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Limitations of entropic inequalities for detecting nonclassicality

in the postselected Bell causal structure

V. Vilasini* and Roger Colbeck†

Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom

(Received 6 December 2019; accepted 16 June 2020; published 17 July 2020)

Classical and quantum physics impose different constraints on the joint probability distributions of observed
variables in a causal structure. These differences mean that certain correlations can be certified as nonclassical,
which has both foundational and practical importance. Rather than working with the probability distribution
itself, it can instead be convenient to work with the entropies of the observed variables. In the Bell causal structure
with two inputs and outputs per party, a technique that uses entropic inequalities is known that can always identify
nonclassical correlations. Here we consider the analog of this technique in the generalization of this scenario to
more outcomes. We identify a family of nonclassical correlations in the Bell scenario with two inputs and three
outputs per party whose nonclassicality cannot be detected through the direct analog of the previous technique.
We also show that use of Tsallis entropy instead of Shannon entropy does not help in this case. Furthermore,
we give evidence that natural extensions of the technique also do not help. More precisely, our evidence
suggests that even if we allow the observed correlations to be postprocessed according to a natural class of
nonclassicality nongenerating operations, entropic inequalities for either the Shannon or Tsallis entropies cannot
detect the nonclassicality, and hence that entropic inequalities are generally not sufficient to detect nonclassicality
in the Bell causal structure.

In addition, for the bipartite Bell scenario with two inputs and three outputs we find the vertex description
of the polytope of nonsignalling distributions that satisfy all of the CHSH-type inequalities, which is one of the
main regions of investigation in this work.

DOI: 10.1103/PhysRevResearch.2.033096

I. INTRODUCTION

Causal structures are a useful tool for understanding cor-
relations between observed events. Such correlations may be
mediated by an influence traveling from one to the other,
or come about due to common causes, which may not be
observed. The nature of any unobserved causes depends on the
theory being considered. For instance, they may be classical,
quantum or from a generalized probabilistic theory (GPT) [1],
and the kinds of observed correlations that are possible in
general depends on this. At the foundational level, studying
the differences gives us insight into how the notion of causal-
ity differs between theories, while, on a practical level, these
differences are crucial for applications in device-independent
cryptography [2–7].

One way to establish a difference is to violate a Bell

inequality [8], where we use the term to mean a necessary
condition on the observed correlations when any unobserved
systems are classical. Bell inequalities are often introduced
using the (bipartite) Bell causal structure [see Fig. 1(a)]. Here
there are four observed variables: A and B corresponding to
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the inputs of each party, and X and Y corresponding to the
outputs. In the case that the numbers of possible inputs are iA
and iB and likewise the number of possible outputs are oA and
oB, we call the scenario the (iA, iB, oA, oB) Bell scenario. For
the (2,2,2,2) case, the CHSH inequalities [9] are known to be
the only class of Bell inequalities required to completely char-
acterize the scenario (i.e., all extremal 2-setting, 2-outcome
Bell inequalities are equivalent to the CHSH inequalities up
to symmetry). In the (2,2,3,3) scenario, which will be the
main focus of this paper, there is only one new class of Bell
inequalities inequivalent to CHSH, the I2233 class [10,11]. In
other words, given a no-signalling distribution for the (2,2,3,3)
scenario, the distribution is local if and only if all the CHSH
and I2233 inequalities hold.

As iA, iB, oA, and oB increase, many new classes of ex-
tremal Bell inequalities are found and these scenarios quickly
become difficult to fully characterize [12–15]. One attempt
at avoiding this difficulty is to move away from probability
space to instead consider inequalities expressed in terms of the
entropies of the variables involved. There are two ways that
these can be used: either directly using the causal structure
under consideration, or by using the postselection technique
in which the original causal structure is first modified (more
details can be found later in this paper). Braunstein and
Caves [16] were the first to derive an entropic Bell inequality.
They considered the postselected version of the Bell causal
structure shown in Fig. 1(b) and found entropic inequalities
that hold for all classical distributions. These can be violated
when one or more of the unobserved nodes are quantum, and
hence behave like entropic versions of Bell inequalities.

2643-1564/2020/2(3)/033096(16) 033096-1 Published by the American Physical Society
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FIG. 1. (a) The bipartite Bell causal structure. The nodes A and
B represent the random variables corresponding to independently
chosen inputs, while X and Y represent the random variables cor-
responding to the outputs. � is an unobserved node representing the
common cause of X and Y . (b) The postselected Bell causal structure
for two parties. The observed nodes Xa represent the outputs when
the input is a ∈ {0, 1} and likewise for Yb. Note that X0 and X1 are
never simultaneously observed and likewise Y0 and Y1.

Although entropic inequalities can be useful as a way
to detect nonclassicality, the entropic approach has several
disadvantages. For instance, in the bipartite Bell causal struc-
ture without postselection the set of achievable Shannon en-
tropies over the observed variables for classical and quantum
causes coincide [17], so without postselecting, nonclassicality
cannot be detected through entropic Bell inequalities in this
case. The use of other entropic measures such as Tsallis en-
tropies to analyze this problem in the absence of postselection
has also been shown to have limitations [18] and no quantum
violations are known for the entropic Bell inequalities derived
in Ref. [18]. Because of this, we focus on postselected causal
structures in this paper.

It is natural to ask whether the nonclassicality of a distri-
bution can always be detected through postselected entropic
inequalities. For the (d, d, 2, 2) Bell scenarios with d � 2,
this is known to be the case [19] in the following sense.
For every nonclassical distribution in the (d, d, 2, 2) Bell
scenario, there is a transformation that does not make any
classical distribution nonclassical, and such that the resulting
distribution violates one of the BC entropic inequalities. The
main purpose of this work is to investigate whether a similar
result holds for nonbinary outcomes. To do so, we need to
specify a class of postprocessing operations. The most general
operations that we could consider are the nonclassicality

nongenerating (NCNG) operations, i.e., those that do not map
any classical distribution to a nonclassical one. An interesting
subset of these is the class of postprocessings achievable
through local operations and shared randomness (LOSR),
which are physical in the sense that two separated parties
with shared randomness could perform them.1 Because of
the difficulty of dealing with arbitrary NCNG operations, for
the majority of our analysis we consider LOSR supplemented
with the additional (NCNG) operation where the parties are
exchanged (and convex combinations). We use LOSR + E to
refer to this supplemented set.

We study the (2,2,3,3) Bell scenario with LOSR + E post-
processing operations, to see whether when applied to any

1In general, NCNG operations used on the correlations prior to
evaluating an entropic inequality need not be physical in this sense.

nonclassical distribution the result violates an entropic Bell
inequality. We investigate this using both Shannon and Tsallis
entropies. Our motivation for considering Tsallis entropies
is that they are known to provide an advantage over the
Shannon entropy in detecting nonclassicality in the absence
of postprocessing [20] in the sense that there are nonclassical
distributions that violate Tsallis entropic inequalities but not
the analogous Shannon-entropic inequality. In the (2,2,2,2)
case, however, due to the result of Ref. [19], this advantage
is less apparent when postprocessings are considered. It is
unclear whether or not this is also the case for the (2,2,3,3)
scenario, and hence we consider Tsallis entropies in this work.

The result of Ref. [19] that Shannon inequalities can al-
ways be used in the case that CHSH is violated readily extends
to the (2,2,3,3) scenario (cf. corollary 3). Thus of most interest
to us is the region containing nonclassical distributions that
satisfy all the CHSH-type inequalities. After finding the vertex
description of this region, we show that some distributions
in this region violate entropic inequalities and conjecture that
there are others that cannot violate either Shannon or Tsallis
entropic inequalities after processing with LOSR + E. For our
conjecture, we consider a class of isotropic nonclassical distri-
butions in the (2,2,3,3) scenario and give numerical evidence
that arbitrary Shannon entropic inequalities and a class of
Tsallis entropic inequalities cannot detect the nonclassicality
of these distributions under any processing with LOSR + E.
If correct, our conjecture implies that the method of Ref. [19]
for the (2,2,2,2) scenario does not work for all nonclassical
distributions in the (2,2,3,3) scenario. That said, it remains a
useful technique in many cases.

The structure of the remainder of the paper is as follows.
After introducing our notation and reviewing some existing
work in Sec. II, we proceed to investigate the (2,2,3,3) sce-
nario. We present new results for this scenario in probability
space (Sec. III) as well as in entropy space (Sec. IV). Finally,
in Sec. V, we conclude and discuss some open questions.
These results, along with those of Refs. [17,18], highlight
some of the limitations of the entropic approach to analyzing
causal structures.

II. PRELIMINARIES

A. Probability distributions and entropy

We begin with some notation. Given a conditional prob-
ability distribution pXY |AB, where A, B, X , and Y have car-
dinalities iA, iB, oA, and oB, respectively, we can express the
distribution using a matrix. For instance, in the case where all
the variables take values in {0, 1} and using p(xy|ab) as an
abbreviation for pXY |AB(xy|ab), this is done as

pXY |AB =

p(00|00) p(01|00) p(00|01) p(01|01)
p(10|00) p(11|00) p(10|01) p(11|01)
p(00|10) p(01|10) p(00|11) p(01|11)
p(10|10) p(11|10) p(10|11) p(11|11)

(1)

and the generalization to larger alphabets is analogous (see,
e.g., Ref. [21]). This format is convenient because it makes
it easy to check whether a distribution is no-signalling, i.e.,
to check that pX |AB is independent of B and that pY |AB is
independent of A.
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In a given scenario, we will be interested in the set of
distributions that are nonsignalling, and the set of classical
(local) distributions. These sets form convex polytopes that
are highly symmetric. In particular, such polytopes are in-
variant under local relabellings and/or relabelling parties.
By local relabellings we mean combinations of relabelling
the inputs (e.g., A �→ A ⊕ 1) and outputs conditioned on the
local input (e.g., X �→ X ⊕ αA ⊕ β where α, β ∈ {0, 1} and
⊕ denotes modulo-2 addition). One might also think about
more general global relabellings that depend on both inputs
(for instance maps of the form X �→ X ⊕ αA ⊕ βB ⊕ γ with
α, β, γ ∈ {0, 1}), but these do not preserve the no-signalling
set in general so will not be considered here. The only global
relabelling we consider is exchange of the two parties, which
corresponds to transposing the distribution in the matrix nota-
tion of Eq. (1) and always preserves no-signalling.

Given a random variable X , distributed according to the
discrete probability distribution px := pX (x) the Shannon en-
tropy is defined by2 H (X ) = −

∑

{x:px>0} px ln px. Given two
random variables, X and Y , the conditional Shannon entropy
is defined by H (X |Y ) = −

∑

{xy:pxy>0} pxy ln px|y. The follow-
ing properties hold: (P1) monotonicity: H (X ) � H (XY ); (P2)
strong-subadditivity: H (XY ) + H (Y Z ) � H (XY Z ) + H (Y );
and (P3) chain rule: H (X |Y ) = H (XY ) − H (Y ).

The order q Tsallis entropy of X for a real parameter q is
defined as [23]

Sq(X ) =

{

−
∑

{x:px>0} p
q
x lnq px q �= 1

H (X ) q = 1
. (2)

In this expression, we have used the q-logarithm function

lnq px =
p

1−q
x −1
1−q

, which converges to the natural logarithm
function as q → 1. This means that lim

q→1
Sq(X ) = H (X ) and

hence that Sq(X ) is continuous in q. We henceforth write
∑

x instead of
∑

{x:px>0} with the implicit understanding that
probability zero events are excluded from the sum.

The Tsallis entropies for q � 1 satisfy many of the same
properties as the Shannon entropy. In particular, monotonicity,
strong subadditivity and chain rule all hold for Tsallis en-
tropies for all q � 1 [24,25], making these polymatroids like
the Shannon entropy.

B. Causal structures

The relationships between different variables of interest
can be conveniently expressed as a causal structure. This is
a directed acyclic graph (DAG) where the observed variables
are nodes, and there may be additional nodes representing
unobserved systems. Given such a causal structure, we dis-
tinguish the cases where the hidden systems are classical,
quantum or are from some generalized probabilistic theory.
For every classical causal structure that has at least one
parentless observed node, a postselected causal structure can
be defined. The general technique for doing this can be found
in Ref. [26] (for example).

2Note that we choose to use the natural logarithm in this work, in
contrast to the usual choice of using base 2, in order to make the
relation to the Tsallis entropy more straightforward.

In this work we will only consider the Bell causal structure
with two inputs per party and the postselected version thereof
(see Fig. 1). The postselected causal structure is obtained
by removing the parentless observed nodes A and B in the
original causal structure 1(a) and replacing the descendants X

and Y with two copies of each i.e., XA=0, XA=1, YB=0, YB=0

such that the original causal relations are preserved and there
is no mixing between the copies [this is shown in Fig. 1(b)]. It
makes sense to do this in the classical case because classical
information can be copied, so we can simultaneously consider
the outcome X given A = 0 and that given A = 1. By contrast,
in the quantum case the values of A correspond to different
measurements that are used to generate X , and the associated
variables XA=0 and XA=1 may not co-exist. It hence does not
make sense to consider a joint distribution over XA=0 and XA=1

in this case. We therefore only consider the subsets of the
observed variables that co-exist

S := {X0, X1, Y0, Y1, X0Y0, X0Y1, X1Y0, X1Y1}, (3)

where we use the short form X0Y0 for the set {X0,Y0} etc. Any
nontrivial inequalities derived for the co-existing sets in the
classical case can admit quantum or GPT violations.

C. The (2,2,2,2) Bell scenario in probability space

For the bipartite Bell causal structure of Fig. 1(a), the set
of all observed distributions pXY |AB that can arise when � is
classical corresponds to the set of correlations that admit a
local hidden variable model, i.e., the set of distributions that
have the form

pXY |AB =

∫

�

d� p� pA pB pX |A� pY |B�. (4)

In this work, we will refer to such correlations either as local

or as classical and denote the set of all such distributions L.
We also use L(2,2,2,2) to denote the local distributions in the
(2,2,2,2) case (and analogously for other cases).

The set of local correlations form a convex polytope, which
can be specified in terms of a finite set of Bell inequalities,
each a necessary condition for classicality. In the (2,2,2,2)
case, there are eight extremal Bell inequalities (facets of the
local polytope). One of these has the form

ICHSH := p(X = Y |A = 0, B = 0) + p(X = Y |A = 0, B = 1)

+ p(X = Y |A = 1, B = 0)

+ p(X �= Y |A = 1, B = 1) � 3 (5)

and the other seven are equivalent under local relabellings
[21]. We denote these by Ik

CHSH for k ∈ [8], where I1
CHSH :=

ICHSH and [n] stands for the set {1, 2, . . . , n}, where n is a
positive integer. This provides the facet description of the
(2,2,2,2) local polytope. One can also express ICHSH in matrix
form using

MCHSH =

1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

, (6)

so that the Bell inequality can be written tr(MT
CHSHP) � 3,

where P is the matrix form of the distribution and T denotes
the transpose.
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In the vertex picture, the (2,2,2,2) local polytope has 16
local deterministic vertices and the (2,2,2,2) nonsignalling
polytope shares the vertices of the local polytope and has
eight more: the Popescu-Rohrlich (PR) box and seven distinct
local relabellings [21,22]. The PR box distribution satisfies
X ⊕ Y = A.B and has the form

pPR =

1
2 0 1

2 0

0 1
2 0 1

2

1
2 0 0 1

2
0 1

2
1
2 0

. (7)

We denote the eight extremal nonsignalling vertices equiv-
alent under local relabellings to pPR by pk

PR, k ∈ [8] where
p1

PR := pPR. Note that the eight CHSH inequalities {Ik
CHSH}

are in one-to-one correspondence with these eight extremal
nonsignalling points i.e., each pk

PR violates exactly one CHSH
inequality and each CHSH inequality is violated by exactly
one pk

PR.

D. Entropic inequalities and postselection

In Ref. [16], Braunstein and Caves derived a set of con-
straints on the postselected causal structure of Fig. 1(b) and
showed that these constraints can be violated by quantum
correlations. To discuss these we introduce the notion of
entropic classicality. For every distribution pXY |AB in the Bell
causal structure [Fig. 1(a)], we can associate an entropy vector
v ∈ R

8 in the postselected causal structure [Fig. 1(b)] whose
components are the Shannon entropies of each element of the
set S [Eq. (3)] distributed according to pXaYb

:= pXY |A=a,B=b.
Let H be the map that takes the observed distribution to its cor-
responding entropy vector in the postselected causal structure.

Definition 1. (Entropic classicality) An entropy vector v ∈

R
8 is classical with respect to the bipartite Bell causal struc-

ture [Fig. 1(a)] if there exists a classical distribution pXY |AB ∈

L such that H(pXY |AB) = v. Further, a distribution pXY |AB is
entropically classical if there exists a classical distribution
with the same entropy vector, i.e., if there exists a classical
entropy vector v such that H(pXY |AB) = v.

The set of all classical entropy vectors forms a convex
cone. The distribution pPR [Eq. (7)] is an example of a
nonclassical distribution that is entropically classical (see
Sec. II E).

We now review how the Braunstein-Caves (BC) inequal-
ities are derived for the case when the observed parentless
nodes A and B are binary. In this case, the postselected
causal structure 1(b) imposes no additional constraints on the
distribution (or entropies) of the observed nodes X0, X1, Y0,
and Y1 because they share a common parent and thus any joint
distribution over X0, X1, Y0, and Y1 can be realized in the causal
structure 1(b). By contrast, any correlations in the original
causal structure 1(a) must obey the no-signalling constraints
over the observed nodes A, B, X , and Y since A does not
influence Y and B does not influence X in this causal structure.
The inequalities derived by Braunstein and Caves follow by
applying properties P1–P3 to the variables {X0, X1,Y0,Y1}.
The derived relations hold for the classical causal structure
(and not necessarily for the quantum and GPT cases) because
only in the classical case does it make sense to consider a
joint distribution over these four variables that in the quantum
and GPT cases do not co-exist (cf. Sec. II B). It is worth
remarking that without postselection, no quantum-violatable
entropic constraints exist for this causal structure [17]. The
BC inequalities are entropic Bell inequalities i.e., they hold
for every classical entropy vector in the postselected causal
structure 1(b). There are four BC inequalities

I1
BC := H (X0Y0) + H (X1) + H (Y1) − H (X0Y1) − H (X1Y0) − H (X1Y1) � 0,

I2
BC := H (X0Y1) + H (X1) + H (Y0) − H (X0Y0) − H (X1Y0) − H (X1Y1) � 0,

I3
BC := H (X1Y0) + H (X0) + H (Y1) − H (X0Y0) − H (X0Y1) − H (X1Y1) � 0,

I4
BC := H (X1Y1) + H (X0) + H (Y0) − H (X0Y0) − H (X0Y1) − H (X1Y0) � 0.

(8)

It has been shown in Ref. [27] that these four inequalities are
complete in the following sense (the lemma below is implied
by corollary V.3 in Ref. [27]).

Lemma 1. A distribution in the postselected Bell scenario
with binary A and B is entropically classical if and only if it
satisfies the four BC inequalities (8).

It turns out that in the (2,2,2,2) Bell scenario, nonclassical
distributions that do not violate the BC inequalities can be
made to do so with some additional postprocessing, as shown
in Ref. [19]. We review this result below before analyzing the
same question in the (2,2,3,3) scenario.

E. Detecting nonclassicality in the (2,2,2,2) Bell scenario

in entropy space

The current section summarizes the relevant results of
Ref. [19] regarding the sufficiency of entropic inequalities in
the (2,2,2,2) scenario. As previously mentioned, it is possible

for a nonclassical distribution to have the same entropy vector
as a classical one and hence to be entropically classical. For
example, the maximally nonclassical distribution in probabil-
ity space, pPR [Eq. (7)] is entropically classical since it has the
same entropy vector as the classical distribution

pC =

1
2 0 1

2 0

0 1
2 0 1

2
1
2 0 1

2 0
0 1

2 0 1
2

(9)

and hence cannot violate any of the BC inequalities.3 How-
ever, the distribution 1

2 pPR + 1
2 pC maximally violates I4

BC � 0

3 pPR and pC are related by a permutation of the entries in the
bottom right 2 × 2 block and entropies are invariant under such
permutations.
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attaining a value of ln 2. That convex mixtures of nonviolating
distributions can lead to a violation is due to the fact that
entropic inequalities are nonlinear in the underlying proba-
bilities (in contrast to the facet Bell inequalities in probability
space).

In Ref. [19], it was shown that such a procedure is possible
for every nonclassical distribution in the (d, d, 2, 2) Bell sce-
nario with d � 2 i.e., for every such distribution, there exists
an LOSR transformation such that the resultant distribution
violates a Shannon entropic BC inequality (8). Thus nonclas-
sicality can be detected in this scenario by processing the
observed correlations (in a way that cannot generate nonclas-
sicality) before using a BC entropic inequality on the result.
In this sense the BC entropic inequalities provide a necessary
and sufficient test for nonclassicality in these scenarios.

In more detail, for the (2,2,2,2) case, this works as follows.
First, one defines a special class of distributions, isotropic

distributions, as follows for some k ∈ [8] and ǫ ∈ [0, 1].

pk
iso = ǫpk

PR + (1 − ǫ)pnoise, (10)

where pnoise is white noise i.e., the distribution with all entries
equal to 1/4. In the (2,2,2,2) Bell scenario the isotropic
distribution pk

iso is nonclassical if and only if ǫ > 1/2. The
LOSR transformation used in [19] involves first transform-
ing the observed distribution into an isotropic distribution
through a local depolarization procedure that cannot generate
nonclassicality. Second, it is shown that for any nonclassical
isotropic distribution i.e., a pk

iso with ǫ > 1/2, there exists
a classical distribution pk

C such that the distribution pk
E,v =

vpk
iso + (1 − v)pk

C violates one of the BC entropic inequalities
for sufficiently small v > 0. In particular, the value of Ik

BC for
pk

E,v can be expanded for small v as

Ik
BC ≈

v

ln 4
[ f (ǫ) − (4ǫ − 2) ln v], (11)

where f (ǫ) is a function of ǫ, independent of v (see [19] for
details). Thus, for any ǫ > 1/2, the corresponding isotropic
distributions are nonclassical and taking v arbitrarily small
can make Ik

BC positive which is a violation of the entropic
inequality. We summarize the main result of Ref. [19] for
(2,2,2,2) Bell scenarios in the following theorem (which is
implicit in Ref. [19]).

Theorem 2. For every nonclassical distribution, pXY |AB in
the (2,2,2,2) Bell scenario, there exists an LOSR transforma-
tion T , such that T (pXY |AB) violates one of the BC entropic
inequalities (8).

One of the aims of the present paper is to study whether
this result extends to the case where the number of outcomes
per party is more than two. In general, the (2, 2, d, d ) Bell
polytope for d > 2 has new, distinct classes of Bell inequali-
ties and extremal nonsignalling vertices other than the CHSH
inequalities and the PR boxes. In the following, we analyze
this problem for the d = 3 case, for which it is helpful to first
describe the (2,2,3,3) scenario in probability space.

F. The (2,2,3,3) Bell scenario in probability space

In the (2,2,3,3) Bell scenario, there are two classes of Bell
inequalities that completely characterize the local polytope:
the CHSH inequalities and the I2233 inequalities [10,11] of

which a representative example is

I2233 := [p(X = Y |A = 0, B = 1)

+ p(X = Y − 1|A = 1, B = 1)

+ p(X = Y |A = 1, B = 0)

+ p(X = Y |A = 0, B = 0)]

− [p(X = Y − 1|X = 0, B = 1)

+ p(X = Y |A = 1, B = 1)

+ p(X = Y − 1|A = 1, B = 0)

+ p(X = Y + 1|A = 0, B = 0)] � 2 (12)

where all the random variables take values in {0, 1, 2} and all
additions and subtractions of the random variables are modulo
3. In matrix form a representative CHSH-type inequality and
I2233 are

M
(2,2,3,3)
CHSH =

1 0 0 1 0 0
0 1 1 0 1 1
0 1 1 0 1 1
1 0 0 0 1 1
0 1 1 1 0 0
0 1 1 1 0 0

and

MI2233 =

1 0 −1 1 −1 0
−1 1 0 0 1 −1

0 −1 1 −1 0 1
1 −1 0 −1 1 0
0 1 −1 0 −1 1

−1 0 1 1 0 −1

. (13)

The (2,2,3,3) local polytope has a total of 1116 facets, 36
of which correspond to positivity constraints, 648 to CHSH
facets (these are equivalent to first coarse-graining two of the
outputs into one (for each party and each input) and then
applying one of the eight (2,2,2,2) CHSH inequalities4), and
the remaining 432 are I2233-type [28] (we label these I i

2233 for
i ∈ {1, 2, . . . , 432} with I1

2233 = I2233).
The facets of the no-signalling polytope correspond to

positivity constraints. Converting this facet description to
the vertex description (e.g., using the PORTA software [29])
one can obtain all the vertices of the (2,2,3,3) nonsignalling
polytope. This comprises 81 local deterministic vertices, 648
PR-box type vertices, and 432 extremal nonsignalling vertices
(for each of the I2233 inequalities there is one of the latter that
gives maximal violation). We call these new vertices the I2233

vertices. The specific vertex that maximally violates (12) is

pNL :=

1
3 0 0 1

3 0 0

0 1
3 0 0 1

3 0
0 0 1

3 0 0 1
3

1
3 0 0 0 1

3 0
0 1

3 0 0 0 1
3

0 0 1
3

1
3 0 0

(14)

4For instance, evaluating the CHSH-type inequality represented by
M

(2,2,3,3)
CHSH is equivalent to coarse graining the distribution by always

mapping outcomes 1 and 2 to 1 and then evaluating MCHSH (6).
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The 432 I2233 vertices of the (2,2,3,3) nonsignalling poly-
tope are related to each other through local relabellings.

III. RESULTS 1: THE (2,2,3,3) SCENARIO IN

PROBABILITY SPACE

In this section, we compute the vertex description of the
CHSH-classical polytope, �

(2,2,3,3)
CHSH , i.e., the polytope whose

facets are the 648 CHSH inequalities and the positivity
constraints. As previously mentioned, this will be the main
region of interest in the remainder of this work since the
nonclassicality of distributions not belonging to this region
can always be certified using Shannon-entropic inequalities
(corollary 3). The following result allows us to significantly
speed up the vertex enumeration problem.

Proposition 1. Every nonclassical distribution in �
(2,2,3,3)
CHSH

violates only one I2233 inequality.
Proof. Let i ∈ {2, 3, . . . , 432} and consider the linear pro-

gram that maximizes the value of ǫ � 0 subject to there
existing a no-signalling distribution that (1) violates I1

2233 � 2
and I i

2233 � 2 by at least ǫ, i.e., I1
2233 − ǫ � 2 and I i

2233 − ǫ �

2; and (2) satisfies all CHSH-type inequalities.
We run over i ∈ {2, 3, . . . , 432} and check that in all cases

either the output of this linear program is ǫ = 0 (meaning
that the two I2233 inequalities can be jointly saturated but
not violated) or that the program is infeasible (the two I2233

inequalities cannot even be jointly saturated). By symmetry it
follows that no pair of I2233 inequalities can be simultaneously
violated when all the CHSH-type inequalities are satisfied. �

Note that in the (2,2,3,3) scenario there exist extremal
nonsignalling distributions that violate multiple Bell inequal-
ities. For example, the distributions pNL [Eq. (14)] and p∗

NL
[Eq. (18)] violate I2233 � 2 [cf. (12)] although only pNL

violates it maximally. By symmetry, pNL also violates another
I2233 inequality. In addition, pNL violates the CHSH-type in-
equality whose evaluation is equivalent to applying the output
coarse-graining 0 �→ 0, 1 �→ 1 and 2 �→ 1 for each party
and then evaluating (5). This is in contrast to the (2,2,2,2)
scenario where there is a one-to-one correspondence between
the extremal nonsignalling vertices and the CHSH inequalities
in the sense that each such vertex violates exactly one CHSH
inequality.5

Due to the symmetries, all the vertices of �
(2,2,3,3)
CHSH can be

enumerated by first finding all the vertices for which the I2233

inequality of Eq. (12) is saturated or violated i.e., I2233 � 2,
and taking the orbit of these vertices under local relabellings
and exchange of the parties. The vertex enumeration for this
case yields 47 extremal points of which 30 are the local deter-
ministic points that saturate I2233 � 2 and 17 are nonclassical
points that violate only this inequality. These are listed in
Table I. By applying all symmetries and removing duplicate
vertices we find that �

(2,2,3,3)
CHSH has 7425 vertices (including the

81 local deterministic vertices).

5Note that this correspondence breaks down in the (2,2,3,3) sce-
nario where it is possible for a CHSH-type vertex to violate multiple
CHSH-type inequalities (these correspond to the same 2-outcome
CHSH inequality after coarse-graining).

IV. RESULTS 2: THE (2,2,3,3) SCENARIO

IN ENTROPY SPACE

We now investigate whether entropic inequalities are nec-
essary and sufficient for nonclassicality in the (2,2,3,3) Bell
scenario. In (d, d, 2, 2) scenarios with d � 2, only 2d Shan-
non entropic inequalities are required for the Shannon en-
tropic characterization of the scenario [27,30]; in the (2,2,2,2),
these are the four inequalities of (8). It may at first seem
surprising that these can always be used to decide whether
a distribution is classical because the number of extremal Bell
inequalities grows very rapidly in d in the (d, d, 2, 2) scenario
[15], and deciding whether a distribution is classical is NP-
complete [31]. The reduction in the number of inequalities in
entropy space is compensated by the need to identify a suit-
able postprocessing operation (of which there are uncountably
many possibilities) in order to detect violations.

The first observation is a corollary of theorem 2.
Corollary 3. Let pXY |AB be a distribution in the (2,2,3,3)

Bell scenario that violates at least one CHSH-type inequal-
ity. Then there exists an LOSR transformation T , such that
T (pXY |AB) violates one of the BC entropic inequalities (8).

Proof. For each CHSH-type inequality in the (2,2,3,3)
scenario, there exists a coarse-graining in which two of the
outcomes are mapped to one (for each party and each input)
such that for any initial distribution in the (2,2,3,3) scenario
that violates the CHSH-type inequality the coarse-grained dis-
tribution violates one of the CHSH-inequalities in the (2,2,2,2)
scenario. Hence, for the given pXY |AB, after applying the
corresponding coarse-graining for the violated CHSH-type
inequality, followed by the LOSR operation from theorem 2,
we violate one of the BC entropic inequalities. �

This corollary means that we can limit our analysis to
�

(2,2,3,3)
CHSH , the polytope in which all the CHSH inequalities are

satisfied, and, in particular, the nonclassical region of this.
This is the region in which one of the I2233 inequalities is
violated.

In going from the (2,2,2,2) to (2,2,3,3) scenario, a new
class of inequalities (the I2233 inequalities) become relevant
in probability space but the entropic characterization remains
unchanged, since entropic inequalities do not depend on the
number of measurement outcomes. It is natural to ask whether
all nonclassical distributions in the (2,2,3,3) scenario that sat-
isfy all the CHSH inequalities cannot be certified entropically.
However, this is not the case as shown by the following
proposition.

Proposition 2. The polytope �
(2,2,3,3)
CHSH is not entropically

classical.
Proof. Consider the distribution

pe :=
1

50

21 0 0 21 0 0
0 2 0 1 1 0
11 0 16 0 1 26
31 0 0 20 1 10
1 1 0 1 0 1
0 1 16 1 1 15

. (15)

This is formed by mixing the nonlocal extremal point number
8 of �

(2,2,3,3)
CHSH (see Table I) with the three local deterministic

points 18, 26, and 47 with respective weights 1/10, 3/10, 1/5,
and 2/5, and hence is in �

(2,2,3,3)
CHSH . It achieves a I4

BC value
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FIG. 2. Plot of the I4
BC,q value as a function of the Tsallis param-

eter q for the distribution pe [Eq. (15)]. As seen from the plot, the
distribution violates the BC inequality I4

BC,q � 0 for q values between
1 (Shannon case) and just under 1.5 and the violation is maximum
in the Shannon case, indicating that it is preferable to use Shannon
rather than Tsallis entropies with q > 1 in this case.

of 0.0199733, in violation of I4
BC � 0, so is not entropically

classical. �

We remark that by mixing with more local deterministic
distributions and varying the weights, larger violations of
I4
BC � 0 can be found; the distribution pe used in the previous

proposition was chosen for its relative simplicity.
Interestingly, we find that the Shannon entropic BC in-

equalities appear to give the largest violation among the
Tsallis entropic inequalities for q � 1 when applied to pe.
This can be seen in Fig. 2.

In light of proposition 2, it is natural to ask whether the
nonclassicality of all distributions in �

(2,2,3,3)
CHSH can be detected

through entropic inequalities. We find numerical evidence
that suggests the contrary, i.e., that there are nonclassical
distributions in �

(2,2,3,3)
CHSH whose nonclassicality cannot be

detected through entropic inequalities using a general class
of postprocessing operations, and hence that these entropic
inequalities are not sufficient for detecting nonclassicality in
the (2,2,3,3) scenario. Before presenting these results, we
briefly overview the postprocessing operations considered in
this work.

A. Post-processing operations

In this paper, we study whether entropic inequalities can
always detect nonclassicality in the (2,2,3,3) Bell scenario. In
order to do so we could in principle consider applying any
NCNG operation to the distribution prior to evaluating the
entropic inequality. However, due to the difficulty in dealing
with arbitrary NCNG operations, we consider the subset of
these corresponding to LOSR + E instead. In Ref. [32], it
was shown that all LOSR operations can be generated by
convex combinations of local deterministic operations. These
can be thought of in the following way. Each party first does
a deterministic function on their input, uses the result as the
input to their device, then does a deterministic function on
their input and the output of their device to form the final
output. All such operations correspond to local relabellings
and local coarse-grainings. Note that deterministic classical

distributions can be formed as a special case of coarse-
graining (a local deterministic distribution is formed when
each party coarse-grains all of their outputs to one output for
each of their inputs). For the distributions we consider for
our main conjectures, it turns out that all the coarse-grainings
give rise to local distributions (cf. proposition 6), so, by
considering mixing with deterministic classical distributions,
local relabelling, and exchange of parties we can cover all
LOSR + E operations. We hence start by separately consid-
ering mixing with classical distributions, and then consider
relabelling and exchange of parties.

B. Mixing with classical distributions

Analogously to the (2,2,2,2) case, we can define a fam-
ily of distributions p

(2,2,3,3)
iso,ǫ = ǫpNL + (1 − ǫ)p

(2,2,3,3)
noise , where

p
(2,2,3,3)
noise is the uniform distribution with all entries equal to

1/9 and ǫ ∈ [0, 1]. This class of distributions is isotropic
in the sense that the marginal distributions are uniform for
each input of each party. In order to show the insufficiency
of entropic inequalities, one needs to identify at least one
nonclassical distribution whose nonclassicality cannot be de-
tected through entropic inequalities. We will discuss this for
the class p

(2,2,3,3)
iso,ǫ and only consider distributions of this form

in the rest of the paper. Further, without loss of generality,
we consider only the BC inequality I4

BC � 0 in what follows
(by symmetry all the arguments will also hold for isotropic
distributions corresponding to relabelled versions of pNL and
the corresponding BC inequalities).

1. Using Shannon entropy

In the entropic picture of the (2,2,3,3) scenario, the four
BC inequalities (8) still hold (these are valid independently of
the cardinality of the random variables). Again, analogously
to the (2,2,2,2) case, the maximally nonlocal distribution, pNL

has the same entropy vector as the classical distribution

p
(2,2,3,3)
C =

1
3 0 0 1

3 0 0

0 1
3 0 0 1

3 0
0 0 1

3 0 0 1
3

1
3 0 0 1

3 0 0
0 1

3 0 0 1
3 0

0 0 1
3 0 0 1

3

(16)

(amongst others). The distribution pNL is hence entropically
classical. However, in contrast to the (2,2,2,2) case, we have
evidence suggesting that there are values of ǫ for which
p

(2,2,3,3)
iso,ǫ is nonclassical, but such that the mixture vp

(2,2,3,3)
iso,ǫ +

(1 − v)pL is entropically classical for all classical distri-
butions pL and all v ∈ [0, 1], i.e., there exist nonclassical
distributions in the (2,2,3,3) scenario for which mixing with
classical distributions never gives rise to a nonclassical en-
tropy vector.

We begin by considering mixing p
(2,2,3,3)
iso,ǫ with p

(2,2,3,3)
C in

analogy with the treatment of the (2,2,2,2) case. Although we
have not fully proven this, from our numerics, this mixing
appears to be optimal in the sense that when it does not allow
for entropic violations, no other mixing can either. This allows
us to identify a range of ǫ for which the mixture p

(2,2,3,3)
iso,ǫ

is nonclassical, yet appears to remain entropically classical
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FIG. 3. The regions in the v-ǫ plane where the Shannon entropic inequality I4
BC,1 := I4

BC � 0 (blue), the Tsallis entropic inequality, I4
BC,q � 0

for q = 2 (orange) and q = 8 (red) are violated by the distributions (a) p
(2,2,3,3)
E,ǫ,v = vp

(2,2,3,3)
iso,ǫ + (1 − v)p

(2,2,3,3)
C (b) p̃

(2,2,3,3)
E,ǫ,v = v p̃

(2,2,3,3)
iso,ǫ + (1 −

v)p
(2,2,3,3)
C . Here, p

(2,2,3,3)
iso,ǫ = ǫpNL + (1 − ǫ)p

(2,2,3,3)
noise and p̃

(2,2,3,3)
iso,ǫ = ǫ(1/2pNL + 1/2p∗

NL ) + (1 − ǫ)p
(2,2,3,3)
noise . For both (a) and (b), I4

BC,q � 0 is
not violated when ǫ � 4/7 ≈ 0.5714 but for ǫ > 4/7, there is a violation of this inequality for a larger range of v values in the latter case, and
also for a larger range in the q = 2 case as compared to the other two cases.

even when mixed with arbitrary classical distributions. We
begin with two propositions whose proofs can be found in
Appendix C.

Proposition 3. p
(2,2,3,3)
iso,ǫ is nonclassical if and only if ǫ >

1/2. Further, for ǫ � 4/7, p
(2,2,3,3)
iso,ǫ satisfies all the CHSH-type

inequalities, while for ǫ > 4/7 it violates at least one CHSH-
type inequality.

By analogy with the (2,2,2,2) case, we consider the vio-
lation of I4

BC attainable by mixing p
(2,2,3,3)
iso,ǫ with p

(2,2,3,3)
C . We

find that for ǫ ∈ (1/2, 4/7], p
(2,2,3,3)
iso,ǫ is nonclassical but does

not violate any of the BC inequalities. As shown in the above
proposition, these distributions are in the CHSH-classical
polytope �

(2,2,3,3)
CHSH and hence lie in our region of interest.

Proposition 4. For ǫ � 4/7, p
(2,2,3,3)
E,ǫ,v = vp

(2,2,3,3)
iso,ǫ + (1 −

v)p
(2,2,3,3)
C does not violate any of the BC entropic inequalities

(8) for any v ∈ [0, 1]. However, for all ǫ > 4/7, there exists a
v ∈ [0, 1] such that the entropic inequality I4

BC � 0 is violated
by p

(2,2,3,3)
E,ǫ,v .

The second part of this proposition already follows from
corollary 3 and proposition 3.

Corollary 4. For ǫ � 4/7, p
(2,2,3,3)
E,ǫ,v = vp

(2,2,3,3)
iso,ǫ + (1 −

v)p
(2,2,3,3)
C is entropically classical for all v ∈ [0, 1].

Proof. This follows from proposition 4 and lemma 1. �

While proposition 4 shows that the proof strategy of
Ref. [19] does not directly generalize to all nonclassical
distributions in the (2,2,3,3) case, it does not rule out the
possibility that there may exist other mixings with classical
distributions that could transform p

(2,2,3,3)
iso,ǫ for ǫ ∈ (1/2, 4/7]

into a distribution that violates one of the BC inequalities.
To investigate this, we can consider the polytope formed by
mixing p

(2,2,3,3)
iso,ǫ with classical distributions for some ǫ � 4/7,

i.e., the polytope Conv({p
(2,2,3,3)
iso,ǫ }

⋃

{pL,k}k ), where {pL,k}k

denotes the set of all (81) local deterministic vertices of the
(2,2,3,3) Bell-local polytope, {p

(2,2,3,3)
iso,ǫ } is a set with a single

element and Conv() denotes the convex hull. We consid-
ered several values of ǫ � 4/7 and numerically optimized
the entropic expression I4

BC over the nonclassical region of
this polytope6 for each7 and were unable to find violations.
The optimization involves a nonlinear objective function with
linear constraints. Hence, it is possible that the numerical
approach missed the global optimum. Nevertheless, this is
evidence for the following conjecture and is presented in more
detail in Appendix B. Proposition 4 along with Fig. 3 and the
evidence in Appendix B also suggest this conjecture.

Conjecture 1. Let ǫ � 4/7. For all mixtures of the distribu-
tion p

(2,2,3,3)
iso,ǫ with classical distributions in the (2,2,3,3) Bell

scenario, the resulting distribution is entropically classical,
i.e., all distributions in Conv({p

(2,2,3,3)
iso,ǫ }

⋃

{pL,k}k ) are entrop-
ically classical.

The interesting cases of conjecture 1 are for nonclassical
distributions (i.e., for ǫ > 1/2), and the most relevant of these
are those that can be achieved in quantum theory. The next
remark addresses this case.

Remark 1. There exist nonclassical quantum distributions
that lie in the polytope Conv({p

(2,2,3,3)
iso,ǫ=4/7}

⋃

{pL,k}k ) and in
this case, our results suggest that the nonclassicality of
the corresponding distributions cannot be detected through
entropic inequalities as we now explain. Let pQM be the
quantum distribution from [11, Eq. (14) with d = 3] with
Bob’s inputs relabelled. This violates I4

BC � 0 through mix-
ing with p

(2,2,3,3)
C . Consider then mixing pQM with uniform

noise p
(2,2,3,3)
noise to obtain pmix(u) := upQM + (1 − u)p

(2,2,3,3)
noise

6To restrict to the nonclassical region, it is sufficient to mix with a
subset of these 81 locals—see Appendix B for more detail.

7Note however that it is enough that these results hold for one value
of ǫ ∈ (1/2, 4/7] in order to conclude that entropic inequalities are
not sufficient for detecting nonclassicality in this scenario.
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(u ∈ [0, 1]). We found that for some values of u (e.g., u =

7/10), pmix(u) is nonclassical. Further, pmix(u) is quantum
achievable since it can be obtained from the density opera-
tor u|ψ ′〉〈ψ ′| + (1 − u) I

9 (where |ψ ′〉 is the two qutrit state
producing pQM) and the same quantum measurements that
produce pQM from |ψ ′〉.

2. Using Tsallis entropies

Given the results (proposition 4 and conjecture 1) of the
previous section for Shannon entropic inequalities, a natural
question is whether other entropic measures can provide an

advantage over the Shannon entropy in detecting nonclassi-
cality. Here, we look at Tsallis entropies and find that similar
results hold in this case as well, suggesting that Tsallis en-
tropies also do not allow us to completely solve the problem.

The properties of monotonicity, strong subadditivity, and
the chain rule are sufficient to derive the BC inequalities,
which hence also hold for Tsallis entropy when q � 1. [Other
generalized entropies such as Rényi or min/max entropies do
not satisfy one or more of these properties in general and it is
not clear whether the analogues of (8) hold for these.] In other
words, for all q � 1, we have

I1
BC,q = Sq(X0Y0) + Sq(X1) + Sq(Y1) − Sq(X0Y1) − Sq(X1Y0) − Sq(X1Y1) � 0,

I2
BC,q = Sq(X0Y1) + Sq(X1) + Sq(Y0) − Sq(X0Y0) − Sq(X1Y0) − Sq(X1Y1) � 0,

I3
BC,q = Sq(X1Y0) + Sq(X0) + Sq(Y1) − Sq(X0Y0) − Sq(X0Y1) − Sq(X1Y1) � 0,

I4
BC,q = Sq(X1Y1) + Sq(X0) + Sq(Y0) − Sq(X0Y0) − Sq(X0Y1) − Sq(X1Y0) � 0,

(17)

and we refer to these as the Tsallis entropic BC inequalities.
Entropic classicality in Tsallis entropy space can be defined
analogously to definition 1, in terms of Tsallis entropy vectors
over the set of variables S [Eq. (3)]. We say that a distribution
is q-entropically classical if its entropy vector written in terms
of the Tsallis entropy of order q is achievable using a classical
distribution. In the case of the Shannon entropy, we used
the fact (lemma 1) that the BC inequalities (8) are known
to be necessary and sufficient for entropic classicality for
2-input Bell scenarios [27]. However, it is not clear if the
result of Ref. [27] generalizes to Tsallis entropies for q > 1.
Thus our results in the Tsallis case are weaker than those for
Shannon, being stated only for the BC inequalities. We leave
the generalization to arbitrary Tsallis entropic inequalities as
an open problem.

Proposition 5. For ǫ � 4/7, p
(2,2,3,3)
E,ǫ,v = vp

(2,2,3,3)
iso,ǫ + (1 −

v)p
(2,2,3,3)
C does not violate any of the Tsallis BC inequalities

(17) for any v ∈ [0, 1] and q > 1. However, for ǫ > 4/7 and
every q > 1, there always exists a v ∈ [0, 1] such that the
entropic inequality I4

BC,q � 0 is violated by p
(2,2,3,3)
E,ǫ,v .

We refer the reader to Appendix C for a proof of this
proposition. To investigate the extension to other mixings, we
tried the same computational procedure (see Appendix B) as
in the Shannon case. We found no violation of the Tsallis
entropic BC inequalities for any mixings of p

(2,2,3,3)
iso,ǫ with

classical distributions, for several values of q > 1 and ǫ ∈

(1/2, 4/7], leading to the following conjecture, which is sim-
ilar to conjecture 1.

Conjecture 2. Let ǫ � 4/7. For all mixtures of the dis-
tribution p

(2,2,3,3)
iso,ǫ with classical distributions in the (2,2,3,3)

Bell scenario, the resulting distribution does not violate any
of the Tsallis entropic BC inequalities for any q > 1, i.e., all
distributions in Conv({p

(2,2,3,3)
iso,ǫ }

⋃

{pL,k}k ) satisfy the Tsallis
entropic BC Inequalities (17) for all q > 1.

Figure 3(a) shows the values of ǫ and v for which I4
BC,q (for

q = 1, 2, and 8) evaluated with p
(2,2,3,3)
E,ǫ,v is positive, which is

also suggestive of this conjecture.
Remark 2. Any impossibility result for the (2,2,3,3) sce-

nario also holds in the (2, 2, d, d ) case for d > 3 because the
former is always embedded in the latter, i.e., every distribution
in the (2,2,3,3) scenario has a corresponding distribution in all
the (2, 2, d, d ) scenarios with d > 3 which can be obtained
by assigning a zero probability to the additional outcomes.
Further, the entropic inequalities (8) remain the same for all
these scenarios as they do not depend on the cardinality of the
random variables involved. Thus the existence nonclassical
distributions for the d = 3 case whose nonclassicality cannot
be detected by entropic inequalities implies the same result for
all d > 3.

C. Beyond classical mixings

So far, we only considered mixing with classical distri-
butions to obtain entropic violations and gave evidence that
this does not work for some nonclassical distributions in the
(2,2,3,3) scenario. This motivates us to study whether using
arbitrary LOSR + E operations allows us to detect this non-
classicality through entropic violations. We show in this sec-
tion that if conjectures 1 and 2 hold then they also hold for all
LOSR + E operations. First consider the following example.

The maximum possible violation of the BC inequalities
in the (2,2,2,2) case is I4

BC = ln 2 [19]. This is derived by
considering only Shannon inequalities within the coexisting
sets, and the bound that the maximum entropy of a binary
variable is ln 2. An analogous proof holds in the (2,2,3,3) case,
except that the bound is then ln 3. In the former case, we
have pE,ǫ=1,v=1/2 = 1

2 pPR + 1
2 pC, which maximally violates

I4
BC � 0, while in the latter case, one such distribution is
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formed by (pNL + p∗
NL + p

(2,2,3,3)
C )/3, where p∗

NL is another
extremal nonlocal distribution:

p∗
NL =

1
3 0 0 1

3 0 0

0 1
3 0 0 1

3 0

0 0 1
3 0 0 1

3
1
3 0 0 0 0 1

3

0 1
3 0 1

3 0 0

0 0 1
3 0 1

3 0

. (18)

Since the equal mixture (pNL + p
(2,2,3,3)
C )/2 violates I4

BC �

0 nonmaximally, one may be motivated to use the nonlocal
distribution p̃NL = (pNL + p∗

NL )/2 in place of pNL in the
definition of p

(2,2,3,3)
iso,ǫ , i.e., to take

p̃
(2,2,3,3)
iso,ǫ = ǫ p̃NL + (1 − ǫ)p

(2,2,3,3)
C .

One could then consider whether for ǫ ∈ (1/2, 4/7],
p̃

(2,2,3,3)
E,ǫ,v = v p̃

(2,2,3,3)
iso,ǫ + (1 − v)p

(2,2,3,3)
C violates I4

BC � 0. In-

terestingly, while p̃
(2,2,3,3)
E,ǫ,v violates I4

BC � 0 for a larger range
of v values whenever ǫ > 4/7, it does not give any violation
(for any value of v) when ǫ � 4/7, and Propositions 3 and
4 also hold if p̃

(2,2,3,3)
iso,ǫ replaces p

(2,2,3,3)
iso,ǫ [see Fig. 3(b) for

an illustration]. The corresponding results also hold for the
Tsallis case with q > 1, i.e., proposition 5 also holds with
p̃

(2,2,3,3)
iso,ǫ replacing p

(2,2,3,3)
iso,ǫ (see also Fig. 3). These suggest

that mixing with relabellings in addition to mixing with
classical distributions may also not help to violate entropic
inequalities when ǫ � 4/7.

In the remainder of this section, we consider the full set
of LOSR + E operations. We first note that all input coarse-
grainings of p

(2,2,3,3)
iso,ǫ result in local distributions (there are

no Bell inequalities if one party has only one input). Sim-
ilarly, considering output coarse-grainings, whenever three
outcomes are mapped to one the resulting distribution is
always classical because there are no Bell inequalities if one
party always makes a fixed outcome for one of their inputs.
We henceforth only consider coarse-grainings that take two
outcomes to one. We can choose two of the three outcomes
to combine into one for each party and each local input. For
the four input choices {A = 0, A = 1, B = 0, B = 1}, there
are 81, 108, 54, and 12 distinct coarse-grainings of this type
when the outcomes of either 4, 3, 2, or 1 input choices are
coarse-grained. Thus there are a total of 255 coarse-grainings
that remain.

If we apply all such coarse-grainings to p
(2,2,3,3)
iso,ǫ , this

generates 255 possible distributions that we denote {pCG,i
ǫ }i,

i ∈ [255]. There are also 432 distinct local relabellings of
p

(2,2,3,3)
iso,ǫ , which we denote by {p

R, j
ǫ } j , j ∈ [432] (this set

includes p
(2,2,3,3)
iso,ǫ = pR,1

ǫ ). Due to symmetries of p
(2,2,3,3)
iso,ǫ , it

turns out that exchanging parties can be achieved through
local relabellings for these distributions, so we do not need
to separately consider the exchange in our results pertain-
ing to p

(2,2,3,3)
iso,ǫ . The set of all distributions that can be

achieved through a convex mixture of p
(2,2,3,3)
iso,ǫ with its coarse-

grainings, relabellings and classical distributions is a convex
polytope �ǫ for each ǫ and is the convex hull of these

255 + 432 + 81 = 768 points, i.e.,

�ǫ := Conv
(

{

pCG,i
ǫ

}

i

⋃

{

pR, j
ǫ

}

j

⋃

{pL,k}k

)

.

We present the results for the remaining coarse-grainings and
relabellings separately below. Firstly, we show that the coarse-
grainings {pCG,i

ǫ }i of p
(2,2,3,3)
iso,ǫ are classical if and only if ǫ �

4/7.
Proposition 6. The distribution pCG,i

ǫ is classical for all i if
and only if ǫ � 4/7.

This is intuitive because p
(2,2,3,3)
iso,ǫ satisfies all the CHSH-

type inequalities if and only if ǫ � 4/7. Since coarse-
grainings cannot generate nonclassicality and correspond to
reducing the number of outcomes, and since I2233 requires
three outcomes, after coarse-graining the only relevant thing
is whether there is a CHSH-violation. A full proof is given in
Appendix C.

Proposition 6 implies that �ǫ = Conv({p
R, j
ǫ } j

⋃

{pL,k}k )
∀ǫ � 4/7, and that it is not necessary to consider coarse-
grainings for such values of ǫ. Our next results are that if
conjectures 1 and 2 hold for p

(2,2,3,3)
iso,ǫ for ǫ � 4/7, then they

continue to hold even when we consider arbitrary convex com-
binations with classical distributions and local relabellings of
p

(2,2,3,3)
iso,ǫ .

Proposition 7. Let ǫ � 4/7. If conjecture 1 holds, then
every distribution in �ǫ is Shannon entropically classical.

Proposition 8. Let ǫ � 4/7. If conjecture 2 holds, then
every distribution in �ǫ satisfies the Tsallis entropic BC
Inequalities (17) ∀q > 1.

These are proven in Appendix C and give the following
corollary.

Corollary 5. Let ǫ � 4/7. If conjectures 1 and 2 hold,
then for any operation O in LOSR + E, O(p

(2,2,3,3)
iso,ǫ ) does not

violate a Shannon or Tsallis (q > 1) entropic BC inequality.

V. DISCUSSION

We have provided evidence that there are distributions in
the (2,2,3,3) scenario for which arbitrary LOSR + E opera-
tions do not enable detection of nonclassicality with any Shan-
non entropic inequalities or Tsallis entropic BC inequalities.
This is in contrast to the (2,2,2,2) scenario [19], where for
any nonclassical distribution, there is always a simple LOSR
operation that results in a distribution violating one of the
Shannon BC inequalities. In order that BC inequalities do not
detect nonclassicality we need that the distributions are non-
classical while at the same time satisfying all CHSH-type Bell
inequalities. Having found all the vertices that characterize
this region, we identify distributions in this region that violate
BC entropic inequalities. Thus, the set of all nonclassical
distributions in the (2,2,3,3) scenario that cannot be certified
through entropic inequalities under LOSR + E postprocess-
ings is not characterized by the CHSH-type inequalities.

Although we considered LOSR + E operations, a natural
next question is to what extent the results can be generalized to
more general NCNG operations. In particular, there could be a
nonlinear NCNG map that allows the entropic BC inequalities
to detect a wider range of nonclassical distributions. It would
be interesting to see whether for any nonclassical distribution
of the form p

(2,2,3,3)
iso,ǫ with 1/2 < ǫ � 4/7 (conjectured to be
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entropically classical with respect to LOSR + E), one of these
more general operations would allow its nonclassicality to be
detected entropically. We leave this as an open question.

In Ref. [20], it was shown that (without postprocessing)
Tsallis entropic inequalities can detect nonclassicality un-
detectable by Shannon entropic inequalities in the (2,2,2,2)
and (2,2,3,3) Bell scenarios. In the presence of LOSR + E
operations, we did not find any advantage of Tsallis entropies
over the Shannon entropy in the (2,2,3,3) Bell scenario.
In fact, for some nonclassical distributions such as that of
Eq. (15), the Shannon entropic inequalities appear to give the
largest violations among Tsallis entropies with q � 1 (which
corresponds to those for which the BC inequalities can be
derived in the classical case). On the other hand, for the
family of distributions p

(2,2,3,3)
iso,ǫ , our results suggest that the

range of ǫ for which postprocessing via mixing with classical
distributions enables nonclassicality detection is the same for
the Shannon as well as Tsallis entropic BC inequalities for
q > 1. However, when entropic detection of nonclassicality is
possible, using Tsallis entropy can make it easier to do this
detection in the sense that there is a wider range of mixings
that achieve this (see Fig. 3).8

In conclusion, while the entropic approach for detecting
nonclassicality is useful in a number of scenarios, it is known
to have disadvantages in others. In particular, in the absence
of postselection we are not aware of any cases where entropic
inequalities can be violated [17,18,33]. Here, we find that the
entropic approach also suffers drawbacks in the presence of
postselection as it may fail to detect nonclassicality under a
natural class of postprocessing operations, both in the case of
Shannon and Tsallis entropies. However, this method remains
of use since in many cases nonclassicality can be detected
using it.
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APPENDIX A: CHARACTERIZATION OF �
(2,2,3,3)

CHSH

THE CHSH-CLASSICAL REGION

Table I enumerates the 47 extremal points of the poly-
tope �

(2,2,3,3)
CHSH that saturate or violate the inequality I2233 � 2

8As a specific example, consider the distribution p
(2,2,3,3)
E,ǫ=0.7,v=0.4.

Figure 3(a) indicates that this distribution violates the Tsallis entropic
inequality I4

BC,q=2 � 0 but does not violate the Shannon entropic

inequality I4
BC � 0. However, we can always further mix p

(2,2,3,3)
E,ǫ=0.7,v=0.4

with the classical distribution p
(2,2,3,3)
C to obtain 0.05p

(2,2,3,3)
E,ǫ=0.7,v=0.4 +

0.95p
(2,2,3,3)
C = 0.02p

(2,2,3,3)
iso,ǫ + 0.98p

(2,2,3,3)
C which violates the Shan-

non entropic inequality I4
BC � 0. This is also in agreement with the

results of [20], since when mixing is not considered, we also find
examples where it is advantageous to use Tsallis entropy in the
(2,2,3,3) scenario.

(12) while satisfying all the CHSH-type inequalities in the
(2,2,3,3) Bell scenario. The first 17 of these are nonclassi-
cal while the remaining 30 are local deterministic vertices.
Due to proposition 1 and the symmetries of the scenario, the
remaining vertices of �

(2,2,3,3)
CHSH can be generated by taking the

orbit of these vertices under local relabellings and exchange
of parties. In Table I, each extremal point is given by a single
36 dimensional vector which corresponds to writing the point
in the notation explained in Sec. II A (a 6 × 6 matrix) and
“flattening” it by writing one row after another in order.

APPENDIX B: EVIDENCE FOR CONJECTURES 1 AND 2

In order to check for violations of the Shannon and Tsallis
entropic inequalities I4

BC � 0 and I4
BC,q � 0 that could be

obtained by mixing p
(2,2,3,3)
iso,ǫ [Eq. (14)] with arbitrary classical

distributions, we maximized the left hand sides of these
inequalities over the polytope Conv({p

(2,2,3,3)
iso,ǫ }

⋃

{pL,k}k ) for
some ǫ values in (1/2, 4/7] such as ǫ = 4/7, 5/9 numeri-
cally using MATHEMATICA. Note that this polytope contains
the local polytope where by definition, entropic inequalities
cannot be violated. Thus we can simplify the optimization
and increase its reliability by only optimizing over the non-
classical part of the polytope Conv({p

(2,2,3,3)
iso,ǫ }

⋃

{pL,k}k ). We
find this region as follows. For 1/2 < ǫ � 4/7, we know from
proposition 3 that p

(2,2,3,3)
iso,ǫ is nonclassical but does not violate

eny of the CHSH inequalities, while it violates I2233 � 2
(12). By proposition 1, this is the only Bell inequality that
p

(2,2,3,3)
iso,ǫ violates for this range of ǫ. Thus the nonclassical

part of the polytope Conv({p
(2,2,3,3)
iso,ǫ }

⋃

{pL,k}k ) is the convex

hull of p
(2,2,3,3)
iso,ǫ and all the local deterministic points that

satisfy I2233 = 2. These are the 30 local deterministic points
of Table I. Hence we only need to optimize over convex
combinations of p

(2,2,3,3)
iso,ǫ with these 30 points and not all

81 local deterministic points, which reduces the size of the
optimization (number of variables) and increases the chances
of it being effective in detecting entropic violations if there are
any.

Performing the optimization as outlined above, we found
the maximum value to always be nonpositive for both Shan-
non case and the Tsallis case with q = 1.1, 2, 3, 10, 50. We
obtained similar results when taking other values of ǫ � 4/7
in the distribution p

(2,2,3,3)
iso,ǫ and also when considering the

inequalities I i
BC,q for i ∈ {1, 2, 3}. This suggests that no point

in the polytope Conv({p
(2,2,3,3)
iso,ǫ }

⋃

{pL,k}k ) violates any of the
(Shannon or Tsallis entropic) BC inequalities for ǫ � 4/7.
For ǫ > 4/7, some mixing of p

(2,2,3,3)
iso,ǫ with p

(2,2,3,3)
C gives a

distribution that violates I4
BC,q � 0 ∀q � 1 (cf. proposition 4).

Note that in the Shannon (q = 1) case, the range of values of
the mixing parameter v for which a violation can be found
becomes arbitrarily small as ǫ approaches 4/7 from above
(see Fig. 3). This limits the effectiveness of numerical tests
for q close to 1. For instance, in the Shannon case, our
program was not able to detect violations of I4

BC � 0 for ǫ <

4.2/7 (even though our analytic argument shows that these
are present), while it was for ǫ � 4.2/7. Similarly, for the
q = 2 Tsallis case, violations of I4

BC,2 � 0 could be found for
ǫ � 4.00001/7, but not below. The reason for this difference
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TABLE I. The vertices of �
(2,2,3,3)
CHSH that saturate or violate the I2233 inequality (12). All the vertices of the polytope can be obtained from

the vertices listed here through local relabellings or exchange of parties.

Number Vertex

1 1
6 (1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 2, 0, 0)

2 1
6 (1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0)

3 1
6 (1, 1, 0, 2, 0, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0)

4 1
6 (2, 0, 0, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0)

5 1
5 (1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0)

6 1
5 (1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0)

7 1
5 (1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0)

8 1
5 (1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0)

9 1
5 (1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0)

10 1
5 (1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 1, 0)

11 1
5 (1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0)

12 1
5 (1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0)

13 1
5 (1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0,1, 0, 1, 1, 2, 0, 0)

14 1
5 (1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0)

15 1
5 (1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0)

16 1
5 (2, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0)

17 1
9 (2, 1, 0, 2, 0, 1, 0, 2, 1, 1, 2, 0, 1, 0, 2, 0, 1, 2, 2, 0, 1, 0, 2, 1, 1, 2, 0, 1, 0, 2, 0, 1, 2, 2, 1, 0)

18 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)

19 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0)
20 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
21 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0)
22 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
23 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0)
24 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
25 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
26 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
27 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
28 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0)
29 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
30 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0)
31 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
32 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0)
33 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
34 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
35 (0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0)
36 (0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
37 (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
38 (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0)
39 (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
40 (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0)
41 (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
42 (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
43 (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
44 (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
45 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0)
46 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
47 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

is in line with what one might expect by comparing the plots in
Fig. 3, where for ǫ > 4/7 the range of values of v for which a
violation is possible is larger in the q = 2 case. This highlights
an advantage of using Tsallis entropy and gives us further
confidence that for 1/2 � ǫ < 4/7 there is no violation.

However, because of the form of our objective function,
the optimization methods available do not guarantee to find
the global maximum. Thus our findings only constitute ev-
idence for the conjectures and are not conclusive. In gen-
eral, finding global optima for nonlinear, nonconvex/concave
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functions is an open question. A potential avenue for prov-
ing these conjectures is using DC (difference of convex)
programming [34] since our objective function being a
linear combination of entropies is a difference of convex
functions.

APPENDIX C: PROOFS

For the proofs we need the concept of the local weight of a
nonsignalling distribution [15,35].

Definition 2. The local weight of a no-signalling distribu-
tion pXY |AB is the largest α ∈ [0, 1] such that we can write

pXY |AB = αqL
XY |AB + (1 − α)qNL

XY |AB ,

where qL
XY |AB is an arbitrary local distribution and qNL

XY |AB is
an arbitrary nonsignalling distribution. We denote the local
weight by l (pXY |AB).

The local weight of a distribution can be found by linear
programming.

Proposition 3. p
(2,2,3,3)
iso,ǫ is nonclassical if and only if ǫ >

1/2. Further, for ǫ � 4/7, p
(2,2,3,3)
iso,ǫ satisfies all the CHSH-type

inequalities, while for ǫ > 4/7 it violates at least one CHSH-
type inequality.

Proof. The distribution p
(2,2,3,3)
iso,ǫ = ǫpNL + (1 −

ǫ)p
(2,2,3,3)
noise can be written as follows.

p
(2,2,3,3)
iso,ǫ =

A B B A B B

B A B B A B

B B A B B A

A B B B A B

B A B B B A

B B A A B B

(C1)

where A = (2ǫ + 1)/9 and B = (1 − ǫ)/9. We used the LPAS-
SUMPTIONS linear program solver [36] to find the local weight
of p

(2,2,3,3)
iso,ǫ , as a function of ǫ to be

l
(

p
(2,2,3,3)
iso,ǫ

)

=

{

1 0 � ǫ �
1
2

2(1 − ǫ) 1
2 < ǫ � 1

,

which establishes the first part of the claim.
The second part can be confirmed by computing the value

of each CHSH-type quantity for the distribution p
(2,2,3,3)
iso,ǫ and

determining that each has a saturating ǫ of at most 4/7. �

Proposition 4. For ǫ � 4/7, p
(2,2,3,3)
E,ǫ,v = vp

(2,2,3,3)
iso,ǫ + (1 −

v)p
(2,2,3,3)
C does not violate any of the BC entropic inequalities

(8) for any v ∈ [0, 1]. However, for all ǫ > 4/7, there exists a
v ∈ [0, 1] such that the entropic inequality I4

BC � 0 is violated
by p

(2,2,3,3)
E,ǫ,v .

Proof. Consider the function f : (0, 1) × (0, 1) → R

given by

f (ǫ, v) := 3(3 − 2(1 − ǫ)v) ln[3 − 2(1 − ǫ)v]

+ 5(1 − ǫ)v ln[(1 − ǫ)v] − (1+2ǫ)v ln[(1+2ǫ)v]

− (3 − (2+ǫ)v) ln[3 − (2+ǫ)v] − 3 ln 9 ,

where we implicitly extend the domain to [0, 1] × [0, 1] by
taking the relevant limit. The Shannon entropic expression
I4
BC(ǫ, v) evaluated for the distribution p

(2,2,3,3)
E,ǫ,v = vp

(2,2,3,3)
iso,ǫ +

(1 − v)p
(2,2,3,3)
C (seen as a function of ǫ and v) is then given

as

I4
BC =

1

3 ln[2]
f (ǫ, v)

Thus all the following arguments for f (ǫ, v) also hold for I4
BC.

We first use that for c > 0 and a ∈ R for sufficiently small
v, we have

ln[c + av] = ln[c] +
av

c
+ O(v2) .

Using this we can expand f (ǫ, v) for small v as

f (ǫ, v) = (4 − 7ǫ)v ln[v] − (4 − 7ǫ)v(1 + ln[3])

+ v(5(1 − ǫ) ln[1 − ǫ]

− (1 + 2ǫ) ln[1 + 2ǫ]) + O(v2) . (C2)

Thus, since limv→0 v ln[v] = 0, we have limv→0 f [ǫ, v] = 0.
We also have

∂

∂v

f (ǫ, v) = (4 − 7ǫ) ln [v] + 5(1 − ǫ) ln[1 − ǫ]

− (1 + 2ǫ) ln[1 + 2ǫ] − 6(1 − ǫ) ln[3 − 2(1 − ǫ)v]

+ (2 + ǫ) ln[3 − (2 + ǫ)v].

(C3)

Note that 5(1 − ǫ) ln[1 − ǫ] � 0, −(1 + 2ǫ) ln[1 + 2ǫ] �
0 ∀ǫ ∈ [0, 1]. Further, since 3 − 2(1 − ǫ)v � 3 − (2 + ǫ)v
and both terms are positive, 6(1 − ǫ) � (2 + ǫ) ∀ǫ < 4/7,
and using the fact that ln[] is an increasing function,
we have −6(1 − ǫ) ln[3 − 2(1 − ǫ)v] + (2 + ǫ) ln[3 − (2 +

ǫ)v] � 0 ∀ǫ ∈ [0, 4/7], v ∈ [0, 1]. This in turn implies that

∂

∂v

f (ǫ, v) � (4 − 7ǫ) ln [v] ∀ 0 � ǫ � 4/7, 0 � v � 1.

Hence we can conclude that for ǫ � 4/7, ∂
∂v

f (ǫ, v) < 0
for all v ∈ [0, 1]. Thus f (ǫ, v) is zero at v = 0 and, for
ǫ � 4/7, decreases with v, implying that f (ǫ, v) � 0 ∀ǫ ∈

[0, 4/7], v ∈ [0, 1]. Note that p
(2,2,3,3)
E,ǫ,v = vp

(2,2,3,3)
iso,ǫ + (1 −

v)p
(2,2,3,3)
C does not violate any of the analogous inequalities

I i
BC � 0 for any i ∈ {1, 2, 3}, ǫ, v ∈ [0, 1]. This is because

for this distribution, we always have H (X0Y0) = H (X0Y1) =

H (X1Y0), H (X0) = H (X1) = H (Y0) = H (Y1). Thus all three
inequalities I1

BC � 0, I2
BC � 0 and I3

BC � 0 reduce to H (X1) +

H (Y1) − H (X1Y0) − H (X1Y1) � 0, which is always satisfied
since H (X1) � H (X1Y0) and H (Y1) � H (X1Y1) by the mono-
tonicity of Shannon entropy.

Further, using the expression for the derivative of f (ǫ, v)
with respect to v in Eq. (C3), we find that for ǫ > 4/7,
limv→0

∂
∂v

f (ǫ, v) = ∞. Thus, since f (ǫ, v) = 0 for v = 0,
sufficiently close to v = 0 there exists a v such that f (ǫ, v) >

0. This proves the claim. �

Proposition 5. For ǫ � 4/7, p
(2,2,3,3)
E,ǫ,v = vp

(2,2,3,3)
iso,ǫ + (1 −

v)p
(2,2,3,3)
C does not violate any of the Tsallis BC inequalities

(17) for any v ∈ [0, 1] and q > 1. However, for ǫ > 4/7 and
every q > 1, there always exists a v ∈ [0, 1] such that the
entropic inequality I4

BC,q � 0 is violated by p
(2,2,3,3)
E,ǫ,v .

Proof. The Tsallis entropic expression I4
BC,q(ǫ, v)

evaluated for the distribution p
(2,2,3,3)
E,ǫ,v = vp

(2,2,3,3)
iso,ǫ +
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(1 − v)p
(2,2,3,3)
C (seen as a function of q, ǫ and v) is given as

I4
BC,q =

1

q − 1

[

9

(

3 − 2(1 − ǫ)v

9

)q

+ 15

(

(1 − ǫ)v

9

)q

−
6

3q
− 3

(

3 − (2 + ǫ)v

9

)q

− 3

(

(1 + 2ǫ)v

9

)q]

=:
g(q, ǫ, v)

q − 1

For q > 1, the following arguments for g(q, ǫ, v) also hold for
I4
BC,q. Note that

∂

∂v

g(q, ǫ, v) =
q

32q−1
[−6(1 − ǫ)(3 − 2(1 − ǫ)v)q−1

+ 5(1 − ǫ)((1 − ǫ)v)q−1

+ (2 + ǫ)(3 − (2 + ǫ)v)q−1

− (1 + 2ǫ)((1 + 2ǫ)v)q−1] . (C4)

Then, since

6(1 − ǫ)(3 − 2(1 − ǫ)v )q−1
� (2 + ǫ)(3 − (2 + ǫ)v)q−1

and

(1 + 2ǫ)((1 + 2ǫ)v)q−1
� 5(1 − ǫ)((1 − ǫ)v)q−1

hold for all ǫ � 4/7, v ∈ [0, 1] and q > 1, we have

∂

∂v

g(q, ǫ, v) � 0 ∀ǫ � 4/7, v ∈ [0, 1], q > 1.

Since g(q, ǫ, v = 0) = 0, this implies that g(q, ǫ, v) � 0
∀ǫ � 4/7, v ∈ [0, 1], q > 1. Hence, for ǫ � 4/7, we cannot
violate I4

BC,q � 0 for any v ∈ [0, 1], q > 1.

Analogously to the Shannon case, p
(2,2,3,3)
E,ǫ,v = vp

(2,2,3,3)
iso,ǫ +

(1 − v)p
(2,2,3,3)
C also does not violate any of the inequalities

I1
BC,q � 0, I2

BC,q � 0 or I3
BC,q � 0 for any ǫ, v ∈ [0, 1] and q >

1 by the same argument as in proposition 4.
Further, Eq. (C4) implies limv→0

∂
∂v

g(q, ǫ, v) =
q

3q (7ǫ −

4) which is always positive for ǫ > 4/7. Since g(q, ǫ, v) = 0
for v = 0, this allows us to conclude that for ǫ > 4/7, there
exists a v sufficiently close to v = 0 such that g(q, ǫ, v) > 0.
This establishes the claim. �

Proposition 6. The distribution pCG,i
ǫ is classical for all i if

and only if ǫ � 4/7.
Proof. For the “if” part of the proof, we calculated all the

255 coarse-grainings of p
(2,2,3,3)
iso,ǫ=4/7 and used a linear program-

ming algorithm to find that all of these are local (their local
weight equals 1). Since decreasing ǫ in p

(2,2,3,3)
iso,ǫ cannot in-

crease the violation of any (probability space) Bell inequality
and neither can coarse-grainings, it follows that if ǫ � 4/7, all
coarse-grainings of p

(2,2,3,3)
iso,ǫ are classical.

For the “only if” part we need to show that if all coarse-
grainings of p

(2,2,3,3)
iso,ǫ are classical then ǫ � 4/7 or equiva-

lently, if ǫ > 4/7, there exists at least one coarse-graining of
p

(2,2,3,3)
iso,ǫ that is nonclassical. Consider the coarse-graining that

involves combining the second output with the first for all 4
input choices. For p

(2,2,3,3)
iso,ǫ as in Eq. (C1), this coarse-graining

gives

p
(2,2,3,3)
CG,ǫ =

2(A + B) 0 2B 2(A + B) 0 2B

0 0 0 0 0 0
2B 0 A 2B 0 A

2(A + B) 0 2B 3B + A 0 A + B

0 0 0 0 0 0
2B 0 A A + B 0 B

,

(C5)

where A = (2ǫ + 1)/9 and B = (1 − ǫ)/9. The I2233 value or
left hand side of Eq. (12) for this distribution is 9A − 3B. For
this to be classical, we require that 9A − 3B � 2 which gives
ǫ � 4/7. Again using the LPASSUMPTIONS linear program
solver [36] we found the local weight of this distribution as
a function of ǫ, which gives the following.

l
(

p
(2,2,3,3)
CG,ǫ

)

=

{

1, 0 � ǫ �
4
7 .

1
9 (17 − 14ǫ), 4

7 < ǫ � 1.

In other words, if ǫ > 4/7, then the coarse-graining p
(2,2,3,3)
CG,ǫ

of p
(2,2,3,3)
iso,ǫ violates the I2233 Inequality (12) and is hence

nonclassical. This concludes the proof. �

We prove the following two propositions together as they
only differ in one step.

Proposition 7. Let ǫ � 4/7. If conjecture 1 holds, then
every distribution in �ǫ is Shannon entropically classical.

Proposition 8. Let ǫ � 4/7. If conjecture 2 holds, then
every distribution in �ǫ satisfies the Tsallis entropic BC
inequalities (17) ∀q > 1.

Proof. If conjectures 1 and 2 hold, then for any ǫ � 4/7,
I i
BC,q � 0 holds ∀q � 1, ∀i ∈ {1, 2, 3, 4} and for all distribu-

tions in the polytope Conv({p
(2,2,3,3)
iso,ǫ }

⋃

{pL,k}k}).9 We want
to show that this implies the same for the larger polytope that
comprises the convex hull of not just p

(2,2,3,3)
iso,ǫ and local deter-

ministic distributions {pL,k}k , but also all the local relabellings
of p

(2,2,3,3)
iso,ǫ , i.e., the polytope �ǫ = Conv({p

R, j
ǫ } j

⋃

{pL,k}k ).

While we considered p
(2,2,3,3)
iso,ǫ in propositions 4 and 5 and

conjectures 1 and 2, due to symmetries, these also apply to
every relabelling of p

(2,2,3,3)
iso,ǫ , i.e., I i

BC,q � 0 (∀i ∈ {1, 2, 3, 4})

throughout every polytope in the set {Conv({p
R, j
ǫ }

⋃

{pL,k}k )} j

(where j runs over all the local relabellings of p
(2,2,3,3)
iso,ǫ ).10

This is because for every input-output relabelling of p
(2,2,3,3)
iso,ǫ ,

we can correspondingly relabel the inequality expression I4
BC,q

(for q � 1) and the same arguments as propositions 4 and
5 again hold, and similarly conjectures 1 and 2 also follow
for this case.11 From this argument, it follows that if conjec-

9Note that q = 1 covers the Shannon case.
10A note on notation: {pR, j

ǫ } is a set comprising a single element,
while {pR, j

ǫ } j is a set whose elements are the distributions for
every j.

11Note that output relabellings don’t change the entropic expression
but input relabellings (4 in number) can give either one of I i

BC,q �

0 for i ∈ {1, 2, 3, 4}. Thus for an output relabelling of p
(2,2,3,3)
iso,ǫ , one

can continue using I4
BC,q in propositions 4 and 5 and the following

conjectures while for input relabellings, one simply needs to relabel
the inequalities accordingly and run the same arguments.
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tures 1 and 2 hold, then I i
BC,q � 0 ∀q � 1, ∀i ∈ {1, 2, 3, 4}

everywhere in the union of the polytopes, i.e., everywhere in
⋃

j Conv({p
R, j
ǫ }

⋃

{pL,k}k ).
To conclude the proof it remains to show that

⋃

j Conv({p
R, j
ǫ }

⋃

{pL,k}k ) = �ǫ ∀ǫ � 4/7. This is
established below. Then, proposition 8 automatically follows
while proposition 7 follows from this and Lemma 1. �

Proposition 9. p
j

mix,ǫ := 1
2 p

(2,2,3,3)
iso,ǫ + 1

2 p
R, j
ǫ is local ∀ j �= 1

if and only if ǫ � 4/7.
Proof. For the “if” part of the proof, we used a linear

program to confirm that p
j

mix,ǫ=4/7 is local12 ∀ j �= 1. Since

reducing ǫ in p
j

mix,ǫ cannot decrease the local weight, this also
holds for ǫ < 4/7. The “only if” part of the proof is equivalent
to showing that ∀ǫ > 4/7, ∃ j such that p

j

mix,ǫ is nonclassical.
Consider the particular local relabelling that corresponds to
Alice swapping the outputs “1” and “2” only when her in-
put is A = 1. Let the distribution obtained by applying this
relabelling to p

(2,2,3,3)
iso,ǫ be pR

ǫ . Then pmix,ǫ = 1
2 p

(2,2,3,3)
iso,ǫ + 1

2 pR
ǫ .

More explicitly,

pR
ǫ =

A B B A B B

B A B B A B

B B A B B A

A B B B A B

B B A A B B

B A B B B A

and

pmix,ǫ =

A B B A B B

B A B B A B

B B A B B A

A B B B A B

B ∗ ∗ ∗ B ∗

B ∗ ∗ ∗ B ∗

, (C6)

where ∗ = A+B
2 , A = (2ǫ + 1)/9, and B = (1 − ǫ)/9. Now

consider the Bell inequality Tr(MT P) � 1 where P is an
arbitrary distribution in the (2,2,3,3) scenario and M is the

12 j = 1 is excluded since p1
mix,ǫ = p

(2,2,3,3)
iso,ǫ which is nonclassical

for ǫ > 1/2.

following matrix:

M :=

0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 0 0 0 1 0

(C7)

Then, the condition for pmix,ǫ to be nonclassical with respect
to this Bell inequality i.e., Tr(MT pmix,ǫ ) < 1 gives us ǫ >

4/7. Since pR
ǫ is a local relabelling of p

(2,2,3,3)
iso,ǫ , there exists

a j such that pR
ǫ = p

R, j
ǫ and hence pmix,ǫ = p

j

mix,ǫ . Thus we

have shown that whenever ǫ > 4/7, ∃ j such that p
j

mix,ǫ is

nonclassical and hence p
j

mix,ǫ is local for all j implies that
ǫ � 4/7 which concludes the proof. �

By symmetry, there is an analog of proposition 9 with
p

(2,2,3,3)
iso,ǫ replaced by pR,i

ǫ for any i, so we have the following
corollary.

Corollary 6. p̃
i, j

mix,ǫ := 1
2 pR,i

ǫ + 1
2 p

R, j
ǫ is local ∀ j �= i if and

only if ǫ � 4/7.
Theorem 7 (Bemporad et al. 2001 [37]). Let P and Q be

polytopes with vertex sets V and W , respectively, i.e., P =

Conv(V ) and Q = Conv(W ). Then P
⋃

Q is convex if and
only if the line segment [v,w] is contained in P

⋃

Q ∀v ∈ V

and w ∈ W .
Let P j = Conv({p

R, j
ǫ }

⋃

{pL,k}k}) and P be the set of poly-
topes P := {P j} j . We use the above theorem to prove the final
result that establishes propositions 7 and 8.

Lemma 8. Let Vj be the vertex set of the polytope
P j ∈ P and V :=

⋃

j Vj . Then,
⋃

P j∈P
P j = Conv(

⋃

i Vj ) =

Conv(V ) = �ǫ ∀ǫ � 4/7.
Proof. By corollary 6, for i �= j we have that

1
2 (pR,i

ǫ + p
R, j
ǫ ) ∈ L(2,2,3,3) = Pi

⋂

P j ∀ǫ � 4/7. This implies

that αpR,i
ǫ + (1 − α)p

R, j
ǫ ∈ Pi

⋃

P j ∀ǫ � 4/7, α ∈ [0, 1],
i.e., the line segment [pR,i

ǫ , p
R, j
ǫ ] is completely contained in

the union of the corresponding polytopes Pi

⋃

P j . Note that
all other line segments [vi, v j] with vi ∈ Vi and v j ∈ Vj are
contained in Pi

⋃

P j by construction since at least one of
vi or v j would be a local-deterministic vertex. Therefore,
by theorem 7, Pi

⋃

P j is convex ∀i, j and ǫ � 4/7. We
can then apply proposition 9 and theorem 7 to the convex
polytopes Pi

⋃

P j and Pk and show that Pi

⋃

P j

⋃

Pk is
convex ∀i, j, k and ǫ � 4/7. Proceeding in this way, we
conclude that

⋃

Pi∈P
Pi is convex ∀ǫ � 4/7, and hence

⋃

P j∈P
P j = Conv(

⋃

i Vj ) = Conv(V ) = �ǫ . �
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