ [0, 1], μ ∈ [0, 1]
as long as λμ = 0, which excludes the {1, 1} case.

Next, we define a Pigou–Dalton (PD) transfer as a rank-preserving transfer of δ > 0 from
a richer individual ( j) to a less affluent individual (i), such that: xi + δ ≤ x j − δ. Then the
transfer principle states that I should decrease after PD transfers:

Axiom 2.3 Transfers principle: For any pair of distributions X andY (both elements ofRn++),
if distribution X is obtained from Y through a sequence of PD transfers then: I (X) < I (Y ).

Alternatively one could consider a smoothing axiom as a more general criterion for order-
ing unequal distributions when the socioeconomic indicator is not “transferable”2:

Axiom 2.4 Smoothing: I (X) < I (Y ) where X = Y B and B is a n×n bi-stochastic matrix.3

The inequality indices considered below are all expected to fulfill the aforementioned
axioms. For ease of exposition we perform the consistency analysis using fixed popula-
tions. However this paper’s results can also be extended to comparisons of distributions with
different population sizes as long as I also satisfies the population principle:

Axiom 2.5 Population principle: If distribution X is obtained from Y through replicating
each individual c ∈ N++ times, then: I (X) = I (Y ).

Additionally, while not essential, most inequality indices in the literature also satisfy a
normalisation axiomhelpful to rank egalitarian distributions equally, regardless of theirmean:

Axiom 2.6 Normalisation: I (X) = 0 if and only if x1 = x2 = · · · = xn.

Finally, we introduce the key consistency property based on the proposal by Lambert and
Zheng [16, equation 1]:

Axiom 2.7 Consistency: I (X) � I (Y ) if and only if I (X−1) � I (Y−1) for all possible X
and Y (both elements of Rn++).

2 PD transfers can also be represented using bi-stochastic matrices. Hence Axioms 2.3 and 2.4 are equivalent
formalisations of the same principle.
3 For the equivalence conditions linking bi-stochastic matrices and inequality measurement in the context of
majorization orderings see Arnold and Sarabia [2].
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Note that the consistency axiom does not rule out the occasional agreement of rankings
provided by I for some particular pair of distributions. Instead, consistency requires that I
ranks every possible pair of distributions consistently.4

Just to provide some motivation for the relevance of the consistency property, con-
sider the following two distributions with n = 8: X = (1, 2, 3, 4, 5, 6, 7, 8) and
Y = (1, 2.5, 2.5, 4, 5, 6, 7.5, 7.5). Both have the same mean (4.5) and actually Y
can be obtained from X by performing two PD transfers (one involving the second
and third lowest values and another one involving the two highest values). Therefore
we would expect I (X) > I (Y ) for any I satisfying the transfers principle. More-
over we would expect Lorenz-style dominance of Y over X for any Zoli-respecting
Lorenz-style curves (e.g. Lorenz, absolute Lorenz, etc.). Now consider the respective
inverse distributions: X−1 = (1, 0.5, 0.333, 0.25, 0.2, 0.166, 0.143, 0.125) and Y−1 =
(1, 0.4, 0.4, 0.25, 0.2, 0.166, 0.133, 0.133). Would it also be the case that I (X−1) >

I (Y−1)? If not, then the inequality comparison would depend on the choice of represen-
tation, which may or may not be arbitrary.

In order to answer the aforementioned question, it is helpful to introduce the Lambert-
Zheng generalised Lorenz curve for the fixed-population case5:

L(X; k, μ, λ) ≡
k∑

i=1

xi − m(X)

(μm(X) + 1 − μ)λ
, k = 1, 2, . . . , n;μ ∈ [0, 1], λ ∈ [0, 1] (1)

Then (for the fixed-population case) we define the Zoli-λ-μ inequality partial ordering
proposed by Lambert and Zheng [16]6 stating that, for a given pair μ ∈ [0, 1], λ ∈ [0, 1], a
distribution X weakly dominates Y in the Zoli-λ-μ sense if L(X; k, μ, λ) ≥ L(Y ; k, μ, λ)

for all k = 1, 2, . . . , n. Likewise, following Lambert and Zheng [16, pp. 215, 218] we state
that X and Y are said to be inequality equivalent in the Zoli-λ-μ sense if L(X; k, μ, λ) =
L(Y ; k, μ, λ) for all k = 1, 2, . . . , n.

Finally, we state that, for a given pair μ ∈ [0, 1], λ ∈ [0, 1], the Zoli-λ-μ inequality
partial ordering is consistent if X weakly dominates Y in the Zoli-λ-μ sense and X−1 weakly
dominates Y−1 in the Zoli-λ-μ sense.

2.2 First-order dominance and generalised-Lorenz partial orderings

Before discussing the consistency of inequality comparisons, we start with welfare com-
parisons based on first-order and second-order dominance. Though these are not strictly
inequality comparisons, they incorporate concerns for inequality into social welfare assess-
ments.7

4 A similar distinction is made in the case of bounded variables between consistent inequality indices, which
are expected to rank every possible pair of distributions consistently; and inconsistent inequality indices, which
can still rank some specific pairs of distributions consistently, but not all of them (e.g. see [16]).
5 For the variable-population case we would use L(X; n, k, μ, λ) = 1

n L(X; k, μ, λ), k = 1, 2, . . . , n; μ ∈
[0, 1], λ ∈ [0, 1].
6 We are following the definition and name (i.e. Zoli) of the partial orderings proposed by Lambert and Zheng
[16] which, interestingly, is slightly different from the original proposal by Zoli [25].
7 We could consider higher orders of dominance, but first and second order seem to be the most popular in
the literature.
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We can consider alternative definitions of first and second-order dominance by choosing
different statements from the equivalence theorems on which these partial orders are based.
We will use the following weak definitions for the fixed-population case:

Definition 1 For any pair of distributions X , Y ∈ R
n++ we say that X FOD (“first-order

dominates”) Y if and only if xi ≥ yi for all i = 1, 2, . . . , n.

X FOD Y is equivalent to stating that W (X) ≥ W (Y ) for all W : Rn++ → R that are
symmetric (i.e. satisfy anonymity) and increasing [21]. This implies that higher values of X
and Y represent higher well-being (e.g. rooms per capita). If that were the case, then higher
values of X−1 and Y−1 should represent higher deprivation or lower wellbeing, accordingly
(e.g. people per room). Then following Saposnik [21], we can show that Y−1 FOD X−1 is
equivalent to stating that V (Y−1) ≤ V (X−1) for all V : Rn++ → R that are symmetric (i.e.
satisfy anonymity) and decreasing. That is, if W (X) ≥ W (Y ) means that wellbeing with X
is at least as high as with Y , then V (Y−1) ≤ V (X−1)must mean, equivalently, that wellbeing
with Y−1 is not higher than with X−1, and vice versa.

Definition 2 For any pair of distributions X , Y ∈ R
n++ we say that X SOD (“second-order

dominates”) Y if and only if
∑k

i=1 xi ≥ ∑k
i=1 yi for all k = 1, 2, . . . , n.8

X SOD Y is equivalent to stating that W (X) ≥ W (Y ) for all W : R
n++ → R that

are symmetric, increasing and Schur-concave [23]. As discussed above, if higher values of
X−1 and Y−1 represent lower wellbeing, then Y−1 SOD X−1 is equivalent to stating that
V (Y−1) ≤ V (X−1) for all V : Rn++ → R that are symmetric, decreasing and Schur-convex.

Our first result in Proposition 2.1 pertains to the consistency of first-order dominance with
ratios:

Proposition 2.1 Consistency of first-order stochastic dominance: for all possible X and Y
(both elements of Rn++), X FOD Y if and only if Y−1 FOD X−1.

Proof By Definition 1, X FOD Y is tantamount to rank dominance, i.e. xi ≥ yi for all
i = 1, 2, . . . , n [21]. Inverting the values we get: x−1

i ≤ y−1
i for all i = 1, 2, . . . , n. Hence

Y−1 FOD X−1. Clearly the reverse is also true. �	
Proposition 2.1 sits well with intuition because if higher values within X and Y denote

higher wellbeing, then it should be the case that higher values in X−1 and Y−1 denote
deprivation. Therefore, Proposition 2.1 ascertains the consistency of first-order dominance
analysis in the case of ratios: if we find first-order dominance with wellbeing representations
then we must find first-order dominance with deprivation representations (in the form of
inverted variables) and viceversa.9

An interesting implication of Proposition 2.1 is that if X FOD Y then X dominates Y in
higher orders and Y−1 dominates X−1 in higher orders. Shown in Proposition 2.2, this result
is a consequence of first-order dominance implying higher orders of dominance. Interest-
ingly, when comparing distributions of ratios with the same population, consistent SOD also
requires rank dominance of the two most extreme values:

8 Analogously, for any pair of distributions X−1, Y−1 ∈ R
n++ we say that X−1 SOD (“second-order domi-

nates”) Y−1 if and only if
∑k

i=1 x
−1
n−i+1 ≥ ∑k

i=1 y
−1
n−i+1 for all k = 1, 2, . . . , n.

9 It should be straightforward to show that this is also true in the case of bounded variables and attainment-
versus-shortfall representations.
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Proposition 2.2 Consistency of second-order stochastic dominance: for all possible X and
Y (both elements of Rn++), X SOD Y and Y−1 SOD X−1 if X rank-dominates Y and only if
x1 ≥ y1 and xn ≥ yn.

Proof If: Direct consequence of Proposition 2.1 and its proof.
Only if: By definition, SOD implies x1 ≥ y1. Also by definition (see footnote in Defini-

tion 2), Y−1 SOD X−1 implies y−1
n ≥ x−1

n , which is equivalent to xn ≥ yn . �	

2.3 The Zoli-�-� partial orderings

Lambert and Zheng [16, theorems 1 and 2] demonstrate that the Zoli-λ-μ partial orderings
rank bounded variables consistently if and only when λμ = 0 (i.e. an absolute approach to
inequality measurement). Hence all absolute inequality indices are also consistent between
attainment and shortfall representations of the bounded variable. By contrast, the results of
Lambert and Zheng [16] do not rule out consistent inequality indices among the classes
of non-absolute inequality indices; rather their results imply that not all inequality indices
among those classes are consistent. Applying their rationale to assess the consistency of
inequality measurement with ratio variables, Proposition 2.3 provides a key “impossibility
result” showing that all Zoli partial orderings (including the Lorenz and absolute Lorenz
partial orderings as limiting cases) are inconsistent. That is, robust inequality measurement
with ratios is inconsistent across alternative representations of the ratio variable:

Proposition 2.3 For all possible pairs λ ∈ [0, 1], μ ∈ [0, 1], any Zoli-λ-μ partial ordering
is inconsistent.

Proof We set out to prove that, for all possible pairs λ ∈ [0, 1], μ ∈ [0, 1], the Zoli-λ-μ
partial orderings are inconsistent for ratios. In particular, we prove that for all possible pairs
λ ∈ [0, 1], μ ∈ [0, 1] and any pair of distributions X and Y : inequality equivalence between
X and Y in the Zoli-λ-μ sense does not guarantee inequality equivalence between X−1 and
Y−1 in the same sense.

Let X and Y be two different distributions which are nonetheless inequality-equivalent in
terms of the Zoli-λ-μ partial orderings for a pair λ ∈ [0, 1], μ ∈ [0, 1]. That is:

k∑

i=1

xi − m(X)

(μm(X) + 1 − μ)λ
=

k∑

i=1

yi − m(Y )

(μm(Y ) + 1 − μ)λ
, k = 1, 2, . . . , n. (2)

Clearly, the equations in (2) hold if and only if:

xi − m(X)

(μm(X) + 1 − μ)λ
= yi − m(Y )

(μm(Y ) + 1 − μ)λ
, i = 1, 2, . . . , n. (3)

Solving for xi in (3) yields:

xi = (μm(X) + 1 − μ)λ
yi − m(Y )

(μm(Y ) + 1 − μ)λ
+ m(X), i = 1, 2, . . . , n. (4)

Then inverting xi we get the same condition in terms of every element in X−1, i.e. x−1
i ,

in (5):

x−1
i =

[

(μm(X) + 1 − μ)λ
yi − m(Y )

(μm(Y ) + 1 − μ)λ
+ m(X)

]−1

, i = 1, 2, . . . , n. (5)
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Would x−1
i in (5) also necessarily and sufficiently guarantee the inequality-equivalence

of X−1 and Y−1 in terms of the Zoli-λ-μ partial orderings for the same pair λ ∈ [0, 1], μ ∈
[0, 1]? For that to be the case we would need to obtain the same formula for x−1

i in (5)
from the relationships in (6) (which is both necessary and sufficient to ensure that inequality
equivalence between X−1 and Y−1):

x−1
i − m(X−1)

(μm(X−1) + 1 − μ)λ
= y−1

i − m(Y−1)

(μm(Y−1) + 1 − μ)λ
, i = 1, 2, . . . , n. (6)

But solving for x−1
i in (6) yields (7):

x−1
i = (μm(X−1) + 1 − μ)λ

y−1
i − m(Y−1)

(μm(Y−1) + 1 − μ)λ
+ m(X−1), i = 1, 2, . . . , n. (7)

Clearly, x−1
i from expression (7)will not generally be identical to x−1

i from expression (5),
whichever λ ∈ [0, 1], μ ∈ [0, 1] pair is considered. Therefore, for all pairs λ ∈ [0, 1], μ ∈
[0, 1] the Zoli-λ-mu partial orderings are inconsistent. �	

However, there may be some specific pairs of distributions for which a specific agreement
of rankings is attained (not the same as consistency, as mentioned before) . We can find some
of these by looking into the n = 2 cases of expressions (5) and (7) in (8) and (9), respectively:

x−1
1 =

[(

μ
x1 + x2

2
+ 1 − μ

)λ y1 − y1+y2
2

(
μ

y1+y2
2 + 1 − μ

)λ
+ x1 + x2

2

]−1

. (8)

x−1
1 =

(

μ
x−1
1 + x−1

2

2
+ 1 − μ

)λ
y−1
1 − y−1

1 +y−1
2

2
(

μ
y−1
1 +y−1

2
2 + 1 − μ

)λ
+ x−1

1 + x−1
2

2
. (9)

Clearly, x−1
1 obtains the same value in (8) and (9) only if: (1) m(X) = m(Y ), in which

case, trivially, X = Y (because xi−m(X)

(μm(X)+1−μ)λ
= yi−m(Y )

(μm(Y )+1−μ)λ
for all i = 1, 2, . . . , n); or

(2) the two distributions are egalitarian. In practice, most distributional comparisons involve
non-egalitarian distributions with different means. Therefore the problem of inconsistency is
bound to be pervasive.

Another instance where specific agreement of rankings may be secured is when one
egalitarian distribution is compared against a non-egalitarian distribution. In such case, let
X be egalitarian and Y be non-egalitarian. If we construct their respective Lambert-Zheng
generalised Lorenz curves we will get:

k∑

i=1

xi − m(X)

(μm(X) + 1 − μ)λ
= 0 ≥

k∑

i=1

yi − m(Y )

(μm(Y ) + 1 − μ)λ
∀k = 1, 2, . . . , n. (10)

The statement in (10) is true because X is egalitarian (therefore xi = m(X) for
all i = 1, 2, . . . , n) and Y is non-egalitarian with y1 ≤ y2 ≤ · · · ≤ yn (therefore
∑k

i=1
yi−m(Y )

(μm(Y )+1−μ)λ
<

∑n
i=1

yi−m(Y )

(μm(Y )+1−μ)λ
= 0 for all k = 1, 2, . . . , n − 1). Then, one

can easily note that X is egalitarian if and only if X−1 is also egalitarian. Therefore X−1 will
be egalitarian whereas Y−1 will not be so, and we will have again:
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k∑

i=1

x−1
n−i+1 − m(X−1)

(μm(X−1) + 1 − μ)λ
= 0 ≥

k∑

i=1

y−1
n−i+1 − m(Y−1)

(μm(Y−1) + 1 − μ)λ
∀k = 1, 2, . . . , n. (11)

Likewise, we may be able to find other cases where I (X) � I (Y ) if and only if I (X−1) �
I (Y−1) involving two non-egalitarian distributions. But, as mentioned, consistent inequality
comparisons must hold for every possible pair of distributions. The consistency result for
bounded variables works in exactly the same way.

2.4 Consistent inequality indices

As mentioned in Sect. 2.3, if a particular partial ordering were consistent then all inequality
indices respecting it would also be consistent. In the absence of any consistent Zoli partial
ordering (as proven in Proposition 2.3), we may still be able to find classes of consistent
inequality indices, but not relying on the (in)consistency of their respective partial orderings.
In this section we show one such class of consistent inequality indices based on harmonic
means.10

Let H(X) denote the harmonic mean of X ; that is: H(X) = [ 1n
∑n

i=1 x
−1
i ]−1. As is well-

known in the literature, the harmonic mean is a member of the subset of concave generalised
means useful in inequality and inequality-sensitive welfare assessments (e.g. see [3,11]). Due
to its concavity, the harmonic mean increases in the presence of Pigou–Dalton transfers (or
smoothing with a bi-stochastic matrix). Moreover, H(X) ≤ m(X) and H(X) = m(X) if and
only if X is an egalitarian distribution. Then, Proposition 2.4 identifies a class of consistent
relative inequality indices based on the ratio of the harmonic to the arithmetic mean:

Proposition 2.4 Let f : R → R be a decreasing function with f (1) = 0; and define
t(X) ≡ H(X)

m(X)
. Then I (X) = ( f ◦ t)(X) is an inequality index satisfying anonymity, transfer

principle, normalisation, and consistency.

Proof Satisfaction of anonymity is straightforward since both H(X) and m(X) are anony-
mous. Satisfaction of the transfer principle relies on the fact that a Pigou–Dalton transfer
rendersm(X) unaltered but increases H(X) due to its concavity. Then t(X) increases accord-
ingly. Since f is a decreasing function, it must be the case that ( f ◦ t)(X) decreases in the
event of a Pigou–Dalton transfer. Satisfaction of normalisation is also straightforward given
that t(X) = 1 if and only if X is an egalitarian distribution, and by definition f (1) = 0.

Satisfaction of consistency requires, by definition: ( f ◦ t)(X) � ( f ◦ t)(Y ) if and only

if ( f ◦ t)(X−1) � ( f ◦ t)(Y−1). Now note that: ( f ◦ t)(X) � ( f ◦ t)(Y ) if and only if

t(X) � t(Y ). Therefore proving consistency is tantamount to demonstrating that t(X) � t(Y )

if and only if t(X−1) � (Y−1). Inserting the definition of H(X) into t(X) we get:

t(X) = H(X)

m(X)
= [m(X−1)]−1

m(X)
= 1

m(X−1)m(X)

= [m(X)]−1

m(X−1)
= H(X−1)

m(X−1)
= t(X−1) (12)

10 We thank an anonymous referee for suggesting the harmonic mean as a potential foundation for consistent
inequality indices.
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Hence, clearly t(X) � t(Y ) if and only if t(X−1) � (Y−1) because t(X) = t(X−1) and

t(Y ) = t(Y−1), as per (12). �	
A prominent example of ( f ◦ t) is the Atkinson index (based on his notion of equally-

distributed equivalent income) when ε = 2 [3, p. 257]:

A(X; ε = 2) = 1 − H(X)

m(X)
(13)

But there are other equally suitable indices in the identified class. For instance, if X ∈ R
n++

(as is assumed throughout this paper), then the following logarithmic form would also satisfy
the properties listed in Proposition 2.4:

B(X) = − ln

(
H(X)

m(X)

)

(14)

Interestingly, all inequality indices of the form ( f ◦ t) also satisfy the population principle,
which conveniently, enables the comparisonof distributions of ratioswith different population
sizes. Additionally, the indices described in Proposition 2.4 also satisfy scale invariance,
which means that they only measure the relative notion of inequality respecting the Lorenz
partial ordering (i.e. the Zoli-1-1 partial ordering).11

3 Alternative potential solutions

Solutions in the form of classes of indices such as that identified in Sect. 2.4 are arguably
satisfactory. However, since we only found consistent inequality indices within the class
respecting the Lorenz partial ordering, it may be worth considering alternative solutions to
the problem of inconsistent inequality measurement for ratios. This section discusses three
potential alternatives.

3.1 An ethical defense of one particular representation

In the context of bounded variables, Kenny [13] provides an interesting defence for choosing
an attainment representation (e.g. child survival rates) over a shortfall representation (e.g.
child mortality rates) in order to be able to use bound-inconsistent inequality measures (the
coefficient of variation in his particular case). He gave two justifications for choosing attain-
ment representations. Firstly, that measures of convergence, like the coefficient of variation
across time, are more sensitive to small absolute changes near the lower bound (e.g. zero
child mortality) than larger changes further away when the mean trends toward that lower
bound (e.g. toward zero childmortality). This sensitivity is deemed “perverse” [13, p. 3]. Sec-
ondly, Kenny [13] argued that most of the literature on income trends (at that time) measured
convergence toward “the upper, “positive” value”. While the second reason may not be fully
convincing (it resorts to the case of unbounded variables like income to defend a particular
representation for bounded variables), the first reason is arguably better founded. Yet in the-
ory, for the case of ratios we could invoke justifications analogous to the two aforementioned
reasons put forward by Kenny [13].

11 For the seminal discussion on relative (“rightist”), absolute (“leftist”) and intermediate (“centrist”)
approaches to inequality measurement see Kolm [15].
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For example, let us consider the case of between-country inequality measurement of
income per capita. In theory we could invert the variable and express it in terms of people
per monetary unit (e.g. some form of density measure like people per square kilometer). We
would run into inconsistencies if we made inequality comparisons with both representations.
But the concept of income per capita seems to be far more intuitive than people per currency.
Moreover, to the best of our knowledge, nobody in the literature has ever attempted distribu-
tional analysis with the inverse of income per capita. Therefore this seems to be a case where
just defending one particular representation solves the problem. Effectively, inconsistency is
brushed aside as if it did not exist.

On the other hand, not all cases may be as clear-cut as that of income per capita. For
instance, several countries (e.g. the United States, the United Kingdom and Mexico [7,12])
measure overcrowding using number of people per room, people per bedroom, or some
alternative variation thereof in which the number of potential living quarters appears in the
denominator. By contrast, the European Union uses a more complex measure that consists
of counting the number of rooms available for particular groups of people under specific
circumstances (e.g. there should be at least one room for each single person aged 18 or older)
[9]. In essence, the EU’s overcrowding measure has number of rooms in the numerator.
In such cases inconsistency may be a more salient problem, in the absence of universally
preferred representations.

We could follow the style of Kenny [13]’s arguments to defend a particular representation
for variables like overcrowding. For instance, in countries or regions with relatively high
overcrowding it may be easier to understand people per room as often these will be numbers
higher than 1 (e.g. in Mexico the overcrowding deprivation line is 2.5 people per room
[7]). Meanwhile, in developed countries with lower incidence of overcrowding it may be
worth switching to rooms per people, again under the assumption that it is easier to relate to
numbers higher than 1 as opposed to between 0 and 1. Similar arguments could be put forward
for between-country inequality assessment involving variables like number of physicians or
hospital beds per 1,000 people, infection rates and so forth.

3.2 A combination of inequality indices

The first proposed alternative solution effectively brushes aside inconsistency by allowing
only one representation for inequalitymeasurement. However, if someone values consistency
in inequality measurement with ratios then one potential alternative could be adapting the
solution of Lasso de la Vega and Aristondo [17] for the consistency problem with bounded
variables. In the case of ratios, their approach would involve using a generalised mean of
two inconsistent inequality indices with the same functional form and parameters, but one
evaluated at X and the other one at X−1 as in Eq. 15:

I r (X) =
⎧
⎨

⎩

( [I (X)]r+[I (X−1)]r
2

) 1
r

if r �= 0

(I (X)I (X−1))
1
2 if r = 0

(15)

This approach clearly solves the consistency problem, as indicated in Proposition 3.1:

Proposition 3.1 For all r ∈ R, I r (X) satisfies the consistency property.12

12 If I in (15) is consistent then, by definition, the problem is solved and there is no need to undertake the
approach proposed in this subsection anymore; hence the focus on inconsistent indices. Note that, logically, if
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Proof It is straightforward to note that for all r ∈ R: I r (X) = I r (X−1). Likewise: I r (Y ) =
I r (Y−1). Therefore itmust be the case that I r (X) � I r (Y ) if and only if I r (X−1) � I r (Y−1).

�	
In the case of bounded variables, the indices proposed by Lasso de la Vega and Aristondo

[17] solve those variables’ consistency problem while fulfilling the key desirable properties
of inequality measurement, chiefly the principle of transfers. Moreover their proposal consti-
tutes an elegant alternative to restricting the inequality assessment to the absolute approach
(absolute inequality indices, absolute Lorenz curves, etc.). In the case of ratios, these indices
also solve the consistency problem as shown in Proposition 3.1, but unfortunately, as stated
in Proposition 3.2, at the cost of violating the transfers principle:

Proposition 3.2 For any non-egalitarian distribution X ∈ R
n++ and pair λ ∈ [0, 1], μ ∈

[0, 1], there is at least one combination of r and inequality index I respecting the Zoli-λ-μ
partial ordering, such that I r (X) violates the transfer principle.

Proof Let Y be obtained from X through a PD transfer involving individuals i and j and
some δ > 0 such that: xi + δ ≤ x j − δ. For all k �= i, j : yk = xk .

Then:

I r (Y ) − I r (X) ≈ δ

[
∂ I r (X)

∂xi
− ∂ I r (X)

∂x j

]

= δ

[
∂ I r (X)

∂ I (X)

(
∂ I (X)

∂xi
− ∂ I (X)

∂x j

)

+ ∂ I r (X)

∂ I (X−1)

(
∂ I (X−1)

∂xi
− ∂ I (X−1)

∂x j

)]

(16)

Now, we know from (15) that ∂ I r (X)
∂ I (X)

> 0 and ∂ I r (X)

∂ I (X−1)
> 0. Likewise since I (X) satisfies

the transfer principle, it is also the case that: ∂ I (X)
∂xi

− ∂ I (X)
∂x j

< 0.

However it is not always the case that ∂ I (X−1)
∂xi

− ∂ I (X−1)
∂x j

< 0. For example, let-

ting zi = x−1
i −m(X−1)

(μm(X−1)+1−μ)λ
, and recalling the Lambert-Zheng generalised Lorenz curves

L(X−1; k, μ, λ) = ∑k
t=1 zt we get the following changes in the aftermath of the PD trans-

fer:

∂L(X−1; k, μ, λ)

∂xi
− ∂L(X−1; k, μ, λ)

∂x j

= I(zi ≤ zk)

[
∂zi
∂xi

− ∂zi
∂x j

]

+ I(z j ≤ zk)

[
∂z j
∂xi

− ∂z j
∂x j

]

+
n∑

t �=i, j

I(zt ≤ zk)

[
∂zt
∂xi

− ∂zt
∂x j

]

, (17)

where I(a) = 1 if a is true, otherwise I(a) = 0; and:

∂zi
∂xi

− ∂zi
∂x j

= λμ(μm(X−1) + 1 − μ)−1 1
n (x−1

i − m(X−1))

(μm(X−1) + 1 − μ)λ

[
x−2
i − x−2

j

]

I is inconsistent, then I (X) �= I (X−1). Therefore the class of consistent indices identified in Proposition 2.4
does not overlap with the class I r in (15) because the former cannot be represented as the generalised mean
of two identical inconsistent inequality indices, one evaluated at X and the other one at X−1.
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− 1

(μm(X−1) + 1 − μ)λ

[
n − 1

n
x−2
i + 1

n
x−2
j

]

, (18)

∂z j
∂xi

− ∂z j
∂x j

= 1

(μm(X−1) + 1 − μ)λ

[
n − 1

n
x−2
j + 1

n
x−2
i

]

+λμ(μm(X−1) + 1 − μ)−1 1
n (x−1

j − m(X−1))

(μm(X−1) + 1 − μ)λ

[
x−2
i − x−2

j

]
, (19)

and

∂zt
∂xi

− ∂zt
∂x j

= λμ(μm(X−1) + 1 − μ)−1(x−1
t − m(X−1)) + 1

n(μm(X−1) + 1 − μ)λ

[
x−2
i − x−2

j

]
(20)

∀t �= i, j .

Now for the PD transfer to yield from X−1 a new distribution unambiguously less unequal
according to any Zoli-λ-μ criteria, we need (17) to be non-negative for all k = 1, 2, . . . , n.
Otherwise there could be curve-crossings. However there is no guarantee that (17)will always
be non-negative, since some of the expressions in (18), (19), and (20) are bound to be negative
(as their signs depend on x−1

t − m(X−1) for all t = 1, 2, . . . , n and these cannot have the
same sign simultaneously, otherwise the expected value of deviations from the mean would
not be zero), and there is no guarantee that the positive elements in (17) will always have
higher absolute value than the negative ones. For example, let i and j (involved in the PD
transfers) be the second-to-wealthiest and wealthiest individuals, respectively. Then, it could
be the case that (17) for k = 1 is negative (e.g. if x−1

j −m(X−1) is sufficiently low) but (17)

with k taking values very close to n is positive (e.g. if x−1
t − m(X−1) is sufficiently high

for several t �= i, j).13 Hence in the absence of a robust decrease in inequality there is no

guarantee that ∂ I (X−1)
∂xi

− ∂ I (X−1)
∂x j

< 0.

Therefore I r (X) can satisfy the transfer principle if ∂ I (X−1)
∂xi

− ∂ I (X−1)
∂x j

< 0 for all X ,

which is not guaranteed. But what if ∂ I (X−1)
∂xi

− ∂ I (X−1)
∂x j

> 0? In that case, if I (X) > I (X−1)

one can always find an r low enough (minus infinity in the limit if necessary) such that
∂ I r (X)
∂ I (X)

<
∂ I r (X−1)

∂ I (X−1)
. Otherwise, if I (X) < I (X−1) one can always find an r high enough

(plus infinity in the limit if necessary) such that ∂ I r (X)
∂ I (X)

<
∂ I r (X−1)

∂ I (X−1)
. In both cases expression

(16) turns positive and there is at least one r with which I r (X) violates the transfer principle
whichever the choice of I . �	

In summary, the generalised-mean approach solves the consistency problem of inequality
measurement with ratios, but only at a high price: the violation of the transfers principle.

3.3 A transformation of the variable

Another potential alternative solution to restore consistency is to apply a monotonically
increasing transformation to the ratio variable such that:

(I ◦G)(X) � (I ◦G)(Y ) if and only if (I ◦G)(X−1) � (I ◦G)(Y−1) for all possible X
and Y ,

where G : Rn++ → R
n and G(X) = {g(x1), g(x2), . . . , g(xn)} with g : R++ → R being

an increasing function. In principle, several choices of g could be considered. But it may be

13 Numerical examples are available from the author upon request.
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worth narrowing these down by focusing on increasing transformations that renderG(X) and
G(X−1) vectors of bounded variables. Then we can restore consistency relying on absolute
inequality indices, i.e. applying the results of Lambert and Zheng [16].14

By definition, the attainment and shortfall representations of a bounded variable satisfy
the following equation: for some pair of real numbers a < b and an attainment variable x
such that a ≤ x ≤ b, then x + y = b (so that y = b− x is the shortfall representation). Then
the strategy relying on absolute inequality measurement requires finding a function g such
that g(x) + g(x−1) = c where c is some real constant operating as an upper bound.

One suitable option is the logarithmic transformation based on the solution g(x) =
a ln(bx), where 2a ln(b) = c with b > 0 and a �= 0 if both b �= 1 and c �= 0. Without
loss of generality we can set a = b = 1, implying c = 0. Hence we apply an increasing
logarithmic transformation g = ln(x).15 Then Proposition 3.3 demonstrates that inequality
comparisons with the logarithmic transformation of ratios are consistent if and only if an
absolute approach to inequality is adopted:

Proposition 3.3 Let I respect the Zoli-λ-μ partial ordering for some λ ∈ [0, 1] and μ ∈
[0, 1], and L(X) = {ln(x1), ln(x2), . . . , ln(xn)}. Then (I ◦ L) : Rn++ → R

n+ is consistent if
and only if λμ = 0.

Proof First, in addition to ln(x) + ln( 1x ) = 0, we note that: (m ◦ L)(X) = −(m ◦ L)(X−1).
If: Let λμ = 0 and X �= Y . Now assume:

k∑

i=1

[ln(xi ) − (m ◦ L)(X)] ≥
k∑

i=1

[ln(yi ) − (m ◦ L)(Y )] ∀k = 1, 2, . . . , n. (21)

Since ln(xi ) − (m ◦ L)(X) = (m ◦ L)(X−1) − ln(x−1
i ) (and the same goes for L(Y )),

then:
k∑

i=1

[ln(x−1
i ) − (m ◦ L)(X−1)] ≤

k∑

i=1

[ln(y−1
i ) − (m ◦ L)(Y−1)] ∀k = 1, 2, . . . , n,

(22)

which is equivalent to:

k∑

i=1

[ln(x−1
n−i+1) − (m ◦ L)(X−1)] ≥

k∑

i=1

[ln(y−1
n−i+1) − (m ◦ L)(Y−1)] ∀k = 1, 2, . . . , n.

(23)

That is, if I is an absolute inequality index (i.e. respecting the Zoli-λ-μ partial ordering
with λμ = 0) then (I ◦ L)(X) � (I ◦ L)(Y ) if and only if (I ◦ L)(X−1) � (I ◦ L)(Y−1).

Only if:
Now let distributions X �= Y be inequality equivalent in terms of the Zoli-λ-μ partial

ordering. Then (I ◦ L)(X) = (I ◦ L)(Y ) for any I respecting that same partial ordering.

14 In principle we could also resort to the proposal by Lasso de la Vega and Aristondo [17]. However only
absolute inequality indices could be admissible as choices for the combined index because (m ◦ G)(X) and
(m ◦G)(X−1)may not be constrained to be different from zero anymore. Hence one single absolute inequality
index, as proposed by Lambert and Zheng [16], would suffice.
15 In principle, alternative candidate functions for the increasing transformations may be feasible, but the
other simple solutions to the functional equation, g(x) + g(x−1) = c, are not as easy to come by as the
logarithmic function.
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Since (I ◦ L) is consistent it must be the case that: (I ◦ L)(X−1) = (I ◦ L)(Y−1) If so, then
we would expect from the inequality equivalence both:

ln(xi ) − (m ◦ L)(X)

(μ(m ◦ L)(X) + 1 − μ)λ
= ln(yi ) − (m ◦ L)(Y )

(μ(m ◦ L)(Y ) + 1 − μ)λ
, i = 1, 2, . . . , n, (24)

and:

ln(x−1
i ) − (m ◦ L)(X−1)

(μ(m ◦ L)(X−1) + 1 − μ)λ
= ln(y−1

i ) − (m ◦ L)(Y−1)

(μ(m ◦ L)(Y−1) + 1 − μ)λ
, i = 1, 2, . . . , n. (25)

However ifwe insert ln(xi )−(m◦L)(X) = (m◦L)(X−1)−ln(x−1
i ), ln(yi )−(m◦L)(Y ) =

(m ◦ L)(Y−1)− ln(y−1
i ), (m ◦ L)(X) = −(m ◦ L)(X−1), and (m ◦ L)(Y ) = −(m ◦ L)(Y−1)

into (24) we get, after some rearrangements:

ln(x−1
i ) − (m ◦ L)(X−1)

(1 − μ[1 + (m ◦ L)(X−1)])λ = ln(y−1
i ) − (m ◦ L)(Y−1)

(1 − μ[1 + (m ◦ L)(Y−1)])λ , i = 1, 2, . . . , n, (26)

Given that (m ◦ L)(X) �= (m ◦ L)(Y ), clearly expressions (25) and (26) do not coincide
unless λμ = 0. Therefore λμ = 0 is necessary for (I ◦ L) to be consistent. �	

Proposition 3.3 shows that a logarithmic transformation of the ratio enables consistent
absolute inequality measurement. However this solution comes at a significant cost. Foster
andOk [10, and references therein] noted that the then popular variance of logarithms violated
the transfers principle.More generally, we can show that any inequalitymeasure (I ◦L)where
I is a Schur-convex function (thus satisfying the transfers principle) violates the transfers
principle:

Proposition 3.4 (I ◦ L) violates the transfers principle.

Proof Let distribution Y be obtained from X through a PD transfer of δ > 0 involving
individuals i and j such that: yi = xi + δ ≤ x j − δ = y j and yk = xk for all k �= i, j . Then:

(I ◦ L)(Y ) − (I ◦ L)(X) ≈ δ

[
∂(I ◦ L)(X)

∂xi
− ∂(I ◦ L)(X)

∂x j

]

= δ

[
∂(I ◦ L)(X)

∂ ln xi

1

xi
− ∂(I ◦ L)(X)

∂ ln x j

1

x j

]

(27)

Clearly, (I ◦ L)(Y )− (I ◦ L)(X) < 0, which would mean that (I ◦ L) satisfies the transfer
principle, only if ∂(I◦L)(X)

∂ ln xi
1
xi

− ∂(I◦L)(X)
∂ ln x j

1
x j

< 0. However the latter is not guaranteed because

even though ∂(I◦L)(X)
∂ ln xi

<
∂(I◦L)(X)

∂ ln x j
(due to the Schur-convexity of I and xi < x j ) it is also

the case that 1
xi

> 1
x j

(for the same second reason, i.e. xi < x j ). Hence a priori the sign of
(I ◦ L)(Y ) − (I ◦ L)(X) is ambiguous and depends on the relative magnitude of the values
involved in the transfer (xi and x j ). �	

Hence this alternative potential solution based on measuring absolute inequality with
logarithmic transformations of ratios also runs into the inconvenient trade-off whereby con-
sistency is gained at the expense of the transfer principle. One possible way out of this
dilemma is to consider PD transfers (or smoothing with bi-stochastic matrices) only applied
to the transformed variable. In other words, we would not be considering transfers of the
form xi + δ ≤ x j − δ (with some δ > 0). Instead we would consider ln xi + δ ≤ ln x j − δ

with respective “shortfall” counterparts −[ln xi + δ] and −[ln x j − δ]. But even this patch
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comes with the cost of losing further intuition: one thing is to consider a transfer of one
person-per-room from a very overcrowded dwelling to a less overcrowded dwelling; another
thing is to interpret a transfer of a logarithm of one person-per-room.

Finally, even if we accept the aforementioned caveats, there would be an additional draw-
back from the way logarithmic transformations affect the dispersion of the original variable.
As is well known, logarithmic transformations will compress the dispersion of any values of
X ∈ R

n++ higher than 1 while doing the exact opposite to values lower than 1. For instance, if
X has very similar values clustered somewhere between 0 and 1, while Y has more disperse
values all higher than 1, it could happen that I (X) < I (Y ) but (I ◦ L)(X) > (I ◦ L)(Y ).
Therefore even though the logarithmic transformation would enable a consistent comparison,
the inequality ranking based on the original variable would be overturned.

4 Empirical illustration

We illustrate the problem of inconsistency in inequality measurement with ratios, as well
as the implementation of the preferred proposed solution (inequality measures based on
the ratio of the harmonic to the arithmetic mean), with a study of intergenerational change
in overcrowding in Mexico.16 Specifically, for different birth cohorts of the adult Mexican
population in charge of households (heads and spouses)we askwhether inequality in dwelling
overcrowding decreased between the time these adults were 14 years old (i.e. when they
were adolescent and living with other adults heading the household) and the present in 2017
(when the survey we use was collected). A more detailed study of intergenerational mobility
in overcrowding in Mexico can be found in Yalonetzky [24].

First, we implement simple tests of rank dominance to detect the presence of social-welfare
comparisons that are both robust to alternative social welfare functions consistent with the
generalised Lorenz curve and consistent across alternative ratio representations. Then we
probe the inconsistency of intergenerational inequality comparisons. First, we provide numer-
ous examples of inconsistent conclusionswhenwe switch between ratio representations using
two popular inequality indices. Then we show how consistency is restored by applying the
preferred proposed solution.

4.1 Data and descriptive statistics

Weuse the ESRUSurvey on SocialMobility inMexico 2017 (ESRU-EMOVI 2017) collected
by theMexican Centro de Estudios Espinosa Yglesias (CEEY).Wemeasure overcrowding in
its two simplest ways. Firstly, dividing the number of people in the household by the number
of rooms including the kitchen; i.e. the same indicator used by CONEVAL in the construction
of Mexico’s multidimensional poverty index. Secondly, inverting the ratio to yield number
of rooms per person.17

We focus on adults aged 25–64 who are either heads of household or spouses and connect
their present overcrowding condition with their homes’ back when they were 14 years old.

16 Results for the alternative, less preferable solutions are available upon request.
17 Of course, overcrowding is only a partial indicator of dwelling conditions. It only captures the quantity of
available rooms per family member (or the other way around), without accounting for those rooms’ quality
or any other relevant dwelling conditions (e.g. floor, walls, and ceiling material; heating; electricity; indoor
plumbing; location in disaster-prone areas, etc.). CONEVAL [7] provides a detailed discussion of the plethora
of indicators used to diagnose the fulfillment of the right to a dignified and decorous dwelling, ranging from
access to housing subsidies to perceptions of insecurity in the neighbourhood and so forth.
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Table 1 Sample sizes by degree of urbanisation

Cohort Urban-to-urban Rural-to-rural Rural-to-urban Urban-to-rural

1988–1992 1155 144 334 39

1983–1987 992 134 339 31

1978–1982 1407 178 432 57

1973–1977 1275 215 547 67

1968–1972 1108 201 498 40

1963–1967 1008 155 412 36

1958–1962 741 128 390 37

1953–1957 1325 218 730 48

We construct the following eight birth cohorts (with ages in 2017 in parenthesis): 1988–1992
(25–29), 1983–1987 (30–34), 1978–1982 (35–39), 1973–1977 (40–44), 1968–1972 (45–49),
1963–1967 (50–54), 1958–1962 (55–59), 1953–1957 (60–64). More specifically, we explore
the interaction between birth cohort (of heads and spouses) and degree of urbanisation.
Bearing in mind that the EMOVI 2017 deems rural any location with fewer than 2500
inhabitants, the degree of urbanisation is operationalised by dividing the sample into four
groups: (1) urban-to-urban, comprising people who lived in urban areas (cities for short)
when they were 14 years old and currently live in cities; (2) rural-to-rural, made of people
who lived in rural areas when they were 14 years old and now also live in rural areas; (3)
rural-to-urban, comprising people who grew up in rural areas when they were 14 years old
and currently live in cities; and (4) urban-to-rural, made of people who grew up in cities
when they were 14 years old and now live in rural areas.

The respective sizes for the urbanisation-cohort samples are in Table 1. The sizes for the
urban-to-rural samples are rather small, reflecting the relative infrequency of de-urbanisation
in countries like Mexico. Hence the estimates for this population group are bound to be less
precise and reliable vis-a-vis the other urbanisation groups’.

As useful preliminary information, Fig. 1 presents the mean values of people per room
and its inverse (rooms per capita) for the cohort-urbanisation combinations. Among sev-
eral noteworthy features we note intergenerational reductions in mean overcrowding for all
cohorts in all urbanisation groups (in the sense that mean overcrowding was higher at the
parental home when the adults were 14 years old than at their present home where they are
either the head or their spouse). Moreover, the older the cohort the greater the reduction in
mean overcrowding. Coherently, mean rooms per capita increased for every cohort in every
urbanisation group.

4.2 First- and second-order stochastic dominance

In order to test for the presence of rank dominance (i.e. FOD) in every cohort-urbanisation
sample, first, we sort both distributions of current level of overcrowding measured by people
per room and its past level (when adults were 14) in ascending order and match the values
by ranking (e.g. the lowest current overcrowding level with the lowest past level, the second-
to-lowest present and past levels, and so forth up to the highest values). Then we compute
the difference between present and past values; hence a negative difference in a particular
rank signifies a reduction in overcrowding from childhood to current age in the absence of
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Fig. 1 Mean people per room and rooms per capita by degree of urbanisation

re-rankings.We conclude rank dominance of the past distribution of people per room over the
present one in the sample (i.e. not in the population) if both the minimum and the maximum
difference (both reported in Fig. 2) are negative, because in that case every other difference
in between will also be negative.

Likewise, we conclude rank-dominance of the present distribution over its past coun-
terpart if (and only if) the minimum and maximum differences are both positive. Finally,
we conclude an absence of rank-dominance either way if and only if the minimum and
maximum differences bear opposite signs. Then, as per Proposition 2.2, we conclude for a
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Fig. 2 Rank dominance tests for people per room by degree of urbanisation: minimum and maximum anony-
mously ranked differences between present and past values of people per room

particular sample that the current distribution of rooms per capita rank-dominates its past
counterpart if the minimum and maximum differences in Fig. 2 are both negative; in turn,
signalling second-order dominance by the current distribution of rooms per capita over its
past counterpart.18

Figure 2 shows the rank dominance test results for the cohort-urbanisation combinations.
As expected from the mean comparisons in Fig. 1, there is no evidence whatsoever of rank-
dominance of past rooms per capita over the corresponding present distribution for any of
the 32 cohort-urbanisation sample combinations. Meanwhile, we find rank-dominance of the
present distribution of rooms per capita over its past counterpart in almost every sample, with
the exception of the second-youngest cohort of the urban-to-urban sample and the second-to-
oldest cohort of the urban-to-rural sample. In both cases, the signs of the difference statistics
do not match, pointing to the absence of rank-dominance in any direction. Put differently, by
and large the generalised Lorenz criterion can rank the pairs of overcrowding distributions
across cohorts and urbanisation, whichever the ratio representation.

4.3 (In)consistency in the assessment of intergenerational changes in overcrowding
inequality

Figure 3 shows the standard deviations of past and present overcrowding across urbanisation
samples and for both ratio representations (people per room and rooms per capita). The
inconsistency is quite stark. Applied to people per room, the standard deviation tells a story

18 Note these are tests for rank-dominance within the sample, as opposed to tests of hypotheses about the
populations relying on the evidence from samples. The latter is not a trivial pursuit: even if there was truly rank
dominance in the unknown populations one could draw a large number of samples of different sizes featuring
minimum and maximum differences with opposing signs and viceversa (i.e. one could draw samples featuring
minimum and maximum differences with the same sign from populations that cannot be ordered in terms of
rank dominance).
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Fig. 3 Standard deviation by degree of urbanisation

of intergenerational decrease in absolute inequality across all cohorts and samples (except
for the youngest cohort in the urban-to-rural sample, which suffers from relatively low size
anyway). By contrast, applied to rooms per capita, the standard deviation describes the exact
opposite picture without exceptions. Partly, this contrast could be explained by the fact that
mean people per room decreased across all cohorts toward its lower bound (of 0, at least in
principle), thereby reducing the scope for dispersion in the distribution; whereas mean rooms
per capita has been simultaneously increasing away from its lower bound (of 0, again at least
in principle ), thereby increasing the scope for dispersion in the distribution. Whichever the
explanation, the key point is the pervasiveness of inconsistency across comparisons.

Figure 4 corroborates the widespread presence of inconsistency across ratio representa-
tions, now considering relative inequality measurement. Albeit less clearly than in the case

123



Inequality of ratios 213

Fig. 4 Coefficient of variation by degree of urbanisation

of the standard deviation, plenty of inequality comparisons (among the 32 samples) are
inconsistent across ratio representations with the coefficient of variation.

4.4 Consistent assessment of intergenerational changes in overcrowding inequality

Figure 5 shows the values of the consistent Atkinson index in Eq. 13. In general consistent
relative inequality has decreased non-monotonically across cohorts for both past and present
series, with the exceptio of present overcrowding in the small-sized urban-to-rural sample.
Within each cohort, though, results vary widely. For instance, in the urban-to-urban sample,
only three cohorts (including the two youngest ones) out of eight experienced an increase in
inequality in overcrowding. Inequality increase is also observed in four out of eight cohorts
in the rural-to-rural sample, two out of eight in the rural-to-urban sample, and four out of
eight in the (small sized) urban-to-rural sample. Hence, it seems that, overall, the reduction

123



214 G. Yalonetzky

Fig. 5 Atkinson index based on harmonic mean by degree of urbanisation

in overcrowding inequality is more salient across cohorts than within them; that is, a cohort
effect rather than structural mobility.

5 Concluding remarks

In the light of the recent interest in consistent inequality measurement when variables are
bounded, we set out to study the existence of a similar problem when variables are ratios that
can be represented in two alternative ways by swapping numerator for denominator. Rather
than amere academic curiosity, several important socioeconomic indicators come in the form
of ratios, whether conspicuously (e.g. overcrowding) or less so (e.g. infection rates). Hence
we are entitled to ask whether inequality comparisons of ratios are consistent across the two
possible representations.

Before entering inequalitymeasurement, we took some time to consider the consistency of
dispersion-sensitive welfare comparisons with ratios. Concretely, we asked whether first and
second-order dominance comparisons would be consistent to alternative representations and
we found (i) that first-order dominance is always consistent; and (ii) that, while unnecessary,
first-order dominance ensures the consistency of second-order dominance across the two
alternative ratio representations. However, finding jointly necessary and sufficient conditions
for consistent second-order dominance comparisons remains an open question for future
research. For instance, future inquiries could ascertainwhether consistency in higher orders of
dominancemay require a necessary full rank-dominance condition, i.e. first-order dominance.
For second-order dominance,we found that only rank-dominance over the two extreme values
was necessary in order to attain consistency.

Then came the first main finding of the paper in the form of an “impossibility” result: all
the Zoli partial orderings (including a wide array of robust relative, absolute and intermediate
approaches to inequality measurement) are inconsistent when the variables are ratios. At this
point, we clarified that our definition of consistency requires inequality indices to satisfy the
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property for all possible pairs of distributions. Consequently, inconsistent inequality partial
orderings can still rank some pairs of distributions consistently.We provided some examples.
Perhaps a future line of inquiry could seek to characterise the set of distributional pairs which
are always ranked consistently by all inequality indices respecting the Zoli partial orderings
(or also by some subclass thereof, e.g. relative indices, etc.).

Inconsistent partial orderings rule out the joint consistency of entire classes of indices
respecting a particular partial ordering; yet they do not rule out the consistency of specific
subclasses of inequality indices. Hence our second main finding was the identification of
a subclass of consistent inequality indices within the class of relative inequality indices.
Remarkably, these consistent indices are functions of the ratio of the harmonic to the arith-
metic mean. In addition to consistency, they satisfy all the key desirable properties of
inequality measurement, and include among them the Atkinson index based on the har-
monic mean. Since it is unlikely that this paper exhausted all possibilities, future research
should prioritise an axiomatic characterisation of the complete class of consistent inequality
indices for ratio variables.

We also explored three potential alternative solutions. The first one requires defending
the use of a particular representation of the ratio at the expense of the other one. Effectively,
this solution summarily dismisses the consistency problem. Implicitly, this is the approach
normally taken in practice, e.g. nobody has yet proposed measuring people per currency
as an inverse alternative representation of household income per capita. On the other hand,
alternative representations of overcrowding have indeed been proposed. We discussed some
of the criteria that might be brought to bear in order to adjudicate for or against a particular
representation.

The second and third potential alternatives did attempt to take consistency seriously.
One involves using generalised means of the same inequality index evaluated in both rep-
resentations. The other one requires taking the logarithmic transformation of the ratio.
Remarkably both solutions do succeed in restoring consistency, but at the expense of
violating the transfers principle. Future research may inquire into whether the generalised-
mean approach can be somewhat salvaged. As for the log-transformation approach, we
found that if we consider transfers (or smoothing with bi-stochastic matrices) for the trans-
formed variable then the transfer principle is restored alongside consistency. But even here
there is a catch: the inequality comparison based on the transformed variable is consistent
among alternative representations, but is not consistent with the comparison based on the
original variable. Hence future research may consider alternative transformations of the vari-
able.

In a nutshell, as a solution to the problem of consistent inequality measurement with
ratio variables, the class of relative inequality indices based on the ratio of the harmonic
to the arithmetic mean is arguably superior to the three proposed alternatives, given their
respective non-trivial disadvantages. Still it is up to everyone to ponder them all and
judge whether any is satisfactory enough. In the meantime, future research could explore
further alternative solutions to the consistency problem in inequality measurement with
ratios.

Though every empirical scenario is bound to be different, the case of intergenerational
inequality comparisons in overcrowding in Mexico proved interesting, among other things,
for featuring numerous instances of rank-dominance jointly with inconsistency in inequality
comparisons across the board. The deployment of the consistent Atkinson index showed
that overcrowding inequality in Mexico has largely decreased from older to younger cohorts,
without being necessarily accompanied by structural mobility within cohorts. Future research
could probe several other empirical situations and try out both the proposed solutions and any
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new alternatives for its own sake, but also to ascertain whether the case of intergenerational
overcrowding in Mexico is typical or anomalous.
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