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ABSTRACT: As a key diagnostic property of benzenoids and
other polycyclic hydrocarbons, induced ring current has inspired
diverse approaches for calculation, modeling, and interpretation.
Grid-based methods include the ipsocentric ab initio calculation of
current maps, and its surrogate, the pseudo-π model. Graph-based
models include a family of conjugated-circuit (CC) models and the
molecular-orbital Hückel-London (HL) model. To assess compet-
ing claims for physical relevance of derived current maps for
benzenoids, a protocol for graph-reduction and comparison was
devised. Graph reduction of pseudo-π grid maps highlights their
overall similarity to HL maps, but also reveals systematic
differences. These are ascribed to unavoidable pseudo-π proximity
limitations for benzenoids with short nonbonded distances, and to
poor continuity of pseudo-π current for classes of benzenoids with fixed bonds, where single-reference methods can be unreliable.
Comparison between graph-based approaches shows that the published CC models all shadow HL maps reasonably well for most
benzenoids (as judged by L1-, L2-, and L∞-error norms on scaled bond currents), though all exhibit physically implausible currents
for systems with fixed bonds. These comparisons inspire a new combinatorial model (Model W) based on cycle decomposition of
current, taking into account the two terms of lowest order that occur in the characteristic polynomial. This improves on all pure-CC
models within their range of applicability, giving excellent adherence to HL maps for all Kekulean benzenoids, including those with
fixed bonds (halving the rms discrepancy against scaled HL bond currents, from 11% in the best CC model, to 5% for the set of
18 360 Kekulean benzenoids on up to 10 hexagonal rings). Model W also has excellent performance for open-shell systems, where
currents cannot be described at all by pure CC models (4% rms discrepancy against scaled HL bond currents for the 20112 non-
Kekulean benzenoids on up to 10 hexagonal rings). Consideration of largest and next-to-largest matchings is a useful strategy for
modeling and interpretation of currents in Kekulean and non-Kekulean benzenoids (nanographenes).

1. INTRODUCTION

This article reports an approach to comparing and improving
models for mapping induced ring currents in benzenoids. The
global currents induced in conjugated π systems by a
perpendicular external magnetic field have long been regarded
as indicators of aromaticity.1−6 Techniques for estimating and
calculating ring-current strength and direction also have a long
history;1,4,6−19 they vary from purely graph-theoretical and
empirical models to ab initio quantum-mechanical perturbation
theories. As usual in theoretical chemistry, there is a balance
between the requirement for quantitative information on
specific systems and the search for patterns in classes of
molecules sharing chemically significant substructures, hence
the emergence of a variety of methods.
Ab initio work on currents using the ipsocentric

approach12,17−19 gives physically realistic maps for many
individual molecules20,21 and provides a transferable con-
ceptual analysis of ring currents in terms of symmetry, nodal
character, and energy of molecular orbitals.18,19,22 These

advantages are retained in the pseudo-π model (also
ipsocentric), where, in the spirit of London’s pioneering
calculation on benzene,1 a cluster of H atoms acts as a
surrogate for a conjugated carbon framework. The in-plane
current is taken as a mimic of the out-of-plane π ring current of
the real system. The pseudo-π model reduces computational
cost by orders of magnitude, while reproducing the overall
pattern of current flow and retaining the chemical
interpretation of the ipsocentric approach.23 Other ab initio
approaches that can produce maps for visualization of
magnetic response include GIMIC,15 which concentrates on
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total induced current density rather than orbital contributions,
ACID,16 which plots anisotropy of the induced current density
tensor, and other methods which are based on induced local
magnetic fields.24 This last quantity is related to the spatial
distribution of local shieldings, and hence to the widely used
NICS (nucleus-independent chemical shift) method, as
developed by Schleyer and his school.25

All these ways of producing maps are essentially grid based,
and associate a current−density vector (or some proxy) with
points defined on a mesh in molecular space, consistent with
the through-space character of current flow in the electron
cloud. Another approach is possible. In graph-theoretical
methods, the current−density map is replaced by a directed
graph decorated with induced currents flowing only along arcs.
Of these methods, the oldest and arguably the best founded in
terms of quantum mechanics is the Hückel-London (HL)
theory,1,7−11 in which magnetic response is calculated using
Hückel theory with a perturbed adjacency matrix. The
perturbation is carried by position-dependent gauge factors
attached to notional atom-centered basis functions, hence
indirectly introducing a dependence of current on the
molecular geometry, although the use of idealized equilateral
hexagons for all rings restores the graph-theoretical nature of
the results.10 A vast amount of literature on the HL method
has shown it to be informative, often giving maps of current in
striking overall agreement with those from more sophisticated
calculations. Ipsocentric ab initio, pseudo-π, and Hückel-
London methods are all based on molecular-orbital (MO)
theory.
More recently, attention has turned to graph-theoretical

models of current. A cycle C in a graph G is a conjugated circuit
(CC) if both C and G−C have at least one perfect matching
(Kekule ́ structure). Conjugated circuits, identified by compar-
ing pairs of Kekule ́ structures, were first used in calculations of
resonance energies of conjugated systems.26 Conjugated-
circuit models of current appeared in the literature as early as
1979,27 and then seemed to be forgotten. They were revived by
Randic ́28,29 and others, and now exist in at least four related30

variants.27,29,31,32 In these models, bond currents arise by
superposition of ring currents contributed from conjugated
circuits. Signs for the ring currents are assigned ad hoc
according to divisibility of the cycle length (aromatic/diatropic
for (4N + 2) cycles, and anti-aromatic/paratropic for (4N)

cycles), and are fixed to agree with MO results on single cycles.
Claims for plausibility of the resulting maps have been made
for each particular CC model, with our pseudo-π and ab initio
maps often taken as the “gold standard” (e.g., in refs 29,31,32).
The comparisons are at the level of visual inspection and
typically made for only a few molecules. In contrast, the
current models studied in this paper are evaluated analytically
on a much larger set of molecules. Figure 1 shows the current−
density maps obtained for the coronene molecule with a
variety of MO and CC methods; all are in qualitative
agreement, to the extent that they all predict concentric
diatropic and paratropic rim and hub currents for this
molecule, although with different estimates of relative
strengths.
Hence, we arrive at the first aim of the present work: to

devise a quantitative method of comparison between calculated
current maps. This gives firmer ground for deciding whether
one or another CC method is “best”, absolutely or for some
class of applications. It turns out that the automated
comparison procedure detects a hitherto unnoticed problem
with grid methods, leading to a reassessment of the pseudo-π
method for specific classes of benzenoids. Finally, the analysis
also suggests an adaptation of the CC method to give
improved correlation with HL for both Kekulean and non-
Kekulean benzenoids. Non-Kekulean benzenoids were pre-
viously not amenable to pure conjugated-circuit strategies,
because in graphs lacking perfect matchings, such models
necessarily give no current. The new model gives excellent
agreement with (and a combinatorial interpretation of) HL
current maps for all types of benzenoid. In turn, the new maps
match well with those computed for closed-shell ions of non-
Kekulean benzenoids with the pseudo-π method and
rationalized with a hybrid model combining modified CC
schemes and MO delocalization indices.33,34

The structure of the paper is as follows. Section 2
(Methods) presents strategies for reduction of grid currents
to currents on a graph, and discusses appropriate data sets for
analysis of the pseudo-π method. Section 4 (Results) presents
results on conservation of current for the graphs derived from
pseudo-π maps. Benzenoids with fixed bonds are identified as
the class that gives rise to poor conservation of current and
systematic errors in specific pseudo-π maps. Graph-reduced
pseudo-π and HL maps are compared and the essential

Figure 1. Current−density maps for the π system of the coronene molecule, as obtained with different published methods. (a) Ab initio ipsocentric
calculation.20 (b) Pseudo-π model.23 (c) Graph-based methods. When scaled so that the largest bond current (on the perimeter) is 1, all graph-
based methods give the same picture, differentiated only by the value j, the size of the inner paratropic current. For the respective models discussed
in this paper, j is 0.289 (Hückel-London, HL); 0.524 (Randic ́ CC model29); 0.333 (CC model due to Ciesielski et al.31); 0.286 (CC model due to
Mandado32); 0.251 (CC model due to Gomes and Mallion27). For the models to be discussed later in the text, j is 0.182 (R*), 0.122 (CKCDA*),
0.690 (M*), 0.713 (GM*), and 0.305 (Model W).
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similarity of maps from these two MO methods is
demonstrated. An extensive comparison is then made of
maps from HL theory with all published CC models and
variants. Section 4 (Discussion) then sets out a new
combinatorial model that gives excellent agreement with HL
maps for both Kekulean and non-Kekulean benzenoids (about
which pure CC methods have nothing to say). Finally, some
conclusions and brief comments on future directions are
presented.
All graph-based comparisons in this paper are made for

normalized currents, where the maximum edge current for
each molecule is set to 1. CC methods are not expected to
reproduce accurate magnitudes of bond currents.

2. METHODS

2.1. Strategies for Conversion of Grid to Graph
Currents. Ab initio calculations are usually performed at the
equilibrium molecular geometry, which typically has a
distribution of bond lengths and angles. However, pseudo-π
calculations for benzenoids normally assume a molecular graph
drawn on a regular hexagonal lattice (with fixed bond length
1.4 Å). We use these pseudo-π maps as proxies for full ab initio
computation in what follows, since we need to survey
hundreds of systems. Hückel-London calculations are typically
carried out with this idealized geometry, and CC methods that
use weightings based on area10,11,27,31,32 also normally assume
regular hexagonal rings. All maps in the rest of this paper are
calculated under these constraints.
The first hurdle is to devise tactics for comparing maps from

grid- and graph-based methods. In the grid methods, the
primary output is a vector for each grid point (this is j, the first
derivative of induced current density with respect to the

applied field, here called “the current” for short). Our grid
maps18,22 show arrows representing the projection of j in the
plotting plane, distributed on a sparse grid for clarity, and
superimposed on a denser contour plot of the magnitude |j|,
(see, for example, Figure 1a). The task is to condense this
information onto the molecular graph, for which the nongrid
(HL and CC) methods deliver a single arc per edge
representing magnitude and sense of current along the bond.
Some basic preliminary considerations are connected with

the physical nature of current. It is clearly desirable that a map
should show continuity of current. The HL and CC maps obey
conservation of current automatically, as current flow at each
node of the graph follows Kirchhoff’s First Law in that the
sums of scalar in- and out-currents are equal. An MO method
uses explicit basis functions, however, and maintenance of
current conservation is dependent on operator sum rules that
are fulfilled only approximately with finite basis sets.35 In the
pseudo-π method, this can become a problem. The basis is
minimal, consisting of a single STO-3G H 1s function per site,
and there are departures from continuity, although they are not
always evident in maps with a sparse grid of arrows. When
unusually large, these deviations may indicate problems with
the representation of the ground-state wave function. However,
the errors for this simplified version of the ipsocentric method
are still typically much smaller than the glaring discrepancies
that occur in conventional single-origin calculations with
medium-sized basis sets.21

A second requirement is that the map should show the full
symmetry of the molecule in the magnetic field. For a planar
molecule, this implies that the vector field of induced current
should transform as an in-plane rotation in the point group of
the molecular framework. This is automatic for graph-based

Figure 2. Pseudo-π currents in the benzene molecule (bond length fixed to 1.4 Å), defined on a square grid, with density 100 × 100 points on a 16
a0 × 16 a0 physical grid, sampled on a coarser 24 × 24 grid. Values of |j| represent rounded integer percentages with respect to the largest current, as
estimated from the 100 × 100 grid. Positions of carbon nuclei are indicated by blanked-out grid points. Note the poor centering of the molecule on
the grid and the discrepancies in values along bond lines (e.g., row 6, columns 8−16) and around the carbon nuclei, as examples of lack of full
symmetry.
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methods. However, symmetry is easily lost in grid-based
methods, simply because of the mismatch between the
predefined square grid and the hexagonal array of atoms and
bonds. Figure 2 shows magnitudes of pseudo-π currents (as
integers 1 to 99 that express the current relative to the
maximum for the molecule) for benzene plotted on a square
grid with origin at the center of the hexagon. Currents are seen
to be only roughly symmetric. Clearly, for proper comparison
with the graph-theoretical picture, smoothing or a denser grid
is needed. To achieve a clean comparison, we use here a
symmetry-adapted triangulated grid with an odd number of
points per graph edge, which treats every hexagon equally and
maintains symmetry for all benzenoids. Figure 3 confirms that
this benzenoid-adapted grid for benzene (with nine grid points
along each carbon−carbon bond) now displays the full natural
symmetry.
Next, to make a grid-to-graph conversion of the pseudo-π

map on the hexagonal grid, we investigated three options for
calculating bond currents along graph edges:

(1) Midpoint: To choose the sense, from vertex u to vertex v,
or vice versa, and calculate the magnitude of the
equivalent bond current, take the j vector for the grid
point nearest the midpoint of the line between the
nuclei.

(2) Catchment: Take all grid points and make a crude sum of
|j| by assigning every grid-point value to the nearest edge
center.

(3) Cross-stream: Take a perpendicular bisector of each edge
and sum |j| over 2k + 1 points symmetrically distributed
with respect to the bond midpoint, attributing the total
to the edge midpoint. This gives a local sampling of
current in the region of the bond. The value of 2k + 1 =
7 was chosen here.

Versions of each option using vector summation of j with
resolution onto the bond direction were also investigated,
giving marginal improvements in the statistics. All options were
first evaluated according to how well the currents that they
produced obeyed conservation of flow. The next step was to

compare the grid currents to HL currents. As comparisons are
made for scaled maps, currents were normalized in the
converted pseudo-π map so that the largest bond current in
each graph was a strength one.

2.2. Note on the Computational Approach. In the
course of this research, many different current models were
considered and, except for those described below, rejected.
The initial phase started with Kekulean benzenoids having up
to seven hexagons.36,37 To facilitate examination of subsets, the
comparison program used an auxiliary file that listed for each
molecule the graph number and a code 0 (exclude) or 1
(include). A program was created to make auxiliary files
according to various rules. As discussed below, the first
restriction was exclusion of cases with proximity problems.
Later, classes of benzenoids with fixed bonds arose as
problematic cases. These are detected by the program that
makes the auxiliary files by computing the number of
matchings per edge. Use of an auxiliary file was much easier
than attempting to generate each class of interest (especially as
in the initial stages it was not known which molecules would
turn out to be problematic). For the second phase
(consideration of non-Kekulean benzenoids), the f usgen
module of the CaGe program37 was used to construct all the
fusenes, and a second program was used to screen out the cases
with at least one perfect matching. We could alternatively have
continued using a larger set (all fusenes) with an auxiliary file,
but this way saved space.
The first step in all computing the currents in the various

graph-based models is to generate all the cycles of the
benzenoid. We did this by starting with a list of the internal
faces. It is well-known that the set of faces is a cycle basis for
the set of all cycles of a planar graph (meaning that every other
cycle is a linear combination of these: when two cycles are
added, if an edge appears an even number of times it does not
appear in the sum). Then for h going from one to the number
of faces, each of the faces is added to each of the cycles
containing h hexagons. Cases having one new cycle that has
not already been generated are added to the list of cycles.

Figure 3. Pseudo-π currents in the benzene molecule, defined on a triangulated grid, with nine grid points uniformly spaced along the physical
carbon−carbon bond length of 1.4 Å. Conventions for |j| and nuclear positions as in Figure 2. Note the improved centring of the molecule and the
symmetry of the sequences of values along the six bonds, and six radial C−H directions, for example.
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Currents are computed using this list of the cycles with the
appropriate formula for each model (see below).
2.3. Generation and Choice of Data Sets. The initial

test set of benzenoids (simply connected subgraphs of the
hexagonal lattice composed of edge-fused hexagons) consisted
of the 266 Kekulean benzenoids composed of seven or fewer
fused hexagons (Test Set 1). CC models make no prediction at
all for non-Kekulean systems, and all our pseudo-π calculations
are performed for closed shells, so only Kekulean benzenoids
were included in the initial comparison. However, even this
natural set of benzenoids presents a subtlety. The pseudo-π
method has a particular limitation.38 In this method, there is
no concept of a bond. There is just a set of centers bearing
basis functions and giving a σ simulation of the carbon π
system;23 bonds are present only implicitly through intervertex
distances. Thus, the method can never distinguish between
bonded and nonbonded pairs of carbon atoms with the same
separation, as may occur in the regular hexagonal geometry.
(In real molecular systems, nonbonded distances are larger,
and interactions are damped by steric and electronic effects of
intervening hydrogen atoms, which may also lead to out-of-
plane distortion.) In fjord regions on the perimeter of a
benzenoid inscribed on the regular hexagonal lattice, extra
“fake edges” will lead to a pseudo-π map appropriate to a
different benzenoid (see Figure 4). Benzenoids that give rise to
this problem were removed from the set, to leave 232 that are
more fairly representative of the correct use of the pseudo-π
approach (Test Set 2).

3. RESULTS

3.1. Conservation of Flow in Pseudo-π Maps. Table 1
summarizes the results on conservation of flow in pseudo-π
maps for Test Set 2. In these comparisons, the continuity error
at a vertex v, Δv, was defined as the absolute value of the
difference between total current in and total current out. Three
measures of error were then applied. The L1 norm (mean
absolute error) takes the total error as the average sum of Δv

taken over all vertices. The more usual L2 norm (root-mean-
square error) takes the total error as the square root of the sum
of squares of Δv averaged over all vertices. The L∞ norm
(maximum absolute error) takes the error as the maximum
value of Δv over all vertices.
The main conclusion from the error measures is that the

resolved cross-stream method gives the best continuity overall.
All further results will be reported for graph-reduced pseudo-π
maps obtained by this method. The comparisons also give
more information about the source of continuity errors. A
useful parameter for highlighting cases of poor continuity is Dv,
the percentage current drop across vertex v, defined by
expressing Δv as a percentage of the larger of incoming and

outgoing currents. The value D for the graph is the largest
value of Dv. In the tables, D̅ is the average of D over all graphs
in the data set and Dmax is the largest value for any graph in the
set. The large differences between average and maximum
values of D (final columns of Table 1) indicate that the errors
are not evenly distributed across the whole set.
Much of the remaining continuity error in maps obtained

with the cross-stream method is attributable to violations of
current conservation in the pseudo-π model for specific types
of benzenoid. This is made clear by the partitioning of the data
set shown in Table 2. To anticipate the discussion below, we

note that the very high values of current drop occur for the two
classes that we call zethrenoids and perylenoids. Zethrenoids are
those benzenoids that have a f ixed double bond (an edge
present in all perfect matchings); perylenoids are those
benzenoids that have no fixed double bond but at least one
fixed single bond (an edge present in no perfect matchings).
The smallest examples of each of these types are shown in
Figure 5. All the examples with Dmax ≥ 15% in Test Set 2
belong to one of these types. If we exclude all cases with Dmax

≥ 30%, we remove exactly the 7 zethrenoids; if we exclude all
cases with Dmax ≥ 15%, we also remove all but 2 of the 17
perylenoids in the Test Set (and no other graphs).

Figure 4. Two non-isomorphic benzenoid frameworks that give
necessarily identical pseudo-π maps for idealized geometries because
they have the same set of 1.4 Å pairwise distances on the ideal
hexagonal-grid.

Table 1. Checking Conservation of Current in Graph
Reductions of Pseudo-π Current Maps for the Benzenoids
with at Most Seven Hexagonal Ringsa

sampling method L1(Δv) L2(Δv) L∞(Δv) D̅ Dmax

Cross-stream (res) 0.0284 0.0399 0.1005 12.3 63.2

Cross-stream 0.0299 0.0413 0.1011 12.4 60.8

Midpoint (res) 0.0387 0.0515 0.1227 14.9 69.5

Midpoint 0.0389 0.0517 0.1228 14.9 66.6

Closest (res) 0.0525 0.0674 0.1325 15.1 63.4

Closest 0.0528 0.0667 0.1363 15.20 51.8
aThe results are calculated using graph reductions from the three
sampling methods described in the text, each in a vector (res) and
scalar version. The dataset is Test Set 2, consisting of the 232
Kekulean benzenoids in the range that do not have the short
nonbonded contacts that would give rise to proximity errors in
pseudo-π maps. Δv is the difference between incoming and outgoing
scaled currents at vertex v. The error norms are described in the text.
D is the percentage current drop at the least well conserved vertex of
the graph. D̅ is the average of D over the dataset and Dmax is the
largest value for any graph in the set.

Table 2. Checking Conservation of Current in Graph
Reductions of Pseudo-π Current Maps for the Benzenoids
with at Most Seven Hexagonal Ringsa

data set size L1(Δv) L2(Δv) L∞(Δv) D̅ Dmax

Kekulean (Test
Set 2)

232 0.0284 0.0399 0.1005 12.3 63.2

Zethrenoids (Test
Set 2z)

7 0.0436 0.0713 0.1814 52.7 63.2

Perylenoids (Test
Set 2p)

17 0.0352 0.0575 0.1581 17.5 21.2

No fixed bonds
(Test Set 2r)

208 0.0273 0.0375 0.0931 10.5 13.9

aThe continuity errors noted in Table 1 are recomputed for a
partition of the Kekulean benzenoids of Test Set 2 into zethrenoids
(z), perylenoids (p), and remaining (r) benzenoids (with no fixed
bonds). Notation as in Table 1.
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3.2. Comparison of Normalized Pseudo-π and HL
Maps. Table 3 reports a full comparison using Test Set 2 of
graph-reduced pseudo-π maps from the cross-stream sampling
method with the HL maps. Note that when comparing maps
that consist of two sets of scaled bond currents {ja} and {jb},
the error on edge uv is calculated as Δuv = |juv

a − juv
b
|, where each

current is taken in the sense of the arc from u to v. Error norms
L1, L2, and L∞ are then applied to this edge function. Similar
comparisons were made for all the sampling methods, and it
turns out that the resolved cross-stream sampling method gives
the closest match of pseudo-π to Hückel-London maps,
possibly because it best reflects the conservation property
implicit in the HL currents.

The main conclusion is that there is evidence of a reasonable
degree of correlation between maps from pseudo-π and HL
models (rms error <7%), as might have been hoped for
methods both derived from minimal-basis molecular-orbital
theory. However, one striking observation from the initial
survey reported in both Tables 2 and 3 is that the errors are
not distributed uniformly. Difficulties with nonconservation of
current in the reduced pseudo-π maps and poor fit with HL
maps are both concentrated in certain subsets of the tested
benzenoids: the zethrenoids and perylenoids defined above.
This observation provoked further inspection of the original
unreduced maps, where an anomalously severe lack of
conservation was immediately apparent in these “difficult”
cases, as discussed below.
3.3. Benzenoids with Fixed Bonds. The common factor

for the aberrant benzenoids is that all contain some fixed
bond(s). In chemical terms, some bonds (edges of the graph)
have either unit or zero Pauling bond order (the fraction of all
perfect matchings of the graph that contain that edge), and so
cannot be part of any conjugated circuit. A fixed double bond
implies fixed single bonds, but not vice versa. Our definition of
the zethrenoids and perylenoids captures all benzenoids that
have fixed bonds: those benzenoids that have one or more
edges with Pauling bond order 1 are the zethrenoids, and those

that have one or more edges with Pauling bond order 0 that
are not zethrenoids are the perylenoids.
As an example of the nature of the problem with

zethrenoids, Figure 6 shows pseudo-π maps for zethrenoids
in Test Set 2. These maps all show what we call “eyebrow”
features, which are plainly unphysical. Current is launched
onto the central bridge from each naphthalene moiety, but
peters out almost immediately. The zethrene molecule belongs
to a class of alternant hydrocarbons in which Kekulean
fragments (here naphthalenoid) are connected to the rest of
the graph via two vertices at even distance in the isolated
fragment (and hence in the same partite set) through formal
single bonds to the rest of the graph. The zethrene molecule
and its analogues have inspired a rich chemistry.39 The
bridging region of zethrene necessarily contains only fixed
bonds. It is clear that the pseudo-π method does not cope with
the description of currents in this intermediate region.
The pseudo-π maps for zethrene were not noticeably

improved by repeating the calculation in tests at the ab initio
CHF or DFT levels. Problems with zethrene and similar
molecules have been noted before, and are often attributed to
incipient radical character,40,41 implying the need for a
multireference treatment. Similar difficulties have been noted
in treatments of ballistic conduction, where currents in some
conjugated molecules can be badly misrepresented in single-
reference treatments.42 Whatever the source of the problem,
there is a clear subset of bad benzenoid graphs that give major
continuity discrepancies for the pseudo-π method in bridge
regions of fixed bonds.
Three further data sets were constructed to explore this

problem. Test Set 2z consists of the seven zethrenoids in Test
Set 2 (one further zethrenoid from Test Set 1 is excluded for
proximity reasons); Test Set 2p consists of the 17 perylenoids
in Test Set 2 (two further perylenoids from Test Set 1 are
excluded for proximity reasons); Test Set 2r, with 208
members, consists of the remaining benzenoids in Test Set
2, in other words, the set of Kekulean benzenoids on up to
seven hexagons that suffer neither from the proximity
limitation nor from fixed bonds. Table 3 shows the effect on
the quality of the match between pseudo-π and HL maps. The
overall conclusion is that HL currents and pseudo-π currents
show a clearly improved match when zethrenoids in particular,
and less significantly, perylenoids are excluded from the
comparison.
Looking ahead, we note that the different methods in our

comparative study treat the zethrene case in different ways. In
the Hückel-London (HL) method, bonds have intermediate
character and carry current except where precluded by
symmetry. For zethrenoids, HL gives a map with flow around
the perimeter of the bridging region (Figure 6b). This is at
least physically plausible, though it is not obvious that the
computed currents are “correct”, given the absence of a clean
ab initio reference. In contrast, any pure CC method must
allocate zero flow through all fixed bonds, and hence all CC
methods give maps for zethrene itself that consist of
disconnected naphthalenoid islands, as noted in the earliest
paper in this area.27

In CC methods, perylenoids also have islands of current
separated by one or more empty bridge regions. HL and
pseudo-π maps for small perylenoids start off with this
qualitative general pattern, but with a minor component of
current allowed on the bridge. In the larger systems, the bridge
current increases and eventually becomes dominant. For

Figure 5. Smallest members of the zethrenoid and perylenoid families
of benzenoids: (a) zethrene and (b) perylene. A zethrenoid has fixed
double and single bonds in the bridge region; a perylenoid has only
fixed single bonds in the bridge. Both are formally derived by linking
Kekulean fragments via edges to vertices of single partite sets. Fixed
single bonds are indicated here as dashed lines, fixed double bonds as
bold.

Table 3. Comparison of Graph-Reduced Pseudo-π and
Hückel-London Current Maps for Benzenoids with at Most
Seven Hexagonal Ringsa

data set size L1(Δv) L2(Δv) L∞(Δv)

Kekulean (Test Set 2) 232 0.0542 0.0648 0.1214

Zethrenoids (Test Set 2z) 7 0.1164 0.1357 0.2764

Perylenoids (Test Set 2p) 17 0.0789 0.0907 0.1493

No fixed bonds (Test Set 2r) 208 0.0501 0.0603 0.1139
aDatasets and notation as in Table 2.
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example, pseudo-π and HL maps for the symmetrically
extended perylenes with up to four hexagons in the central
belt are illustrated in Figure 7.The two methods agree, at least
qualitatitively, in their progressive departure from the very
simple CC island pattern: in both sets of maps, as the systems
become larger, significant current begins to circulate in the
central region. The increasing complexity of ipsocentric
current maps for perylenes has been noted before, and led
the authors of one paper41 to make the sweeping
recommendation that CC models should be abandoned
altogether. We would argue that such models are often useful
zero-order pictures, and that efforts should instead concentrate

on improving them and extending their range of applicability

(see Discussion of an improved model below). For zethrenes

and perylenes, we should, however, be aware of the significant

shortcomings of single-reference treatments, which can have

drastic effects on predictions of molecular conduction, for

example.42 Other authors have suggested that some wholesale

“renormalization” of the MO results may be needed.43 Here,

we can simply note that there is a well-defined class of

benzenoids (those with fixed bonds) for which the results of

pseudo-π and HL methods are likely to deviate from those of

pure CC models.

Figure 6. Zethrenoids, a difficult case for pseudo-π and CC calculations of current. (a) Pseudo-π maps of the first two zethrenoids in Test Set 2z.
The arrows are drawn on a dense grid, to emphasize the existence of regions with lack of continuity. Every zethrenoid in the set has a pseudo-π map
that show unphysical “eyebrow” discontinuities on the central bridge between the two Kekulean benzenoid fragments. (b) Hückel-London maps.
This model is given by construction maps without discontinuities in current. (c) Maps from Model W proposed in this paper.
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3.4. Comparison of MO- and CC-Based Current Maps.

The comparisons made so far show consistency among MO-

based methods for a broad class of benzenoids, with HL

mimicking pseudo-π, and pseudo-π itself acting as a mimic of

ab initio MO calculations. The next step is to compare CC-

based current maps among themselves and against the MO

models, as represented by HL. As all calculations are now

purely graph-theoretical, we can use larger data sets. Test set 3

Figure 7. Extended perylenes, a case where methods diverge in their treatment of the bridge region. Maps are shown for the symmetric perylenes
based on linear polyacene fragments, with 1 to 4 hexagons in the bridge. (a) Pseudo-π maps. (b) HL maps.
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includes all Kekulean benzenoids with at most 10 hexagons
(including the cases with the proximity limitation). This set is
partitioned as before into three subsets: 3z (zethrenoids), 3p
(perylenoids), and 3r (the rest).
The choice of HL for comparison with CC methods is

motivated by several considerations. These include our
acceptance of HL as a reliable proxy for all the MO-based
methods, the shared graph-theoretical nature of HL and CC
models, the implicit neglect of full electron interaction
common to HL and CC, and the fact that HL currents
themselves can be written exactly as sums of cycle
contributions. On this last point, Aihara44−50 has championed
the cycle partition of Hückel energies and magnetic properties.
He developed a formulation of Hückel theory in which current
is calculated as a sum over cycles (not just the conjugated
circuits). This description of HL theory informed the
construction of a CC model by Ciesielski, Krygowski,
Cyranśki, Dobrowolski, and Aihara (CKCDA).31 In some
sense, we can regard all the CC models as approximations to
the Aihara formulation of HL theory in which model weights
(including zero for the cycles that are not conjugated circuits)
have replaced the exact HL cycle weights. A paper in
preparation will give a detailed description of a new
implementation of Aihara’s method that clarifies this
comparison with CC models and uses it for further analysis.
Meanwhile, Aihara’s approach44−50 is used here as motivation
for construction of the improved current model that we
propose in the following section.
As mentioned earlier, there are at least four CC models in

the chemical literature. In each of them, currents are assigned
to the cycles that are conjugated circuits, with a direction that
depends on divisibility of the cycle size (diatropic for (4N +
2)-CC, paratropic for (4N)-CC). The strength of the CC
current is computed with a different weighting scheme in each
model. Bond currents are calculated by superposition of CC
contributions. As shown elsewhere,30 the different weighting
schemes can be represented by a unified formula

w a b A C m G C F( , ) 2 ( ) ( )C
a b

C= ∓ | | − (1)

where the ± sign allows for the diatropic/paratropic
orientation, and the factor of 2 comes from the two perfect
matchings of the cycle. The parameter a (equal to −1, 0, 1)
defines the weighting by cycle area (defined with reference to a
standard hexagon) in the particular model. The parameter b
(equal to 1 or 2) shows how the weights in the model depend
on m(G − C), the number of perfect matchings of the
subgraph induced by deletion of the cycle from the molecular
graph G. The factor FC is usually just unity, but allows for the
extra empirical multiplicative factors introduced in two of the
models (see below). The weights may also be normalized in
different ways, but as we use scaled maps, this is not relevant.
The literature models are due to Randic ́29 (Model R, a = 0, b

= 2), the group of Cieselski, Krygowski, Cyran ́ski,
Dobrowolski, and Aihara31 (Model CKCDA, a = 1, b = 2),
Mandado32 (Model M, a = −1, b = 1), and Gomes and
Mallion27 (Model GM, originally30 used with a = 1, b = 1,
though more recently11 with a = 1, b = 2). Of the two models
that include an empirical weighting, Mandado’s model M
includes a factor of (0.78)−2 ≈ 1.644 that is applied to boost
the cycle current for those CC formed of linear chains of 3 or
more hexagons; for simplicity, we neglect this in our
implementation. The other is the GM model, which has size-
dependent multipliers derived from earlier semiempirical

calculations (see Table 1 in ref 27, or the list in ref 30);
these are included in our implementation.
The different values of a reflect different physical intuitions

of the modelers. The b parameter arises because, in the
literature, conjugated circuits were originally constructed and
counted by considering the superpositions of ordered pairs of
Kekule ́ structures of the molecular graph. The union of two
perfect matchings is a set of disjoint cycles of size 4 or more
(each of which is a CC) and a set of matching edges (which
can be regarded formally as trivial 2-cycles). Only the CC
contribute to ring current in conjugated-circuit models. In
some models,29,31 contributions to current of ∓2|A|a are
included for every nontrivial cycle for each ordered pair of
perfect matchings; this corresponds30 to weighting each CC by
m(G − C)2. In other models,27,32 a contribution to the current
arises only for ordered pairs of perfect matchings with exactly
one CC; this corresponds30 to weighting each CC by m(G −

C). Calculation by eq 1 is more efficient than considering each
ordered pair of perfect matchings, especially for highly
branched benzenoids with very large numbers of Kekule ́
structures.51,52

For Kekulean benzenoids, only diatropic ring currents
appear in CC models, as all conjugated circuits are of type
4N+2. Of course, for non-Kekulean benzenoids all currents are
zero for all CC models, because non-Kekulean benzenoids do
not have conjugated circuits in the strict sense.
We note that for every published CC current model there is

a hypothetical twin with the same value of a but the opposite
value of b (recall that b = 1, or 2). We will call these twin
models R*, CKCDA*, M*, and GM*, respectively.
A word about electron counting in HL and CC calculations

is needed here. HL theory includes electrons explicitly and the
predicted currents can be written as sums of contributions
from occupied orbitals. As nonsingular bipartite graphs,
Kekulean benzenoids in Hückel theory have no nonbonding
orbitals, and the neutral molecules have closed-shell π

electronic configurations in which all n

2
bonding π orbitals

are filled and all n
2
antibonding π orbitals are empty, as implied

by the Pairing Theorem.53 Each Kekule ́ structure implies the
same π electron count, based on localized two-electron π

bonds on edges in the perfect matching. Therefore, in
comparing the maps from nπ-electron HL calculations on
benzenoids with those from CC models we are indeed
comparing like with like.
Table 4 reports a statistical comparison of HL and CC maps

for Kekulean benzenoids using the four published CC models
and the variants derived by filling out the array of possible a
and b values. Since the HL and CC methods do not have
proximity limitations and do not suffer from discontinuity
errors, we take the full set of Kekulean benzenoids (Test Set 3)
and its partition into zethrenoids, perylenoids, and the rest.
The various error norms defined earlier are used to compare
models according to their edge error functions, Δuv. We also
introduce a simple criterion for how far the description of a
single molecule differs qualitatively between models: a
misdirected graph for a given model is one where, on at least
one edge, after scaling so that the maximum current in both
maps is 1, the model and HL currents are each non-negligible
(exceed a nominal threshold of 10−7), run in opposite
directions, and give rise to a value of Δuv ≥ 0.1.
The table shows that all the published CC models have

some claim as rough approximations to the HL maps for
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Kekulean benzenoids. The rms errors in bond currents, for
example, are all below 16% for the full Test Set 3 and below
12% for the best CC model. Notably, hypothetical variant
schemes in which the b parameter is swapped with respect to a
published model all perform significantly worse. Model GM
with a = 1, b = 1 is best for general Kekulean benzenoids and
the subset of Kekulean benzenoids that have no fixed bonds.
Model M performs slightly better than GM for the zethrenoids
and perylenoids. We note that the overall performances of GM
and M models are almost equally good, despite their opposite
assumptions about the area dependence of cycle contributions.
On the other hand, if qualitative mapping is all that is

required, there is a strong case for retaining the simplicity of

the original Randic ́ model, R, where CC area is ignored,
especially as for this model, the scaled current on each
perimeter bond in a Kekulean benzenoid can be calculated
exactly from the function p(1 − p) of its Pauling bond order
p.51 This simple function defines the entire Randic ́ current map
in the case of a catafused benzenoid. Interestingly, though,
Randic ́ himself has recently advocated weighting by area,
effectively converting Model R to Model CKCDA up to
scaling.43

Although extant CC models all achieve some success in
shadowing HL theory, it is natural to wonder if their accuracy
could be improved. The range of systems to which they apply
is also limited. By definition, CC models make dramatically
oversimplified predictions about currents in molecular regions
where some bonds are fixed, and no prediction at all about the
currents in non-Kekulean systems. As we will show in the next
section, both problems can be addressed with a relatively
simple modification of the CC approach.

4. DISCUSSION

4.1. Improved Model for Currents in Kekulean and
non-Kekulean Benzenoids. 4.1.1. Construction of Model
W. The aim is to augment the CC model in a way that
preserves its combinatorial spirit but improves the fit to HL
currents for Kekulean benzenoids, and removes the blanket
prohibition on current in fixed bonds and non-Kekulean
structures. A hint comes from Aihara’s partition of HL current
into cycle contributions. The Aihara formulation replaces the
standard HL sum over orbital contributions with a sum over
orbitals and all cycles present in the graph. The orbital
contribution to the current flowing in cycle C arising from a
shell of mk degenerate orbitals with common eigenvalue λk and
nk electrons per orbital is

48
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for mk > 1. Here, PG‑C(x) is the characteristic polynomial of G
− C and Uk(x) is the reduced polynomial P x x( )/( )G k

mkλ− ,
with PG(x) the characteristic polynomial of G, and A(C) is the
area of the cycle (i.e., in a benzenoid, the number of hexagons
that it encloses). For a single nondegenerate orbital, the orbital
contribution is
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The characteristic polynomial for a Kekulean benzenoid G is
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where coefficients of all odd powers of x are 0 (as a Kekulean
benzenoid is bipartite and has no zero eigenvalues). Deletion
of an even cycle C of length r gives the characteristic
polynomial for the graph G−C
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A link can be made between characteristic polynomials of
benzenoids and CC models via the Leibniz formula for the
determinant.54 The characteristic polynomial, PG(x), of a
bipartite graph G (the molecular graph of an alternant
conjugated π system) is

Table 4. Comparison of CC and HL Current Maps for
Benzenoids with ≤10 Hexagonal Ringsa

Kekulean Benzenoids (Test Set 3, size 18 360)

Model a b L1(Δuv) L2(Δuv) L∞(Δuv) Misdirected

GM 1 1 0.0880 0.1106 0.2482 2359

M −1 1 0.0996 0.1240 0.2496 6598

CKCDA 1 2 0.1201 0.1445 0.2650 3268

R 0 2 0.1258 0.1579 0.3608 2247

R* 0 1 0.1865 0.2251 0.4218 16640

M* −1 2 0.2279 0.2690 0.5085 4472

CKCDA* 1 1 0.2425 0.2911 0.5391 17915

GM* 1 2 0.2510 0.2965 0.5468 4751

Zethrenoids (Test Set 3z, size 2184)

Model a b L1(Δuv) L2(Δuv) L∞(Δuv) Misdirected

GM 1 1 0.2336 0.3078 0.6433 1066

M −1 1 0.2239 0.2991 0.6359 1127

CKCDA 1 2 0.2475 0.3087 0.6368 1146

R 0 2 0.2438 0.3139 0.6514 1054

R* 0 1 0.2612 0.3197 0.6461 1563

M* −1 2 0.2780 0.3400 0.6336 983

CKCDA* 1 1 0.3021 0.3585 0.6686 1956

GM* 1 2 0.2895 0.3515 0.6457 952

Perylenoids (Test Set 3p, size 2388)

Model a b L1(Δuv) L2(Δuv) L∞(Δuv) Misdirected

GM 1 1 0.1057 0.1374 0.3490 404

M −1 1 0.0985 0.1258 0.3122 539

CKCDA 1 2 0.1344 0.1564 0.3027 611

R 0 2 0.1307 0.1626 0.3699 347

R* 0 1 0.1727 0.2048 0.3685 1872

M* −1 2 0.2079 0.2489 0.4794 441

CKCDA* 1 1 0.2410 0.2897 0.5119 2272

GM* 1 2 0.2288 0.2742 0.5170 452

Kekulean Benzenoids without Fixed Bonds (Test Set 3r, size 13 788)

Model a b L1(Δuv) L2(Δuv) L∞(Δuv) Misdirected

GM 1 1 0.0618 0.0747 0.1682 889

M −1 1 0.0801 0.0960 0.1776 4932

CKCDA 1 2 0.0974 0.1164 0.1996 1511

R 0 2 0.1062 0.1324 0.3132 846

R* 0 1 0.1771 0.2136 0.3955 13205

M* −1 2 0.2234 0.2613 0.4937 3048

CKCDA* 1 1 0.2333 0.2807 0.5233 13687

GM* 1 2 0.2487 0.2917 0.5363 3347
aIndices a and b denote powers of cycle area and perfect matchings
used in the weighting scheme in the respective CC model.
Hypothetical variants * are created by retaining a but swapping b.
Error norms and the criterion for misdirected graphs are defined in
the text.
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Hence, gn = +1 and g0 = (−1)n det A.
The Leibniz formula for a determinant implies that the

coefficient gi in the characteristic polynomial of a bipartite
graph (a graph that has no odd cycles) is
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where the first summation runs over all subsets of size i of the
vertices of G, and for each such subset the second summation
runs over ordered pairs of perfect matchings of the graph G−S
(including the s of each perfect matching with itself). The sign
to be attributed to P is

P Csign( ) sign( )
C

∏=
(8)

where the product runs over all cycles of the graph induced by
M1 ∪ M2. For this computation, all even cycles contribute a
factor −1 to the product. A similar formula can be derived for
graphs that are not bipartite, but then the sum no longer ranges
over ordered pairs of perfect matchings, and there can also be
odd cycles that contribute +1 to the sign. If an edge is in both
perfect matchings then it is considered to be a 2-cycle, and
hence makes a contribution of −1 to the sign.
Equation 7 gives a straightforward derivation of a useful

standard result for the coefficient g0 in the characteristic
polynomial of a benzenoid. The result is that g0 =
(−1)n/2m(G)2, where m(G) is the number of Kekule ́ structures
of benzenoid G. This follows from the special case of eq 7 with
i = 0, which gives

g P( )
P M M
M

0
( , ),

perfect
matching of G

i

1 2

∑=
=

=
(9)

The value of sign(P) is (−1)c, where c is the number of
cycles (including 2-cycles) in the graph induced by the pair of
perfect matchings. Equivalently, sign(P) = (−1)s, where s is the
number of connected components of the graph induced by
M1∪M2.The graph induced by M1∪M2 consists of 2-cycles
from common edges and larger even cycles from CC. As all
CC of a benzenoid are of size 2 mod 4, the number of even
cycles (including 2-cycles) in G is odd for n ≡ 2 mod 4 and
even for n ≡ 0 mod 4, yielding the desired sign(P) = (−1)n/2

for all P.
We can also find c0, the tail coefficient of the characteristic

polynomial of G − C where G is a Kekulean benzenoid and C
is a CC of G. The derivation in this case is as follows. Let H =
G − C, where C is a CC of Kekulean benzenoid G. If the
number of vertices of G is n ≡ r mod 4, then the number of
vertices of H is (r + 2) mod 4. The constant term in the
characteristic polynomial PH(x) is then

c m G C( 1) ( )r
0

( 2)/2 2= − −+
(10)

Note that if C is a cycle in G that is not a conjugated circuit, c0
in PH(x) is 0. This follows from the fact that a cycle C is a CC
if and only if G − C has at least one perfect matching.
As an aside, a straightforward general observation can be

made about the relationship between perfect matchings of G −

C and G for any bipartite graph G and any even cycle C. Let C
be an (even) cycle of G. Any perfect matching of H = G − C
can be extended to a perfect matching of G by adding in
alternating edges from C.
The relevance of the above expressions for g0 and c0 to CC

current models is that for a Kekulean benzenoid they give

c G C g m G C m G( )/ ( ) / ( )0 0
2 2− = − − (11)

The simplest parameter-free CC model with the same explicit
dependence on cycle area as the Aihara HL formulation is
Model CKCDA. Equation 11 allows the weights in this model
to be expressed as products of cycle area and the tail coefficient
of PG−C(x).
The proposal for an improved current model is to use this as

a starting point and to take into account further coefficients
from the characteristic polynomials. This can be done in a
general way that applies to both Kekulean and non-Kekulean
benzenoids.
The adjacency matrix of a general benzenoid has η zero

eigenvalues, where η is the nullity of the graph. The general
form of the characteristic polynomial for benzenoid G is then

P x x g x g x g x g( ) ( )
n

n

n

n
G 2

2
2

2= + + ··· + +η η η

η η

−
−

− −
+

(12)

As benzenoids are bipartite, n and η have the same parity (by
the pairing theorem53), so the polynomial in eq 12 contains
only odd powers of x when n and η are both odd, and only
even powers of x when n and η are both even. Likewise,
deletion of an even cycle C of size r from a general benzenoid
leads to a polynomial with coefficients ci = 0 either for all i ≡ 0
mod 2 or all i ≡ 1 mod 2.
With all this taken into account, the new current model

(Model W) has cycle contributions based on the tail
coefficients of eq 12 and the corresponding coefficients of
each PG−C(x):

w C A C
c

g

c

g
( , ) 2 ( )

2

2

α α= +
η

η

η

η

+

+
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Ç
ÅÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑÑ (13)

where α is an adjustable parameter. Rough optimization
suggests α = 4 as a good value for benzenoids. The versions
tested had α = 0, 1, 4. When the weight of a cycle is negative, a
current of magnitude |w(α, C)| is assigned to flow
anticlockwise on the cycle; when the weight is positive, the
current is routed in the clockwise (paratropic) direction. For
benzene, formula 13 evaluates to −1/2.
From the deduction in eq 7 from the Leibniz formula, it

follows that the coefficients appearing in the model all have
combinatorial interpretations in terms of pairs of matchings.
For Kekulean benzenoids, g0 and c0 are related to pairs of
perfect matchings in G and G − C, and the second term of the
model involves g2 and c2. The coefficient g2 is

g Psign( )
v v
v v
V G

P M M
M
G v v

2
, ,

,
( )

( , ),
perfect matching ofi

1 2
1 2

1 2

1 2

∑ ∑=
{ }

∈
=

=
− − (14)

where the first summation runs over pairs of vertices in G and
the second over ordered pairs of perfect matchings of the graph
induced by deletion of these vertices. The graph G − v1 − v2 is
in general no longer a benzenoid, and pairs of matchings may
have even cycles of types 4N and 4N + 2, leading to differences
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in sign(P). Figure 8 shows an example of a Kekulean
benzenoid that has some terms contributing +1 to the second

sum and others that contribute −1. Similar considerations
apply to the graphs involved in the expression for the
coefficient c2.
4.1.2. Model W for Kekulean Benzenoids. Table 5 shows

the results for model W (eq 13) with parameters α = 0, 1, 4
compared to the best results from pure CC models. Model W
with α = 0 is equivalent to model CKCDA. The Test Set 3 and
the subsets 3z, 3p, and 3r are as used in Table 4. For Kekulean
benzenoids, the addition of the extra term in Model W
improves all error measures. With α = 4, the computed maps of
scaled currents on all 18 360 Kekulean benzenoids on up to 10
hexagons have very few “misdirected” cases, and these
disappear altogether when zethrenoids and perylenoids are
removed from the test set. All published CC models have
much larger percentages of misdirected graphs, and also higher
error norms. Model W reproduces HL currents to within 5%
rms error, showing that inclusion of next-to-largest matchings
is a key element in building a realistic current map for these
benzenoids.
4.1.3. Model W for Non-Kekulean Benzenoids. Here the

test set is Test Set 4, consisting of the 20 112 non-Kekulean
benzenoids on 10 hexagons or fewer. The comparison for non-
Kekulean benzenoids is extremely satisfactory. Taking into
account tail coefficients based on nullity gives current maps
that are superior in two ways: they not only have nonvanishing
current, but they are in good agreement with HL predictions.
In fact, the error measures in the last section of Table 5 show
that the model is performing even better for non-Kekulean
cases.
Again, it is important to be sure that we are comparing like

with like in terms of electron count. The Hund’s Rule π-
electron configuration for a neutral molecule with a bipartite
molecular graph has double occupation of all (n − η)/2
bonding orbitals. The remaining η electrons are distributed
over the η orbitals of the nonbonding shell. The (n − η)/2
antibonding orbitals are empty. The HL calculation is carried

out in the fractional-occupation approximation, where each
orbital in a shell of p orbitals with a total occupation of q
electrons is assigned occupation number q/p. Hence for
neutral benzenoids, the nonbonding shell (if η ≠ 0) has
occupancy of one electron per orbital. However, it is easy to
show that the total contribution to the HL current from a
nonbonding shell with uniform occupation is exactly 0. Hence,
the HL maps that we compute for benzenoid B would apply to
all species from Bη+ to Bη−. A similar logic dictates the use of
nearest cationic species in calculations of pseudo-π maps for
non-Kekulean benzenoids.33 This would be significant for
experimental investigation of ring currents, as conventional
NMR measurements require closed-shell, diamagnetic species.
The ability to treat larger high-spin species such as the
triangulenes,55−57 which have been proposed as prototypes of
spintronic systems, is an important advantage of a post-CC
model.
As a concrete example, Figure 9 sets out the steps in the

analytical calculation of the current according to Model W for
the smallest non-Kekulean benzenoid, the phenalenyl radical.
Here η = 1, and the three cycle types are C6, C10, and C12,
enclosing 1, 2, and 3 hexagons. From eq 13, using the
characteristic polynomials listed in the figure caption, the cycle
weights are
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The net current in a perimeter bond has unscaled value
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6 10 12α α α
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(18)

leading to a scaled map with a diatropic perimeter current of 1,
and no current in the interior region. This is in agreement with
HL maps, and fully consistent with the results of ab initio
calculations for the 12π and 14π ions of this molecule.58

Contributions to the currents in eqs 15 to 17 are also readily
interpreted in terms of perfect matchings of vertex-deleted
subgraphs of G and G − C. The graphs G − C are paths
(Figure 9b), and their analysis is particularly straightforward:
all give negative contributions to c1(G − C) and the first two
give positive contributions to c3(G − C)). Figure 9c−h gives
the slightly more involved analysis needed for the graphs G − v
and G − u − v − w, as simplified by the use of symmetry. One
interesting case is the graph G − v when v is the central black
vertex (left-hand graph in Figure 9c). This graph is a 12-cycle
with two matchings, which give complete cancellation of the
contributions to g1 from their four pairings. In the other graph
of type G − v (the right-hand graph in Figure 9c), the
contributions to g1 from pairs of matchings are all positive.
Likewise, all contributions to g3 arising from pairs of matchings
of graphs G − u − v − w are negative. The two terms of the
model give reinforcing diatropic currents.

Figure 8. Example of mixed contributions to the g2 coefficient in the
characteristic polynomial of a Kekulean benzenoid. Benzenoid G is
Kekulean. Deletion of the marked vertices gives graph G − v1 − v2
with four perfect matchings, three of which, M1−M3 are shown here.
Pairing P =M1,M2 contains two even cycles, but pairing P =M1,M3
(and P = M2, M3) contains seven even cycles (one CC and six 2-
cycles), and hence gives the opposite value of sign(P).
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4.1.4. Features of the Model. Some observations about the
new model are collected here. The first is that, as with all cycle-
based models, Model W automatically obeys conservation of
current, and as with all graph-based models, it does not suffer
from proximity limitations caused by indirect definitions of
bonded contacts. As presently formulated, the model is
intended to apply to bipartite graphs/alternant molecules: for
non-bipartite graphs, odd cycles may contribute current, and
although the coefficients c0, c2, ..., g0, g2, ... can still be
calculated, their interpretation purely in terms of perfect
matchings no longer applies.
The second observation is that the key to the success of

Model W in dealing with current through regions of the
molecule that have fixed bonds is the second term in eq 13. To
get flow of the required type, it is necessary to assign current to
some cycles that are not CC. As Figure 6c shows, for example,
this allows the model to mimic the HL flow of current in the
problematic fixed-bond region of a zethrenoid. For non-
Kekulean systems, the success of the model stems from the
change from considering perfect matchings, as in Kekulean
systems, to maximum matchings. For these systems, the second
term in eq 13 typically acts to improve agreement with the HL
model.
Third, our comparisons between MO and combinatorial

models (including Model W) are at the level of the scaled
maps, and this is done for two reasons: the models often have

no settled normalization scheme,43 and they have no secure
claim to reproduce absolute currents.
A fourth point relates to the mathematical nature of the

model. The characteristic polynomial coefficients needed for
the calculation of current for benzenoids in this model are all
familiar objects, which can be determined by standard methods
in a number of ways. They are related to pairs of matchings in
a way that is expressed precisely by the Leibniz-related formula
7. They can also be calculated directly from eigenvalues of the
adjacency matrix A(G). Given this set of values, the tail
coefficient g0 is found from their product, g2 is a sum of (n − 2)
subsets, and so on. As a third possibility, Jacobi’s equality for
complementary minors59 can be used to find the (n − i) ×

(n − i) subdeterminants of A needed for a Leibniz-type
calculation, by expressing them in terms of smaller i × i
determinants. This simplification avoids the need to calculate
eigenvalues, but requires matrix inversion, as the formula
requires the inverse of A for a Kekulean benzenoid, or
inversion of adjacency matrices for vertex-deleted subgraphs
for non-Kekulean cases.
Finally, although the model is a significant extension of the

CC approach in terms of applicability and accuracy, there is
also continuity with the CC picture and the underlying 4N/4N
+ 2 classic rules for magnetic response of individual cycles.
This is illustrated by a simple inspection of the signs of η and η
+ 2 terms of eq 13. As particular coefficients of the

Table 5. Model W: An Improved Model for Current Maps of Kekulean and Non-Kekulean Benzenoidsa

Kekulean Benzenoids (Test Set 3, size 18360)

Model L1(Δuv) L2(Δuv) L∞(Δuv) Misdirected

W, α = 0 0.1201 0.1445 0.2650 3268

W, α = 1 0.0758 0.0913 0.1663 1517

W, α = 4 0.0404 0.0491 0.0856 110

Improvement 0.0880 (2.8) 0.1106 (2.3) 0.2482 (2.9) 2359 (21)

Zethrenoids (Test Set 3z, size 2184)

Model L1(Δuv) L2(Δuv) L∞(Δuv) Misdirected

W, α = 0 0.2475 0.3087 0.6368 1146

W, α = 1 0.1307 0.1626 0.3425 986

W, α = 4 0.0495 0.0591 0.1088 110

Improvement 0.2239 (4.5) 0.2991 (5.1) 0.6359 (5.8) 1127 (10)

Perylenoids (Test Set 3p, size 2388)

Model L1(Δuv) L2(Δuv) L∞(Δuv) Misdirected

W, α = 0 0.1344 0.1564 0.3027 611

W, α = 1 0.0844 0.0984 0.1885 251

W, α = 4 0.0455 0.0538 0.0941 0 (−)

Improvement 0.0985 (2.2) 0.1258 (2.3) 0.3122 (3.3) 539

Kekulean Benzenoids without Fixed Bonds (Test Set 3r, size 13788)

Model L1(Δuv) L2(Δuv) L∞(Δuv) Misdirected

W, α = 0 0.0974 0.1164 0.1996 1511

W, α = 1 0.0657 0.0788 0.1345 280

W, α = 4 0.0380 0.0466 0.0804 0 (−)

Improvement 0.0618 (1.6) 0.0747 (1.6) 0.1682 (2.1) 889

Non-Kekulean Benzenoids (Test Set 4, size 20112)

Model L1(Δuv) L2(Δuv) L∞(Δuv) Misdirected

W, α = 0 0.0771 0.0919 0.1626 1358

W, α = 1 0.0519 0.0620 0.1098 133

W, α = 4 0.0312 0.0374 0.0673 0
aCalculations are for benzenoids with at most 10 hexagonal rings. Test Set 3 is the set of all Kekulean benzenoids in this range. Test Set 4 is the set
of all non-Kekulean benzenoids in this range. The row labeled “Improvement” shows the equivalent result from the best-performing CC model for
the given test set, and (in parentheses) the factor by which model W with α = 4 improves on that result. Entries (−) indicate that model W has
eliminated a particular error. Other definitions as in Table 4.
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characteristic polynomials may be positive, negative, or
vanishing, the combinations for the two terms of eq 13 for
any particular cycle are drawn from the set of signatures {(+,
+), (+,0),(+,−), (0,+), (0,0), (0,−), (−,+), (−,0), (−,−)}. Not
all of these occur. With the sign conventions used here, −
corresponds to diatropic and + to paratropic flow. A survey of
the cycle contributions for the Kekulean and non-Kekulean
benzenoids with up to 7 hexagons leads to the observation that
when the cycle size is |C| ≡ 2 mod 4, the signature never
contains + , and when the cycle size is |C| ≡ 0 mod 4, the
signature never contains −. In other words, if the two-term

model predicts current in a given cycle, it will be in the
standard diatropic/paratropic sense predicted by the MO
method.
Consistently with the conjectured rule, the combinations

(+,−) and (−,+) are not seen at all in the survey, though all
others are. The combination (0, 0) is rare, seen only in one
Kekulean case of a cycle with size 2 mod 4 (Figure 11), but of

course this may be an effect of small sample size. Two
combinations that are impossible for Kekulean benzenoids are
(+,+) and (+,0) for cycles of size |C| ≡ 0 mod 4 (because for a
4N-cycle C in a Kekulean benzenoids, G − C has no perfect
matchings); (+,+) is possible for cycles with |C| ≡ 0 mod 4 in
non-Kekulean benzenoids, and indeed appears to be the most
common case. For cycle size |C| ≡ 2 mod 4, the case where the
second term reinforces the first, (−,−) predominates for both
Kekulean and non-Kekulean benzenoids.

5. CONCLUSIONS

5.1. Beyond Benzenoids? This paper has concentrated on
models for mapping induced currents in benzenoids, where
CC, HL and the new combinatorial Model W give qualitatively
similar maps for Kekulean systems. Unanimity is not to be
expected to persist in general, even for Kekulean systems
containing nonhexagonal rings. The example of a molecule as
simple as butalene shows how disparate predictions can arise
(Figure 10). Butalene has a bipartite molecular graph G
consisting of two edge-fused 4-cycles. This graph has three
perfect matchings, and three conjugated circuits consisting of
the two 4-cycles and the perimeter 6-cycle, having cycle
currents running in paratropic, paratropic, and diatropic senses,
and relative areas 1/2, 1/2, and 1, respectively. By symmetry,
all perimeter currents are equal and the central edge carries no
current. As the matching counts m(G − C) are equal to 1 for
all three conjugated circuits, the parameter b is not relevant.
However, the weighting of cycle areas is critical to the
qualitative prediction for the global current from each CC
model: models with a = −1 (M, M*) predict a paratropic

Figure 9. Example of the use of Model W to predict the current map
of a non-Kekulenoid benzenoids (in this case, the phenalenyl radical).
(a) Numbering scheme for the molecular graph G and the list of
orbits of equivalent vertices. The characteristic polynomial of G is
PG(x) = x(x12 − 15x11 + 84x9 − 226x7 + 309x5 − 207x3 + 54). (b)
The three non-isomorphic graphs G − C obtained by deletion of an
even cycle C from G. They are the paths on 7, 3, and 1 vertices, with
respective characteristic polynomials x(x6 − 6x4 + 10x2 − 4), x(x2 −
2), and x. (c) Three non-isomorphic graphs G − v obtained by
deletion of a vertex belonging to the larger partite set in G, showing
total contributions to the coefficient of x in PG(x). (d−h) Graphs G −

u − v − w obtained from the five non-isomorphic choices of two black
vertices (one per row) and any compatible white vertex, showing total
contributions to the coefficient of x3 in PG(x). Conventions for graph
sets (c) to (h): contributions to coefficients of the characteristic
polynomial PG(x) are given in the form s × t where s is the number of
symmetry copies of the graph, and t is the summed contribution of all
pairs of perfect matchings of a single copy. One perfect matching is
illustrated for each graph. Deleted portions of graphs are indicated in
gray.

Figure 10. Instances of the less common sign combinations for (4N +
2)-cycles in Kekulean benzenoids. (a) (−,0) in benzene; (b) (0,−) in
pyrene; (c) (0,0) in peropyrene. Black dots indicate a minimal set of
unmatched vertices in the graph G − C for the cycle C outlined in
bold. The molecules are benzene, pyrene, and peropyrene.

Figure 11. Butalene, a molecule where CC models give contradictory
predictions for global ring current. This π system is variously
predicted to be (a) antiaromatic (with a paratropic ring current), (b)
localized, or (c) aromatic (with a diatropic ring current), respectively,
depending on whether cycle contributions are taken to be inversely
proportional to, independent of, or directly proportional to cycle area
in the particular CC model employed to predict the current map.
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perimeter, models with a = 0 (R, R*) a vanishing perimeter
current, and models with a = 1 (GM, GM*, CKCDA,
CKCDA*) a diatropic perimeter. The HL and W models both
predict a diatropic perimeter, as does a coupled Hartree−Fock
ab initio calculation,60 all in agreement with the CC models
with linear dependence of current on cycle area. CC models
have also been used for systems containing even numbers of
rings of odd size.11,27,61 In this context, GM, for example, has
so far shown a good correlation with HL results, though
admittedly for a small sample of graphs.
5.2. General Comments. A protocol has been defined for

reduction of the grid-based pseudo-π maps of current density
in benzenoids to graphs with flow only along edges, allowing
direct comparisons with graph based models for current maps.
These comparisons revealed an overall qualitative agreement
between pseudo-π and Hückel-London current−density maps
for most benzenoids. They also exposed disagreement in two
specific circumstances. The first is when the benzenoid graph
has short nonbonded contacts, which give rise to false current-
bearing edges in the pseudo-π map. This “proximity limitation”
is an inevitable consequence of the idealized hexagonal lattice
geometry. The second was where pseudo-π maps show poor
conservation of current in the neighborhood of formal fixed
bonds, as in zethrene, perylene, and analogues, which may be a
limitation caused by the single-reference nature of the wave
function in the standard pseudo-π method. In all other cases,
Hückel-London maps appear to be qualitatively similar to
pseudo-π maps, which in turn are excellent proxies for ab initio
mapping of currents.
The same ideas have been used to compare Hückel-London

current−density maps with those derived from conjugated-
circuit (CC) models, using the sample set of all Kekulean
benzenoids with at most ten hexagonal rings (18 360
molecules). The comparison is motivated by the realization
that both HL and CC are effectively cycle decompositions of
current, albeit with different weighting schemes. All published
CC models give a reasonable simulation of HL results on
average for most benzenoids, as judged by rms error norms, for
example. Limiting ourselves to pure CC approaches, the two
models, called GM and R here, would seem to be the best: the
GM model because it has the closest match to HL current
maps, and R for its simplicity. For GM, the parametrized
model in the original form27 gives an rms error of 8%. Its
nearest competitor is the parameter-free version of the model
proposed by Mandado,32 which achieves an rms error of 10%
in the same test. On the other hand, if simplicity and a
transparent relationship to well-studied combinatorial proper-
ties of graphs are priorities, then the model proposed by
Randic (R)29 is the best of the CC set; these features allow, for
example, an analytical model of perimeter currents in
benzenoids based on Pauling Bond Order.52 Of those
discussed here, Model W with α = 0 is the simplest that can
treat both Kekulean and non-Kekulean benzenoids.
Finally, there are distinct advantages to going beyond the

pure CC model. A new model has been proposed here for
combinatorial calculation of current maps of benzenoids.
Model W uses tail and next-to-tail coefficients of the
characteristic polynomial of the benzenoid and corresponding
coefficients for the graphs induced by cycle deletions, all of
which can be expressed in terms of perfect matchings (Kekule ́
structures) of vertex-deleted subgraphs. For Kekulean
benzenoids, the new model outperforms all CC models by a
factor of 2 in reproducing HL maps. It also gives excellent

statistics and realistic current maps for non-Kekulean
benzenoids, which cannot be modeled at all by conventional
CC methods.
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