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Abstract
1. Home ranging is a near-ubiquitous phenomenon in the animal kingdom. 

Understanding the behavioural mechanisms that give rise to observed home 

range patterns is thus an important general question, and mechanistic home range 
analysis (MHRA) provides the tools to address it. However, such analysis has hith-

erto been principally restricted to scent-marking territorial animals, so its potential 
breadth of application has not been tested.

2. Here, we apply MHRA to a population of long-tailed tits Aegithalos caudatus, a 
non-territorial passerine, in the non-breeding season where there is no clear ‘cen-

tral place’ near which birds need to remain. The aim is to uncover the principal 

movement mechanisms underlying observed home range formation.

3. Our foundational models consist of memory-mediated conspecific avoidance be-

tween flocks, combined with attraction to woodland. These are then modified to 
incorporate the effects of flock size and relatedness (i.e. kinship), to uncover the 
effect of these on the mechanisms of home range formation.

4. We found that a simple model of spatial avoidance, together with attraction to the 
central parts of woodland areas, accurately captures long-tailed tit home range 
patterns. Refining these models further, we show that the magnitude of spatial 
avoidance by a flock is negatively correlated to both the relative size of the flock 

(compared to its neighbour) and the relatedness of the flock with its neighbour.
5. Our study applies MHRA beyond the confines of scent-marking, territorial ani-

mals, so paves the way for much broader taxonomic application. These could 
potentially help uncover general properties underlying the emergence of animal 

space use patterns. This is also the first study to apply MHRA to questions of re-

latedness and flock size, thus broadening the potential possible applications of this 
suite of analytic techniques.
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advection–diffusion, home range, long-tailed tit, mechanistic modelling, partial differential 
equation, passerine, space use, taxis



2  |    Journal of Animal Ecology ELLISON Et aL.

1  | INTRODUC TION

Understanding the spatial distributions of animals is a core concern 

for ecological research, being at the interface of population dy-

namics, behavioural ecology and conservation concerns (Franklin & 
Miller, 2010). However, while emergent patterns of space use may be 
observed broadly across time and space, they are ultimately caused 
by movement decisions of individual animals (Nathan et al., 2008). 
These movements can affect the structure of entire ecosystems by 

altering populations (Morales et al., 2010), influencing environments 
(Riotte-Lambert & Matthiopoulos, 2019) and modifying population 
dynamics such as predator–prey (Lewis & Murray, 1993) and com-

petitive (Potts & Petrovskii, 2017) interactions.
Home range formation provides a particular example of ani-

mal space use that is prevalent across a wide range of taxa (Börger, 
Dalziel, & Fryxell, 2008; Jetz, Carbone, Fulford, & Brown, 2004). It 
occurs whenever animals restrict their movement to an area of the 

landscape far smaller than they could cover given their locomotive 

capabilities (Burt, 1943). Many reasons have been put forward for 
the formation of home ranges, including optimizing foraging benefits 
(Mitchell & Powell, 2012; Moorter et al., 2009), avoiding costly con-

flicts with conspecifics (i.e. territoriality, Jetz et al., 2004; Moorcroft 
& Lewis, 2006) or avoiding predators (Bastille-Rousseau et al., 2015; 
Coleman & Hill, 2014). This has led to the hypothesis that there may 
be general mechanisms underlying home range formation that oper-

ate across many species (Börger et al., 2008), although the mecha-

nisms involved have proved rather elusive.

Indeed, many home range models do not seek to understand 
the movement mechanisms (a.k.a. processes) behind home range 
formation, but simply aim to describe the space use distribution 
corresponding to a home range (a.k.a. patterns). These include the 
Minimum Convex Polygon (Harris et al., 1990; Mohr, 1947), which 
describes the extent of the home range, and kernel density estima-

tors (Worton, 1989) and their extensions (e.g. Fleming et al., 2015), 
which estimate the utilization distribution of an animal or group. 

Such descriptive, statistical models of the home range are sufficient 
for understanding various ecological questions. For example, sta-

tistical methods have been used to ascertain the extent to which 
animals use different habitat types (Mokross, Potts, Rutt, & Stouffer, 
2018), the relatedness of neighbouring groups (Gompper, Gittleman, 
& Wayne, 1998; Mcloughlin, Ferguson, & Messier, 2000) and hier-
archies of size and social dominance (Höjesjö, Økland, Sundström, 
Pettersson, & Johnsson, 2007; Woodward et al., 2005).

However, there are many behavioural questions which cannot be 
easily answered by traditional, statistical estimators of home range. 
Principally, those which seek to unveil the movement and interaction 
processes that give rise to home range pattern formation require a 

mechanistic modelling approach. In such an approach, the proxi-
mate behavioural decisions of an animal (i.e. processes) are modelled 
explicitly and the home range (i.e. pattern) arises as an emergent 
property of this model. This mechanistic modelling approach has 

enabled researchers to understand various ecological phenomena, 
such as the processes underlying the emergence of prey corridors 

between predator home ranges (Hamelin & Lewis, 2010; Lewis & 
Murray, 1993), the effect of disease spread on movement decisions 
(Potts, Harris, & Giuggioli, 2013), coyote Canis latrans territory rear-

rangement following the death of an alpha male (Moorcroft, Lewis, & 
Crabtree, 2006), and fission processes in meerkat Suricata suricatta 

territories (Bateman, Lewis, Gall, Manser, & Clutton-Brock, 2015). All 
of these examples make use of explicit, mathematical links between 
movement and interaction mechanisms and the emergent home 

range patterns, to make important biological inferences.
Despite the insights gained from mechanistic home range anal-

ysis (MHRA) in the context of partial differential equations (PDEs), 
these analytic techniques have hitherto been used almost exclu-

sively on scent-marking animals (but see Potts, Mokross, & Lewis, 
2014), with the exception of the earliest and simplest models, 
where home ranging arose purely from an attraction to a central 

place (Holgate, 1971). However, many animals advertise their ter-
ritory through cues other than scent, such as dominance displays, 
vocalizations and fighting (collectively known as ‘ritualized aggres-

sion’). Furthermore, not all animals have a clear ‘central point’ (such 
as a den or nest site) which pins their home range in a particular 
place. The model of Potts and Lewis (2016) was designed to extend 
MHRA for use with such animals in the context of PDEs. While home 
range formation with neither a central place nor scent-mark avoid-

ance had previously been modelled using simulations of individu-

al-based models (Moorter et al., 2009; Riotte-Lambert, Benhamou, 
& Chamaillé-Jammes, 2015; Siniff & Jessen, 1969), the extension 
to the PDE framework offered by Potts and Lewis (2016) enabled 
rigorous mathematical analysis of the conditions under which home 

ranges can form. There, the authors showed mathematically that 
home ranges can form purely from a mechanism of ritualized ag-

gression, coupled with memory of those aggression events.
In this study, we advance the applicability of PDE-based MHRA 

further still, by showing that MHRA can be used in situations where 
there is no explicit territorial behaviour, and also no ‘central point’ 
around which animals localize their movement. This is the case for 

our study species, the long-tailed tit Aegithalos caudatus, outside 
the breeding season. At these times of year, they live in flocks, 
each of which has a distinct home range that only overlaps slightly 

with those of neighbouring flocks (Gaston, 1973; Hatchwell, 2016; 
Hatchwell, Anderson, Ross, Fowlie, & Blackwell, 2001). They do not 
maintain a fixed roosting site, so have no clear localization centre, 
and have rarely been observed to engage in territorial interactions 

(Napper, Sharp, McGowan, Simeoni, & Hatchwell, 2013).
Nonetheless, it may be that long-tailed tits avoid areas where 

they have seen neighbouring flocks foraging. This could be to avoid 

social interaction with other flocks or to strengthen relationships 

within flocks. We hypothesize that this behaviour acts as a proxy 
for territoriality, causing distinct home ranges to form without re-

quiring directly observable, aggressive, territorial behaviour. To test 
this hypothesis, we formulate a mechanistic model, incorporating 
such non-aggressive avoidance mechanisms and observe whether 

this can explain the various home range patterns observed in a long-
tailed tit population across a number of seasons.
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Since there is a clear and well-documented effect of habitat type 

on the space use of long-tailed tits, arising from the structure and 
composition of woodland (Gaston, 1973), we also incorporate into 
our study a set of models that are each linked to a distinct hypothesis 

on the effect of woodland on bird movement. Woodland structure 
is very complex in our study system, incorporating dozens of genera 
of trees and shrubs of varying sizes, so we use a simplified approach 
by viewing woodland as a binary variable: either present or absent. 

Then our hypotheses all relate to how flocks move with respect to 

the presence or absence of trees. We use the resulting model to 
show that the home range patterns of long-tailed tits can be pre-

dominantly explained by a combination of conspecific avoidance and 
attraction towards woodland areas.

From this starting point, we extend our model to test various hy-

potheses about more subtle drivers of home range patterns. First, 
we examine how the relative size of a flock (i.e. number of individ-

uals) affects the extent to which it avoids neighbouring flocks. We 
hypothesize that smaller flocks will tend to have a stronger avoid-

ance mechanism than larger flocks because if there is competition 

over space use, smaller flocks are likely to be less competitive than 
large flocks and so are predicted to avoid potential conflict (Adams & 
Plowes, 2019; Dyble, Houslay, Manser, & Clutton-Brock, 2019; Port, 
Kappeler, & Johnstone, 2011). Second, given that there is an appar-
ent correlation between spatial proximity and relatedness (Napper 
& Hatchwell, 2016), we hypothesize that the relatedness of neigh-

bouring flocks will be inversely related to the strength of avoidance 

mechanism. We show that these subtle effects of flock size and relat-
edness cannot be observed using kernel density estimators, a popular 
statistical model describing a flock's home range, but do emerge from 
a MHRA approach. This demonstrates the usefulness of mechanistic 
models of home range for uncovering features of movement that can-

not easily be detected using descriptive, statistical models.
Overall, our study makes theoretical advances by demonstrating 

(a) that MHRA is applicable in a much wider range of situations than 
previously used and (b) that MHRA can uncover behavioural drivers of 
movement and space use that are not simple to find using traditional, 
statistical measures of home range. Furthermore, our study makes im-

portant advances in avian behavioural ecology by demonstrating (c) 
that relatedness and flock size can affect between-flock movement 

responses and (d) that avoidance mechanisms may exist in species that 
do not display obvious territorial behaviour, explaining the existence 
of home range segregation in such species.

2  | MATERIAL S AND METHODS

2.1 | Study system

The data come from a study on long-tailed tits, a small non-territorial 
bird found across Europe and Asia. Long-tailed tits weigh only 6–8 g 
(Glen & Perrins, 1988) and their main life-history goal while not focus-

ing on breeding is to forage for food (Gaston, 1973; Hatchwell, 2016). 
We studied the behaviour of these birds in the non-breeding season 

when they live in home ranging flocks of around 5–25 individuals 

(Napper & Hatchwell, 2016). One or more fledged broods and their 
parents and helpers are usually the nucleus of a winter flock, which 
are then joined by failed breeders who may or may not be related to 

the brood(s) (Napper & Hatchwell, 2016). Thus, the majority of flock 
members (60%–70%) are typically related (r ≥ 0.25, where r is the co-

efficient of relatedness, Wright, 1922) to at least one other member 
of the same flock, although those relatives may be drawn from two 
or more families (Hatchwell et al., 2001). In addition, members of one 
flock often have relatives in other flocks as a result of dispersal during 

the non-breeding season (Napper & Hatchwell, 2016). Members of a 
flock forage together in the day and then sleep together in a commu-

nal roost, which often changes location between nights.
The study site is contained within the Rivelin Valley, Sheffield, UK 

(53°23ʹN, 1°34ʹW), covering approximately 3 km2. The population 

of long-tailed tits that inhabits this site has been studied since 1994. 

Here we use data from 2010 to 2013, which were first reported in 
Napper and Hatchwell (2016), together with data from 2018 to 2019 
which has not been previously studied in published work. Data were 

collected in the Fox Hagg woodland of the Rivelin Valley for the 2011–
2012 season, in the Black Brook woodland for the 2010–2011 and 
2012–2013 seasons, and for the 2018–2019 dataset we studied both 
the Fox Hagg and Black Brook woodlands. The approximate home 
range size for a single flock is 0.15 ± 0.03 km2 (mean ± 95% CI; using 

a 100% minimum convex polygon). As flocks of long-tailed tits move 
through their environment, they usually stay in each tree for less than 
a minute before moving on (B. J. Hatchwell, pers. obs.). Consequently, 
tracking data of the birds consists of GPS locations, recorded at time 
intervals of 1 min. Locations were recorded on a Garmin Geko 201 
GPS with a standard error of 10 m. Observations were made by find-

ing a flock in the study site by recognizing their calls and then identi-

fying ringed individuals. At least 95% of the population are typically 
ringed by the end of the breeding season (Napper & Hatchwell, 2016). 
An observation period began when a flock was first encountered and 
the first location was recorded. The observation period ended when 

sight of the flock was lost. We recorded one location every minute 
to give a trajectory for each observation period. There were 19 ± 2 

(mean ± 95% CI) locations per observation period.
For this study, we used location data from six of eight flocks that 

were followed in the non-breeding season of 2011–2012 in the Fox 
Hagg woodland. We removed from our analysis two flocks which con-

tained only four and seven locations, collected over one observation 
period, as we concluded this was not enough data to estimate home 
ranges. Datasets for the six remaining flocks consisted of 155, 341, 140, 
110, 152 and 83 locations, recorded over a range of 5–21 observation 
periods between May 2011 and February 2012. In addition to the 2011–
2012 data, we validated our results using data from the non-breeding 
seasons of 2010–2011, 2012–2013 and 2018–2019 collected in various 
parts of the Rivelin Valley study site. We followed a similar procedure 
to remove from our analysis any flocks that had data collected over only 

one observation period. In each case, there were at most 18 locations 
per flock in the removed datasets. The flocks that we ended up using 

each had >40 recorded locations taken over >1 observation periods.
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2.2 | Mathematical models

The trajectories from each observation period are too short to esti-

mate covariates of stepwise movement decisions dependent upon 

the presence of other flocks, and therefore fit a stepwise movement 
kernel to the data as in, for example, Avgar et al. (2015) and Avgar, 
Potts, Lewis, and Boyce (2016). Additionally, it would be difficult to 
infer any inter-flock interaction behaviour since the trajectories of 

different flocks are not recorded at the same time. Instead, we infer 
the movement processes of a flock by fitting a mechanistic model of 

space use to locations collected over the entire non-breeding season 

(May–February). This method is known as MHRA (Moorcroft & 
Lewis, 2006). We use a system of advection–diffusion equations, 
each of which models a flock's utilization distribution, ui(x, t), which 
is the probability density function for the location of flock i, where 
i∈{1, …, N} indexes the N flocks. Each equation has the form.

where D
i
 is the diffusion constant and c

i
 is the magnitude of advection 

in the direction of vector field Ai(x, t) for flock i. This vector field can 

take various forms depending on the question at hand, and is used to 
test hypotheses about the drivers of space use; some specific examples 
are described later. In Equation 1, x = (x, y), where x and y are Cartesian 

coordinates and ∇ =

(

�

�x
,

�

�y

)

, as is standard. The diffusion term models 
any behavioural drivers behind movement that are unknown or that are 

not explicitly tested, for example foraging. To avoid using an unreason-

ably large number of parameters in our inference, we initially assume 
that diffusion is constant and the magnitude of advection is the same 

for all flocks so that D
i
 = D and c

i
 = c, for all i∈{1, . . . , N}.

To solve (1) numerically, we must pick a domain, Ω, and enforce 
boundary conditions on the boundary ∂Ω. A biologically reasonable 
condition is to assume zero flux across the boundary, meaning that the 
number of birds exiting the domain at a boundary point is, on average, 
the same as the number entering at that point. In Equation 1, the flux is 
−D∇ui + cuiAi, so a zero flux boundary condition means that

where nx is a vector normal to the boundary at x. Because ui(x, t) is a 

probability density function defined on Ω, we must also impose the 
following condition

Having set up the general modelling framework in Equations 1–3, we 
now describe specific choices of the vector field Ai(x, t), that corre-

spond to different hypotheses about the movement and interaction 

mechanisms behind observed home range patterns. First, note that 

each flock tends to reside in a slightly different part of space with 

only minimal overlap (Figure 2a), suggesting that flocks may be delib-

erately avoiding areas that they know to be used by other flocks. In 

the decades that this population has been studied, interactions be-

tween flocks occur regularly, but aggression is very rarely involved 
in these encounters (Napper & Hatchwell, 2016), meaning that this 
avoidance mechanism is highly unlikely to be a result of aggressive 

defence. Another hypothesized reason for spatial segregation of an-

imal populations was given by Riotte-Lambert et al. (2015), and in-

volves depletion and renewal of resources. However, for long-tailed 
tits, resources are abundant and deplete only minimally as the birds 
forage (B. J. Hatchwell, pers. obs.).

Therefore, instead of these previously used mechanisms, we 
use a memory-based approach, assuming that a flock has some 
knowledge of other flocks' space use, due to previous meetings 
which they remember. This knowledge causes a flock to avoid 

areas where they believe other flocks may reside. The precise 

details of interactions between adjacent flocks are not import-

ant for the model, but could include one flock seeing another, or 
hearing their calls. As long as some interaction has occurred be-

tween flocks and there is some avoidance mechanism (of places 

where past interactions have happened) in place, then our model 
is appropriate.

To model the avoidance mechanism, we introduce the concept of 
an interaction zone (IZ) for each flock. The IZ of a flock models a 
cognitive map of places where the flock remembers having previ-

ously interacted with other flocks. We assume that individuals within 
a flock share information, and so have a common IZ. The probability 
that a location, x, is in the IZ for flock i at time t is denoted by ki(x, t). 

The probability ki increases in places where other flocks have a high 

probability of using that space and decreases as other flocks become 

less likely to use the space. Thus, the dynamics of ki(x, t) are de-

scribed by the following equation:

where ρ
i
 is the rate at which the IZ is reinforced when two flocks of 

long-tailed tits are at the same location and β
i
 is the rate of decay of 

the IZ due to revisiting parts of space without encountering other 

flocks. Mathematically, the IZ is equivalent to the concept of a ‘conflict 
zone’ introduced by Potts and Lewis (2016). For simplicity, and to avoid 
an unreasonably large number of parameters, we start by assuming 
that �i = � and � i = � for all i so that they are the same for all flocks. 

However, in Section 2.4, we relax this assumption.
When making movement decisions, it is not realistic to assume 

a flock will examine the infinitesimally precise location where it cur-
rently happens to be. Rather, it is better to assume the flock will ex-

amine a small area around that location. We model this area as a disc 
with radius δ. This can be thought of as the flock's perceptual radius 

for which it makes its movement decisions. This idea corresponds, 
mathematically, to averaging the value of ki(x, t) over this disc.  

(1)

(2)|||
nx ⋅

[
D∇ui − cuiAi

]|||x∈�Ω
= 0,

(3)∫
Ω

ui dx = 1.

(4)
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We thus define ki(x, t|�) to be a spatial average over all ki(x, t) within 

a radius δ of x, so thats

where B
�
(x) is a disc of radius δ, centred at x. A similar local averaging 

was also used by Potts and Lewis (2016) to model territories formed 
by ritualized aggression, where they showed that it is necessary to use 
ki instead of ki, to ensure the system is mathematically well-behaved.

Long-tailed tits are known to forage predominantly in woodland 
habitats (Gaston, 1973; Hatchwell, 2016) and our location data suggest 
that the flocks are almost always inside woodland. We therefore incor-
porate into our modelling framework a tendency for flocks to move in 

areas with tree coverage, alongside the tendency to move away from 
the IZ. This leads to the following definition of A 

i
 from Equation 1.

Here, c1 and c2 describe the relative magnitude of advection away from 

the IZ and towards woodland, respectively, and M indexes different 
models of attraction to woodland, which we now describe. We first 
discretise the landscape and define any cell with more than half tree 

coverage to be in a woodland area. Each woodland area is defined vi-
sually using a procedure detailed in Appendix S4. We define six models 
as follows:

• (M = 0) no attraction to woodland (c2 = 0),
• (M = 1) advection acts solely on the woodland edges, to draw 

flocks in (Figure 1b),
• (M = 2) advection acts both on the edges and within the woodland 

to draw flocks towards the centre of a woodland area (Figure 1c),
• (M = 3) advection acts on the woodland edges and all space out-

side of the woodland areas to draw the flocks towards the wood-

land (Figure 1d),

• (M = 4) inside the woodland the flocks are drawn towards the 
centre of the woodland area and outside they are drawn in  

(Figure 1e).
• (M = 5) no advection away from the IZ (c2 = 0) and v 

M
 corresponds 

to the best-fitting model from Models 0–4.

The vector fields, vM(x|�M), for the Fox Hagg and Black Brook 
woodlands (see Figure 1a) are shown in Figure 1b–e and defined pre-

cisely in Appendix S1. Each vM depends upon a parameter �M, which 
controls how much the birds are attracted to woodland.

For our analysis, we use a square domain, Ω = [0, L] × [0, L], to 
represent the landscapes shown in Figure 1a. We non-dimensional-
ize the system in Equations 1–6 as follows

Immediately dropping the tildes for notational convenience, we arrive 
at the following dimensionless version of Equations 1–6:

We summarize all the notation used in Table 1.

(5)ki(x, t|�) =
1

��
2 ∫

B
�
(x)

ki(x, t)dx,

(6)Ai,M = −c1∇ki + c2vM.

(7)
x̃ =

x

L
, ỹ =

y

L
, �̃ =

�

L
, ũi = Lui, k̃i = ki, ṽM = LvM, t̃ =

��

L2
,

a =
D

�
, b =

�L

�
, � = c

c1

D
, � = c

c2

D
, Ω̃ =

Ω

L2
.

(8)�ui

�t
= ∇

2
ui + ∇ ⋅ [�ui∇ki − �uivM],

(9)a
�ki

�t
= uiΣi≠juj

(

1 − ki
)

− bkiui,

(10)|||
nx ⋅ [∇ui + �ui∇ki − �uivM]

|||�Ω
= 0,

(11)∫
Ω

ui dx = 1.

F I G U R E  1   Panel (a) shows the real landscape taken from satellite images for the Fox Hagg (top) and Black Brook (bottom) woodlands, 
which are the study sites for the datasets 2011–2012 and 2012–2013, respectively. Panels (b–e) show the vector fields v 

M
 for the Models 

1–4, respectively, corresponding to the woodland images (a) on their respective row. Each of these models represents an attraction into a 
woodland area, following the vector fields
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2.3 | Model fitting and comparison

We solve Equations 8–11 for u
i
 and k

i
 numerically using a finite-

difference approximation (Smith, 1986), detailed in Appendix S3. To 
fit the steady-state of Equations 8–11 to a dataset, we find the set 
of parameters b, � , �, � and �M which maximize the following likeli-
hood function 

where xi,n is the nth location of flock i, X = {xi,n}i,n is the set of all loca-

tions, u∗
i
 is the numerical steady-state solution of u

i
, N is the number 

of flocks and N
i
 is the number of locations in the dataset for flock i. 

Equation 12 assumes the locations are independent, which we jus-

tify in Appendix S2 using a method by Benhamou, Valeix, Chamaillé-
Jammes, Macdonald, and Loveridge (2014). To maximize Equation 12, 
we use the Nelder–Mead maximization algorithm (Nelder & Mead, 
1965) and select the best model based on their Bayesian information 
criterion (BIC) scores (Schwarz, 1978).

2.4 | Testing for other behavioural 
effects of movement

As well as testing hypotheses regarding inter-flock interactions and ef-
fects of woodland, we also use our modelling approach to test effects 

on movement of (a) flock size and (b) inter-flock relatedness. For the data 
collected in 2018–2019, we have a record of the individual birds seen in 
each flock, so we can estimate the size of the flocks. Additionally, from 
social pedigrees, we know the identity of close kin (parents, offspring 
and siblings) for 108 of the 192 birds. Table 2 shows the size of each 
flock and the number of kin-connections between them.

For this part of the investigation, our null model is the best-fit 
model out of Models 0–5. We then modify this model by assuming 
that the IZ of each flock develops at a different rate for interactions 

with each of the other flocks, dependent on either its kin-connections 
or relative size. More precisely, we change Equation 9 to

where the various ��� take different values depending on the kin-con-

nections between two flocks or their relative flock size (in Section 2.2–

2.3, ��� = 1 for all flocks i and j). A larger ��� means that flock i is less 

likely to visit places that it has previously interacted with flock j than if 

it were to have a smaller ���. We then set ��� to be a function of either 

the relative size of flock j compared to flock i and/or the number of 

kin-connections between i and j, denoted ���. For this, we use three 
functional forms

where s
i
 (resp. s

j
) is the size of flock i (resp. j).

Equation 14 gives a higher value for �(1)

��
 when sj> si than when 

sj< si, meaning the probability that a location will be considered to 
be in the IZ of flock i will be higher if flock j is larger. This tests the 

hypothesis that a flock is less likely to consider a location safe if they 

have observed it being used by a larger flock than if the same loca-

tion were observed being used by a smaller flock. Equation 15 gives 

(12)L(b, � , �, � , �M|X) =
N∏

i=1

Ni∏

n=1

u
∗

i
(xi, n),

(13)a
�ki

�t
= uiΣi≠j���uj

(

1 − ki
)

− bkiui,

(14)�
(1)

��
= 1 + �1

sj

si
,

(15)�
(2)

��
=

�2

�
�3
��

,

(16)�
(3)

��
= �

(1)

��
�
(2)

��
,

TA B L E  1   Glossary of variables and constants

Symbol Interpretation

IZ The interaction zone, which is a cognitive map of the 
places a flock has had interactions with another flock

x and t Space and time, respectively

ui(x, t) The probability density function of flock i at time t

ki(x, t) The probability of location x being in the IZ of flock i at 

time t

vM(x) A vector field of unit vectors directing towards 
woodland, different for each model M, visualized in 
Figure 1

ki(x, t|�) An average of ki(x, t) over the circular area within a 

radius, δ and centre x

ρ The rate at which an interaction happens when two 

flocks meet

β The rate of decay of the IZ due to i visiting without 

encountering other flocks

c1 The magnitude of advective tendency away from the IZ

c2 The magnitude of advective tendency towards woodland

ω
M

A parameter related to the rate of attraction towards 
larger woodland areas (see Appendix S1)

δ The perceptual radius of a flock

Ω The domain to be solved over, where Ω = [0, L] × [0, L]

∂Ω The boundary of the domain to be solved over

TA B L E  2   The number of kin-connections between flocks and 

the size of flocks for the second dataset in 2018–2019 shown in 
Figure 3d. There is a kin-connection if two birds are related by 
either being siblings, parents or offspring. The size of the flocks is 
the number of birds in a flock, if a bird has been seen in different 
flocks it is given a value of 0.5 in both (no birds here were seen in 

more than two of the flocks)

Kin-connections A B C D E

A — 11 7 0 1

B 11 — 6 0 1

C 7 6 — 2 4

D 0 0 2 — 1

E 1 1 4 1 —

Size of flock 29.5 39.5 12 9.5 8.5
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a smaller value for �
(2)

��
 if there are more kin-connections between 

flock i and j. This means a flock would be less likely to consider a loca-

tion part of its IZ if it had observed a highly related flock there than if 

it had observed a less related flock in the same location. Equation 16 
combines the two hypotheses. We fit the parameters σ1, σ2 and σ3 

using the functions 14–16. We use BIC both to select between the 
three models, and examine whether they are an improvement on the 
null model (��� = 1 for all i, j).

2.5 | The effect of the landscape on kinesis

We have so far considered the effects of woodland and the IZ on 
advection. However, it is also possible for such landscape features to 
have an effect on kinesis (i.e. the diffusion coefficient in Equation 1) 
as well. To test this, we change Equation 8 to

where Φi(x, t) is a function of space, and depends upon the presence 
of woodland and/or the IZ. We choose vM to be the function from the 

best-fit model out of Models 0–5, and perform model selection (via 
BIC as in Section 2.3) using the following three functional forms for Φi

where w(x) is the density value of the woodland, defined as follows. 
When extending Model 1 or 3 to incorporate Equations 18–20, we use 
w(x) = 1 for x in woodland and w(x) = 0 for x outside woodland. When 
extending Model 2 or 4, we use w(x) = D(x)�M for x in woodland, where 
D(x) is the distance from x to the woodland edge, and w(x)=0 outside 

woodland. Here, Equation 18 models a situation where the presence 
of woodland alone has an effect on kinesis. In Equation 19, only the 
IZ has an effect on kinesis. Equation 20 incorporates both effects. We 
investigate this effect on kinesis both with and without the taxis term 
in Equation 17.

3  | RESULTS

For home range observations from the non-breeding season of 2011–
2012 (Figure 2a), we found that Model 4, which contains movement 
away from areas of past interaction with other flocks and move-

ment towards woodland, captured the home ranges best (Figure 2b). 

(17)�ui

�t
= ∇

2[Φiui] + ∇ ⋅ [�ui∇ki − �uivM],

(18)Φ
(1)

i
(x) = exp(�w(x)),

(19)Φ
(2)

i
(x, t) = exp(�ki(x, t)),

(20)Φ
(3)

i
(x, t) = exp(�w(x) + �ki(x, t)),

F I G U R E  2   Utilization distributions 

informed by fitting the steady-state 

of Equations 8–11 to data from the 
non-breeding season of 2011–2012. 

Flock locations are shown on top of a 
photograph of the landscape in panel 

(a) where each color represents a 
different flock. Panels (b–d) show the 
steady-state solution of Equations 8–11 
together with observed locations (dots), 
here darker contour lines mean a higher 

probability density. Panel (b) shows the 
corresponding utilization distribution for 

the best-fit model (M = 4). Panel (c) shows 
the utilization distribution for Model 0, 
where there is no attraction to woodland. 

Panel (d) shows the utilization distribution 
for Model 5, where there is no directed 
movement away from other flocks. Here 

the contour lines coincide since there 

are no interactions. We see that both 
movement in response to the environment 

and in response to other flocks are 

necessary to create home range patterns 

which represent the data
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This contrasts with the relatively poor fit of the base models that 

included inter-flock interactions only (Model 0; Figure 2c) or with at-
traction to woodland only (Model 5; Figure 2d), which can be consid-

ered as null models for the purpose of illustrating the value of Model 

4 in capturing the home range patterns. These results indicate that 

two aspects of movement, responses to habitat and conspecifics, 
combine to give the key ingredients in the formation of long-tailed 

tit home ranges.

Similar findings hold across four other non-breeding seasons 

from 2010 to 2018 and different parts of the study site (Figure 3). By 
comparing BIC values, we see that for three of the other datasets, 
the best-fitting model is confirmed to be Model 4, and for one it is 

Model 2 (Table 3). This gives further indication that the birds pre-

fer to move away from the woodland edge, as these models are the 
only two which describe this movement (Figure 1). The datasets and 
their corresponding utilization distributions are shown in Figure 3 
and Appendix S6.

Using data collected in 2018–2019, we extended the model se-

lection procedure to test for an effect of flock size and relatedness 

between flocks on home range utilization. In the absence of this 

additional mechanism, Model 4 was the best-fitting model (Table 3; 
Figure 4a), and Model 2 was the next best-fit, both indicating avoid-

ance of other flocks and movement towards the centre of wood-

land. When Model 4 was extended to incorporate flock size and 

F I G U R E  3   Results for the best-fit model for Equations 8–11. The data for the non-breeding season of 2010–2011 are shown in (a) and 
the non-breeding season of 2012–2013 is shown in (b) with the corresponding utilization distributions for the best-fitting models shown 
underneath. Panels (c) and (d) show the utilization distributions for the best-fit models for the data collected in the non-breeding season of 
2018–2019, in different spatial areas with their corresponding datasets shown above. All datasets apart from (b) give Model 4 as the best-
fitting model, where (b) gives Model 2. These two best-fitting models are the only models that direct movement into woodland and away 
from the woodland edges

TA B L E  3   Best-fitting models, their parameter values and their Bayesian information criterion (BIC) scores for all of the datasets. The BIC 
values from each dataset can be compared with the other models which were tested using the last column in the table. The subscripts on 

the 2018–2019 datasets refer to the two datasets collected that season. We do not report a as its value does not affect the steady-state 

distribution u∗
i
(x)

Dataset

Best-fit 
Model

Number  
of flocks b γ δ ζ ω BIC

Difference in  
BIC from next 
best-fitting model

2010–2011 4 4 1.14 8.0 0.054 12.9 2.1 3,411 227

2011–2012 4 6 13.3 9.6 0.072 18.1 0.51 11,089 29

2012–2013 2 4 2.9 10.0 0.074 19.9 0.74 6,399 258

2018–20191 4 6 9.2 9.7 0.096 23.5 0.64 10,905 151

2018–20192 4 5 11.7 7.7 0.047 25.9 1.1 14,297 283
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relatedness, although visually there was not a dramatic improvement 
in the fit between predicted and observed ranges (Figure 4b–d), 
the extended model resulted in a reasonable improvement in BIC 
values (Table 4). More specifically, the results showed that smaller 
flocks avoided large flocks and large flocks were less likely to avoid 

small flocks while avoidance decreased as inter-flock relatedness in-

creased (Table 4). It should also be noted that these effects of kin-

ship and flock size on avoidance behaviour were not found when 

home ranges were analysed using KDE, a relatively simple statistical 
model (Worton, 1989; Appendix S7).

Finally, when considering the effect of a landscape-varying kine-

sis mechanism on the space use of the flocks, we find no improve-

ment in the model fit: indeed, the BIC values are larger when we 
include the effect of landscape on kinesis into the best-fit models 

from the study without such a kinesis effect (Table 5; Appendix S8). 
Furthermore, when fitting models where landscape only affects ki-
nesis and not advection, the fit is very poor compared with models 
with landscape-driven advection (Appendix S8).

4  | DISCUSSION

We have used MHRA (Moorcroft & Lewis, 2006) to show that mem-

ory of past conspecific interactions and movement towards wood-

land combine to model home range patterns of long-tailed tits with 

good accuracy (Figure 2). This study has extended the application of 
MHRA to non-breeding, non-territorial passerines, thereby showing 
that an understanding of space use patterns can be gained from this 

approach in the absence of either territorial scent-marking or advec-

tion towards a central place (Potts & Lewis, 2014).
Past research on the foraging behaviours of long-tailed tits sug-

gests that they are attracted to woodland (Gaston, 1973). This idea 
agrees visually with the location data shown in Figures 2a and 3. 
Our best-fit model, Model 4, also suggests that the flocks have a 
tendency to move from the edges of woodland towards the central 

parts of the woodland area. There are various possible reasons for 

this. One hypothesis is that core areas of woodland are better than 

edge habitats for avoidance of predators, as reported in several 

F I G U R E  4   Panel (a) shows the best-fitting model (Model 4) for the second 2018–2019 dataset (Figure 3d). Panels (b–d) show Model 
4 with α

ij
 defined in Equations 14–16, respectively. Although we see little change visually from the previous best-fitting model where 

α
ij
 = 1 (Panel [a]) there is a reasonable improvement in the Bayesian information criterion values (Table 4)

TA B L E  4   The extended version of Model 4, using Equations 14–16, with the second 2018–2019 dataset, their parameter values and 
their Bayesian information criterion (BIC) scores corresponding to Figure 4. The BIC values can be compared with the previous Model 4 
(BIC = 14,297) using the last column in the table

Model b γ δ ζ ω
M

σ1 σ2 σ3 BIC
Difference in BIC 
from Model 4

�1
��

14.4 7.8 0.050 25.8 1.9 0.068 — — 14,233 64

�2
��

11.8 7.8 0.048 25.9 1.2 — 0.088 1 14,248 48

�3
��

11.6 8.9 0.047 25.9 1.2 0.087 0.99 0.058 14,230 67

TA B L E  5   The version of Model 4 with kinesis, using Equations 18–20, with the 2011–2012 dataset, their parameter values and their 
Bayesian information criterion (BIC). The BIC values can be compared with the previous Model 4 (BIC = 11,089) using the last column in the 
table

Model b γ δ ζ ω
M

µ ψ BIC
Difference in BIC 
from Model 4

Φ
(1)

i
13.2 9.6 0.072 18.2 0.51 −0.00011 — 11,096 7

Φ
(2)

i
13.2 9.6 0.071 18.4 0.50 — 0.027 11,095 6

Φ
(3)

i
13.3 9.6 0.071 18.2 0.51 −0.000004 0.025 11,103 14
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taxa (e.g. Angkaew, Sankamethawee, Pierce, Savini, & Gale, 2019; 
Hansen, Sato, Michael, Lindenmayer, & Driscoll, 2019; Valentine, 
Apol, & Proppe, 2019). Conversely, other studies have reported 
the reverse pattern, with lower predation risk in edge habitats rel-
ative to core sites (e.g. Newmark & Stanley, 2011; Šálek, Kreisinger, 
Sedláček, & Albrecht, 2010) and a meta-analysis suggests little 
consistency across habitat types and landscapes (Vetter, Rücker, & 
Storch, 2013). We are currently investigating the effects of habitat 
types on nest predation rate, although their impact on survival of ju-

veniles and adults is much harder to quantify because of long-tailed 

tits’ extensive ranges that typically encompass both core and edge 
habitats. Alternatively, core areas of woodland may differ from pe-

ripheral areas in their food availability (e.g. Rosli, Zakaria, & Rajpar, 
2018; Terraube et al., 2016), thereby influencing forager movements. 
This possibility is also hard to test in long-tailed tits because of the 

difficulty of sampling food availability for a canopy-feeding general-

ist insectivore. Teasing apart these hypotheses would require new 

field studies, particularly tailored to this question. Thus, our results 
demonstrate the role of mechanistic modelling in determining po-

tentially fruitful ideas for future empirical research.

Our model also suggests that flocks avoid places they remem-

ber interacting with other flocks in the past. These interactions 

could be visual or vocal, and therefore may take place at a distance 
(incorporated in the averaging kernel, Equation 5). The memory 
capacity of small passerines is hard to test biologically as little is 

known about the cognitive abilities of small birds in general, regard-

less of species (Emery, 2006). However, the avoidance behaviour 
observed here would be very hard to explain without assuming 
some capacity for memory: to have an understanding of the spatial 

extent of the home range of a neighbouring flock (or even just the 
dividing boundary), birds would need to remember observations of 
past positions where they have detected the neighbouring flock, 
either through sight or sound. Without memory, birds would only 
be able to respond to the current location of a neighbouring flock, 
which is insufficient for explaining the observed spatial segrega-

tion. Mechanistic modelling, as exemplified in this work, can give a 
way of indirectly inferring the extent to which animals use memory, 
and such indirect inference is not without precedent (Avgar et al., 
2015; Fagan et al., 2013; Merkle, Fortin, & Morales, 2014; Merkle, 
Potts, & Fortin, 2017).

Although woodland and memory of past interactions affected 
advective movement, we found no measurable effect on diffusive 
movement (i.e. kinesis). This is in contrast with MHRA studies on 
coyote home ranges (Moorcroft & Lewis, 2006) where the diffusive 
aspect of movement was found to be highly dependent on prey 

density.

Although the central aim of our study was to select between 
models, it is also worth commenting briefly on the parameter val-
ues of the best-fit models, as they can give some additional insight. 
Looking at Table 3, the first thing to notice is that, of the four data-

sets where Model 4 is the best-fit model, there is not a great amount 
of variation between seasons in γ (7.7–10) which controls the advec-

tion away from the IZ, ζ (12.9–25.9) which controls the advection 

towards central woodland, or δ (0.047–0.096) which is the birds per-
ceptual radius. However, there is a large variation in b (1.14–13.3), 
the parameter controlling the decrease in the IZ due to safe visits, 
across seasons. The outlier is the 2010–2011 season (b = 1.14). 
Here, there were fewer flocks than in other seasons, so we hypoth-

esize this might have affected the best-fit value of b. The reason for 

this is that the first term on the right-hand side of Equation 9 is a 
sum that increases with the number of flocks. Thus, one would ex-

pect the best-fit value of b to increase with the number of flocks in 

the study. While this is unlikely to account for all of the variation, it 
perhaps gives a partial explanation for this anomaly. It is also inter-
esting to note that the mean value of δ, when converted into metres 
is 81 m. This means that our models suggest birds are, on average, 
considering an area with a radius of 81 m around their present loca-

tion when making movement decisions. Here, for simplicity, we have 
assumed that perception is a binary quantity: perceived within the 

δ-disc and not perceived outside this disc. However, it would also be 
possible to consider other non-local formalisms, such as exponential 
decay (Avgar et al., 2015).

Aside from avoidance of other flocks and attraction to wood-

land, we have also shown that movement decisions in response to 
adjacent flocks depend on the relatedness between the two flocks. 

We saw a negative relationship between avoidance mechanisms and 
flocks with more kin-connections. Other things being equal, one 
would expect this to cause a positive relationship between home 
range overlap and kinship, a phenomenon observed in long-tailed 
tits (Hatchwell et al., 2001), as well as in several other taxa, including 
mammals (Sera & Gaines, 1994; Støen et al., 2005; Walker, Taylor, 
& Sunnucks, 2008), lizards (While, Uller, & Wapstra, 2009) and fish 
(Griffiths & Armstrong, 2002). Our study thus reveals plausible 
mechanisms behind such observations.

Our results also suggest that the relative size of each flock has 

an effect on their movement away from other flocks. Specifically, 
smaller flocks were less likely to move to places where they had in-

teracted with larger flocks in the past and larger flocks were less 

likely to avoid places where they had encountered smaller flocks, 
suggesting greater avoidance of larger flocks. This effect of group 

size on the use or avoidance of overlapping ranges of adjacent so-

cial groups appears to be very unusual among social vertebrates and 

we are not aware of any equivalent findings, presumably because 
social species typically defend exclusive territories. However, this 
situation is captured in the theoretical models of ‘battle dynamics’ 
between social insect colonies, where the outcome of conflicts over 
space may be determined by relative colony size (Adams & Plowes, 
2019; Adler, Quinonez, Plowes, & Adams, 2018). Testing avoidance 
of larger flocks directly would require analysis of synchronous ob-

servations of many flocks, which is a difficult task for field work. 
MHRA provides a way of making such inferences with much less 
data, providing there is sufficient data to capture the home range.

The question of why flocks may benefit from avoiding one an-

other remains open. One possibility is that it is related to avoid-

ance of antagonistic social interactions (Sharp, McGowan, Wood, & 
Hatchwell, 2005). Although long-tailed tits do not defend territories 
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and escalated conflicts are observed very rarely, simulated intru-

sions of individuals into flocks using playback experiments result 
in brief bouts of aggression that could deter interactions (Napper 

& Hatchwell, 2016). This would be consistent with the extended 
version of Model 4, which found that small flocks were more likely 
to avoid large flocks and large flocks were less likely to avoid small 

flocks. A second hypothesis is that separation into flocks with segre-

gated space use is an anti-predator tactic, with flocks avoiding each 
other to prevent total flock size exceeding some optimum at which 
the benefits of group-living are maximized (Pulliam & Caraco, 1984). 
A final explanation concerns the social benefit of flocking with a con-

sistent set of conspecifics. Long-tailed tits are cooperative breed-

ers in which helping behaviour is kin-selected (Hatchwell, Gullett, & 
Adams, 2014), with helpers exhibiting a strong kin preference in their 
helping behaviour (Leedale, Sharp, Simeoni, Robinson, & Hatchwell, 
2018; Russell & Hatchwell, 2001). Kin recognition is achieved 
through association using learned vocal cues (Sharp et al., 2005) 
and helping decisions are also influenced by association during the 

non-breeding season (Napper & Hatchwell, 2016). Therefore, there 
are substantial fitness benefits to be gained by maintaining contacts 

with relatives during the winter, and perhaps also by avoiding dilu-

tion of those associations by frequent interaction with non-kin in 

other flocks. The effect of inter-flock relatedness on movement de-

cisions revealed by the extension of Model 4 using 2018–2019 data 
is consistent with this explanation.

Further ecological factors which limit the population densities of 
long-tailed tits are yet to be conclusively understood. Weather ef-
fects are known to influence the survival of the birds (Gullett, Evans, 
Robinson, & Hatchwell, 2014), with a stronger effect in the breeding 
season where wetter and colder weather reduces annual survival, in-

dicating that the birds benefit from the warming climate. Moreover, 
a demographic study on several passerines, including this popula-

tion of long-tailed tits, indicates that at population densities close to 
the carrying capacity there is density dependence in mortality and 

that at lower densities the population equilibrium is more influenced 

by stochastic environmental variation driving recruitment (Sæther 

et al., 2016).
A key advantage of MHRA for studying home range patterns is 

that it allows users to reveal the behavioural decisions that can lead 

to the observed space use patterns. This is in contrast with statistical 

models, such as MCP or KDE, that only give descriptors of the home 
range. More recent efforts have sought to incorporate some aspects 

of movement into home range analysis. For example, the Brownian 
bridge (Horne, Garton, Krone, & Lewis, 2007), which interpolates be-

tween successive locations by assuming Brownian movement. This 
has been extended in various ways, such as the biased Brownian 
bridge (Benhamou, 2011), which incorporates advective movement 
into the Brownian motion. Since the MHRA models studied here 
are based on an advection–diffusion equation, which describes the 
probability distribution of a biased Brownian motion, it would be nat-
ural to incorporate mechanistic modelling into the biased Brownian 
bridge formalism. This would enable researchers to incorporate be-

haviourally informed interpolations of space use between successive 

location fixes into biased Brownian bridges, leading to more accurate 
estimations of space use.

Here, we have demonstrated how MHRA can reveal specific 
behaviours that affect movement decisions and space use pat-

terns in long-tailed tits. However, the method is quite flexible, and 
various hypotheses on the drivers of space use can be tested, in 
principle, by altering the advection term in the model (Equation 1). 
For example, if individuals do not use space exclusively, such as 
in polar bears Ursus maritimus (Ferguson, Taylor, Born, Rosing-
Asvid, & Messier, 1999) and vultures (Coleman & Fraser, 1989), 
one would alter the advection term to include movement drivers 

which do not describe avoidance of other individuals of the same 

species, instead incorporating advection towards prey or desirable 
environment. Vultures use a central place which depends upon age 

so this would mean the advection term would include an attrac-

tion towards the central place, with the attraction parameter de-

pendent on age. That said, some species have a similar correlation 
between relatedness and home range structure to long-tailed tits, 
despite being of rather different taxonomies, for example, bottle-

nose dolphins Tursiops truncatus (Frère et al., 2010) and giraffes 
Giraffa camelopardalis (Carter, Seddon, Frère, Carter, & Goldizen, 
2013). Therefore, the models one might use in those cases may be 
very similar to the ones used here.

In summary, our finding that kinship influences space use is con-

sistent with previous statistical home range analysis of our long-

tailed tit population (Hatchwell et al., 2001; Napper & Hatchwell, 
2016), but here we have provided new insight into the avoidance 
mechanism from which these space use patterns emerge. Our study 

has also uncovered further drivers of space use, showing that (a) the 
distance from the woodland edge influences movement, (b) there 
is a memory-based avoidance mechanism between flocks and (c) 
flock size influences inter-flock movement decisions. More broadly, 
MHRA has potential to provide a wealth of understanding of driv-

ers of movement and home range use of animal species. This study 

extends the usage of MHRA beyond scent-marking, central-place 
foragers and paves the way to understand the behaviours of a whole 

new range of taxa.
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