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 10 

Significance 11 

The deep time dynamics of the latitudinal diversity gradient (LDG), especially 12 

through dramatic events like mass extinctions, can provide invaluable insights on 13 

the biotic responses to global changes, yet they remain largely under-explored. 14 

Our study shows that the shape of marine LDGs changed substantially and 15 

rapidly during the Permian-Triassic mass extinction from a modern-like steep 16 

LDG to a flat LDG. The flat LDG lasted for ~5 million years and was likely a 17 

consequence of the extreme global environment, including extreme warming and 18 

ocean anoxia, which ensured harsh conditions prevailing from the tropics to the 19 

poles. Our findings highlight the fundamental role of environmental variations in 20 

concert with severe biodiversity loss in shaping the first-order biogeographic 21 

patterns. 22 

mailto:haijun.song@aliyun.com


2 

 

 23 

Abstract: 24 

The latitudinal diversity gradient (LDG) is recognized as one of the most pervasive, global 25 

patterns of present-day biodiversity. However, the controlling mechanisms have proved 26 

difficult to identify because many potential drivers covary in space. The geological record 27 

presents a unique opportunity for understanding the mechanisms which drive the LDG by 28 

providing a direct window to deep time biogeographic dynamics. Here we used a 29 

comprehensive database containing 52,318 occurrences of marine fossils to show that the 30 

shape of LDG changed greatly during the Permian-Triassic mass extinction from showing 31 

a significant tropical peak to a flattened LDG. The flat LDG lasted for the entire Early 32 

Triassic (~5 million years) before reverting to a modern-like shape in the Middle Triassic. 33 

The environmental extremes that prevailed globally, especially the dramatic warming, 34 

likely induced selective extinction in low latitudes and accumulation of diversity in high 35 

latitudes through origination and poleward migration, which combined together account 36 

for the flat LDG of the Early Triassic. 37 

 38 

Keywords: biogeography | end-Permian mass extinction | global warming | ocean anoxia | 39 

biodiversity 40 

 41 

The increase in species richness from the poles to the tropics, long known as the latitudinal 42 

diversity gradient (LDG), is one of the most pervasive first-order biological patterns on Earth 43 

today (1, 2), both on land (3) and in the oceans (4-6). Yet, the relative importance of the diverse 44 

ecological and evolutionary mechanisms (e.g., reviews in 7, 8, 9) for generating this pattern 45 

remains unclear. Paleontological data provide a unique perspective in the search for the dominant 46 
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driver(s) of LDGs, allowing diversity and distribution dynamics to be tracked through the long 47 

history of environmental changes (10, 11). In particular, climate (e.g., temperature or 48 

precipitation) is regarded as a key driver of the LDG, and its largescale changes have been 49 

postulated to have altered the general shape of the LDG through time (12, 13). Steep, normal 50 

LDGs (i.e., with a significant tropical peak like today) have been found primarily during 51 

icehouse times, whereas bimodal or even reverse LDGs with diversity peaks at mid- to high 52 

latitudes occurred during greenhouse climates (13, 14). These findings call for assessments of the 53 

relative importance of climate per se and environmental stability, especially through comparing 54 

the dynamics across several time intervals with different environmental templates. 55 

The dramatic changes in environmental conditions and the severe mass extinction at the end 56 

of the Permian provide an excellent opportunity for investigating LDGs and their controlling 57 

mechanisms. The Permian-Triassic (P-Tr) mass extinction, which occurred ca. 252 million years 58 

ago, was the largest extinction event of the Phanerozoic (15, 16). This biological crisis was 59 

linked to extreme and prolonged environmental changes, many of which are probably the most 60 

serious of the past 500 million years. The contemporaneous eruption of the Siberian Traps large 61 

igneous province (17) drove ~10°C global warming within ca. 30,000-60,000 years through 62 

greenhouse gas emissions (18, 19), and widespread oceanic anoxia (20-22). These disastrous 63 

events killed over 90% of marine species (16), caused profound temporary and permanent 64 

ecological restructuring of marine ecosystems (23), which ultimately catalyzed the 65 

transformation of marine communities dominated by Paleozoic faunas to those dominated by the 66 

Modern fauna (15). The effect of the largest mass extinction in Earth history on global marine 67 

biogeography is largely unknown, but the rich marine fossil record from this time can be a 68 

powerful tool for illuminating the fundamental principles that shape global biodiversity. 69 
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LDG dynamics across the P-Tr mass extinction has received little attention except for a few 70 

case studies that have all suggested a strong impact of environmental changes on global diversity 71 

patterns. For example, the early-middle Permian diversity of terrestrial tetrapods reportedly 72 

peaked in temperate regions as a result of profound climate-induced biome shift (24). By the 73 

Early Triassic, the distribution of terrestrial tetrapods had moved 10–15° poleward (26, 27), and 74 

the group was apparently absent from 40°S to 30°N as a result of tropical overheating (18). 75 

Phylogenetic network analysis also found a marked increase in biogeographic connectedness, 76 

resulting in a more homogeneous composition of diversity across latitudes in tetrapods during 77 

this time (28). Similar poleward migrations were also found in marine invertebrates in the 78 

Northern Hemisphere during the Early Triassic (29), and a variable LDG during this time was 79 

reported in ammonoids (25). These findings suggest a great change in biogeographic distribution 80 

during the P-Tr crisis, which would have had a profound impact on LDG. In this study, we 81 

investigate LDG dynamics through the P-Tr mass extinction event, and the later recovery of 82 

biodiversity, using the most comprehensive fossil database thus far for this time period.  83 

 84 

Global changes in biogeography 85 

In order to assess the effect of the P-Tr extinction and associated environmental extremes on 86 

latitudinal diversity patterns, we analyzed biogeographic distributions using a new database 87 

consisting of occurrences of marine genera (including 20 major clades, see Methods for details) 88 

from the late Permian (Changhsingian - 254.1 Ma) to the Late Triassic (Rhaetian - 201.3 Ma). 89 

This database is an update of an earlier Permian-Triassic marine fossil database (23) and includes 90 

52,318 generic occurrences at a substage- or stage-level resolution from 1768 literature sources 91 

(Database S1). Among these, 7,752, 12,676, 13,456, and 18,634 occurrences are in the late 92 
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Permian, Early, Middle, and Late Triassic, respectively. Based on reconstructed paleolatitudes, 93 

the collections were binned into four paleolatitudinal zones for each hemisphere, i.e., 0–15°, 15–94 

30°, 30–45°, and 45–90°. The larger size of the 45–90° bin was chosen to accommodate the 95 

relatively low sample density at higher latitudes in most time intervals. At the epoch level, data 96 

from the paleolatitudinal zones of the northern and southern hemispheres are analyzed separately 97 

(Fig. 1, SI Appendix, Fig. S1, Tables 1, 2). At stage/substage level, data from the northern and 98 

southern hemispheres are amalgamated to ensure sufficient sample sizes (Fig. 2, SI Appendix, 99 

Figs. S2–S4, Tables 3, 4). We standardized genus diversity in each paleolatitudinal zone for each 100 

time bin using both incident-based rarefaction and extrapolation methods (see more details in 101 

Methods). 102 

We found the biodiversity peaks in the 30°N-15°S bins in both hot (Middle Triassic) and 103 

cold (late Permian) times but a flatter LDG during the Early Triassic (Fig. 1), indicating a critical 104 

role of environmental stability in maintaining a rich tropical fauna. Extrapolating diversity 105 

estimators (Jackknife 1 and Chao 2, SI Appendix, Fig. S1B, C) show similar biogeographic 106 

patterns with raw data for the four time intervals (SI Appendix, Fig. S1A).  In the northern 107 

hemisphere, genus diversity decreases from low to high paleolatitudes in the late Permian and 108 

Middle Triassic. In the southern hemisphere, the 15-30° bin has the lowest diversity, which could 109 

be partially explained by insufficient sample size (Fig. 1A). Most of southern hemisphere bins 110 

from the late Permian and Middle Triassic intervals have generic occurrences of less than 380. 111 

By contrast, both rarefied data and shareholder quorum subsampling (SQS) diversity show that 112 

Early Triassic time bins were characterized by a nearly uniform genus richness from low to high 113 

latitudes, except for the 45-90°N bin (Fig. 1). The low diversity in the 45-90°N bin is likely due 114 

to a species-area effect (30), because this bin contained a smaller shelf area than other bins and 115 
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included an area of approximately half the shelf size compared to the 45-90°S bin during the 116 

Early Triassic (31). Additionally, there are more occurrences in the lower latitudes than there are 117 

in the mid and high latitudes for the Early Triassic (e.g., 6,057, 1,730, 3,788, and 1,101 118 

occurrence records from low to high latitudes respectively), suggesting that the flat LDG is not a 119 

merely a sampling artifact. The Late Triassic interval is characterized by a diversity peak in the 120 

15–30°N latitudinal bin, but exhibits a declining trend in diversity towards the polar region.  121 

The raw data show slightly different LDG patterns in the late Permian and the Middle 122 

Triassic (SI Appendix, Fig. S1A), indicating that controlling for sampling variation is necessary 123 

for a rigorous investigation on fossil diversity patterns even with such a rich record. During the 124 

late Permian, 282 genera have been found from the regions in the 15–30°N zone, while 766 were 125 

found in the 0–15°N zone. Both rarefied and SQS diversities show less difference between the 126 

two latitude zones (Fig. 1), with the late Permian pattern more closely resembling the Middle 127 

Triassic pattern, implying a sampling effect in the raw data. Nevertheless, all subsampling 128 

methods have shown unmistakable flattening of LDG during the Early Triassic (Fig. 1), which 129 

provides compelling evidence for the strong impacts of mass extinction and dramatic 130 

environmental changes on global biogeography. Fossil data in the Early Triassic interval has a 131 

similar spatial distribution to other intervals (SI Appendix, Figs. S5, S6), suggesting that the flat 132 

LDG during the Early Triassic is not due to uneven spatial sampling and species-area effects 133 

(30). 134 

Observed and estimated diversities at finer temporal resolution (i.e., 17 time bins including 135 

early Changhsingian, late Changhsingian, early Griesbachian, late Griesbachian, Dienerian, 136 

Smithian, Spathian, early Anisian, late Anisian, early Ladinian, late Ladinian, early Carnian, late 137 

Carnian, early Norian, middle Norian, late Norian, and Rhaetian) also show significant variations 138 
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of LDGs (Fig. 2, SI Appendix, Figs. S2–S4), i.e., from significant low latitude peaks in the late 139 

Permian to flat LDGs in the Early Triassic before returning back to LDGs with clear low latitude 140 

peaks in the Middle Triassic. Remarkably, diversity recovery occurred in all latitudes during the 141 

Smithian and Spathian intervals (late Early Triassic) and started in high latitudes, i.e., 30–90° 142 

zones (Fig. 2). The mid-latitude peak in observed diversity during the Carnian (SI Appendix, Fig. 143 

S2) is not entirely an artifact of sampling, because subsampled data also show a similar, but 144 

weaker peak (Fig. 2). In addition, the end-Norian marine biota experienced a short-term change 145 

in LDG, with lower diversity in the 0–15° zone than mid-latitude regions (Fig. 2, SI Appendix, 146 

Figs. S2–S4). 147 

 148 

Drivers of the dynamic latitudinal diversity gradient 149 

The similar LDGs during the hot Middle Triassic and cold late Permian contradict the notion that 150 

icehouse climates, which can maintain strong environmental gradients across space, are 151 

necessary to produce such LDGs (13). Previous studies have generally associated steep, normal 152 

LDG patterns with icehouse climates, such as the late Cenozoic including the present-day (5, 32-153 

34), late Paleozoic (35), and late Ordovician (36, 37), suggesting a negative relationship between 154 

global temperature and the strength of LDG (13), albeit with some clade-specific exceptions 155 

(38). The late Permian (Changhsingian Stage) was a cold period, during which the temperature 156 

was only slightly higher than during the late Paleozoic glaciation (39); the strength of 157 

Changhsingian LDG is similar to the late Cenozoic LDG for marine animals with markedly 158 

elevated generic richness in the tropics (32). However, the Middle Triassic is commonly 159 

classified as a hothouse period with the average sea surface temperature ~8°C higher than seen at 160 

the present-day (40), and yet the steepness of LDG increased after the re-establishment of 161 
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environmental stability. The flattened shape of Early Triassic LDG matches well with ecological 162 

diversity data, which showed that the tropics had the highest level of functional diversity during 163 

the late Permian, but following the extinction, a similar level of functional diversity as higher 164 

latitudes (41).  165 

In contrast to the global environment before and after this period, the dramatic environmental 166 

changes that began in the P-Tr boundary interval and lasted for ~ 5 million years are likely the 167 

leading causes of the lack of a discernable LDG in Early Triassic marine biota. These changes 168 

have three notable features:  169 

(i) Strong intensity. Climatic/environmental conditions were the most severe of the past 500 170 

million years, e.g., ~10°C increase of sea surface temperature in ca. 30,000-60,000 years (18, 171 

19), rapid shifts between oxia and anoxia in shallow-waters (21), and a significant increase of 172 

continental weathering rates and nutrient delivery to the oceans (42, 43).  173 

(ii) Global reach. Some environmental events, including anoxia and warming, affected most 174 

habitats and regions (21, 22, 44).  175 

(iii) Frequent recurrence. Extreme warming, oceanic anoxia, and enhanced weathering 176 

occurred recurrently and such conditions lasted for the entire Early Triassic, ca. 5 million years 177 

(18, 20, 42, 43) (Fig. 4). Together, these unstable environmental conditions prevented diversity 178 

recovery, even in the tropics, and destroyed the advantage of this region as both the cradle and 179 

the museum for global biodiversity (45).  180 

Under the stress of such extreme environment during the P-Tr crisis, preferential extinction at 181 

low latitudes may have played an important role in the transformation of LDGs. To evaluate this 182 

mechanism, we selected the Changhsingian and early Griesbachian as the interval to calculate 183 

extinction magnitude because the major extinction pulses straddled the P-Tr boundary (46). The 184 
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extinction magnitudes (calculated by the number of extinct genera/the number of total genera) in 185 

the Changhsingian and early Griesbachian interval are 78.7% and 72.4% in the 0–15° and 15–186 

30° zones, respectively, which are higher than the 30–45° zone with extinction rates of 60.9% 187 

but not the 45–90° zone with 72.8% taxa extinct (Fig. 3B, SI Appendix, Table. S5). Other studies 188 

have suggested that the Changhsingian has a peak extinction in the higher latitudes, which is not 189 

seen in our data, but the Induan (Griesbachian and Dienerian) shows higher extinction in the 190 

tropics than temperate regions (22, 47), which better agrees with our work. A similar flat LDG 191 

pattern has also been found in mammals after the Cretaceous/Paleogene extinction event (48). 192 

In addition, our results show higher origination and invasion rates at high latitudes in the late 193 

Griesbachian-Smithian interval (Fig. 3C), suggesting that high latitude regions had become the 194 

refuge and cradle for marine organisms after the P-Tr mass extinction. The higher invasion rates 195 

toward high latitudes (Fig. 3C) are also consistent with the expectation of a pervasive tendency 196 

of migrating poleward. Therefore, both higher diversification rates at high latitudes and poleward 197 

migration would have played significant roles in producing the flat LDG in the Early Triassic. 198 

Our findings of a temporally dynamic LDG in response to environmental changes coincident 199 

with the P-Tr mass extinction is clear evidence for a strong role of major environmental crises 200 

and massive climate perturbations in producing flatter LDGs. For example, the delay of 201 

metazoan reef recovery in the Early Triassic was an important factor in suppressed equatorial 202 

diversity (49, 50) (Fig. 4), leading to a flatter LDG. Stable environments allow diversity to 203 

accumulate with higher speciation rates and/or lower extinction rates (51). However, because 204 

environmental stability and many other factors, especially climatic conditions, all co-vary with 205 

latitude, their relative importance in shaping the LDG are difficult to compare based on spatial 206 

analyses alone.  207 
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Unstable and harsh environments and the major loss of species during the P-Tr extinction 208 

resulted in unstable global communities (52), and weak biotic interactions in both low- and high-209 

latitude regions. The blooms of opportunists (e.g., small foraminifers, linguloid brachiopods, 210 

microgastropods, and Claraia bivalves) in the aftermath of the P-Tr extinction (23, 53-55) 211 

indicate that r-strategists dominated the marine realm. Despite an apparent lack of selection for 212 

larger geographic range sizes during the P-Tr mass extinction (56), biogeographic 213 

cosmopolitanism increased in both terrestrial (28) and marine (25) realms in the Early Triassic, 214 

likely because surviving opportunistic taxa were able to proliferate geographically in the absence 215 

of intense competition and their larger niche breadths allowed them to cope with harsh and 216 

variable conditions. 217 

The hothouse climates during the Early Triassic probably also contributed to weakening the 218 

marine LDG. Sea surface temperature of low-latitudes in the Early Triassic was ~15°C higher 219 

than at present (40). An Earth system model of P-Tr climate suggests that the amplitude of 220 

warming in high-paleolatitudes is much higher than that in low-paleolatitudes (22), resulting in a 221 

weak latitudinal temperature gradient. Additionally, extreme seawater temperatures (up to 222 

35 °C), and associated anoxia would have been lethal to many tropical organisms (Fig. 4). An 223 

analog is happening in modern oceans, i.e., the declining oxygen caused by global warming and 224 

eutrophication is influencing marine life from gene to ecosystem levels (57). 225 

Global temperatures declined by ~4 °C in the early Middle Triassic when compared to the 226 

Early Triassic hothouse (18), which may have been enough to facilitate the re-establishment of a 227 

normal LDG in the mid-Triassic. Our findings suggest that only extreme and variable hothouse 228 

climates produce flat LDGs while a stable greenhouse world can still have enough pole to 229 

equator climatic gradient to produce a significant, normal LDG. Among other factors, the yearly 230 
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seasonal instability, including the variation of solar radiation and daylight, is likely a major cause 231 

of lower biodiversity at higher latitudes even during greenhouse periods.  232 

 233 

Causes of Late Triassic biogeographic changes 234 

During the Late Triassic, marine organisms were most diverse in the 15-30°N region (Fig. 1). A 235 

mid-latitude peak of marine biodiversity has been reported in modern taxa (14), post-Paleozoic 236 

brachiopods (58), and Early and Middle Ordovician taxa (37). Temperature and shelf areas have 237 

been proposed as the primary variables influencing the bimodality of LDG (14, 37, 59). High 238 

temperatures in tropics are beyond the thermal optima for some taxa, especially during global 239 

warming intervals. Paleogeographic data show shelf area increased remarkably in the mid-240 

latitudes of the northern hemisphere during the Late Triassic (31), which would have provided 241 

more habitats for marine organisms and accordingly contributed to higher diversity. 242 

The mid-latitude peak in diversity during the Carnian is probably due to extreme climate 243 

events that happened in the mid-Carnian interval. Carbon isotope records show a major negative 244 

excursion in both organic and carbonate δ13C at this time (60, 61), reflecting significant 245 

perturbations of the carbon cycle. Sea surface temperature increased about 6°C in this interval 246 

(62, 63), which coincided with the major negative shift of δ13C (63), suggesting a causal linkage 247 

between the injection of pCO2 and global warming. The mid-Carnian event also affected the 248 

marine biota and resulted in a biodiversity decline (23) and some ecological changes (64).  249 

The drop of diversity in the low latitudes during the end-Norian interval is probably 250 

associated with environmental disturbance (62, 65). Conodont oxygen isotope data suggested a 251 

~7°C warming in the late Norian, which lasted about 7 million years (62). Significant negative 252 
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excursions of organic carbon and nitrogen isotope ratios near the Norian-Rhaetian boundary 253 

suggest the development of widespread oceanic stagnation during this interval (65).  254 

 255 

Implications for modern ecosystem changes 256 

Identifying the main drivers of global biogeographic patterns is a critical step towards predicting 257 

future responses to projected environmental changes. In particular, our results support the 258 

previous suggestion that extreme climatic events, particularly when combined with other 259 

anthropogenic effects, will lead to severe consequences for biodiversity (57), although a super 260 

greenhouse Triassic-like world is a distant and perhaps unlikely prospect. We show a flattening 261 

of the LDG after the biggest mass extinction, which indicates a collapse of tropical ecosystems 262 

including tropical reefs. We already know that modern reefs are highly stressed (66, 67) and it 263 

seems that they will likely be the first major victims of warming and, given that these are the 264 

most diverse of all marine ecosystems, this will contribute to a flattening of the modern marine 265 

LDG (66, 68). 266 

 267 

Methods 268 

Fossil database. We substantially updated an earlier database of Permian-Triassic marine fossils 269 

(23) by adding 89 publications for 1263 fossil occurrences including data from the Paleobiology 270 

Database (PBDB). Fossil occurrences were compiled for 17 substage-/stage-level time bins, 271 

following GSA Geological Time Scale v. 5.0 (69), from the late Permian Changhsingian (starting 272 

254.1 Ma) to the Late Triassic Rhaetian (ending 201.3 Ma), including, in sequential order, early 273 

Changhsingian, late Changhsingian, early Griesbachian, late Griesbachian, Dienerian, Smithian, 274 

Spathian, early Anisian, late Anisian, early Ladinian, late Ladinian, early Carnian, late Carnian, 275 

early Norian, middle Norian, late Norian, and Rhaetian. The taxonomy and biostratigraphy were 276 
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rigorously validated to ensure consistency across the database. We based our analyses on genus-277 

level occurrences because species-level identification is often inaccurate and spotty.  278 

The resulting new global fossil database contains 52,318 generic occurrences from 4,875 279 

collections in 1,768 publications (see Database S1). The total 4,342 genera belong to 20 major 280 

groups including three clades of algae (benthic calcareous algae, coccoliths, and dinoflagellates), 281 

two clades of protozoa (foraminifers and radiolarians), twelve clades of invertebrates (annelids, 282 

bivalves, brachiopods, bryozoans, cephalopods, corals, echinoderms, gastropods, hydrozoans, 283 

ostracods, non-ostracod crustaceans, and sponges), and three clades of vertebrates (conodonts, 284 

fishes, and marine reptiles). 285 

 286 

Paleolatitude reconstruction. Paleolatitudes (and paleolongitudes) were reconstructed using 287 

PointTracker v7 rotation files published by the PALEOMAP Project (70) based upon the 288 

present-day georeference data and a model of global tectonic history. Paleolatitude data were 289 

reconstructed for every 10 million years, e.g., with mid-points at 250 Ma for time bins from 290 

Changhsingian to early Anisian; 240 Ma for late Anisian and Ladinian; 230 Ma for  Carnian, 220 291 

Ma for early and middle Norian; 210 Ma for late Norian and Rhaetian.  292 

The fossil occurrences for each time bin were grouped into four paleolatitudinal zones in 293 

each hemisphere, i.e., 0°–15°, 15°–30°, 30°–45°, and 45°–90°. The high-latitude zone covers a 294 

total of 45 degrees of latitudes because the sample sizes for 15-degree regions at high latitudes in 295 

most time bins were insufficient for rigorous analyses of diversity patterns. However, we note 296 

that higher latitudinal bands tend to cover smaller geographic areas than lower bands of the same 297 

number of degrees, which reduces the issue of uneven sampling areas. Further, we employed 298 

statistical methods to account for the sampling effects across latitudinal zones. Spanning the 299 
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whole focal period in our study, the four paleolatitudinal zones contained a total of 22,526, 300 

13,649, 11,571, and 4,572 occurrences, respectively, from low to high latitudes.  301 

 302 

Rarefaction method. We applied the rarefaction method to compare generic richness across 303 

latitudinal zones and time bins (71, 72), using the program PAleontological STatistics (PAST, 304 

Version 3.16) (73). Because our dataset includes both micro- and macrofossil groups that 305 

systematically differ in the abundance of individuals in each collection (23), abundance does not 306 

make an appropriate unit for the subsampling procedures for comparing total marine diversity. 307 

Instead, we treated each generic occurrence (the unique stratigraphic unit in which this genus 308 

occurred) as an individual sampling unit, which serves as the analytical unit for rarefaction. We 309 

randomly subsampled the fossil occurrences from each latitudinal zone in each time bin until a 310 

specific quota based on the minimum sample size in latitudinal pools. We generated rarefaction 311 

curves in two temporal resolutions to compare LDGs, i.e., in the four epochs (the late Permian, 312 

Early,  Middle, and Late Triassic) and in the more refined 17 time bins as explained above. The 313 

latitudinal faunas in each epoch were rarefied using a quota of 380. The fossil occurrences in the 314 

17 time bins were subsampled until a quota of 136 occurrences in each latitudinal zone. 315 

 316 

SQS method. Shareholder quorum subsampling (SQS) approach (74) was applied to estimate 317 

diversity variation across latitudes in the late Permian, Early, Middle, and Late Triassic intervals. 318 

SQS diversities were calculated with the divDyn R package at a quorum level of 0.5 (75). 319 

 320 

Data access and availability. All data used to conduct analyses and plot figures are available for 321 

download at https://doi.org/10.5061/dryad.41ns1rn9z. 322 

https://doi.org/10.5061/dryad.41ns1rn9z
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 489 

Figure captions 490 

 491 

Fig. 1. Latitudinal diversity gradients for late Permian and Triassic intervals. (A) Subsampled 492 

diversity using a quota of 380 occurrences for each time interval. Vertical bar presents the 493 

standard deviation. (B) Shareholder quorum subsampling (SQS) diversity with a quorum level of 494 

0.5. Dash line represents the discontinuous case. 495 



21 

 

 496 

Fig. 2. Rarefied genus-level diversity trends related to latitude from the late Permian to the end 497 

Triassic. Data are standardized by repeatedly subsampling from a randomly generated set until a 498 

quota of 136 occurrences in each time bin at each latitudinal interval (SI Appendix, Table S3). 499 

Diversities are drawn as a contour map by using Origin Pro 2017 software. Ch, Changhsingian; 500 

Gr, Griesbachian; Di, Dienerian; Sm, Smithian; Sp, Spathian; An, Anisian; La, Ladinian; Ca, 501 

Carnian; No, Norian; Rh, Rhaetian. 502 
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 503 

Fig. 3. Extinction and extirpation magnitudes in the Changhsingian and early Griesbachian 504 

interval and origination and invasion magnitudes in the late Griesbachian-Smithian interval. (A) 505 

The combined rates of extinction-extirpation and origination-invasion. (B) Extinction and 506 

extirpation rates in the Changhsingian and early Griesbachian interval. (C) Origination and 507 

invasion rates in the late Griesbachian-Smithian interval. Vertical bars represent standard errors. 508 
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 510 

Fig. 4. Biotic and environmental changes throughout the late Permian to the Middle Triassic. (A) 511 

SQS diversities across latitudinal zones. (B)  Genus richness and proportion of nekton (23). (C)  512 

The number of sites yielding metazoan reefs (50). (D)  Sea surface temperature (SST), ocean 513 

redox, and continental weathering. SST values are derived from conodont oxygen isotope data 514 

(SI Appendix, Table S6, Database S2). Redox states of seawater are from conodont Th/U ratios 515 

(20). Riverine to mantle Sr flux ratios (FR/FM) calculated from conodont Sr isotopes reflect 516 

continental weathering change (43). 517 

 518 


