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Abstract

Ensemble classifiers are known for performing good generalization from simpler and less accurate classifiers. Ensembles have 

the ability to use the variety in classification patterns of the smaller classifiers in order to make better predictions. However, 

to create an ensemble it is necessary to determine how the component classifiers should be combined to generate the final 

predictions. One way to do this is to search different combinations of classifiers with evolutionary algorithms, which are 

largely employed when the objective is to find a structure that serves for some purpose. In this work, an investigation is car-

ried about the use of ensembles obtained via evolutionary algorithm for identifying individual letters in tremulous medieval 

writing and to differentiate between scribes. The aim of this research is to use this process as the first step towards classify-

ing the tremor type with more accuracy. The ensembles are obtained through evolutionary search of trees that aggregate 

the output of base classifiers, which are neural networks trained prior to the ensemble search. The misclassification patterns 

of the base classifiers are analysed in order to determine how much better an ensemble of those classifiers can be than its 

components. The best ensembles have their misclassification patterns compared to those of their component classifiers. The 

results obtained suggest interesting methods for letter (up to 96% accuracy) and user classification (up to 88% accuracy) in 

an offline scenario.

Keywords Tremor · Classification · Ensemble · Evolutionary · Genetic algorithm

1 Introduction

Handwriting can give us valuable information about the 

clinical condition of a person, as handwriting involves the 

workings of the brain, the eyes, and the hands. Besides that, 

in the context of retrospective diagnosis, documents left 

by people who passed away are a very important source of 

information for diagnosis, and sometimes it is the only reg-

istry available. Paleographers who study the ageing of old 

scribes, for instance, need to analyse the features from old 

documents in order to identify illnesses like the common 

condition known as “essential tremor”.

The aim of this work is to develop and analyse a frame-

work of letter identification in a context of limited data from 

medieval scripts. Such framework makes use of different 

techniques like ensemble classifiers, evolutionary search, 

and convolutional neural networks, besides some preproc-

essing and data obtention techniques like image flood-filling 

and image binarization.

In the present setting of medieval handwriting letter clas-

sification and limited data, it is verified how the ensemble 

classifiers obtained with evolutionary search take advantage 

of the base classifiers accuracy. It is proposed that an ideal 

ensemble, one which performs at least as good as its best 

component in every class, can be found with the combina-

tion of techniques proposed.

Classifiers created from different techniques and trained 

in different configurations can also specialise in correctly 

classifying instances from different subsets of a given data 

set. This variety of prediction in a set of classifiers can be 

used to take advantage of the classifiers’ specialties and 

therefore it can also be used to obtain a better classifier than 

the previous ones.

In the context of evolutionary search, trees representing 

the combination of operations over the outputs of the base 
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classifiers can be looked for and serve as the structure of 

an ensemble classifier. The resulting ensemble can then be 

evaluated so one can know wheter any improvement hap-

pened. The measure of improvement can be obtained from 

comparing the accuracy of the component classifiers with 

the accuracy of the ensemble. The comparison can be made 

over the overall accuracy of the ensemble and its compo-

nents or it can be made considering not just overall accuracy, 

but also the accuracy in each class.

Understanding classifiers’ capabilities and limits in rela-

tion to some given data can guide us in the process of either 

continually looking for better ensemble classifiers or ending 

the search because no further functionality can be obtained 

with the base classifiers and data at hand. In this essay, the 

predictions of classifiers trained on a limited data set are 

combined by ensemble structures in the search for better 

classification accuracy. The resulting ensembles are then 

compared with its components in every one of the classes 

on the given tasks of vowel identification and writer iden-

tification. It is expected that a good ensemble performs at 

least as well as the best individual classifier in a given class.

This type of search engine is ideal for the specific prob-

lem of how to perform user identification in medieval manu-

scripts which are many centuries old and can have a wide 

range of different problems such as noise, ink degradation, 

and/or ink failures in writing. In the present case, the interest 

is in finding the possibility of medical analysis for such old 

and problematic documents.

Evolutionary search of the ensemble structures has one 

advantage that the space of composition structures contains 

many more types of aggregations than the space of linear 

combinations. The search in such a large space is important 

because in testing whether an ensemble can perform better 

then what is expected from the specialties of its components, 

it is necessary to check as many different possible combina-

tions of classifiers as possible.

Confusion matrices from the base classifiers and ensem-

bles are looked in order to check where each classifier, 

ensemble or not, is better than another classifier and to 

establish if an ensemble underperforms or outperforms 

its components’ strengths. Some of the ensembles end up 

with accuracy better than all of its components in all of the 

classes, although some underperform in one or more classes. 

The last cases indicate that maybe the search performed was 

not sufficient, or in other words, could be left running for 

more time or in more trials.

2  Background

Since the main goal is to analyse the distorted script of the 

anonymous thirteenth-century scribe known by historians 

as the Tremulous Hand of Worcester, the work followed a 

very strict path in order to understand and extract the data 

necessary for the experiments. The writing, though neat and 

carefully-executed, has a visible tremor, which is especially 

pronounced in long vertical strokes.

In a previous study, Thorpe and Alty [13] made a close 

visual scrutiny of the features of the script, which indicated 

that he had essential tremor—a common condition which in 

handwriting manifests itself as a fine and regular-amplitude 

tremor, with a relatively fast frequency. The study concluded 

that greater insight into the dynamic features of this scribe’s 

writing, especially the speed of writing, could give this diag-

nosis more certainty.

Thus, it was decided to explore the flood-filling technique 

for the feature extraction in this case, because the text seg-

mentation is a very important pre-processing step for this 

work. This technique extracts the flood-filling of the text 

pages in order to identify the letters. Flood-fill is a graph 

algorithm, for which the input is an undirected graph with 

values stored in its vertices [14]. The graph is traversed in 

such a way that adjacent vertices with the same value are 

considered to be in the same cluster. The result of this algo-

rithm is a set of groups in which every group contains con-

nected vertices with equal value.

Images can be represented as rectangular grids, in which 

every pixel is represented by a vertex with the pixel’s inten-

sity and pixels sharing a side or point having a correspond-

ent edge between their vertices. Therefore, flood-fill can be 

applied to images to separate groups of pixels of the letters 

from the pixels of the background of an image. Such separa-

tion can be improved if a binary version of the image is fed 

to the algorithm.

3  Using ensembles with evolutionary 
algorithm and neural networks

In the context of handwritten character classification, the use 

of ensembles derived from aggregation trees generated by 

evolutionary algorithm is investigated.

Ensembles are known for their capacity to make generali-

zations based on classifiers that are individually less accu-

rate. Accordingly to Murphy [11], ensemble classification 

is the aggregated classification of the base classifiers, like 

weighted voting, although a space of more complex com-

positions is explored, that is the space of aggregation trees 

(see Fig. 1).

Opitz and Maclin [9] define bagging classifiers as an 

ensemble method in which every classifier is trained on 

a random redistribution of the data. In this type of train-

ing, samples are randomly drawn from a data set and the 

base classifiers are trained in these subsets of data. It differs 

from boosting in that new classifiers are trained on data sets 
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chosen based on the performance of previous classifiers in 

a series [9].

Ashlock [1] defines evolutionary algorithms as computa-

tion which uses algorithms for operating over data structures 

by selection and variance. In such algorithms, a population 

of data structures is created randomly at the beginning or is 

the output of other algorithms. Every individual is repre-

sented by a sequence of characters called genes. The popu-

lation is updated iteratively by replacing the less fit data 

instances with the more fit ones. In this context, fitness is a 

function that maps the genes of individuals to a element in 

an ordered set, like a real number [1] (see Fig. 2).

Because ensemble classifiers can be seen as a composi-

tion of operations over the classification from other classi-

fiers, and because it is possible to represent composition of 

operators as trees, one can search for such trees of operators 

with evolutionary algorithms, as these trees are just a par-

ticular case of data structure.

Neural networks are used as base classifiers in this work. 

They are widely applied to image classification tasks, and 

Fig. 1  Ensemble border as a 

combination of its classifiers’ 

borders

Fig. 2  Illustration of evolutionary search
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when it comes to handwritten character classification, simple 

architectures can produce good results, as is repeatedly dem-

onstrated with the MNIST data set. For instance, an artificial 

neural network with few layers of convolutions is capable of 

achieving higher than 90% accuracy on MNIST [7].

According to Gurney [4], an Artificial Neural Network is 

an interconnected system of processing units that are loosely 

based on animal neurons. The different functions an ANN 

can perform are characterized by the strength in the connec-

tions between its units. That means that the network connec-

tions can be adjusted in order to approximate functions [15]. 

The neurons in an ANN receive signals from other neurons 

or from input and forward a signal based on how strong the 

cumulative signal received is. This is implemented with acti-

vation functions, like a TLU and sigmoid, although recent 

implementations prefer ReLUs.

In the Multi-layer perceptron model, neurons are divided 

in layers, which may perform different transformations on 

their input. In this configuration, input is forwarded layer by 

layer until the final layer gives the network’s output.

Given a task to be solved, we can define a cost function, 

which associates each candidate set of parameters from the 

network to a real number, and no configuration of param-

eters can have its cost less than the optimal function. This 

is a very important concept in learning, as it measures how 

distant a configuration of the network state is from the opti-

mal solution.

One of the most popular methods in the optimization 

of ANNs is backpropagation. With a defined cost func-

tion, backpropagation can be used to update the network’s 

parameters based on the gradient of the cost function of a 

given set of inputs [8]. For instance, in a supervised learning 

scenario, the cost function can be defined as the euclidean 

distance between the network’s output and the true output 

for the given input. Then the backpropagation algorithm 

would apply gradient descent or some variant for updating 

the parameters. On the other hand, one could also define cost 

functions based on other factors, like a reward function in 

the context of a simulation. In this scenario, more-or-less a 

reinforcement learning situation, the cost function could be 

the penalization given in the simulation. Backpropagation 

would then proceed in the same way as in the supervised 

case, updating the model’s parameters based on the gradient 

of the cost function with respect to the parameters.

One type of ANN that has been receiving considerable 

attention in recent years is Convolutional Neural Networks, 

due to its ability to learn high level features, especially in 

images and spatially distributed data. This architecture is 

a feed-forward neural network that has special layers of 

convolution and pooling and is inspired in the connection 

patterns of the human visual cortex [10]. One of the big-

gest advantages of CNNs is the ability to learn image fea-

tures that generally need to be manually engineered in other 

methods. Convolutional layers have this name because they 

are basically a set of convolution filters that “slide” through 

the input, simulating the visual stimuli of a neuron. When 

combined, the stimuli of the neurons from the first layer 

form the receptive field.

Other than convolutional layers, CNNs generally employ 

pooling layers for dimensionality reduction through sam-

pling, after convolutions. A pooling layer combines the out-

put of a group of neighbouring neurons into a single signal 

[2]. One very known type of pooling is max pooling, which 

chooses the highest value from a group of neurons.

4  Related work

Since we are investigating the use of ensembles obtained via 

evolutionary algorithm for identifying individual letters in 

old manuscripts, it is important to understand how this sort 

of problem is solved in the literatuure for, at least, hand-

writing of highly noisy documents. Thus, this section will 

present the main techniques used in this sort of situation.

Smith et al. [6] examine generation of ensembles with 

Evolutionary Algorithms in two levels: first, the base clas-

sifiers are obtained from evolutionary runnings; and second, 

an expression tree for the aggregation of the trained classifi-

ers is also obtained via evolutionary algorithm. They employ 

a basic approach, without using modern techniques like co-

evolution or multi-evolution optimization, but with deter-

ministic, probabilistic crowding, and single-point mutation 

operators. Similarly to this work, their ensembles are created 

from aggregation trees where the nodes are the primitive 

operations and the trees are the more complex composi-

tions. The ensemble style applied is stacking, via stratified 

cross-validation during the component classifiers training. 

One important difference between their work and the present 

work is the fact that we use evolutionary search only for 

finding the final aggregator, while they also create the base 

classifiers from evolutionary search. They also used data 

from the UCI repository, which is, in number of data sets 

and instances, much more than the data used in this work.

Sylvester and Chawla [12] combine a heterogeneous 

set of learning agents in a meta-agent generated by evolu-

tionary algorithm with accuracy as fitness score. In their 

study, the ensemble is obtained in a stacking fashion and 

the evolutionary search looks for weights for the votes of 

the simpler classifiers using uniform crossover and best-

fit selection. They make experiments for demonstrating 

that the aggregated model outperforms the best individual 

agent and also the majority voting. In contrast with this 

work, they search for ensembles in a more limited space 

than the space of aggregated operations, that is the space 

of weights based aggregations. This is done by represent-

ing the candidate individuals of the evolutionary process 
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by a 0–1 normalized vector of real numbers. The size of 

the vector is equal the number of base classifiers, one ele-

ment for each base classifier, representing the classifier 

influence on the final decision.

Gagné et al. [3] present an ensemble learning approach 

in which a population of base classifiers is acquired by 

evolutionary search and the ensemble is formed greedly 

by selecting the classifiers with higher margin histogram 

from a pool of learned classifiers. The evolution of base 

classifiers is guided by the optimization of a multimodal 

fitness function, which takes into account both accuracy 

and variance in the population. The selection of classifiers 

for the ensemble is done in two ways: online and offline. In 

the first case, the classifiers are selected iteratively while 

the evolution process happens, whilst in the second case 

the selection is made at once in the end. Both methods 

employ classification margin as the measure of quality of 

the base classifiers. Gagné et al.’s study is different from 

this one in its emphasis on diversification of classifiers, 

which is not based on the structure of the classifiers and 

hyperparameters, but mainly on the co-evolution strategy. 

It also differs greatly in the selection process, because their 

selection is centered on the base classifiers and majority 

voting, while the current selection is based on the aggrega-

tion aspect of the ensemble with fixed classifiers.

Kim et al. [5] propose a meta evolutionary system in 

which initial classifiers compete by trying to classify data 

instances and ensembles compete for base classifiers. The 

ensembles evolve by reward based on their performance, 

and for the base classifiers, the more a data point is mis-

classified, the greater is the reward for correctly classify-

ing that point. The diversity of the classifiers is not based 

on data subsampling, but on the selection of subsets of fea-

tures instead. Their main focus is to obtain small optimal 

classifiers in a two-level evolutionary environment, whilst 

in this study the base classifiers are already trained and the 

evolutionary level is for the candidate ensembles alone.

It is obvious that none of the works in the literature 

deal specifically with the problem of the very noisy old 

manuscript data analysis. Our approach of combinig evo-

lutionary ensebles is, to the best of our knowledge, being 

used for the first time for this task.

5  Methodology for medieval letter 
and scribe classification

In this section, some details of the methods and practices 

present during the development of the current work are 

shown. The objective is to allow the reader to under-

stand by which means this work could be reproduced and 

possibly to be instructive about the process of creating a 

similar framework.

5.1  The data used

This analysis of handwritten text is built on the character 

level; therefore the data set consists of characters cropped 

from images of manuscripts. It has been necessary to clean 

the background of certain characters, to enable pixel density 

extraction. Characters were extracted from: 

(a) a sample of writing by the thirteenth-century ‘Tremu-

lous Hand of Worcester’ (see Figs. 3 and 4)

(b) a sample of writing by a non-tremulous thirteenth cen-

tury scribe and,

(c) a reproduction of the text from the tremulous writer by 

a modern expert calligrapher, whom writes with perfec-

tion.

In specific contexts where it is desired to differentiate 

between specific authors, the data available may be very 

limited in quantity. In the current situation for the study of 

such cases, the source of the data is just three pages of hand-

written text and it had fewer than one thousand letter sam-

ples, considering just the four vowels used in this work. In 

cases like this, it is common to use data augmentation, like 

image transformations that preserve the letter in the image, 

but as one of the objectives of this work is to test the abil-

ity of ensembles to generalize to unseen data, we ignored 

data augmentation and focused on creating ensembles and 

Fig. 3  Page from the Tremulous Hand of Worcester Source: Detail of 

Oxford, Bodleian Library, Manuscript Junius 121, Folio vi recto
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testing how much better they can be than their component 

classifiers.

5.2  Libraries and implementation details

The programming language chosen for the implementa-

tion of the models is Python. This language is one of the 

most prefered by the data science community, if not the 

most. Widely known libraries that have data processing like 

image processing (CV2), data formatting (numpy, pandas), 

and machine learning (Scikit Learn, Tensorflow, Keras, 

PyTorch, Gensim, Deap) all have interfaces for Python. Also 

there is the fact that plenty of material exists on the Internet 

regarding Python implementation, and all the main libraries 

mentioned are very well documented. This is a very good 

factor in favor of this language, although someone looking 

for performance may look into C++ or Lua. That was not 

the case in this work and Python was sufficient in terms of 

performance in conjunction with the hardware used.

The library chosen for image processing is OpenCV. 

OpenCV is a very versatile library for manipulating images. 

Usually, what is needed to load an image or apply some filter 

or transformation to an image is one line of code. OpenCV 

is widely known and has great documentation and support 

materials on the Internet. In this work, OpenCV was used 

to binarize images that were fed to Flood-fill, to extract seg-

ments obtained from Flood-fill, to resize the images so they 

have the same dimension as the input layer of the machine 

learning models used.

Tensorflow is the chosen library for the implementation of 

the neural networks because of the author’s prior experience 

with the library and because of the big support this library 

has on the Internet. Tensorflow is very competitive among 

the other libraries of the kind, like Keras, PyTorch, and Cafe, 

and has been used for both research and production.

Almost all the known neural networks models can be 

implemented in Tensorflow, as it has the known layers, 

activation functions, cost functions, and optimization meth-

ods necessary for the majority of the existing architectures. 

Tensorflow also has support to parallelism and its internal 

model graph divides the computations during training so to 

take advantage of the processor cores. Also, Tensorflow’s 

Tensorboard can be very handy to check training processes, 

as it displays the learning optimization graphs, like the decay 

of error function during training.

One very important feature of Tensorflow, that is actu-

ally present in other libraries too, is saving models during 

training and loading them at some point later to continue 

training, or use them as the final classifiers for research or 

for production.

The plot library Matplotlib is used for plotting ink den-

sity graphs during the phase of feature preparation. Like 

OpenCV, Matplotlib is very versatile and has good docu-

mentation and material on the Internet.

The Evolutionary Algorithm search employed in this 

work is done with the help of the Deap library. Deap is a 

library for genetic programming and evolutionary search and 

has support to parallelization, although a superficial configu-

ration can lead to concurrency problems. In this work it was 

not necessary to harness the parallelism capability of Deap. 

Parallelism from Tensorflow is default and its configuration 

was left intact.

Deap has an easy to understand structure when it comes 

to genetic programming. All that is necessary to set up an 

evolutionary algorithm environment is defining the set of 

primitive operations, which compounds the genes, the mate, 

mutate, and select operators, along with some other param-

eters, like probability of mutation, initial population size, 

and number of generations.

5.3  Image processing

This process has been manual with the help of a text seg-

mentation technique for more effort efficient preparation. All 

manuscript images have been converted to grayscale prior to 

applying image processing techniques, as the default colors 

do not bring advantage that compensates the higher dimen-

sionality of the data, and the image representation was a 

matrix of integers in the range 0–255 as usual. Binarization 

of the images is obtained by thresholding values higher than 

160 in intensity. This threshold was manually chosen among 

other tested values by visual inspection. Such images are 

good for the flood-filling process because they have a small 

number of grey levels, which is two.

The letters in the documents were in part cropped man-

ually, but in order to expedite the preparation of the data 

set, text segmentation was applied based on grid flood-fill 

Fig. 4  Letter segmentation obtained after applying flood fill to a medieval manuscript page Source: Detail of Oxford, Bodleian Library, Manu-

script Junius 121, Folio vi recto
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after a binary filter to detach the characters. However, it 

is not always possible for Flood-fill to extract single char-

acters. Joined characters inside a word (or even between 

words) and multiple-stroke characters pose the biggest 

problems when attempting to extract letters, since they 

return large chunks of letters in the first case and pieces 

of letters in the second. For this reason, manual adjust-

ments are required.

Prior to applying flood-fill on an image, binarisation 

can be improved by filtering the image with threshold, 

median, or Gaussian filters. These filters may fit together 

separated strokes of a letter and remove noise. This results 

in a better separation of characters from background in 

almost all cases and more connected strokes in some 

cases.

It is important to recognize that though a binary ver-

sion of the text image is used in the algorithm, this does 

not mean that the characters extracted have to be binary 

images, because information will be important for the 

positions in which the pixel clusters are located. Thus, 

after running flood-fill on an image, we compute the rec-

tangle coordinates of the pixel clusters and use them to 

crop the letters in the image. As long as the letters are in 

the same place as in the original image, whether or not 

the letters will be from the raw image is an open choice.

For pixel density alone (Fig. 5), after the rectangular 

grids from the images of characters were obtained, any-

thing considered beyond a letter stroke was cleaned, what 

means that the pixel value was set up to 255. Pixel density 

was computed for each row in every grid, which yielded a 

vector of densities for each character image. These values 

could then be used for generating line graphs of pixel den-

sity along rows and comparing the graphs of tremulous 

writers with the graphs of non-tremulous writers.

5.4  Feature selection

Both features mentioned in the previous paragraphs could be 

used in order to represent the input images of characters, but 

perfect removal of background for producing pixel density 

consumes much more time than just cropping letters. This 

is because the source images are so noisy that each back-

ground would have to be manually removed. On the other 

hand, even if the resulting segments of text from flood-fill 

contain chunks of joined letters or pieces of letters, these are 

only a fraction of the cases, and the remaining letters can 

be extracted manually with some image editing software. 

This means that depending on the classification method 

used, pixel density may not be feasible due to the amount 

of prepared data. Take a neural network for instance. If the 

cropped letters are not sufficient for training the classifier, 

the data can be augmented via addition of noise and image 

transformations that preserve the letters. In this case, some 

letter pixel density vectors cannot be augmented in a similar 

way and the size of the data set will stay not sufficient for 

this kind of classifier.

In the case of this work, it was needed to choose 

between the raw grayscale image and the raw binary 

image of the characters. Considering the binary images 

already have large amounts of noise removed and at the 

Fig. 5  Pixel density comparison of same letter h between tremulous hand and non-tremulous hand writer
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same time the characters are preserved, which was veri-

fied by visual inspection, it is expected that the binary 

versions of the cropped characters work better than the 

grayscale images. Previous tests on training the mod-

els on both grayscale and binary images demonstrated 

that learning is faster when training with binary images, 

though it is not guaranteed that higher accuracy will be 

achieved on this data than if training on the grayscale 

images. Thus, the binary images were chosen as the input 

representation.

One very important step is normalizing the pixel inten-

sities in the images, so that all values fall into the range 

[0,1]. Otherwise, convergence problems can arise when 

training with the intensity values in the range [0,255].

5.5  Base classifiers

For each of the three writers, base classifiers are trained 

on the respective data set. For the vowel classification 

task, four base classifiers are obtained for each data set: 

there are two types of architectures, which are 5-layer 

convolutional neural network and shallow fully connected 

neural network, combined with two types of training set-

tings, the first with mini-batches of size 16 and the second 

with mini-batches of size 64. All models are trained with 

5000 training steps.

Figures 6 and 7 illustrate the convolutional and shallow 

architectures used in more details. The same architectures 

and combinations were used in the writer identification 

task, except for the number of unities in the output, which 

is two for the writer task.

The classifiers are trained on 80% of the data and 

tested in the remaining data. The learning rate and opti-

mizer used are 0.001 and Adam, respectively.

For the vowel task, the defined classes are the vowels a, 

e, o, and u and the base classifiers are two types of neural 

networks, one shallow and the other deep, trained with mini-

batches of sizes 16 and 64, a total of four combinations for 

each of the three writers. The features used from the char-

acter images are the normalized grayscale (pixel intensity 

in the range [0,1]) versions of the images after they were 

reshaped to be 20 pixels by 20 pixels. In the evolutionary 

algorithm, the candidate ensembles are aggregation trees 

whose primitive operations are the sum of two classifica-

tion vectors and the product of a classification vector by a 

constant in the set {0.0, 0.1, 0.2, ..., 0.9}.

5.6  Ensembles

Evolutionary search of ensembles of pre-trained classifiers 

is employed in order to improve test classification accu-

racy after training on a small set (around 300 examples in 

each of the three data sets) of character images. The tasks 

assigned are classification in the a, e, o, and u classes in 

the first case and, for the other task, classification between 

every pair of the three writers: The Tremulous Hand of 

Worcester (‘TREMULOUS’), the non-tremulous medieval 

writer (‘NON-TREMULOUS’), and a modern calligrapher 

(‘CALLIGRAPHER’).

The measure of fitness is the ensemble accuracy on the 

same test set than the one used for testing the base classi-

fiers. The first population of individuals is generated from 

a uniform distribution and have trees with depth between 

1 and 5. Individuals mate by switching one of their sub-

trees with some probability (Bernoulli random variable) and 

express mutation in zero to two of its nodes. The mutation 

consists of the replacement of a subtree by a tree sampled 

Fig. 6  Convolutional architec-

ture used as base classifier

Fig. 7  Shallow architecture used as base classifier
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from a uniform distribution. The selection of individuals 

in one iteration of the algorithm is done by tournaments 

between pairs of individuals.

In the next two sections, the analysis of both vowel and 

writer identification tasks are presented. The data from 

which the analysis are made are the overall accuracy of base 

classifiers and classwise accuracy of the base classifiers and 

obtained ensembles.

6  Classification analysis

In this section, the analysis of both vowel and writer identi-

fication tasks are presented. The data from which the anal-

ysis are made are the overall accuracy of base classifiers 

and classwise accuracy of the base classifiers and obtained 

ensembles.

6.1  Evolutionary ensemble of classifiers: vowel task

As expected, which can be seen in Table 1, in all of the three 

writers the convolutional models outperform the shallow 

ones or have equal performance in the CALLIGRAPHER 

data set. The difference in accuracy from the convolutional 

models to the shallow models in each writer is no higher 

than 3%, if we do not take into account the 82% accuracy of 

the shallow model in the TREMULOUS writer. Batch size 

does not seem to have affected the accuracy of the models in 

the present configuration, as in each model both choices of 

16 and 64 for batch size result in the same accuracy, except 

for the shallow TREMULOUS models.

For the TREMULOUS data set, the confusion matrices 

of its models (Table 2) show that the biggest misclassifica-

tions are misclassifying u by e in the convolutional models 

and miscalssifying u by o in the shallow models. One clear 

advantage of the convolutional models over the shallow ones 

is the reduction of misclassification of a by e and also the 

reduction of misclassification of e by o if we compare the 

convolutional model of batch size 64 and shallow models. A 

good ensemble may take this into account and overcome the 

problems of misclassifying a by e and e by o. The letter o is 

the best classified in this set, having only 8% misclassifica-

tion in the convolutional model of batch size 64.

Interestingly, in the data set of the CALLIGRAPHER 

writer (Table 3), all of the four models performed exactly 

in the same way, in terms of the values in their confusion 

matrices. This may be the case that the data samples in the 

test set have a few pathological instances that get misclas-

sified in all of the four models. This lack of classification 

Table 1  Base classifiers accuracy for the vowel identification task

Classifier Data Batch size Accuracy

Conv. TREMULOUS 16 0.87

Conv. TREMULOUS 64 0.87

Conv. CALLIGRAPHER 16 0.94

Conv. CALLIGRAPHER 64 0.94

Conv. NON-TREMULOUS 16 0.98

Conv. NON-TREMULOUS 64 0.98

Shallow TREMULOUS 16 0.84

Shallow TREMULOUS 64 0.82

Shallow CALLIGRAPHER 16 0.94

Shallow CALLIGRAPHER 64 0.94

Shallow NON-TREMULOUS 16 0.96

Shallow NON-TREMULOUS 64 0.96

Table 2  Confusion matrices from the TREMULOUS data set

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained 

with batch size 16 are on the left, while the ones trained with batch 

size 64 are on the right. The matrix on the bottom represents the best 

ensemble obtained in the search. Rows represent the true labels a, e, 

o, u from top to bottom and columns represent the labels given by the 

classifiers a, e, o, u from left to right

Table 3  Confusion matrices from the CALLIGRAPHER data set

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained 

with batch size 16 are on the left, while the ones trained with batch 

size 64 are on the right. The matrix on the bottom represents the best 

ensemble obtained in the search. Rows represent the true labels a, e, 

o, u from top to bottom and columns represent the labels given by the 

classifiers a, e, o, u from left to right
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variety still may result in an ensemble that is better than 

its components if the individual instancies are not all clas-

sified in the same way by all base classifiers. The fact that 

one-third of the u’s are misclassified for o by these classi-

fiers just reflects the fact that many u’s in this data set are 

closed in the upper part. Such a difference of classification 

accuracy from the TREMULOUS data set is explained by 

the quality of the data available, as the characters from the 

TREMULOUS data set are the ones with much more noise 

than the others: the data sets CALLIGRAPHER and NON-

TREMULOUS are much cleaner than TREMULOUS in 

terms of background noise.

In contrast with the other classifiers, the shallow classifier 

trained with 16 samples per batch showed misclassification 

of a by o in 8% of the cases in the NON-TREMULOUS data 

set (Table 4), but did equally well on the other letters. As 

in the CALLIGRAPHER set, this base classifier will not 

result in a better ensemble depending on the obtained uni-

form misclassification patterns, but the classification of the 

individual samples may prove this wrong. Similarly to the 

results from the CALLIGRAPHER data set, the classifiers 

showed almost the same classification patterns, such as cor-

rectly classifying all the e’s, and u’s in the test set and, except 

for the shallow classifier of batch size 16, they also correctly 

classified all the letters a in the test set. Again, there is a 

noticeable difference in accuracy from the TREMULOUS 

set, with the reason being the same as for the CALLIGRA-

PHER set.

The best ensemble found for the TREMULOUS data set 

is, overall, around 3% better than its best component, as it 

can be seen in Table 5. The learned ensemble seems to have 

inherited the best from its components regarding the letters 

a, e, and o, but could not overcome the u misclassification 

problem while ideally the components could correct each 

other’s u assignment in the sense that their errors on u are 

complementary. This indicates that this is a sub-optimal 

ensemble and that the search should be performed with dif-

ferent settings, or with more steps, in order to find an ensem-

ble that takes full advantage of its components.

For the CALLIGRAPHER data set, the best ensemble 

was as good as its components. Also, by comparing the con-

fusion matrix of this ensemble with the ones of the compo-

nents, one notices that the assignment pattern is the same. 

This is not surprising given the uniformity of its classifiers 

in terms of assignments. This strongly suggests that it will be 

possible to develop a better ensemble only if a more diverse 

pool of classifiers is out in place of the current one.

From the NON-TREMULOUS data set, the chosen 

ensemble was equally good as the best components. This was 

almost the case with the CALLIGRAPHER set, but here the 

components have a small variety. Although it was expected 

from the ensemble to overcome the fraction of wrong e 

assignments, that did not happen. As in the TREMULOUS 

Table 4  Confusion matrices from the NON-TREMULOUS data set

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained 

with batch size 16 are on the left, while the ones trained with batch 

size 64 are on the right. The matrix on the bottom represents the best 

ensemble obtained in the search. Rows represent the true labels a, e, 

o, u from top to bottom and columns represent the labels given by the 

classifiers a, e, o, u from left to right

Table 5  Base classifiers 

accuracy for the writer 

identification task

Classifier Data Batch size Accuracy

Shallow TREMULOUS, NON-TREMULOUS 16 0.667

Shallow TREMULOUS, NON-TREMULOUS 64 0.667

Conv. TREMULOUS, NON-TREMULOUS 16 0.711

Conv. TREMULOUS, NON-TREMULOUS 64 0.702

Shallow TREMULOUS, CALLIGRAPHER 16 0.598

Shallow TREMULOUS, CALLIGRAPHER 64 0.652

Conv. TREMULOUS, CALLIGRAPHER 16 0.793

Conv. TREMULOUS, CALLIGRAPHER 64 0.772

Shallow CALLIGRAPHER, NON-TREMULOUS 16 0.714

Shallow CALLIGRAPHER, NON-TREMULOUS 64 0.702

Conv. CALLIGRAPHER, NON-TREMULOUS 16 0.893

Conv. CALLIGRAPHER, NON-TREMULOUS 64 0.881
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set, this may be due to limited search on the space of aggre-

gation trees in the evolutionary search.

One thousand generations in the evolutionary running 

resulted in ensembles considerably better than the base 

classifiers for the TREMULOUS data set. Even though the 

amount of data available was limited, th resulting ensembles 

were able to make reasonably better predictions on the test-

ing data than the base classifiers, without using any data 

augmentation for this set of data.

6.2  Evolutionary ensemble of classifiers: writer task

For the writer task, in both architectures and pairs of 

writers, except for the shallow classifiers in the TREMU-

LOUS–CALLIGRAPHER pair, raising the batch size from 

16 to 64 did not increase the classifier accuracy in the cur-

rent setting, like in the vowel classification task. This may 

be because the number of training steps is too small to show 

the gains in accuracy of training with bigger batch sizes.

It is debatable whether changing the batch size alone pro-

duces diverse classifiers. In the vowel classification tests it 

seemed that changing batch size did not help significantly 

because there was no significant variance in the classifica-

tion between the same architecture trained with batches of 

sizes 16 and 64. This is checked again in the results of the 

writer task tests that follow. In each pair of writers, the con-

volutional models performed considerably better than the 

shallow models—sometimes as much as 20%. Still, the exist-

ence of cases where the shallow classifiers perform better 

than the convolutional classifiers can allow the creation of 

even better ensembles than the best convolutional classifier 

at hand. The analysis of the classifiers in each pair of writers 

that follows can give some insight on how good an ensemble 

from the trained classifiers can be.

The task of differentiating between the writers TREMU-

LOUS and NON-TREMULOUS was performed with inter-

esting results: all the base classifiers showed difficulty in 

identifying the letters of the TREMULOUS writer whilst 

identifying the letters of the NON-TREMULOUS writer 

seemed significantly easier. This happens despite the exist-

ence of only two classes because the neural networks are 

not trained to learn the “law of excluded middle”, so they 

do not know that if a sample does not belong to a class, then 

it belongs to the remaining class.

One can expect an optimal ensemble to combine the best 

predictor for the writer TREMULOUS, that is the shallow 

model of batch 64, with the best predictor for the writer 

NON-TREMULOUS, that is the convolutional model of 

batch 16. We now proceed to check this from the classifica-

tion pattern of the respective ensemble.

In each class, the best resulting ensemble underperformed 

some of its components, although the overall accuracy of 

the ensemble was higher than all of its components. More 

specifically, in the class TREMULOUS, the ensemble accu-

racy was around 4% less than the best component model. In 

the class NON-TREMULOUS the difference from the best 

component was around 5%. This suggests that the search 

performed was too limited, as an ideal ensemble would 

behave in each class at least as good as the best component 

in that class.

As in the TREMULOUS, LOUS pair (Table 6), the clas-

sifiers of the TREMULOUS, CALLIGRAPHER pair had 

more success in identifying the writer that is not TREMU-

LOUS, except for the shallow model trained with batch size 

64. This difficulty in correctly assigning the samples from 

the TREMULOUS set comes from the noisy aspect of its 

letters. This is not the case with the other two sets, in which 

the samples are cleaner.

The best ensemble for the class TREMULOUS this time 

was the convolutional model of batch size 16, while for the 

class CALLIGRAPHER it was both convolutional models. 

It is possible that none of the shallow models is needed in 

order to find the optimal ensemble from this group of clas-

sifiers, as the convolutional models outperform the shallow 

ones considerably in both classes.

The best ensemble found for the pair TREMULOUS, 

CALLIGRAPHER (Table 7) performed better than all of 

its components in the TREMULOUS class and performed 

equally well to its best component in the CALLIGRAPHER 

class. As this ensemble had higher accuracy than all of its 

component classifiers in the CALLIGRAPHER class, we 

can infer that the base models that scored less in this class 

actually contributed to the final ensemble because of indi-

vidual samples. This means that there was specialization 

of the weaker classifiers in instances that the best ones did 

not master.

Table 6  Confusion matrices from the pair TREMULOUS, NON-

TREMULOUS

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained 

with batch size 16 are on the left, while the ones trained with batch 

size 64 are on the right. The matrix on the bottom is from the best 

ensemble obtained. Rows represent the true writers TREMULOUS, 

NON-TREMULOUS from top to bottom and columns represent the 

assigned writers TREMULOUS, NON-TREMULOUS from left to 

right
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Curiously, in the CALLIGRAPHER, NON-TREMU-

LOUS (Table 8) pair of writers, the shallow models worked 

better on correctly assigning the NON-TREMULOUS 

labels, while the convolutional models did better in assign-

ing the CALLIGRAPHER labels. Even though it sounds 

like a desirable case of specification, what is going to be 

checked in the best obtained ensemble, this may not be the 

case because the convolutional classifiers outperformed the 

shallow models in both classes. In other words, the result-

ant ensemble may take advantage only of the convolu-

tional models, although it is not strictly necessary, as some 

individual samples can be the specialty of the shallow mod-

els instead of the convolutional models.

Similarly to the TREMULOUS, CALLIGRAPHER pair, 

in the CALLIGRAPHER, NON-TREMULOUS pair the 

ensemble performed better than all of its components in one 

of the classes, that was the NON-TREMULOUS class, and 

performed as good as its best components in the other class. 

Again, the weaker classifiers in one of the classes, the NON-

TREMULOUS class, contributed with the specialization in 

some instances that the stronger models could not assign 

correctly. The resulting ensemble is, therefore, better than if 

it was the vote of the best ensemble in each class.

Moreover, our empirical results have corroborated with 

the theoretical conclusions presented in [13, 14], which indi-

cated that the dynamic features related to the speed of writ-

ing of this scribe’s writing can be used as diagnosis.

7  Conclusion

The use of ensembles for generating robust predictors and 

classifiers is a common practice nowadays due to the capac-

ity of generalization that ensembles have. Although the clas-

sification improvement of ensembles over the base models 

is nothing new, it is useful to have an idea of how good an 

ensemble can be based on which classes its components per-

form better. This comes from the assumption that an ideal 

ensemble should be at least as good on a given class than its 

best components on that class.

The results of aggregating classifiers through evolution-

ary algorithm are investigated in relation to the base classi-

fiers, that were trained on a relatively small quantity of data. 

The classification patterns of the base models in the form of 

confusion matrices are analysed and compared to those of 

the respective ensembles. This analysis gives some intuition 

on whether each ensemble, in the context of the search set-

tings in which it was generated, took advantage of the base 

classifiers that perform the best in each class.

In this work a framework for identification of authors and 

letters of medieval scripts was developed, having in mind 

that the amount of data in similar contexts may be small. In 

order to do so, some techniques for preprocessing, classifica-

tion, ensembling, and search were used.

Some results on a specific data set were analysed. In the 

performed tests, it was verified that in the majority of the 

tasks the best ensembles from the evolutionary algorithm 

have slightly better prediction on our data set, although in 

some cases it seemed that the parameters of the evolution-

ary search could be adjusted to find better ensembles, as the 

best ensembles perform worse in some classes than the best 

component, even though its overall accuracy was higher than 

all of its components.

Table 7  Confusion matrices from the pair TREMULOUS, CALLIG-

RAPHER

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained 

with batch size 16 are on the left, while the ones trained with batch 

size 64 are on the right. The matrix on the bottom is from the best 

ensemble obtained. Rows represent the true writers TREMULOUS, 

CALLIGRAPHER from top to bottom and columns represent the 

assigned writers TREMULOUS, CALLIGRAPHER from left to right

Table 8  Confusion matrices from the pair CALLIGRAPHER, NON-

TREMULOUS

The top two matrices are from the convolutional models and the mid-

dle two matrices are from the shallow models. The models trained 

with batch size 16 are on the left, while the ones trained with batch 

size 64 are on the right. The matrix on the bottom is from the best 

ensemble obtained. Rows represent the true writers CALLIGRA-

PHER, NON-TREMULOUS from top to bottom and columns rep-

resent the assigned writers CALLIGRAPHER, NON-TREMULOUS 

from left to right



Evolutionary Intelligence 

1 3

Acknowledgements We would like to acknowledge the great contribu-

tions of Dr. Deborah Thorpe on providing the dataset used in this work. 

This research was the result of the project entitled “Securityfor all: 

Using smart technologies to promote security for citizens” supported 

by Newton Research Collaboration Programmeof the Royal Engineer-

ing Academy (NRCP1516/1/135).

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, 

provide a link to the Creative Commons licence, and indicate if changes 

were made. The images or other third party material in this article are 

included in the article’s Creative Commons licence, unless indicated 

otherwise in a credit line to the material. If material is not included in 

the article’s Creative Commons licence and your intended use is not 

permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a 

copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Ashlock D (2006) Evolutionary computation for modeling and 

optimization. Springer, New York

 2. Cireşan DC, Meier U, Masci J, Gambardella LM, Schmidhuber J 

(2011) Flexible, high performance convolutional neural networks 

for image classification. In: Proceedings of the twenty-second 

international joint conference on artificial intelligence, IJCAI’11. 

AAAI Press, vol 2, pp 1237–1242

 3. Gagné C, Sebag M, Schoenauer M, Tomassini M (2007) Ensem-

ble learning for free with evolutionary algorithms? CoRR. arXiv 

:abs/0704.3905

 4. Gurney K (1997) An introduction to neural networks. UCL Press, 

London

 5. Kim YS, Street WN, Menczer F (2006) Optimal ensemble con-

struction via meta-evolutionary ensembles. Expert Syst Appl 

30(4):705–714

 6. Lacy SE, Lones MA, Smith SL (2015) Forming classifier ensem-

bles with multimodal evolutionary algorithms. In: 2015 IEEE 

congress on evolutionary computation (CEC). pp 723–729

 7. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-

based learning applied to document recognition. Proc IEEE 

86(11):2278–2324

 8. Lecun Y (1992) A theoretical framework for back-propagation. 

IEEE Computer Society Press, Washington

 9. Maclin R, Opitz DW (2011) Popular ensemble methods: an empir-

ical study. CoRR. arXiv :abs/1106.0257

 10. Matsugu M, Mori K, Mitari Y, Kaneda Y (2003) Subject inde-

pendent facial expression recognition with robust face detection 

using a convolutional neural network. Neural Netw 16:555–559

 11. Murphy K (2012) Machine learning: a probabilistic perspective. 

MIT Press, Cambridge, p 580

 12. Sylvester J, Chawla NV (2005) Evolutionary ensembles: combin-

ing learning agents using genetic algorithms. American Associa-

tion for Artificial Intelli-gence, pp 46–51. https ://www.aaai.org

 13. Thorpe DE, Alty JE (2015) What type of tremor did the medieval 

’tremulous hand of worcester’ have? Brain 138(10):3123–3127 

awv232[PII]

 14. Torbert S (2014) Applied computer science. Springer, New York, 

p 158

 15. Zell A (1994) Simulation neuronaler Netze. Addison-Wesley, 

Bonn Paris Reading

Publisher’s Note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/abs/0704.3905
http://arxiv.org/abs/abs/0704.3905
http://arxiv.org/abs/abs/1106.0257
https://www.aaai.org

	Investigating the use of an ensemble of evolutionary algorithms for letter identification in tremulous medieval handwriting
	Abstract
	1 Introduction
	2 Background
	3 Using ensembles with evolutionary algorithm and neural networks
	4 Related work
	5 Methodology for medieval letter and scribe classification
	5.1 The data used
	5.2 Libraries and implementation details
	5.3 Image processing
	5.4 Feature selection
	5.5 Base classifiers
	5.6 Ensembles

	6 Classification analysis
	6.1 Evolutionary ensemble of classifiers: vowel task
	6.2 Evolutionary ensemble of classifiers: writer task

	7 Conclusion
	Acknowledgements 
	References


