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A detailed study of H3B-NMeH: dehydropolymerization using the cationic pre-catalyst [Rh(DPEphos)(H2BNMe3(CHz)2tBu)]-
[BArF4], identifies the resting state as dimeric [Rh(DPEphos)H:]2 and boronium [H2B(NMeH:)2]* as the chain-control agent.
[Rh(DPEphos)Hz]2 can be generated in situ from Rh(DPEphos)(benzyl), and catalyzes polyaminoborane formation
(HzBNMeH)n [Mn = 15000 g mol-1]. Closely-related Rh(Xantphos)(benzyl) operates at 0.1 mol%, to give higher molecular
weight polymer [Mx =85000 g mol-1] on gram scale with low residual [Rh], 81 ppm. This insight offers a mechanistic template

for dehydropolymerization.

The catalyzed dehydropolymerization of amine-boranes,
archetypically HsB-NMeH3, is an atom-efficient methodol-
ogy for the synthesis of polyaminoboranes (H2BNRH).
(Scheme 1A), forming H: as the only by-product.!-4 This new
class of main-group polymers is based upon BN main-chain
units, and is isosteric with technologically-mature polyole-
fins. These main-chain B-N units suggest, in addition to un-
explored material and chemical properties, potential appli-
cations as piezoelectric materials,®’ or as precursors to bo-
ron-based ceramics and h-BN.189

Scheme 1. (A) Amine-Borane Dehydropolymerization,
(B) Exemplar Pre-Catalyst Systems.
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The currently accepted overarching mechanism for poly-
mer formation from amine-borane involves initial dehydro-
genation to form a transient!® aminoborane (H2B=NRH),
that then undergoes end-chain nucleophilic B-N bond for-
mation, initiated by the catalyst.311-16 While non-catalytic
routes have been reported,1%17 in terms of overall efficiency,
scalability, substrate scope, and control of the polymer

characteristics, catalytic routes offer the broadest oppor-
tunity for the tailored synthesis of polyaminoboranes.

A wide range of pre-catalyst systems have been described
for amine-borane dehydropolymerization (Scheme 1B). Af-
ter the original report of high3 molecular weight polymer
formed using Ir(POCOP)H A [POCOP = «3-1,3-
(t‘BuzP0)2C¢H3],11! systems based on group-4 metallocenes
B,1819 cooperative ligands C,14162021 and cationic [RhL2]*
pre-catalysts (L2 = e.g, Ph:P(CH2)sPPh;, DPEphos,
Xantphos) D,22-2¢ have been described. For the Rh-based cat-
alysts we have reported speciation, kinetics and degree of
polymerization studies. These are broadly generalized by:
an induction period, a non-living chain-growth propagation,
an inverse relationship between catalyst loading and degree
of polymerization, and Hz acting as a chain controlling agent
to reduce polymer chain length,1522-2¢ Scheme 2.

Scheme 2: Exemplar Complex 1 and Prior Observations.
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We have also reported on the key role of NMeHz, formed by
B-N bond cleavage in H3B-NMeH.2125 Exemplified using the
[Rh(DPEphos)(H:BNMe3CH2CH2tBu)][BAr¥4] pre-catalyst,23
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1 [ArF = 3,5-(CF3)2C6H3], the amine NMeH2 removes the in-
duction period, increases the degree of polymerization, and
simplifies the kinetics, allowing a half order dependency on
[Rh]roraL to be determined. However, the structure of the
active catalyst is undetermined, with insight limited to the
detection of a single species at 5(31P) 41.3 [J(RhP) = 150 Hz].
Also lacking is a robust explanation for the relationship be-
tween [Rh]rorai, and Hz, on the degree of polymerization.

Despite these advances, the precise details of initiation,
propagation and termination remain to be determined for
these diverse catalyst systems,? while identification of rest-
ing states is rare!41¢ and challenging.!8 Herein we report on
an investigation of the [Rh(DPEphos)]+ pre-catalyst system,
1, in which a study of the kinetics, speciation and synthesis
has allowed identification of the active catalyst, as well as
allowing for the polymer-growth/termination processes to
be interrogated. These insights are then harnessed in the
design of a new, efficient, Rh-based catalyst that produces
polyaminoborane on scale. A simple protocol is also de-
scribed to significantly reduce the levels of residual catalyst
in the isolated polymer.

We have previously reported that when 1 is employed as
pre-catalyst, the monocationic hydrido-aminoborane dimer
[Rhz2(DPEphos)2(u-H)(u-H2B=NHMe)][BArf4] 2 is formed
during the early stages of reaction.23 We propose this arises
via an amine-promoted B-H hydride transfer2¢ in a precur-
sor cationic c-amine borane complex
[Rh(DPEphos)(H3B-NMeH:)][BAr*4], E,>7 to generate a neu-
tral hydride of empirical formula Rh(DPEphos)H (Scheme
3). Similar hydride species are formed in
[Rh(PONOP)(H3B-NMe:H)]* 25 and [Rh(Pr2P(CH2)sP'Prz)-
(HsB-NH3)]* 28 systems, alongside H2B=NMez/[NMezH:]* or
boronium [H2B(NH3)2]* respectively. Based on these obser-
vations, a simple kinetics model was constructed for the in-
duction process, involving generation of 2 by rapid trapping
of Rh(DPEphos)H with unreacted E, followed by a slow,
amine-dependent, fragmentation to form the active catalyst.
This telescopes the elementary steps of the induction pro-
cess,?? allows H:z evolution to be used as proxy for transient
H2B=NMeH, and successfully reproduces the temporal con-
centration profiles,? as a function of [Rh]roraL (0.2 and 0.4
mol%), or when NMeHz: is added; Scheme 3. A VTNA analy-
sis3031 supports the observation of an empirical fractional
order in pre-catalyst: [Rh]rorar?5.

Scheme 3. Model and Fitted data.z3 [BArf4]-, DPEphos
Not Shown. [H:B-NMeH:] = 0.223 M (1,2-F2CsH4).
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With an effective model for the induction process deter-
mined, we then focussed on identification of the catalyst

resting state. Based on our model, and the work of
Fryzuk3233 and Tilley,3* the neutral hydride bridged dimer
[Rh(DPEphos)Hz]z, 3, was synthesized in situ, by addition of
either Hz or H3B-NMeH: to the new benzyl complex Rh(x?-
P,P-DPEphos)(n3-H2CPh) 4, Scheme 4. Toluene is formed in
all cases. The 298K 31P{*H} NMR data for 3 match that ob-
served during catalysis, i.e. & 41.3 [J(RhP) = 150 Hz, d8-
THF]. The hydride ligands in 3 are fluxional at 298 K, pre-
senting a very broad signal at 6 -8.1. Cooling to 253 K re-
veals three environments at 5 -6.9 (2H),-9.9 (1H) and -17.5
(1H). This pattern is similar to those reported for RhzLsH4
[L = P(OiPr)s, %2 Pr2P(CHz2)3P'Prz],323% and is indicative of
three bridging hydrides and one terminal hydride. The
31P{1H} NMR spectrum of 3 at 253 K was poorly resolved,
showing multiple, mutually-coupled, signals.

Scheme 4. Synthesis and Reactivity of Complex 3.
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Addition of excess Hs3B-NMeH: to the amine complex
[Rh(DPEphos)(NMeHz)z][BArF4], 5,23 also generates 3, to-
gether with boronium [H2B(NMeHz):]* [8(1'B) -7.8]. Solu-
tions of complex 3 in 1,2-F2CeHa, or in THF, irreversibly lose
H: on degassing, to form an insoluble yellow/brown pow-
der, analyzing as [Rh(DPEphos)H]«, likely to be a coordina-
tion polymer with Rh-H-Rh linkages. While the Rh-polymer
does not dissolve on addition of Hz, the soluble complex 2 is
regenerated when [H2B(NMeH2)(OEt2)][BArF4] is added.1®
Thus, when using a cationic pre-catalyst (i.e. 1 or 5), persis-
tent NMeH; will favor soluble neutral hydride via equilibra-
tion with complex 2 (ks, Scheme 3). When using neutral pre-
catalyst 4, a high initial concentration of amine-borane, e.g.
[H3sB:NMeH:]o = 0.446 M in THF, inhibits the formation of a
precipitate. Presumably, the amine-borane intercepts
Rh(DPEphos)H before it oligomerizes. Thus, dimeric, neu-
tral, hydride 3 is observed as the common resting state, ir-
respective of the pre-catalyst, or solvent. The half order de-
pendence in [Rh]roraL points to a rapid endergonic equilib-
rium between dimer and monomer, prior to the turn-over
limiting step. This has been noted in other Rh:Hx sys-
tems,323637 and the data are thus consistent with the resting
state being dimeric 3. An important difference between
neutral versus cationic pre-catalysts, is that the latter gen-
erate a boronium co-product, which has important implica-
tions for the dehydropolymerization, as discussed next.

Neutral pre-catalyst 4 was deployed in the dehydropoly-
merization of H3B-NMeH: at a variety of catalyst loadings,
Table 1. Using 1,2-F2C¢H4 as the solvent, kinetics measure-
ments were hampered by formation of the insoluble precip-
itate. In THF, eudiometric measurements on Hz production
were less reliable due to solvent volatility. Nevertheless,



Table 1 GPC Characterization Data“

Entry Cat. [Rh]roraL Mhn [Mp] b [boronium]
(mol%) (g mol-1)» (mol%)

4 0.25 15000 2.5 0

2 4 0.5 15000 2.5 0

3 4 1 15000 2.4 0

[35000]

4 4c 0.5 17000 2.3 0

5 4c 1 17000 2.4 0

6 4 1 [25000] n/a 0.25

7 4 1 [21000] n/a 0.5

8 4 1 [<19000]¢ n/a 1

9 6 1 88000 1.5 0

10 6 1 21000 1.5 1

11 6¢ce 0.1 85000 1.5 0

13 7 1 98000 1.6 0

a298K, 1,2-F2CsHa, 0.223 M H3B:-NMeH2, isobaric conditions
under flow of Ar, end point determined by 11B NMR spectros-
copy. » Relative to polystyrene standards; triple column; RI de-
tection; THF with 0.1 w/w % [NBu4]Br; 35 °C; [sample] = 2 mg
cm-3. ¢ THF solvent. ¢ M;, of the polymer distribution obscured
by [BArF4]- signal.e 5 M, 1.1 g scale.

polymerization goes to completion in both solvents, selec-
tively forming [H2BNMeH]n, Figure 1A.38 A plot of conver-
sion versus Mn (Figure 1B, relative to polystyrene stand-
ards)31t16 is characteristic of a non-living chain-growth
polymerization: at low conversions the polymer is formed
with high Mx and H3B-NMeH2 dominates. Variations in cata-
lyst loading did not affect the degree of polymerization of
the resulting polyaminoborane, in either 1,2-F2C¢Ha (Fig-
ure 1C, Mn = 15000 g mol-') or THF solutions (Mn =17000 g
mol-1), under 'open conditions' with a slow Ar-flow. This is
different to cationic pre-catalysts, such as 1, where Mn
scales inversely with [Rh]rora: e.g. 6400 (1 mol%), 34900
g mol-! (0.2 mol%).23 However, 'closed conditions' that al-
low for build-up of Hz result in very low molecular weight
oligomers being formed (1 mol % 4, less than 1000 gmol-!
by GPC, 11B NMR spectroscopy3!). The cationic pre-catalyst
1 behaves analogously.22

The neutral and cationic pre-catalyst systems differ by the
presence of a boronium co-product with the latter, the rela-
tive concentration of which will scale with [Rh]roraL3? Given
the underlying insensitivity to the degree of polymerization
to [Rh]rora. when using neutral 4, we thus considered
whether  with  cationic  pre-catalysts  boronium
[H2B(NMeH2):][BAr¥4] can act as a chain-control agent to
modify Mn. To test this, [H2B(NMeHz):][BArf4] was doped
(0.25 to 1 mol%) into 1 mol% 4 / HsB-NMeHz, to selectively
form polyaminoborane (1B NMR). Although GPC analysis of
the resulting polymer using refractive index detection is af-
fected by the co-eluting [BArF4]- masking the lower molecu-
lar weight region (Figure 1D),!5 there is a qualitative trend
of decreasing My with increasing [H2B(NMeHz)2][BAr*4], Ta-
ble 1. This outcome is consistent with boronium acting as a
chain-control agent. Chain Length Distribution (In-CLD)
analysis of high molecular weight fractions in GPC has been

(A) (B)

41 mol% , Ha 20000
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—H, MeHn B o %00 o ©
£
o - 6
o
o L
Q P 'Y ) r [ ] &
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11B /
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o | 0:25 mol% 4 ® [BA"aI
2 N g y
5 1 mol% 4 o
g Q.
2 3
8 o
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Figure 1. Polyaminoborane data obtained using catalyst 4
(Ar flow, 1,2-F2C¢Hs, H3B-NMeH: = 0.223 M) (A) 11B NMR
spectrum of polymer; (B) Mn versus conversion; (C) GPC
data for 1.0, 0.5 and 0.25 mol% catalyst loadings; (D) GPC
data for 1.0 mol% 4 with [HzB(NMeHz)z][BAr¥4] doping. (E)
In-CLD plot of high Mw fraction (D). (F) Mayo analysis.

shown to be useful where there is overlap between distri-
butions of polymer and transfer agents, such as that noted
here, allowing for chain control processes to be probed.*0 A
Mayo-type plot of [boronium]/[H3B-NMeHz:] versus the In-
CLD slope indicates an inversely linear relationship (Figure
1E and F), further supporting the conclusion that the boro-
nium functions as a rapid chain control agent in the dehy-
dropolymerization.

Collectively, the analysis above facilitates the construction
of a mechanistic landscape for dehydropolymerization,
Scheme 5, that is consistent not only with the results herein,
but also with our previous observations on cationic Rh-
based systems.152223.2841 Thus, dehydrogenation of amine-
borane to give the reactive monomer, H2B=NMeH, occurs at
a neutral [Rh-H] species, in an Hz-mediated equilibrium
with dimer 3. Dehydrogenation to form H2B=NMeH, via
BH/NH activation (Scheme 5A) could be facilitated by a
hemilabile DPEphos ligand (e.g. k2 and k3 coordination*?) as
previously suggested.#3 Initiated by a formal hydride-trans-
fer from the rhodium hydride,** that is now playing a dual
role in both dehydrogenation and initiation,!114 H,.B=NMeH
then undergoes rapid head-to-tail end-chain nucleophilic
B-N bond formation, as proposed previously (Scheme
5B).121315,16 Chain-control by protonation of the terminal
nucleophilic amine of the polymeryl group by boronium re-
turns a cationic pre-catalyst, aminoborane and NMeHz, that

3



Scheme 5. Proposed (A) Catalyst Evolution/Dehydro-
genation, (B) Propagation, (C) Chain-Control Events.

A Induction/Dehydrogenation

slow
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are rapidly recycled (Scheme 5C).25 A related intramolecu-
lar proton transfer has been proposed by Paul and co-work-
ers for Ir(POCOP)H:z systems.!3 We speculate that, in the ab-
sence of boronium, chain transfer to pre-monomer
H3B-NMeH: controls chain-length, Scheme 5C. Whatever the
precise mechanism for these chain-control processes, they
result in relatively narrow dispersities of the final isolated
polymer, as a result of the constant degrees of polymeriza-
tion during the entire reaction (Figure 1B).4> Hz loss from 3,
and related systems,3235 occurs readily on degassing. The
position of the initial monomer/dimer equilibrium is thus
expected to be sensitive to [Hz], impacting on the rate of de-
hydrogenation as well initiator concentration. This, we sug-
gest, is the origin of the low degrees of polymerization ob-
served under 'closed conditions'. In support of this, for a
system where hydride-bridged dimer formation is disfa-
voured due to sterics, e.g. Rh(Xantphos-Pr)H, Hz does not
act to modify the degree of polymerization.!s The precise
gearing of all of these interconnected relationships is there-
fore pre-catalyst, co-product (e.g. boronium) and solvent
specific.

The use of new pre-catalysts based upon neutral 4 demon-
strates wider applicability, and also signal the opportunity
for the exploitation of structure/activity relationships (Fig-
ure 2, Table 1). For example, the Xantphos benzyl complex,
6, is an effective pre-catalyst for dehydropolymerization (1
mol%, 88000 g mol-1, D 1.6), and the degree of polymeriza-
tion can be controlled by [H2B(NMeHz)z][BAr*4], e.g. 1 mol%
M:n = 21000 g mol-1. Complex 6 can be used at low loadings
and high [H3B-NMeH:z] (0.1 mol%, 5 M in THF, using com-
mercially sourced amine-borane), to produce high3 molecu-
lar weight polyaminoborane on gram scale (85000 g mol-1,
1.1 g). Use of activated charcoal in the polymer work-up re-
duces the [Rh]-content from 195 ppm (no workup) to 81
ppm. This is considerably lower than reported for other Rh
and Co dehydropolymerization systems.152146 The simple
benzyl-dppp-catalyst 7 also promotes formation of high
molecular weight polyaminoborane (98000 g mol-1).

Ph,
7 e
deadd DN Y
Cat. 6, 0.1 mol%, THF, 298 K
5 M as supplied H3B-NMeH,
C D)0.5
© ’ ® M, = 85 000 g mol"
. p=15
x ¢ ®
. (%2}
=
{ 2
\“ g
§ v I
AR e &
A '\l
Isolated (HsBNMeH), 0 : )
[Rh] = 81 ppm 4 log(MW/g mol-") 6

Figure 2. (A) New pre-catalysts, (B) Representative reac-
tion, (C) Isolated polymer and (D) GPC trace [cat. = 5, 0.1
mol%].

In summary, the identification of the catalyst resting state,
the events that lead to its formation, and thus the role that
co-products such as boronium and Hz likely play in chain-
control, have provided important insights into the complex
and nuanced set of interconnected processes that are re-
quired for selective amine-borane dehydropolymerization
using Rh(bisphosphine)-based catalysts. While the detailed
elucidation of the elementary steps awaits further study,
Scheme 5 provides a testable framework for the analysis
and design of catalyst systems for controlled amine-borane
dehydropolymerization.
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