
This is a repository copy of Investigating the use of an ensemble of evolutionary
algorithms for letter identification in tremulous medieval handwriting.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/162062/

Version: Published Version

Article:

Souza da Silva, Ronnypetson, Da Costa-Abreu, Márjory and Smith, Stephen Leslie
orcid.org/0000-0002-6885-2643 (2020) Investigating the use of an ensemble of
evolutionary algorithms for letter identification in tremulous medieval handwriting.
Evolutionary Intelligence. ISSN 1864-5909

https://doi.org/10.1007/s12065-020-00427-3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Vol.:(0123456789)1 3

Evolutionary Intelligence

https://doi.org/10.1007/s12065-020-00427-3

RESEARCH PAPER

Investigating the use of an ensemble of evolutionary algorithms
for letter identification in tremulous medieval handwriting

Ronnypetson Souza da Silva1 · Márjory Da Costa‑Abreu2 · Stephen Smith3

Received: 16 December 2019 / Revised: 16 March 2020 / Accepted: 1 May 2020

© The Author(s) 2020

Abstract

Ensemble classifiers are known for performing good generalization from simpler and less accurate classifiers. Ensembles have

the ability to use the variety in classification patterns of the smaller classifiers in order to make better predictions. However,

to create an ensemble it is necessary to determine how the component classifiers should be combined to generate the final

predictions. One way to do this is to search different combinations of classifiers with evolutionary algorithms, which are

largely employed when the objective is to find a structure that serves for some purpose. In this work, an investigation is car-

ried about the use of ensembles obtained via evolutionary algorithm for identifying individual letters in tremulous medieval

writing and to differentiate between scribes. The aim of this research is to use this process as the first step towards classify-

ing the tremor type with more accuracy. The ensembles are obtained through evolutionary search of trees that aggregate

the output of base classifiers, which are neural networks trained prior to the ensemble search. The misclassification patterns

of the base classifiers are analysed in order to determine how much better an ensemble of those classifiers can be than its

components. The best ensembles have their misclassification patterns compared to those of their component classifiers. The

results obtained suggest interesting methods for letter (up to 96% accuracy) and user classification (up to 88% accuracy) in

an offline scenario.

Keywords Tremor · Classification · Ensemble · Evolutionary · Genetic algorithm

1 Introduction

Handwriting can give us valuable information about the

clinical condition of a person, as handwriting involves the

workings of the brain, the eyes, and the hands. Besides that,

in the context of retrospective diagnosis, documents left

by people who passed away are a very important source of

information for diagnosis, and sometimes it is the only reg-

istry available. Paleographers who study the ageing of old

scribes, for instance, need to analyse the features from old

documents in order to identify illnesses like the common

condition known as “essential tremor”.

The aim of this work is to develop and analyse a frame-

work of letter identification in a context of limited data from

medieval scripts. Such framework makes use of different

techniques like ensemble classifiers, evolutionary search,

and convolutional neural networks, besides some preproc-

essing and data obtention techniques like image flood-filling

and image binarization.

In the present setting of medieval handwriting letter clas-

sification and limited data, it is verified how the ensemble

classifiers obtained with evolutionary search take advantage

of the base classifiers accuracy. It is proposed that an ideal

ensemble, one which performs at least as good as its best

component in every class, can be found with the combina-

tion of techniques proposed.

Classifiers created from different techniques and trained

in different configurations can also specialise in correctly

classifying instances from different subsets of a given data

set. This variety of prediction in a set of classifiers can be

used to take advantage of the classifiers’ specialties and

therefore it can also be used to obtain a better classifier than

the previous ones.

In the context of evolutionary search, trees representing

the combination of operations over the outputs of the base

 * Márjory Da Costa-Abreu

 m.da-costa-abreu@shu.ac.uk

1 UNICAMP, Sao Paulo, Brazil

2 Sheffield Hallam University, Sheffield, UK

3 University of York, York, UK

http://orcid.org/0000-0001-7461-7570
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-020-00427-3&domain=pdf

 Evolutionary Intelligence

1 3

classifiers can be looked for and serve as the structure of

an ensemble classifier. The resulting ensemble can then be

evaluated so one can know wheter any improvement hap-

pened. The measure of improvement can be obtained from

comparing the accuracy of the component classifiers with

the accuracy of the ensemble. The comparison can be made

over the overall accuracy of the ensemble and its compo-

nents or it can be made considering not just overall accuracy,

but also the accuracy in each class.

Understanding classifiers’ capabilities and limits in rela-

tion to some given data can guide us in the process of either

continually looking for better ensemble classifiers or ending

the search because no further functionality can be obtained

with the base classifiers and data at hand. In this essay, the

predictions of classifiers trained on a limited data set are

combined by ensemble structures in the search for better

classification accuracy. The resulting ensembles are then

compared with its components in every one of the classes

on the given tasks of vowel identification and writer iden-

tification. It is expected that a good ensemble performs at

least as well as the best individual classifier in a given class.

This type of search engine is ideal for the specific prob-

lem of how to perform user identification in medieval manu-

scripts which are many centuries old and can have a wide

range of different problems such as noise, ink degradation,

and/or ink failures in writing. In the present case, the interest

is in finding the possibility of medical analysis for such old

and problematic documents.

Evolutionary search of the ensemble structures has one

advantage that the space of composition structures contains

many more types of aggregations than the space of linear

combinations. The search in such a large space is important

because in testing whether an ensemble can perform better

then what is expected from the specialties of its components,

it is necessary to check as many different possible combina-

tions of classifiers as possible.

Confusion matrices from the base classifiers and ensem-

bles are looked in order to check where each classifier,

ensemble or not, is better than another classifier and to

establish if an ensemble underperforms or outperforms

its components’ strengths. Some of the ensembles end up

with accuracy better than all of its components in all of the

classes, although some underperform in one or more classes.

The last cases indicate that maybe the search performed was

not sufficient, or in other words, could be left running for

more time or in more trials.

2 Background

Since the main goal is to analyse the distorted script of the

anonymous thirteenth-century scribe known by historians

as the Tremulous Hand of Worcester, the work followed a

very strict path in order to understand and extract the data

necessary for the experiments. The writing, though neat and

carefully-executed, has a visible tremor, which is especially

pronounced in long vertical strokes.

In a previous study, Thorpe and Alty [13] made a close

visual scrutiny of the features of the script, which indicated

that he had essential tremor—a common condition which in

handwriting manifests itself as a fine and regular-amplitude

tremor, with a relatively fast frequency. The study concluded

that greater insight into the dynamic features of this scribe’s

writing, especially the speed of writing, could give this diag-

nosis more certainty.

Thus, it was decided to explore the flood-filling technique

for the feature extraction in this case, because the text seg-

mentation is a very important pre-processing step for this

work. This technique extracts the flood-filling of the text

pages in order to identify the letters. Flood-fill is a graph

algorithm, for which the input is an undirected graph with

values stored in its vertices [14]. The graph is traversed in

such a way that adjacent vertices with the same value are

considered to be in the same cluster. The result of this algo-

rithm is a set of groups in which every group contains con-

nected vertices with equal value.

Images can be represented as rectangular grids, in which

every pixel is represented by a vertex with the pixel’s inten-

sity and pixels sharing a side or point having a correspond-

ent edge between their vertices. Therefore, flood-fill can be

applied to images to separate groups of pixels of the letters

from the pixels of the background of an image. Such separa-

tion can be improved if a binary version of the image is fed

to the algorithm.

3 Using ensembles with evolutionary
algorithm and neural networks

In the context of handwritten character classification, the use

of ensembles derived from aggregation trees generated by

evolutionary algorithm is investigated.

Ensembles are known for their capacity to make generali-

zations based on classifiers that are individually less accu-

rate. Accordingly to Murphy [11], ensemble classification

is the aggregated classification of the base classifiers, like

weighted voting, although a space of more complex com-

positions is explored, that is the space of aggregation trees

(see Fig. 1).

Opitz and Maclin [9] define bagging classifiers as an

ensemble method in which every classifier is trained on

a random redistribution of the data. In this type of train-

ing, samples are randomly drawn from a data set and the

base classifiers are trained in these subsets of data. It differs

from boosting in that new classifiers are trained on data sets

Evolutionary Intelligence

1 3

chosen based on the performance of previous classifiers in

a series [9].

Ashlock [1] defines evolutionary algorithms as computa-

tion which uses algorithms for operating over data structures

by selection and variance. In such algorithms, a population

of data structures is created randomly at the beginning or is

the output of other algorithms. Every individual is repre-

sented by a sequence of characters called genes. The popu-

lation is updated iteratively by replacing the less fit data

instances with the more fit ones. In this context, fitness is a

function that maps the genes of individuals to a element in

an ordered set, like a real number [1] (see Fig. 2).

Because ensemble classifiers can be seen as a composi-

tion of operations over the classification from other classi-

fiers, and because it is possible to represent composition of

operators as trees, one can search for such trees of operators

with evolutionary algorithms, as these trees are just a par-

ticular case of data structure.

Neural networks are used as base classifiers in this work.

They are widely applied to image classification tasks, and

Fig. 1 Ensemble border as a

combination of its classifiers’

borders

Fig. 2 Illustration of evolutionary search

 Evolutionary Intelligence

1 3

when it comes to handwritten character classification, simple

architectures can produce good results, as is repeatedly dem-

onstrated with the MNIST data set. For instance, an artificial

neural network with few layers of convolutions is capable of

achieving higher than 90% accuracy on MNIST [7].

According to Gurney [4], an Artificial Neural Network is

an interconnected system of processing units that are loosely

based on animal neurons. The different functions an ANN

can perform are characterized by the strength in the connec-

tions between its units. That means that the network connec-

tions can be adjusted in order to approximate functions [15].

The neurons in an ANN receive signals from other neurons

or from input and forward a signal based on how strong the

cumulative signal received is. This is implemented with acti-

vation functions, like a TLU and sigmoid, although recent

implementations prefer ReLUs.

In the Multi-layer perceptron model, neurons are divided

in layers, which may perform different transformations on

their input. In this configuration, input is forwarded layer by

layer until the final layer gives the network’s output.

Given a task to be solved, we can define a cost function,

which associates each candidate set of parameters from the

network to a real number, and no configuration of param-

eters can have its cost less than the optimal function. This

is a very important concept in learning, as it measures how

distant a configuration of the network state is from the opti-

mal solution.

One of the most popular methods in the optimization

of ANNs is backpropagation. With a defined cost func-

tion, backpropagation can be used to update the network’s

parameters based on the gradient of the cost function of a

given set of inputs [8]. For instance, in a supervised learning

scenario, the cost function can be defined as the euclidean

distance between the network’s output and the true output

for the given input. Then the backpropagation algorithm

would apply gradient descent or some variant for updating

the parameters. On the other hand, one could also define cost

functions based on other factors, like a reward function in

the context of a simulation. In this scenario, more-or-less a

reinforcement learning situation, the cost function could be

the penalization given in the simulation. Backpropagation

would then proceed in the same way as in the supervised

case, updating the model’s parameters based on the gradient

of the cost function with respect to the parameters.

One type of ANN that has been receiving considerable

attention in recent years is Convolutional Neural Networks,

due to its ability to learn high level features, especially in

images and spatially distributed data. This architecture is

a feed-forward neural network that has special layers of

convolution and pooling and is inspired in the connection

patterns of the human visual cortex [10]. One of the big-

gest advantages of CNNs is the ability to learn image fea-

tures that generally need to be manually engineered in other

methods. Convolutional layers have this name because they

are basically a set of convolution filters that “slide” through

the input, simulating the visual stimuli of a neuron. When

combined, the stimuli of the neurons from the first layer

form the receptive field.

Other than convolutional layers, CNNs generally employ

pooling layers for dimensionality reduction through sam-

pling, after convolutions. A pooling layer combines the out-

put of a group of neighbouring neurons into a single signal

[2]. One very known type of pooling is max pooling, which

chooses the highest value from a group of neurons.

4 Related work

Since we are investigating the use of ensembles obtained via

evolutionary algorithm for identifying individual letters in

old manuscripts, it is important to understand how this sort

of problem is solved in the literatuure for, at least, hand-

writing of highly noisy documents. Thus, this section will

present the main techniques used in this sort of situation.

Smith et al. [6] examine generation of ensembles with

Evolutionary Algorithms in two levels: first, the base clas-

sifiers are obtained from evolutionary runnings; and second,

an expression tree for the aggregation of the trained classifi-

ers is also obtained via evolutionary algorithm. They employ

a basic approach, without using modern techniques like co-

evolution or multi-evolution optimization, but with deter-

ministic, probabilistic crowding, and single-point mutation

operators. Similarly to this work, their ensembles are created

from aggregation trees where the nodes are the primitive

operations and the trees are the more complex composi-

tions. The ensemble style applied is stacking, via stratified

cross-validation during the component classifiers training.

One important difference between their work and the present

work is the fact that we use evolutionary search only for

finding the final aggregator, while they also create the base

classifiers from evolutionary search. They also used data

from the UCI repository, which is, in number of data sets

and instances, much more than the data used in this work.

Sylvester and Chawla [12] combine a heterogeneous

set of learning agents in a meta-agent generated by evolu-

tionary algorithm with accuracy as fitness score. In their

study, the ensemble is obtained in a stacking fashion and

the evolutionary search looks for weights for the votes of

the simpler classifiers using uniform crossover and best-

fit selection. They make experiments for demonstrating

that the aggregated model outperforms the best individual

agent and also the majority voting. In contrast with this

work, they search for ensembles in a more limited space

than the space of aggregated operations, that is the space

of weights based aggregations. This is done by represent-

ing the candidate individuals of the evolutionary process

Evolutionary Intelligence

1 3

by a 0–1 normalized vector of real numbers. The size of

the vector is equal the number of base classifiers, one ele-

ment for each base classifier, representing the classifier

influence on the final decision.

Gagné et al. [3] present an ensemble learning approach

in which a population of base classifiers is acquired by

evolutionary search and the ensemble is formed greedly

by selecting the classifiers with higher margin histogram

from a pool of learned classifiers. The evolution of base

classifiers is guided by the optimization of a multimodal

fitness function, which takes into account both accuracy

and variance in the population. The selection of classifiers

for the ensemble is done in two ways: online and offline. In

the first case, the classifiers are selected iteratively while

the evolution process happens, whilst in the second case

the selection is made at once in the end. Both methods

employ classification margin as the measure of quality of

the base classifiers. Gagné et al.’s study is different from

this one in its emphasis on diversification of classifiers,

which is not based on the structure of the classifiers and

hyperparameters, but mainly on the co-evolution strategy.

It also differs greatly in the selection process, because their

selection is centered on the base classifiers and majority

voting, while the current selection is based on the aggrega-

tion aspect of the ensemble with fixed classifiers.

Kim et al. [5] propose a meta evolutionary system in

which initial classifiers compete by trying to classify data

instances and ensembles compete for base classifiers. The

ensembles evolve by reward based on their performance,

and for the base classifiers, the more a data point is mis-

classified, the greater is the reward for correctly classify-

ing that point. The diversity of the classifiers is not based

on data subsampling, but on the selection of subsets of fea-

tures instead. Their main focus is to obtain small optimal

classifiers in a two-level evolutionary environment, whilst

in this study the base classifiers are already trained and the

evolutionary level is for the candidate ensembles alone.

It is obvious that none of the works in the literature

deal specifically with the problem of the very noisy old

manuscript data analysis. Our approach of combinig evo-

lutionary ensebles is, to the best of our knowledge, being

used for the first time for this task.

5 Methodology for medieval letter
and scribe classification

In this section, some details of the methods and practices

present during the development of the current work are

shown. The objective is to allow the reader to under-

stand by which means this work could be reproduced and

possibly to be instructive about the process of creating a

similar framework.

5.1 The data used

This analysis of handwritten text is built on the character

level; therefore the data set consists of characters cropped

from images of manuscripts. It has been necessary to clean

the background of certain characters, to enable pixel density

extraction. Characters were extracted from:

(a) a sample of writing by the thirteenth-century ‘Tremu-

lous Hand of Worcester’ (see Figs. 3 and 4)

(b) a sample of writing by a non-tremulous thirteenth cen-

tury scribe and,

(c) a reproduction of the text from the tremulous writer by

a modern expert calligrapher, whom writes with perfec-

tion.

In specific contexts where it is desired to differentiate

between specific authors, the data available may be very

limited in quantity. In the current situation for the study of

such cases, the source of the data is just three pages of hand-

written text and it had fewer than one thousand letter sam-

ples, considering just the four vowels used in this work. In

cases like this, it is common to use data augmentation, like

image transformations that preserve the letter in the image,

but as one of the objectives of this work is to test the abil-

ity of ensembles to generalize to unseen data, we ignored

data augmentation and focused on creating ensembles and

Fig. 3 Page from the Tremulous Hand of Worcester Source: Detail of

Oxford, Bodleian Library, Manuscript Junius 121, Folio vi recto

 Evolutionary Intelligence

1 3

testing how much better they can be than their component

classifiers.

5.2 Libraries and implementation details

The programming language chosen for the implementa-

tion of the models is Python. This language is one of the

most prefered by the data science community, if not the

most. Widely known libraries that have data processing like

image processing (CV2), data formatting (numpy, pandas),

and machine learning (Scikit Learn, Tensorflow, Keras,

PyTorch, Gensim, Deap) all have interfaces for Python. Also

there is the fact that plenty of material exists on the Internet

regarding Python implementation, and all the main libraries

mentioned are very well documented. This is a very good

factor in favor of this language, although someone looking

for performance may look into C++ or Lua. That was not

the case in this work and Python was sufficient in terms of

performance in conjunction with the hardware used.

The library chosen for image processing is OpenCV.

OpenCV is a very versatile library for manipulating images.

Usually, what is needed to load an image or apply some filter

or transformation to an image is one line of code. OpenCV

is widely known and has great documentation and support

materials on the Internet. In this work, OpenCV was used

to binarize images that were fed to Flood-fill, to extract seg-

ments obtained from Flood-fill, to resize the images so they

have the same dimension as the input layer of the machine

learning models used.

Tensorflow is the chosen library for the implementation of

the neural networks because of the author’s prior experience

with the library and because of the big support this library

has on the Internet. Tensorflow is very competitive among

the other libraries of the kind, like Keras, PyTorch, and Cafe,

and has been used for both research and production.

Almost all the known neural networks models can be

implemented in Tensorflow, as it has the known layers,

activation functions, cost functions, and optimization meth-

ods necessary for the majority of the existing architectures.

Tensorflow also has support to parallelism and its internal

model graph divides the computations during training so to

take advantage of the processor cores. Also, Tensorflow’s

Tensorboard can be very handy to check training processes,

as it displays the learning optimization graphs, like the decay

of error function during training.

One very important feature of Tensorflow, that is actu-

ally present in other libraries too, is saving models during

training and loading them at some point later to continue

training, or use them as the final classifiers for research or

for production.

The plot library Matplotlib is used for plotting ink den-

sity graphs during the phase of feature preparation. Like

OpenCV, Matplotlib is very versatile and has good docu-

mentation and material on the Internet.

The Evolutionary Algorithm search employed in this

work is done with the help of the Deap library. Deap is a

library for genetic programming and evolutionary search and

has support to parallelization, although a superficial configu-

ration can lead to concurrency problems. In this work it was

not necessary to harness the parallelism capability of Deap.

Parallelism from Tensorflow is default and its configuration

was left intact.

Deap has an easy to understand structure when it comes

to genetic programming. All that is necessary to set up an

evolutionary algorithm environment is defining the set of

primitive operations, which compounds the genes, the mate,

mutate, and select operators, along with some other param-

eters, like probability of mutation, initial population size,

and number of generations.

5.3 Image processing

This process has been manual with the help of a text seg-

mentation technique for more effort efficient preparation. All

manuscript images have been converted to grayscale prior to

applying image processing techniques, as the default colors

do not bring advantage that compensates the higher dimen-

sionality of the data, and the image representation was a

matrix of integers in the range 0–255 as usual. Binarization

of the images is obtained by thresholding values higher than

160 in intensity. This threshold was manually chosen among

other tested values by visual inspection. Such images are

good for the flood-filling process because they have a small

number of grey levels, which is two.

The letters in the documents were in part cropped man-

ually, but in order to expedite the preparation of the data

set, text segmentation was applied based on grid flood-fill

Fig. 4 Letter segmentation obtained after applying flood fill to a medieval manuscript page Source: Detail of Oxford, Bodleian Library, Manu-

script Junius 121, Folio vi recto

Evolutionary Intelligence

1 3

after a binary filter to detach the characters. However, it

is not always possible for Flood-fill to extract single char-

acters. Joined characters inside a word (or even between

words) and multiple-stroke characters pose the biggest

problems when attempting to extract letters, since they

return large chunks of letters in the first case and pieces

of letters in the second. For this reason, manual adjust-

ments are required.

Prior to applying flood-fill on an image, binarisation

can be improved by filtering the image with threshold,

median, or Gaussian filters. These filters may fit together

separated strokes of a letter and remove noise. This results

in a better separation of characters from background in

almost all cases and more connected strokes in some

cases.

It is important to recognize that though a binary ver-

sion of the text image is used in the algorithm, this does

not mean that the characters extracted have to be binary

images, because information will be important for the

positions in which the pixel clusters are located. Thus,

after running flood-fill on an image, we compute the rec-

tangle coordinates of the pixel clusters and use them to

crop the letters in the image. As long as the letters are in

the same place as in the original image, whether or not

the letters will be from the raw image is an open choice.

For pixel density alone (Fig. 5), after the rectangular

grids from the images of characters were obtained, any-

thing considered beyond a letter stroke was cleaned, what

means that the pixel value was set up to 255. Pixel density

was computed for each row in every grid, which yielded a

vector of densities for each character image. These values

could then be used for generating line graphs of pixel den-

sity along rows and comparing the graphs of tremulous

writers with the graphs of non-tremulous writers.

5.4 Feature selection

Both features mentioned in the previous paragraphs could be

used in order to represent the input images of characters, but

perfect removal of background for producing pixel density

consumes much more time than just cropping letters. This

is because the source images are so noisy that each back-

ground would have to be manually removed. On the other

hand, even if the resulting segments of text from flood-fill

contain chunks of joined letters or pieces of letters, these are

only a fraction of the cases, and the remaining letters can

be extracted manually with some image editing software.

This means that depending on the classification method

used, pixel density may not be feasible due to the amount

of prepared data. Take a neural network for instance. If the

cropped letters are not sufficient for training the classifier,

the data can be augmented via addition of noise and image

transformations that preserve the letters. In this case, some

letter pixel density vectors cannot be augmented in a similar

way and the size of the data set will stay not sufficient for

this kind of classifier.

In the case of this work, it was needed to choose

between the raw grayscale image and the raw binary

image of the characters. Considering the binary images

already have large amounts of noise removed and at the

Fig. 5 Pixel density comparison of same letter h between tremulous hand and non-tremulous hand writer

 Evolutionary Intelligence

1 3

same time the characters are preserved, which was veri-

fied by visual inspection, it is expected that the binary

versions of the cropped characters work better than the

grayscale images. Previous tests on training the mod-

els on both grayscale and binary images demonstrated

that learning is faster when training with binary images,

though it is not guaranteed that higher accuracy will be

achieved on this data than if training on the grayscale

images. Thus, the binary images were chosen as the input

representation.

One very important step is normalizing the pixel inten-

sities in the images, so that all values fall into the range

[0,1]. Otherwise, convergence problems can arise when

training with the intensity values in the range [0,255].

5.5 Base classifiers

For each of the three writers, base classifiers are trained

on the respective data set. For the vowel classification

task, four base classifiers are obtained for each data set:

there are two types of architectures, which are 5-layer

convolutional neural network and shallow fully connected

neural network, combined with two types of training set-

tings, the first with mini-batches of size 16 and the second

with mini-batches of size 64. All models are trained with

5000 training steps.

Figures 6 and 7 illustrate the convolutional and shallow

architectures used in more details. The same architectures

and combinations were used in the writer identification

task, except for the number of unities in the output, which

is two for the writer task.

The classifiers are trained on 80% of the data and

tested in the remaining data. The learning rate and opti-

mizer used are 0.001 and Adam, respectively.

For the vowel task, the defined classes are the vowels a,

e, o, and u and the base classifiers are two types of neural

networks, one shallow and the other deep, trained with mini-

batches of sizes 16 and 64, a total of four combinations for

each of the three writers. The features used from the char-

acter images are the normalized grayscale (pixel intensity

in the range [0,1]) versions of the images after they were

reshaped to be 20 pixels by 20 pixels. In the evolutionary

algorithm, the candidate ensembles are aggregation trees

whose primitive operations are the sum of two classifica-

tion vectors and the product of a classification vector by a

constant in the set {0.0, 0.1, 0.2, ..., 0.9}.

5.6 Ensembles

Evolutionary search of ensembles of pre-trained classifiers

is employed in order to improve test classification accu-

racy after training on a small set (around 300 examples in

each of the three data sets) of character images. The tasks

assigned are classification in the a, e, o, and u classes in

the first case and, for the other task, classification between

every pair of the three writers: The Tremulous Hand of

Worcester (‘TREMULOUS’), the non-tremulous medieval

writer (‘NON-TREMULOUS’), and a modern calligrapher

(‘CALLIGRAPHER’).

The measure of fitness is the ensemble accuracy on the

same test set than the one used for testing the base classi-

fiers. The first population of individuals is generated from

a uniform distribution and have trees with depth between

1 and 5. Individuals mate by switching one of their sub-

trees with some probability (Bernoulli random variable) and

express mutation in zero to two of its nodes. The mutation

consists of the replacement of a subtree by a tree sampled

Fig. 6 Convolutional architec-

ture used as base classifier

Fig. 7 Shallow architecture used as base classifier

Evolutionary Intelligence

1 3

from a uniform distribution. The selection of individuals

in one iteration of the algorithm is done by tournaments

between pairs of individuals.

In the next two sections, the analysis of both vowel and

writer identification tasks are presented. The data from

which the analysis are made are the overall accuracy of base

classifiers and classwise accuracy of the base classifiers and

obtained ensembles.

6 Classification analysis

In this section, the analysis of both vowel and writer identi-

fication tasks are presented. The data from which the anal-

ysis are made are the overall accuracy of base classifiers

and classwise accuracy of the base classifiers and obtained

ensembles.

6.1 Evolutionary ensemble of classifiers: vowel task

As expected, which can be seen in Table 1, in all of the three

writers the convolutional models outperform the shallow

ones or have equal performance in the CALLIGRAPHER

data set. The difference in accuracy from the convolutional

models to the shallow models in each writer is no higher

than 3%, if we do not take into account the 82% accuracy of

the shallow model in the TREMULOUS writer. Batch size

does not seem to have affected the accuracy of the models in

the present configuration, as in each model both choices of

16 and 64 for batch size result in the same accuracy, except

for the shallow TREMULOUS models.

For the TREMULOUS data set, the confusion matrices

of its models (Table 2) show that the biggest misclassifica-

tions are misclassifying u by e in the convolutional models

and miscalssifying u by o in the shallow models. One clear

advantage of the convolutional models over the shallow ones

is the reduction of misclassification of a by e and also the

reduction of misclassification of e by o if we compare the

convolutional model of batch size 64 and shallow models. A

good ensemble may take this into account and overcome the

problems of misclassifying a by e and e by o. The letter o is

the best classified in this set, having only 8% misclassifica-

tion in the convolutional model of batch size 64.

Interestingly, in the data set of the CALLIGRAPHER

writer (Table 3), all of the four models performed exactly

in the same way, in terms of the values in their confusion

matrices. This may be the case that the data samples in the

test set have a few pathological instances that get misclas-

sified in all of the four models. This lack of classification

Table 1 Base classifiers accuracy for the vowel identification task

Classifier Data Batch size Accuracy

Conv. TREMULOUS 16 0.87

Conv. TREMULOUS 64 0.87

Conv. CALLIGRAPHER 16 0.94

Conv. CALLIGRAPHER 64 0.94

Conv. NON-TREMULOUS 16 0.98

Conv. NON-TREMULOUS 64 0.98

Shallow TREMULOUS 16 0.84

Shallow TREMULOUS 64 0.82

Shallow CALLIGRAPHER 16 0.94

Shallow CALLIGRAPHER 64 0.94

Shallow NON-TREMULOUS 16 0.96

Shallow NON-TREMULOUS 64 0.96

Table 2 Confusion matrices from the TREMULOUS data set

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained

with batch size 16 are on the left, while the ones trained with batch

size 64 are on the right. The matrix on the bottom represents the best

ensemble obtained in the search. Rows represent the true labels a, e,

o, u from top to bottom and columns represent the labels given by the

classifiers a, e, o, u from left to right

Table 3 Confusion matrices from the CALLIGRAPHER data set

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained

with batch size 16 are on the left, while the ones trained with batch

size 64 are on the right. The matrix on the bottom represents the best

ensemble obtained in the search. Rows represent the true labels a, e,

o, u from top to bottom and columns represent the labels given by the

classifiers a, e, o, u from left to right

 Evolutionary Intelligence

1 3

variety still may result in an ensemble that is better than

its components if the individual instancies are not all clas-

sified in the same way by all base classifiers. The fact that

one-third of the u’s are misclassified for o by these classi-

fiers just reflects the fact that many u’s in this data set are

closed in the upper part. Such a difference of classification

accuracy from the TREMULOUS data set is explained by

the quality of the data available, as the characters from the

TREMULOUS data set are the ones with much more noise

than the others: the data sets CALLIGRAPHER and NON-

TREMULOUS are much cleaner than TREMULOUS in

terms of background noise.

In contrast with the other classifiers, the shallow classifier

trained with 16 samples per batch showed misclassification

of a by o in 8% of the cases in the NON-TREMULOUS data

set (Table 4), but did equally well on the other letters. As

in the CALLIGRAPHER set, this base classifier will not

result in a better ensemble depending on the obtained uni-

form misclassification patterns, but the classification of the

individual samples may prove this wrong. Similarly to the

results from the CALLIGRAPHER data set, the classifiers

showed almost the same classification patterns, such as cor-

rectly classifying all the e’s, and u’s in the test set and, except

for the shallow classifier of batch size 16, they also correctly

classified all the letters a in the test set. Again, there is a

noticeable difference in accuracy from the TREMULOUS

set, with the reason being the same as for the CALLIGRA-

PHER set.

The best ensemble found for the TREMULOUS data set

is, overall, around 3% better than its best component, as it

can be seen in Table 5. The learned ensemble seems to have

inherited the best from its components regarding the letters

a, e, and o, but could not overcome the u misclassification

problem while ideally the components could correct each

other’s u assignment in the sense that their errors on u are

complementary. This indicates that this is a sub-optimal

ensemble and that the search should be performed with dif-

ferent settings, or with more steps, in order to find an ensem-

ble that takes full advantage of its components.

For the CALLIGRAPHER data set, the best ensemble

was as good as its components. Also, by comparing the con-

fusion matrix of this ensemble with the ones of the compo-

nents, one notices that the assignment pattern is the same.

This is not surprising given the uniformity of its classifiers

in terms of assignments. This strongly suggests that it will be

possible to develop a better ensemble only if a more diverse

pool of classifiers is out in place of the current one.

From the NON-TREMULOUS data set, the chosen

ensemble was equally good as the best components. This was

almost the case with the CALLIGRAPHER set, but here the

components have a small variety. Although it was expected

from the ensemble to overcome the fraction of wrong e

assignments, that did not happen. As in the TREMULOUS

Table 4 Confusion matrices from the NON-TREMULOUS data set

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained

with batch size 16 are on the left, while the ones trained with batch

size 64 are on the right. The matrix on the bottom represents the best

ensemble obtained in the search. Rows represent the true labels a, e,

o, u from top to bottom and columns represent the labels given by the

classifiers a, e, o, u from left to right

Table 5 Base classifiers

accuracy for the writer

identification task

Classifier Data Batch size Accuracy

Shallow TREMULOUS, NON-TREMULOUS 16 0.667

Shallow TREMULOUS, NON-TREMULOUS 64 0.667

Conv. TREMULOUS, NON-TREMULOUS 16 0.711

Conv. TREMULOUS, NON-TREMULOUS 64 0.702

Shallow TREMULOUS, CALLIGRAPHER 16 0.598

Shallow TREMULOUS, CALLIGRAPHER 64 0.652

Conv. TREMULOUS, CALLIGRAPHER 16 0.793

Conv. TREMULOUS, CALLIGRAPHER 64 0.772

Shallow CALLIGRAPHER, NON-TREMULOUS 16 0.714

Shallow CALLIGRAPHER, NON-TREMULOUS 64 0.702

Conv. CALLIGRAPHER, NON-TREMULOUS 16 0.893

Conv. CALLIGRAPHER, NON-TREMULOUS 64 0.881

Evolutionary Intelligence

1 3

set, this may be due to limited search on the space of aggre-

gation trees in the evolutionary search.

One thousand generations in the evolutionary running

resulted in ensembles considerably better than the base

classifiers for the TREMULOUS data set. Even though the

amount of data available was limited, th resulting ensembles

were able to make reasonably better predictions on the test-

ing data than the base classifiers, without using any data

augmentation for this set of data.

6.2 Evolutionary ensemble of classifiers: writer task

For the writer task, in both architectures and pairs of

writers, except for the shallow classifiers in the TREMU-

LOUS–CALLIGRAPHER pair, raising the batch size from

16 to 64 did not increase the classifier accuracy in the cur-

rent setting, like in the vowel classification task. This may

be because the number of training steps is too small to show

the gains in accuracy of training with bigger batch sizes.

It is debatable whether changing the batch size alone pro-

duces diverse classifiers. In the vowel classification tests it

seemed that changing batch size did not help significantly

because there was no significant variance in the classifica-

tion between the same architecture trained with batches of

sizes 16 and 64. This is checked again in the results of the

writer task tests that follow. In each pair of writers, the con-

volutional models performed considerably better than the

shallow models—sometimes as much as 20%. Still, the exist-

ence of cases where the shallow classifiers perform better

than the convolutional classifiers can allow the creation of

even better ensembles than the best convolutional classifier

at hand. The analysis of the classifiers in each pair of writers

that follows can give some insight on how good an ensemble

from the trained classifiers can be.

The task of differentiating between the writers TREMU-

LOUS and NON-TREMULOUS was performed with inter-

esting results: all the base classifiers showed difficulty in

identifying the letters of the TREMULOUS writer whilst

identifying the letters of the NON-TREMULOUS writer

seemed significantly easier. This happens despite the exist-

ence of only two classes because the neural networks are

not trained to learn the “law of excluded middle”, so they

do not know that if a sample does not belong to a class, then

it belongs to the remaining class.

One can expect an optimal ensemble to combine the best

predictor for the writer TREMULOUS, that is the shallow

model of batch 64, with the best predictor for the writer

NON-TREMULOUS, that is the convolutional model of

batch 16. We now proceed to check this from the classifica-

tion pattern of the respective ensemble.

In each class, the best resulting ensemble underperformed

some of its components, although the overall accuracy of

the ensemble was higher than all of its components. More

specifically, in the class TREMULOUS, the ensemble accu-

racy was around 4% less than the best component model. In

the class NON-TREMULOUS the difference from the best

component was around 5%. This suggests that the search

performed was too limited, as an ideal ensemble would

behave in each class at least as good as the best component

in that class.

As in the TREMULOUS, LOUS pair (Table 6), the clas-

sifiers of the TREMULOUS, CALLIGRAPHER pair had

more success in identifying the writer that is not TREMU-

LOUS, except for the shallow model trained with batch size

64. This difficulty in correctly assigning the samples from

the TREMULOUS set comes from the noisy aspect of its

letters. This is not the case with the other two sets, in which

the samples are cleaner.

The best ensemble for the class TREMULOUS this time

was the convolutional model of batch size 16, while for the

class CALLIGRAPHER it was both convolutional models.

It is possible that none of the shallow models is needed in

order to find the optimal ensemble from this group of clas-

sifiers, as the convolutional models outperform the shallow

ones considerably in both classes.

The best ensemble found for the pair TREMULOUS,

CALLIGRAPHER (Table 7) performed better than all of

its components in the TREMULOUS class and performed

equally well to its best component in the CALLIGRAPHER

class. As this ensemble had higher accuracy than all of its

component classifiers in the CALLIGRAPHER class, we

can infer that the base models that scored less in this class

actually contributed to the final ensemble because of indi-

vidual samples. This means that there was specialization

of the weaker classifiers in instances that the best ones did

not master.

Table 6 Confusion matrices from the pair TREMULOUS, NON-

TREMULOUS

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained

with batch size 16 are on the left, while the ones trained with batch

size 64 are on the right. The matrix on the bottom is from the best

ensemble obtained. Rows represent the true writers TREMULOUS,

NON-TREMULOUS from top to bottom and columns represent the

assigned writers TREMULOUS, NON-TREMULOUS from left to

right

 Evolutionary Intelligence

1 3

Curiously, in the CALLIGRAPHER, NON-TREMU-

LOUS (Table 8) pair of writers, the shallow models worked

better on correctly assigning the NON-TREMULOUS

labels, while the convolutional models did better in assign-

ing the CALLIGRAPHER labels. Even though it sounds

like a desirable case of specification, what is going to be

checked in the best obtained ensemble, this may not be the

case because the convolutional classifiers outperformed the

shallow models in both classes. In other words, the result-

ant ensemble may take advantage only of the convolu-

tional models, although it is not strictly necessary, as some

individual samples can be the specialty of the shallow mod-

els instead of the convolutional models.

Similarly to the TREMULOUS, CALLIGRAPHER pair,

in the CALLIGRAPHER, NON-TREMULOUS pair the

ensemble performed better than all of its components in one

of the classes, that was the NON-TREMULOUS class, and

performed as good as its best components in the other class.

Again, the weaker classifiers in one of the classes, the NON-

TREMULOUS class, contributed with the specialization in

some instances that the stronger models could not assign

correctly. The resulting ensemble is, therefore, better than if

it was the vote of the best ensemble in each class.

Moreover, our empirical results have corroborated with

the theoretical conclusions presented in [13, 14], which indi-

cated that the dynamic features related to the speed of writ-

ing of this scribe’s writing can be used as diagnosis.

7 Conclusion

The use of ensembles for generating robust predictors and

classifiers is a common practice nowadays due to the capac-

ity of generalization that ensembles have. Although the clas-

sification improvement of ensembles over the base models

is nothing new, it is useful to have an idea of how good an

ensemble can be based on which classes its components per-

form better. This comes from the assumption that an ideal

ensemble should be at least as good on a given class than its

best components on that class.

The results of aggregating classifiers through evolution-

ary algorithm are investigated in relation to the base classi-

fiers, that were trained on a relatively small quantity of data.

The classification patterns of the base models in the form of

confusion matrices are analysed and compared to those of

the respective ensembles. This analysis gives some intuition

on whether each ensemble, in the context of the search set-

tings in which it was generated, took advantage of the base

classifiers that perform the best in each class.

In this work a framework for identification of authors and

letters of medieval scripts was developed, having in mind

that the amount of data in similar contexts may be small. In

order to do so, some techniques for preprocessing, classifica-

tion, ensembling, and search were used.

Some results on a specific data set were analysed. In the

performed tests, it was verified that in the majority of the

tasks the best ensembles from the evolutionary algorithm

have slightly better prediction on our data set, although in

some cases it seemed that the parameters of the evolution-

ary search could be adjusted to find better ensembles, as the

best ensembles perform worse in some classes than the best

component, even though its overall accuracy was higher than

all of its components.

Table 7 Confusion matrices from the pair TREMULOUS, CALLIG-

RAPHER

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained

with batch size 16 are on the left, while the ones trained with batch

size 64 are on the right. The matrix on the bottom is from the best

ensemble obtained. Rows represent the true writers TREMULOUS,

CALLIGRAPHER from top to bottom and columns represent the

assigned writers TREMULOUS, CALLIGRAPHER from left to right

Table 8 Confusion matrices from the pair CALLIGRAPHER, NON-

TREMULOUS

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained

with batch size 16 are on the left, while the ones trained with batch

size 64 are on the right. The matrix on the bottom is from the best

ensemble obtained. Rows represent the true writers CALLIGRA-

PHER, NON-TREMULOUS from top to bottom and columns rep-

resent the assigned writers CALLIGRAPHER, NON-TREMULOUS

from left to right

Evolutionary Intelligence

1 3

Acknowledgements We would like to acknowledge the great contribu-

tions of Dr. Deborah Thorpe on providing the dataset used in this work.

This research was the result of the project entitled “Securityfor all:

Using smart technologies to promote security for citizens” supported

by Newton Research Collaboration Programmeof the Royal Engineer-

ing Academy (NRCP1516/1/135).

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Ashlock D (2006) Evolutionary computation for modeling and

optimization. Springer, New York

 2. Cireşan DC, Meier U, Masci J, Gambardella LM, Schmidhuber J

(2011) Flexible, high performance convolutional neural networks

for image classification. In: Proceedings of the twenty-second

international joint conference on artificial intelligence, IJCAI’11.

AAAI Press, vol 2, pp 1237–1242

 3. Gagné C, Sebag M, Schoenauer M, Tomassini M (2007) Ensem-

ble learning for free with evolutionary algorithms? CoRR. arXiv

:abs/0704.3905

 4. Gurney K (1997) An introduction to neural networks. UCL Press,

London

 5. Kim YS, Street WN, Menczer F (2006) Optimal ensemble con-

struction via meta-evolutionary ensembles. Expert Syst Appl

30(4):705–714

 6. Lacy SE, Lones MA, Smith SL (2015) Forming classifier ensem-

bles with multimodal evolutionary algorithms. In: 2015 IEEE

congress on evolutionary computation (CEC). pp 723–729

 7. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-

based learning applied to document recognition. Proc IEEE

86(11):2278–2324

 8. Lecun Y (1992) A theoretical framework for back-propagation.

IEEE Computer Society Press, Washington

 9. Maclin R, Opitz DW (2011) Popular ensemble methods: an empir-

ical study. CoRR. arXiv :abs/1106.0257

 10. Matsugu M, Mori K, Mitari Y, Kaneda Y (2003) Subject inde-

pendent facial expression recognition with robust face detection

using a convolutional neural network. Neural Netw 16:555–559

 11. Murphy K (2012) Machine learning: a probabilistic perspective.

MIT Press, Cambridge, p 580

 12. Sylvester J, Chawla NV (2005) Evolutionary ensembles: combin-

ing learning agents using genetic algorithms. American Associa-

tion for Artificial Intelli-gence, pp 46–51. https ://www.aaai.org

 13. Thorpe DE, Alty JE (2015) What type of tremor did the medieval

’tremulous hand of worcester’ have? Brain 138(10):3123–3127

awv232[PII]

 14. Torbert S (2014) Applied computer science. Springer, New York,

p 158

 15. Zell A (1994) Simulation neuronaler Netze. Addison-Wesley,

Bonn Paris Reading

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/abs/0704.3905
http://arxiv.org/abs/abs/0704.3905
http://arxiv.org/abs/abs/1106.0257
https://www.aaai.org

	Investigating the use of an ensemble of evolutionary algorithms for letter identification in tremulous medieval handwriting
	Abstract
	1 Introduction
	2 Background
	3 Using ensembles with evolutionary algorithm and neural networks
	4 Related work
	5 Methodology for medieval letter and scribe classification
	5.1 The data used
	5.2 Libraries and implementation details
	5.3 Image processing
	5.4 Feature selection
	5.5 Base classifiers
	5.6 Ensembles

	6 Classification analysis
	6.1 Evolutionary ensemble of classifiers: vowel task
	6.2 Evolutionary ensemble of classifiers: writer task

	7 Conclusion
	Acknowledgements
	References

