

This is a repository copy of Dose-response and normal tissue complication probabilities after proton therapy for choroidal melanomas.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/161968/</u>

Version: Accepted Version

Article:

Espensen, CA, Kiilgaard, JF, Appelt, AL orcid.org/0000-0003-2792-9218 et al. (5 more authors) (2021) Dose-response and normal tissue complication probabilities after proton therapy for choroidal melanomas. Ophthalmology, 128 (1). pp. 152-161. ISSN 0161-6420

https://doi.org/10.1016/j.ophtha.2020.06.030

© 2020 by the American Academy of Ophthalmology. This is an author produced version of an article published in Ophthalmology. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Dose-response and normal tissue complication probabilities after proton therapy for choroidal melanomas

Dose response after proton therapy for choroidal melanoma

Charlotte A Espensen¹,², Jens F Kiilgaard²,^{*}, Ane L Appelt³, Lotte S Fog⁴,⁵, Joel Herault⁶, Celia Maschi⁷, Jean-Pierre Caujolle⁷, Juliette Thariat⁸,⁹,¹⁰

Financial Support:

This work is supported by research grants from Synoptik-Foundation, the Danish Eye Research Foundation (Øjenfonden), the Danish Cancer Research Foundation (Dansk Kræftforsknings Fond), Aase and Ejnar Danielsens Foundation, and Arvid Nilssons Foundation. Ane Appelt is supported by Yorkshire Cancer Research Academic Fellowship funding (grant L389AA). The funding organizations had no role in the design or conduct of this research.

Conflicts of interest:

No conflicting relationship exists for any author.

This article contains additional online-only material. The following should appear online-only: Supplementary material (Appendix A-C).

¹ Department of Oncology, Section of Radiotherapy, Copenhagen University hospital,

Rigshospitalet, Copenhagen, Denmark

² Department of Ophthalmology, Copenhagen University hospital, Rigshospitalet, Copenhagen, Denmark

³ Leeds Institute of Medical Research at St James's, University of Leeds, and Leeds Cancer Centre, St James's University Hospital, Leeds, United Kingdom

⁴ Department of Physical Sciences, The Peter MacCallum Cancer Centre, Melbourne, Australia

⁵ Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria, Australia

⁶ Department of Radiation Oncology, Centre Antoine-Lacassagne, Nice, France

⁷ Department of Ophthalmology, Nice University Hospital, Nice, France

⁸Department of Radiation Oncology, Centre Francois Baclesse, Caen, France

⁹ Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN, Caen, France

¹⁰ Unicaen – Normandy University, France

^{*} Corresponding author

1 Abstract

2 Purpose

- 3 Normal tissue complication probability (NTCP) models could aid the understanding of dose-
- 4 dependence of radiation-induced toxicities after eye-preserving radiotherapy of choroidal
- 5 melanomas. We performed NTCP-modelling and established dose-response relationships for visual
- 6 acuity deterioration and common late complications after treatments with proton therapy (PT).

7

8 Design

9 Retrospective study from single large referral centre.

10

11 Subjects

- 12 We considered patients diagnosed with choroidal melanoma and primarily treated with hypo-
- 13 fractionated PT (52 Gy physical dose in 4 fractions). 1020 patients had complete visual acuity
- 14 deterioration information, 991 patients had complete information on late complications.
- 15

16 Methods

- 17 Treatment details and dose-volume histograms (DVHs) for relevant anatomical structures and
- 18 patient and tumour characteristics were available from a dedicated ocular database. Lasso variable
- 19 selection was used to identify variables with the strongest impact on each endpoint, followed by
- 20 multivariable Cox regressions and logistic regressions to analyse the relationship between dose,
- 21 clinical characteristics and clinical outcomes. Dose-response relationships were estimated, adjusting
- 22 for relevant clinical variables.
- 23
- 24 Main Outcome Measures

25 Dose-response relationship for visual acuity deterioration and late complications

26

27 Results

Dose metrics for several structures (i.e. optic disc, macula, retina, globe, lens, ciliary body) 28 correlated with clinical outcome. The near-maximum dose to the macula (macula D2%) showed the 29 strongest correlation with visual acuity deterioration. Retina D_{20%} was the only variable with clear 30 impact on the risk of developing maculopathy; optic disc D20% had the largest impact on optic 31 neuropathy; cornea $D_{20\%}$ had the largest impact on neovascular glaucoma; ciliary body $D_{20\%}$ had the 32 largest impact on ocular hypertension; the volume of the ciliary body receiving 26 Gy (ciliary body 33 34 V26Gy) was the only variable associated with the risk of cataract; and retina V52Gy was associated 35 with the risk of retinal detachment. Optic disc-tumour distance was the only variable associated with dry eye syndrome in the absence of DVH for the lachrymal gland. 36

37

38 Conclusions

- 39 Visual acuity deterioration and specific late complications demonstrated dependence on dose
- 40 delivered to normal structures in the eye after PT for choroidal melanoma. Visual acuity
- 41 deterioration depended on dose to a range of structures, while more specific complications were
- 42 primarily related to dose metrics for specific structures.

43 Introduction

Eye-preserving proton therapy is commonly used to treat choroidal melanomas [1]. The ultimate 44 objective of the treatment is to destroy the malignancy without producing complications on adjacent 45 healthy tissues, thereby preserving long term function. Nonetheless, some structures may be 46 exposed to large doses during treatment, and radiation-induced visual deterioration and toxicities 47 are common side-effects [2]. Normal tissue complication probability (NTCP) models for most 48 complications have not yet been established for hypo-fractionated proton therapy and the relevance 49 of damage to the various ocular structures has not been fully examined. To rectify this, we 50 examined data from a large cohort of patients treated at a dedicated proton therapy facility, with 51 long follow-up. We conducted dose-response modelling to examine the relationships between dose 52 delivered to healthy tissue and the occurrence of visual acuity deterioration and various radiation-53 induced toxicities. 54 55

56 Materials and methods

57 Patients

- This retrospective study included patients treated for choroidal melanomas between 1991 and 2015
- 59 at a dedicated proton centre. Patients and tumour characteristics as well as treatment details were
- 60 prospectively registered in an ocular database.
- 61 Post-treatment visits, with tumour assessment by an onco-ophthalmologist and liver ultrasound, 62 were performed every sixth months the first two years and annually subsequently. Patients were 63 followed until at least 5 years after treatment if possible. At each visit, the Snellen' scale was used 64 to evaluate the best corrected visual acuity, and fundus photography and/or fluorescein angiography 65 were used to examine the fundus. Furthermore, tumour thickness and diameter were measured at 66 each visit using ultrasound. Complications were recorded prospectively at each clinical visit.

Information on recurrence, secondary enucleation, and side-effects were collected [3]. For the purpose of this study, patient and tumour characteristics as well as treatment and outcome data were retrospectively extracted from the database; with patients with missing information on general characteristics and/or outcomes excluded. The study was retrospective and received a waiver of informed consent approved by the Ethics Committee of the French Society of Ophthalmology (IRB 00008855 Société Française d'Ophtalmologie IRB#1) and the research adhered to the tenets of the Declaration of Helsinki.

74

75 Treatment and planning

Protons with energy of 65 MeV were produced by a fixed-frequency cyclotron. The construction 76 77 and the physics of the aperture and beam have previously been described [4-6]. EyePlan (version 3.06) was used as treatment planning system (TPS). Experienced dosimetrists created each plan in 78 79 close cooperation with radiation oncologists, choosing the modulator, the collimator shape and angles for eye orientation. Each tumour received a physical tumour dose of 52 Gy in 4 fractions of 80 13 Gy, delivered on 4 consecutive days [3]. This planning and treatment have previously been 81 described in detail [7]. Figure 1 illustrates the main steps of the treatment planning. Dose-volume 82 83 histograms for each of the relevant anatomical structures were extracted from the TPS. Physical doses were used for all analyses and no correction from fraction size effects was thus employed. 84 Dose volume histograms (DVHs) or dose surface histograms (DSHs) were extracted for each 85 normal tissue structure. A range of dose metrics were calculated to represent the entire DVH/DSH 86 while still limiting the number of variables in the analysis and avoiding excessive collinearity 87 88 between variables. These included the volume or the surface treated to a specific (discretised) dose level x (Vx/Sx), or the dose delivered to a specific volume or surface y (Dy) (V/S_{52Gy}, V/S_{42Gy}, 89 90 V/S_{26Gy}, V/S_{10Gy}, V/S_{5Gy}, D_{98%}, D_{50%}, D_{20%} and D_{2%}). We prioritised metrics representing the

- 91 'extremes' of the dose distribution as well 'mid-range' of the DVHs. Details on the treatments and
- 92 planning are described further in Appendix A.

100 Definition of toxicity and complications

101	Visual acuity deterioration
102	Visual acuity was measured using the Snellen scale. For analysis purposes it was converted into the
103	logarithm of Minimum Angle of Resolution (logMAR) scale [8,9]; this has been used throughout
104	the analyses. Longitudinal measures were not available for visual acuity, and the analysis was thus
105	entirely based on the measure from last follow-up. We defined visual acuity deterioration of ≥ 0.3
106	logMAR compared to the baseline measure.
107	
108	Posterior complications
109	Maculopathy: Radiation-induced maculopathy was diagnosed based on visual acuity deterioration
110	and the presence of micro-aneurysms, ischemia and/or oedema in the entire macular region,
111	assessed by ophthalmoscopy or preferable visualized from fundus photography and optical
112	coherence tomography (OCT).
113	
114	Optic neuropathy: Ophthalmoscopy was used to diagnose the condition. An oedematous and/or
115	atrophic optic disc in combination with a considerable decrease in visual acuity were the most
116	common observations in the diagnosis of radiation-induced optic neuropathy (RION). Additionally,
117	an undelimited and pale disc was used in the diagnosis.
118	
119	Ocular hypertension: Ocular hypertension was defined as intraocular pressure (IOP) higher than 21

- 120 mmHg at multiple measurements without signs of visual field defects or cupping of the disc.
- 121

122	Neovascular glaucoma: In cases of elevated IOP and neovascularization, examined either in the
123	angle using gonioscopy or in retina using ophthalmoscopy, combined with visual field loss or optic
124	nerve head cupping, the diagnose neovascular glaucoma was given.
125	
126	Retinal detachment: Presence of retinal detachment was determined by ophthalmoscopy and
127	reported without time-to-event.
128	
129	Vasculopathy: Radiation-induced vasculopathy was found as micro-occlusions and intraretinal
130	microvascular abnormalities adjacent to ischemic areas as seen from ophthalmoscopy.
131	
132	Anterior complications
133	Cataract: Lens opacity resulting in gradual deterioration of the visual acuity. It was diagnosed by
134	slit lamp examination or ophthalmoscopy.
135	
136	Dry eye: Reduced production of lacrimal fluid occurring after irradiation of the lacrimal gland and
137	resulting in itching, redness and general discomfort in the eye. These symptoms formed the basis
138	for the diagnosis while measurements from Schirmer's test were used to confirm diagnosis.
139	
140	Data analysis
141	For each endpoint, we pre-specified relevant normal tissues (and their corresponding dose metrics)
142	and clinical factors for analysis; resulting in more than 50 potential variables per endpoint. Pre-
143	specification was performed by a consultant ophthalmologist and a radiation oncologist, both with
144	several years of experience in ocular oncology. See details in the analysis plan in Appendix B.

146	Due to the large number of potential variables, Lasso (least absolute shrinkage and selection
147	operator) regression analysis was used to perform variable selection among the numerous and
148	correlated variables [10,11]. The variables with the strongest correlation with each outcome were
149	estimated from the regularized method by shrinkage and elimination of variable coefficients. The
150	optimal shrinkage parameter (λ) was determined from 100-fold cross-validation. We used the first
151	standard error of λ to obtain the smallest number of predictors, and thus the simplest model with an
152	acceptable error [12]. We carried out the multivariable regression analyses with the variables
153	selected from the Lasso

For visual acuity deterioration, we carried out two analyses; one were we included the entire cohort irrespective of pre-treatment visual acuity (group 1, analysis 1); and one in which we examined the visual acuity deterioration for patients with a pre-treatment visual acuity $\leq 0.5 \log$ MAR (but keeping all other analysis details unchanged) (group 1, analysis 2). The risk of visual acuity deterioration was analysed using logistic regression (but including follow-up time as separate variable).

161

Specific late complications were analysed using Cox's proportional hazards regression [13]. Time was measured from start of radiotherapy to whichever happened first: event, death or loss of followup (with patients censored for the two latter). For retinal detachment, time-to-event was missing in the follow-up data, and logistic regression rather than Cox regression was performed (see previous paragraph). Preventive treatments were not made for any of the ocular complications. Treatment was initiated after the complications occurred. As such, the time-to-event was not affected.

109	would performance was assessed by Hosnier-Lenieshow for goodness-or-in of the logistic	
170	regression analyses, while concordance index and Brier score were used to evaluate the Cox	
171	regression models. Schoenfeld residuals demonstrated no time dependence for any of the variables	
172	included, and the proportional hazard assumption was thus assumed not to be violated.	
173		
174	Dose-response for each complication was visualized by plotting the predicted risk of	
175	complication/toxicity (at a fixed time point (5 years) for Cox regression) as a function of dose, with	
176	all other model variables kept constant. Additionally, the impact of clinical factors, such as tumour	
177	height or optic disc-tumour distance, on the risk of toxicity was demonstrated by varying these	
178	using relevant clinical values.	
179		
180	The median potential follow-up time was assessed using the inverse Kaplan-Meier estimate [14].	
181	All analyses were performed in RStudio (Version 0.99.467). The full, annotated model fits are	
182	available as R files at Electronic Research Data Archive (ERDA) [15].	
183		
184	Results	
185	Patients and descriptive statistics	
186	1020 patients had complete information on clinical characteristics, dose data and visual acuity	
187	measures (group 1, analysis 1). 541 patients had pre-treatment visual acuity of $\leq 0.5 \log$ MAR	
188	(group 1, analysis 2). 991 patients had complete information on clinical characteristics, dose data	
189	and late complications (group 2). Patients could be represented in both groups if they had complete	
190	information on all the above variables. See the flowchart in Figure 2 for details on patient data used.	
191	The overall median potential follow-up time was 6.1 years (95 % CI 6.0-6.2).	

ad by Hasmar I amashaw for goodnass of fit of the logistic

Figure 2: Flowchart describing the used patient data. 1020 patients had complete information on
 clinical characteristics, dose data and visual acuity measures (group 1, analysis 1). 541 patients had
 pre-treatment visual acuity of ≤ 0.5 logMAR (group 1, analysis 2). 991 patients had complete
 information on clinical characteristics, dose data and late complications (group 2). Patients could be
 represented in both groups if they had complete information on all the above variables.

	Group 1	0	Group 2
	Patients with visual	Patients with	complication data
	acuity data		N=991
	N=1020		
Patient and tumour	Value	Value (median (IQR))	
characteristics	(median (IQR))		
Age (years)	66 (56-75)	65	5 (55-75)
Gender male/female	476/544	2	452/539
Baseline VA (logMAR)	0.4 (0.2-1.0)		-
Baseline VA logMAR ≤ 0.5 y/n	541/479		
Last VA (logMAR)	1.6 (0.4-2.0)	-	
Last VA logMAR \leq 0.5 y/n	300/720	-	
Follow-up (years)	5.1 (2.8-8.1)	5.1 (2.9-8.0)	
Largest basal dimension (mm)	11.0 (9.0-13.3)	11.0 (9.0-13.3)	
Height (mm)	4.9 (3.2-7.3)	4.9 (3.2-7.3)	
Optic disc-tumour distance (mm)	4.0 (1.2-7.1)	3.7 (1.1-6.8)	
Macula-tumour distance (mm)	3.0 (0.6-6.8)	3.0 (0.3-6.3)	
Complication		Number (%)	5-year probability
			of freedom from
			toxicity (95 % CI)
Maculopathy		205 (21 %)	79 % (76-82)
Optic neuropathy		135 (14 %)	85 % (82-97)
Neovascular glaucoma		118 (12 %)	87 % (85-89)
Retinal detachment		357 (36 %)	-

	Ocular hypertension		66 (7 %)	92 % (90-94)
	Vasculopathy		213 (21 %)	76 % (73-79)
	Cataract		310 (31 %)	68 % (65-71)
	Dry eye		148 (15 %)	84 % (82-87)
205	Table 1: Descriptive statistics and	nd list of incidences for e	ach complication	with 5-year risk of
206	freedom from the complication (bas	sed on Kaplan-Meier esti	mates). The date	for retinal detachment
207	was not available, and the a	ctuarial risk was thus no	t calculated. VA=	=visual acuity,
208	IQR=interquartile range, logMAR= logarithm of Minimum Angle of Resolution.			
209				
210	Group 1: Visual acuity			
211	Analysis 1 - Visual acuity deteriorat	tion		
212	For patients irrespective of initial pr	e-treatment visual acuity	, the risk of visua	al acuity deterioration
213	correlated with near-maximum mac	ula dose (macula D _{2%}). A	As did to a smalle	r extend various other
214	dose metrics (optic disc $D_{2\%}$, retina	$D_{20\%}$, globe V_{10Gy} and glo	obe V _{5Gy}) as well	as tumour height,
215	optic disc-tumour distance and follo	w-up time. Odds ratios a	re listed in Table	2. Figure 3A
216	illustrates the dose-response relatior	ship for macula $D_{2\%}$ for	all cases, while F	Figure 3B illustrates
217	the relationship for three specific tur	mour heights (3.0, 6.0 an	d 9.0 mm), respe	ctively.
218	Analysis 2 – Loss of good pre-treatment	nent visual acuity		
219	For patients with good initial pre-tre	atment visual acuity, the	risk of visual ac	uity loss correlated
220	with macula $D_{2\%}$ and pre-treatment	visual acuity. Additional	ly, the volume of	the optic disc
221	receiving 50% of the prescribed dos	e (optic disc V _{26Gy}) demo	onstrated weaker	correlation. Besides
222	dose, tumour height and optic disc-t	umour distance were the	only clinical var	iables correlated with
223	the risk of loss of pre-treatment visu	al acuity. Odd ratios are	listed in Table 2.	Figure 3C and Figure
224	3D illustrate the dose-response relat	ionship for macula $D_{2\%}$ a	and for three spec	ific tumour heights.

226 irrespective of initial pre-treatment visual acuity.

- 227
- 228 Model performance using Hosmer-Lemeshow showed a strong correlation between observed and
- 229 predicted risk of visual acuity deterioration for both logistic regression models. The model
- 230 goodness-of-fits are illustrated in Appendix C for both visual acuity analyses.
- 231

	Analysis 1: Visual	Analysis 2: Loss of good
	acuity deterioration	pre-treatment visual
		acuity
Variables in logistic model	Odds ratio (95 % CI)	Odds ratio (95 % CI)
Tumour height	1.25 (1.14-1.38)	1.51 (1.29-1.79)
Optic disc-tumour distance	0.98 (0.93-1.03)	0.96 (0.90-1.02)
Optic disc $D_{20\%}$ +	-	1.01 (0.58-1.81)
Optic disc $D_{2\%}$ +	1.11 (1.01-1.22)	-
Optic disc V _{26Gy} *	-	1.10 (0.90-1.33)
Optic disc V _{5Gy} *	-	1.00 (0.78-1.27)
Macula $D_{2\%}$ +	1.18 (1.09-1.28)	1.28 (1.15-1.44)
Retina D _{20%}	1.12 (0.98-1.29)	-
Globe V _{10Gy}	1.11 (0.76-1.61)	1.01 (0.98-1.04)
Globe V _{5Gy}	0.91 (0.63-1.31)	-
Follow-up (1 y increase)	1.08 (1.04-1.13)	-

- 232 Table 2: Odds ratios with 95 % confidence intervals (CI) from multivariable logistic regression
- 233

analyses. +=10 Gy increase, *= 10 %-point increase.

Figure 3: A) Dose response of visual acuity deterioration at 5 years as a function of near-maximum 235 macula dose (macula $D_{2\%}$). The shaded area represents the 95% confidence interval. The model is 236 adjusted for tumour height (4.9 mm), optic disc-tumour distance (4.0 mm), optic disc D2% (4.0 Gy), 237 retina $D_{20\%}$ (51.7 Gy), globe V_{10Gy} (36% of total eye volume), globe V_{5Gy} (38% of total eye volume) 238 and follow-up (5.1 years). The values were set as the median value for the entire visual acuity 239 group. B) Dose response of visual acuity deterioration at 5 years as a function of macula D2% for 240 three tumour heights (3.0, 6.0 and 9.0 mm). C) Dose response of pre-treatment visual acuity loss at 241 242 5 years after a baseline visual acuity of $\leq 0.5 \log$ MAR as a function of macula D_{2%}. The model is

243	adjusted for tumour height, optic disc-tumour distance, optic disc V_{26Gy} (0%), optic disc V_{5Gy} (0%),
244	optic disc $D_{20\%}$ (1.3 Gy) and globe V_{10Gy} . D) Dose response of pre-treatment visual acuity loss at 5
245	years after a baseline visual acuity of ≤ 0.5 logMAR as a function of macula $D_{2\%}$ for the three
246	tumour heights.

248 Group 2: Complications

The hazard ratios (HRs) including 95% CI for complication data are listed in Table 3. No predictors
were found for vasculopathy and no analysis was consequently made for this late complication.

Complication	Hazard ratio (95 % CI)		
Maculopathy			
Retina $D_{20\%}$ +	1.21 (1.07-1.36)		
Optic neuropathy			
Optic disc-tumour distance	0.83 (0.72-0.95)		
Optic disc $D_{20\%}$ +	1.15 (0.94-1.41)		
Optic disc V _{42Gy} *	1.04 (0.96-1.13)		
Neovascular glaucoma			
Tumour height	1.31 (1.16-1.47)		
Cornea D _{20%} +	1.26 (1.12-1.41)		
Globe $D_{50\%}$ #	1.00 (0.98-1.02)		
Globe V _{52Gy}	0.99 (0.96-1.02)		
Optic disc V _{52Gy} *	1.10 (1.05-1.15)		
Ocular hypertension			
Tumour height	1.08 (0.96-1.20)		

Ciliary body $D_{20\%}^+$	1.46 (1.10-1.95)
Ciliary body V _{26Gy} *	1.10 (0.74-1.64)
Cornea D _{20%} +	1.06 (0.86-1.30)
Retina D50%	1.01 (0.99-1.03)
Cataract	
Ciliary body V _{26Gy} *	1.31 (1.22-1.40)
Dry eye syndrome	
Ontic disc-tumour distance	1.09 (1.05-1.12)
optie dise tuitour distance	1.09 (1.03 1.12)
Retinal detachment	Odds ratio (95 % CI)
Retinal detachment Age at treatment	Odds ratio (95 % CI) 0.98 (0.97-0.99)
Retinal detachment Age at treatment Tumour height	Odds ratio (95 % CI) 0.98 (0.97-0.99) 1.15 (1.06-1.25)
Retinal detachment Age at treatment Tumour height Largest base dimension	Odds ratio (95 % CI) 0.98 (0.97-0.99) 1.15 (1.06-1.25) 1.07 (1.00-1.14)
Retinal detachment Age at treatment Tumour height Largest base dimension Optic disc-tumour distance	Odds ratio (95 % CI) 0.98 (0.97-0.99) 1.15 (1.06-1.25) 1.07 (1.00-1.14) 0.88 (0.84-0.91)
Retinal detachment Age at treatment Tumour height Largest base dimension Optic disc-tumour distance Retina V _{52Gy}	Odds ratio (95 % CI) 0.98 (0.97-0.99) 1.15 (1.06-1.25) 1.07 (1.00-1.14) 0.88 (0.84-0.91) 1.06 (1.00-1.12)

Table 3: Hazard ratios (HR) and 95 % confidence intervals (CI) for each of the complications in

253 multivariable Cox regression analysis. +=10 Gy increase, *=10 %-point increase, # percent of

254

volume relative to eye volume.

- 255
- 256 Maculopathy

257 Retina $D_{20\%}$ was the only variable chosen from the Lasso procedure to impact the risk of developing

258 maculopathy, although this relationship was relatively weak. The dose-response for this relationship

- is illustrated in Figure 4A.
- 260 *Optic neuropathy*

261	The dose delivered to 20% of the optic disc (optic disc $D_{20\%}$) was the variable with the largest HR
262	for optic neuropathy, but this was also a relatively weak correlation. Figure 4B illustrates the dose-
263	response model for this relationship. Tumour-optic disc distance was the only clinical variable
264	associated with the risk of developing optic neuropathy.
265	Neovascular glaucoma
266	The dose delivered to 20% of the cornea (cornea $D_{20\%}$) demonstrated the strongest association with
267	neovascular glaucoma; see illustration in Figure 4C.
268	Ocular hypertension
269	Several dose metrics were chosen from the Lasso procedure for ocular hypertension and
270	demonstrated association with the risk of developing this late complication, but ciliary body $D_{20\%}$
271	was the variable with the strongest correlation (although this was still relatively weak). Figure 4D
272	illustrates this relationship.
273	Cataract
274	The volume of the ciliary body receiving 50% of the prescribed dose (ciliary body $V_{\rm 26Gy})$ was the
275	only variable associated with the risk of cataract and this strong relationship is illustrated in Figure
276	4E.
277	Retinal detachment
278	The volume of the retina receiving 100% of the prescribed dose (retina $V_{52Gy})$ proved to have a
279	considerable impact on the risk of developing retinal detachment after the treatment. Figure 4F
280	illustrates this relationship.
281	
282	Model performance using concordance index (c-index) and Brier score showed acceptable 5-year

- accuracy, with the best calibration being for the ocular hypertension and neovascular glaucoma
- models. The model goodness-of-fits are illustrated in Appendix C for all late complication analyses.

286	Figure 4: A) Dose response of maculopathy at 5 years as a function of retina $D_{20\%}$. The shaded area
287	represents the 95% confidence interval of the risk estimate. B) Dose response of optic neuropathy at
288	5 years as a function of optic disc $D_{20\%}$. The model adjusts for optic disc-tumour distance (3.7 mm)
289	and optic disc V_{42Gy} (0%) and optic disc V_{10Gy} (0%). C) Dose response of neovascular glaucoma at
290	5 years as a function of cornea $D_{20\%}$. The model adjusts for tumour height (4.9 mm), optic disc
291	$V_{52Gy}(0\%),$ globe $D_{50\%}(0~Gy)$ and globe $V_{52Gy}(29.1\%).$ D) Dose response of ocular hypertension
292	at 5 years as a function of ciliary body $D_{20\%}.$ The model adjusts for tumour height, cornea $D_{20\%}$ (0
293	Gy), retina $D_{50\%}$ (0 Gy) and ciliary body V_{26Gy} (20%). E) Dose response of cataract at 5 years as a
294	function of ciliary body V_{26Gy} . F) Dose response of retinal detachment at 5 years as a function of
295	retina V_{52Gy} . The model adjusts for retina V_{42Gy} , age at treatment (65 years), tumour height, largest
296	base dimension (11 mm) and optic disc-tumour.

298 Discussion

In this retrospective study of a large single-institution cohort, we examined relationships between 299 300 dose delivered to healthy tissue and the occurrence of visual acuity deterioration and late radiation-301 induced complications after proton therapy for choroidal melanoma. The novelty of this study is the 302 use of advanced statistics to identify risk factors with the strongest impact on each endpoint in multivariable analysis. This was done to robustly explore the full scope of potential dose and 303 304 volume dependence. Normal tissue dose was important for visual acuity deterioration, and dose to 305 healthy structures was a considerable factor associated with the risk of developing most of the late 306 complications.

Broad, composite endpoints showed correlation with a relatively wide range of normal tissue doses,
corresponding to a complex underlying pathophysiology. As such, dose metrics for several normal
structures appeared to have an impact on visual acuity deterioration. The maximum dose to the

310	macula, $D_{2\%}$, was, however, associated with the largest effect. In the group with good pre-treatment
311	visual acuity, where a change was more likely to be caused by the treatment, rather than other
312	factors, we also found the steepest dose-response relationship (Figure 3C). Interestingly, tumour
313	height was directly associated with risk of visual acuity deterioration and the correlation was
314	stronger than the maximum dose to the macula. This confirms similar findings reported previously,
315	where tumour height was the most important factor for visual loss and risk of enucleation [16–18].
316	Specific complication endpoints were to a larger extend related to dose metrics from specific
317	healthy structures, potentially representing a more direct link between structures, pathophysiology
318	of radiation damage, and the resulting clinical complications.
319	Remarkably, radiation dose had little importance on the risk of optic neuropathy (Table 3) even
320	though the Lasso analysis selected multiple closely correlated optic disc dose metrics. This was
321	reflected in the developed dose-response models for optic neuropathy, which had poor prognostic
322	value as the model contained no obvious threshold. Our data indicated that the most important
323	predictor for the risk of developing optic neuropathy was the proximity of the tumour to the optic
324	disc.
325	For maculopathy, we found no effect of radiation to the macula – in contrast to Gragoudas et al.,
326	where macular exposure to radiation was main risk factor [19]; this study was, however, based on a
327	selected group of patients and the prescribed tumour dose was higher than in our study (70 CGE vs
328	~57 CGE) [18]. We found that dose delivered to 20% of the retina (retina $D_{20\%})$ was the only
329	variable with impact on the risk of maculopathy. We speculated that retina $D_{20\%}$ potentially
330	represented a surrogate for tumour extension or for macula $D_{2\%}$ and consequently for visual acuity

deterioration. 331

332	Post-treatment retinal detachment was not defined as a risk factor but as an endpoint in our analysis,
333	because retinal detachment involving the macula can cause visual impairment. It was the most
334	frequent side-effect in this cohort. Egger et al. found that only 29.3% of patients experienced no
335	retinal detachment [20]. However, the rate essentially depends on how it is diagnosed. We speculate
336	that some of the retinal detachments included in our data might have been present already before the
337	treatment was initiated even if the retina normalised after the treatment. It could not be determined
338	whether the retinal detachments were caused by tumour decay or direct radiation damage. We did
339	find that tumour height, posterior located tumours, and volume of the retina receiving full
340	prescription dose (retina V_{52Gy}) increased the risk.
341	Dose metrics for several normal tissue structures were identified from the Lasso analysis to increase
342	the risk of ocular hypertension. Dose to 20% of the ciliary body (ciliary body $D_{20\%})$ was found to
343	have the strongest impact; possibly an indirect effect from radiation-induced damage of the
344	trabecular meshwork preventing drainage of produced aqueous [21].
344 345	trabecular meshwork preventing drainage of produced aqueous [21]. In addition to ocular hypertension, neovascular glaucoma involve new vessel formation in the
344 345 346	trabecular meshwork preventing drainage of produced aqueous [21]. In addition to ocular hypertension, neovascular glaucoma involve new vessel formation in the anterior segment, indicating a component of ischemia and release of angiogenic factors. Therefore,
344 345 346 347	trabecular meshwork preventing drainage of produced aqueous [21]. In addition to ocular hypertension, neovascular glaucoma involve new vessel formation in the anterior segment, indicating a component of ischemia and release of angiogenic factors. Therefore, neovascular glaucoma is a more complex endpoint that is likely to be caused from multiple various
344 345 346 347 348	trabecular meshwork preventing drainage of produced aqueous [21]. In addition to ocular hypertension, neovascular glaucoma involve new vessel formation in the anterior segment, indicating a component of ischemia and release of angiogenic factors. Therefore, neovascular glaucoma is a more complex endpoint that is likely to be caused from multiple various factors, but it remains unknown which specific variables are main risk factors. We found that
 344 345 346 347 348 349 	trabecular meshwork preventing drainage of produced aqueous [21]. In addition to ocular hypertension, neovascular glaucoma involve new vessel formation in the anterior segment, indicating a component of ischemia and release of angiogenic factors. Therefore, neovascular glaucoma is a more complex endpoint that is likely to be caused from multiple various factors, but it remains unknown which specific variables are main risk factors. We found that tumour height was the variable with the strongest impact on the risk of neovascular glaucoma, while
 344 345 346 347 348 349 350 	trabecular meshwork preventing drainage of produced aqueous [21]. In addition to ocular hypertension, neovascular glaucoma involve new vessel formation in the anterior segment, indicating a component of ischemia and release of angiogenic factors. Therefore, neovascular glaucoma is a more complex endpoint that is likely to be caused from multiple various factors, but it remains unknown which specific variables are main risk factors. We found that tumour height was the variable with the strongest impact on the risk of neovascular glaucoma, while the dose delivered to 20% of the cornea surface (cornea D _{20%}) and the volume of the optic disc
 344 345 346 347 348 349 350 351 	trabecular meshwork preventing drainage of produced aqueous [21].In addition to ocular hypertension, neovascular glaucoma involve new vessel formation in the anterior segment, indicating a component of ischemia and release of angiogenic factors. Therefore, neovascular glaucoma is a more complex endpoint that is likely to be caused from multiple various factors, but it remains unknown which specific variables are main risk factors. We found that tumour height was the variable with the strongest impact on the risk of neovascular glaucoma, while the dose delivered to 20% of the cornea surface (cornea D _{20%}) and the volume of the optic disc receiving maximum dose (optic disc S/V _{52Gy}) increased the risk. This is in line with previous
 344 345 346 347 348 349 350 351 352 	trabecular meshwork preventing drainage of produced aqueous [21].In addition to ocular hypertension, neovascular glaucoma involve new vessel formation in the anterior segment, indicating a component of ischemia and release of angiogenic factors. Therefore, neovascular glaucoma is a more complex endpoint that is likely to be caused from multiple various factors, but it remains unknown which specific variables are main risk factors. We found that tumour height was the variable with the strongest impact on the risk of neovascular glaucoma, while the dose delivered to 20% of the cornea surface (cornea D _{20%}) and the volume of the optic disc receiving maximum dose (optic disc S/V _{52Gy}) increased the risk. This is in line with previous findings by Mishra et al. that also reported increased tumour height, dose to anterior critical
 344 345 346 347 348 349 350 351 352 353 	trabecular meshwork preventing drainage of produced aqueous [21].In addition to ocular hypertension, neovascular glaucoma involve new vessel formation in the anterior segment, indicating a component of ischemia and release of angiogenic factors. Therefore, neovascular glaucoma is a more complex endpoint that is likely to be caused from multiple various factors, but it remains unknown which specific variables are main risk factors. We found that tumour height was the variable with the strongest impact on the risk of neovascular glaucoma, while the dose delivered to 20% of the cornea surface (cornea D _{20%}) and the volume of the optic disc findings by Mishra et al. that also reported increased tumour height, dose to anterior critical structures (lens or ciliary body), and dose to the optic disc as main risk factors [22]. Daftari et al.
 344 345 346 347 348 349 350 351 352 353 354 	trabecular meshwork preventing drainage of produced aqueous [21].In addition to ocular hypertension, neovascular glaucoma involve new vessel formation in the anterior segment, indicating a component of ischemia and release of angiogenic factors. Therefore, neovascular glaucoma is a more complex endpoint that is likely to be caused from multiple various factors, but it remains unknown which specific variables are main risk factors. We found that tumour height was the variable with the strongest impact on the risk of neovascular glaucoma, while the dose delivered to 20% of the cornea surface (cornea D _{20%}) and the volume of the optic disc receiving maximum dose (optic disc S/V _{52Gy}) increased the risk. This is in line with previous findings by Mishra et al. that also reported increased tumour height, dose to anterior critical structures (lens or ciliary body), and dose to the optic disc as main risk factors [22]. Daftari et al. advocated sparing of radiation to the anterior segment to prevent neovascular glaucoma [23].

356 coverage and sparing of the macula and the optic disc are prioritized. This could explain why the 357 Lasso analysis selects globe $D_{50\%}$ and globe V_{52Gy} as risk factors (Table 3). 358 Cataract was a common side-effect in our cohort; occurring in one third of patients. The lens has 359 been reported to be the most radiosensitive ocular structure [24]. However, we found the volume of 360 ciliary body that received 50% of the dose (ciliary body V_{26Gy}) as the most important variable for 361 the development of cataract, most likely since development of cataract is a multifactorial event with various risk factors. Additionally, we speculate that the finding of ciliary body dose might reflect an 362 indirect effect of the dose to the lens. To explore this further, we performed an explorative analysis 363 including solely the lens DVH along with clinical factors. We found that the maximum dose to the 364 lens (lens $D_{2\%}$) was important for the risk of cataract when no other dose metrics were included in 365 366 the selection process (results not shown). This has been reported in previous studies [25,26]. Phacoemulsification can, however, be carried out safely even after proton therapy, and visual acuity 367

367 Phacoemulsification can, however, be carried out safely even after proton therapy, and visual acuity368 can be recovered after surgery.

For dry eye syndrome, the only variable associated with increased risk was the optic disc-tumour distance; the longer the distance the higher the risk. This lack of dependence could possibly be explained by the lack of lachrymal gland contouring in the treatment planning system; consequently, it was not possible to explore all relevant dose relationships [27].

We used advanced statistical methodology for selecting appropriate variables to include in the analyses. In this way, we included the predictors associated with risk of each specific endpoint, while excluding variables with no clear impact. The use of Lasso for variable selection is a wellestablished and robust method to handle many variables. It is, however, recognised that the method has problems when the included variables are highly correlated. Additionally, the cross-validation performed to select the optimal shrinkage parameter has previously been described to select too many non-informative variables. This may explain the selection of competing dose metrics for someof the toxicities in this study [28].

381 It is important to recognize that this was a retrospective analysis. It is a considerable strength of the 382 study, however, that complications were recorded during follow-up and extracted from the database 383 for the purpose of this study. Unfortunately, the time-to-event information for visual acuity deterioration and retinal detachment were not available. We did, however, include total follow-up 384 385 time in the model to adjust for any time-effect. Furthermore, the effect of tumour volume was not explored. Since tumours often have complex shapes (e.g. mushroom shape) the volumes are 386 387 difficult to measure, making tumour height a much more precise measure. Additionally, tumour height has been the standard variable to include in analyses in the literature. As such, the knowledge 388 389 gained from including tumour height in the model is valuable and can be comparable to the 390 literature.

We report relatively low prevalence of some of the radiation-induced toxicities compared to
previous works [29], which might be a result of using a personalized treatment plan and a dedicated
eyeline for all treatments. However, another reason for the low prevalence could be that mild
toxicities were underreported. Toxicity reporting is most likely heterogeneous among centres;
indicating lack of standardization in terms of diagnosing radiation-induced ocular toxicities. Finger
et al. have established guidelines for the diagnosis of retinopathy but an expansion to the remaining
complications are needed [30].

Limited data currently exist on the tolerance of various eye structures to radiation dose for external beam photon treatment. It has solely been described by the QUANTEC review for the optic nerve and the chiasm [31]. The maximum dose (D_{max}) to the optic nerve was related to the risk of late radiation-induced optic neuropathy, with maximum tolerable dose for normo-fractionated (1.8-2

402	Gy/fraction) external beam photon treatment at around 60 Gy. Importantly, these data cannot be
403	compared directly to the hypo-fractionated physical doses used for choroidal melanomas. Similarly,
404	the current results will not be applicable to brachytherapy (Ru-106) [32] due to different dose-
405	fractionation/dose-rate effects and different underlying radiobiology of the radiation modalities.
406	The dose-response models established in this study can ultimately help suide the radiation
	The dose response models conclusive in this study can unintery nelp galace the radiation
407	oncologists' decisions on optimal treatment and gaze direction during the treatment planning. The
408	established models could additionally guide future treatment planning to maintain a low level of
409	radiation-induced toxicities. Individualized toxicity risk estimates may also help treatment modality
410	selection - keeping in mind that besides filter and margins, there are no further optimization options
411	during proton planning in most currently available treatment planning systems. Further dedicated
412	studies are needed for each treatment modality, especially if individualised treatment modality
413	selection and optimisation is to be realised.

415 References

- 416 [1] Finger PT. Radiation therapy for choroidal melanoma. Surv Ophthalmol 1997;42:215–32.
- 417 [2] Groenewald C, Konstantinidis L, Damato B. Effects of radiotherapy on uveal melanomas and
 418 adjacent tissues. Eye (Lond) 2013;27:163–71.
- 419 [3] Thariat J, Grange JD, Mosci C, et al. Visual Outcomes of Parapapillary Uveal Melanomas
 420 Following Proton Beam Therapy. Int J Radiat Oncol Biol Phys 2016;95:328–35.
- 421 [4] Chauvel P, Mandrillon P, Brassart N, et al. Status report on the installation of proton and422 neurontherapy in centre Antoine-Lacassagne 1815:1815–7.

423	[5]	Mandrillon P, Farley F, Brassart N, et al. Commissioning and implementation of the			
424		MEDICYC cyclotron programme. Proc. 15th Int. Conf. Cyclotrons their Appl. Caen, Fr.,			
425		1989.			
426	[6]				
426	[6]	Cambria R, Herault J, Brassart N, et al. Proton beam dosimetry: a comparison between the			
427		Faraday cup and an ionization chamber. Phys Med Biol 1997;42:1185–96.			
428	[7]	Courdi A, Caujolle JP, Grange JD, et al. Results of proton therapy of uveal melanomas			
429		treated in Nice. Int J Radiat Oncol Biol Phys 1999;45:5-11.			
430	[8]	Elliott DB. The good (logMAR), the bad (Snellen) and the ugly (BCVA, number of letters			
431		read) of visual acuity measurement. Ophthalmic Physiol Opt 2016;36:355-8.			
432	[9]	Lim LA, Frost NA, Powell RJ, et al. Comparison of the ETDRS logMAR, compact reduced			
433		logMar and Snellen charts in routine clinical practice. Eye 2010;24:673–7.			
434	[10]	Ternès N, Rotolo F, Michiels S. Empirical extensions of the lasso penalty to reduce the false			
435		discovery rate in high-dimensional Cox regression models. Stat Med 2016;35:2561–73.			
436	[11]	Efron B, Hastie T. Computer age statistical inference: Algorithms, evidence, and data			
437		science. 2016.			
438	[12]	Hastie Trevor and Qian Junyang. Glmnet Vignette 2014:1-42.			
439	[13]	Cox DR. Regression models and life-tables. J R Stat Soc Ser B 1972;34:187–220.			
440	[14]	Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. Control			
441		Clin Trials 1996;17:343–6.			
442	[15]	Espensen CA, Kiilgaard JF, Appelt AL, et al. Descriptive document for analyses in			
443		manuscript (DOI for linked data will be available at the time of publication). ERDA 2020.			

444	[16]	Seddon JM, Gr	agoudas ES, Ega	an KM, et al. Uvea	l melanomas near the	optic disc or fovea.
-----	------	---------------	-----------------	--------------------	----------------------	----------------------

- 445 Visual results after proton beam irradiation. Ophthalmology 1987;94:354–61.
- 446 [17] Egan KM, Gragoudas ES, Seddon JM, et al. The Risk of Enucleation after Proton Beam
- 447 Irradiation of Uveal Melanoma. Ophthalmology 1989;96:1377–83.
- [18] Thariat J, Grange J, Mosci C, et al. Visual Outcomes of Parapapillary Uveal Melanomas
 Following Proton Beam Therapy 2016;95:328–35.
- 450 [19] Gragoudas ES, Li W, Lane AM, et al. Risk factors for radiation maculopathy and
- 451 papillopathy after intraocular irradiation☆. Ophthalmology 1999;106:1571–8.
- 452 [20] Egger E, Schalenbourg A, Zografos L, et al. Maximizing local tumor control and survival
 453 after proton beam radiotherapy of uveal melanoma. Int J Radiat Oncol 2001;51:138–47.
- 454 [21] Moses RA. Adler's Physiology of the eye. 5th ed. 1970.
- 455 [22] Mishra KK, Daftari IK, Weinberg V, et al. Risk Factors for Neovascular Glaucoma After
- 456 Proton Beam Therapy of Uveal Melanoma: A Detailed Analysis of Tumor and Dose–Volume
- 457 Parameters. Int J Radiat Oncol 2013;87:330–6.
- [23] Daftari IK, Char DH, Verhey LJ, et al. Anterior segment sparing to reduce charged particle
 radiotherapy complications in uveal melanoma. Int J Radiat Oncol Biol Phys 1997;39:997–
 1010.
- 461 [24] Seibel I, Cordini D, Hager A, et al. Cataract development in patients treated with proton
- beam therapy for uveal melanoma. Graefe's Arch Clin Exp Ophthalmol 2016;254:1625–30.
- 463 [25] Thariat J, Jacob S, Caujolle JP, et al. Cataract avoidance with proton therapy in ocular
- 464 melanomas. Investig Ophthalmol Vis Sci 2017;58:5378–86.

465	[26]	Mathis T, Rosier L, Meniai F, et al. The Lens Opacities Classification System III Grading in	
466		Irradiated Uveal Melanomas to Characterize Proton Therapy-Induced Cataracts. Am J	
467		Ophthalmol 2019;201:63–71.	
468 469	[27]	Thariat J, Maschi C, Lanteri S, et al. Dry Eye Syndrome After Proton Therapy of Ocular Melanomas. Int J Radiat Oncol Biol Phys 2017;98:142–51.	
470 471	[28]	He K, Wang Y, Zhou X, et al. An improved variable selection procedure for adaptive Lasso in high-dimensional survival analysis. Lifetime Data Anal 2018.	
472	[29]	Dendale R, Lumbroso-Le Rouic L, Noel G, et al. Proton beam radiotherapy for uveal	
473 474		melanoma: Results of Curie Institut-Orsay Proton Therapy Center (ICPO). Int J Radiat Oncol Biol Phys 2006;65:780–7.	
475 476	[30]	Finger P, Kurli M. Laser photocoagulation for radiation retinopathy after ophthalmic plaque radiation therapy. Br J Ophthalmol 2005;89:730–8.	
477 478	[31]	Mayo C, Martel MK, Marks LB, et al. Radiation Dose-Volume Effects of Optic Nerves and Chiasm. Int J Radiat Oncol Biol Phys 2010;76:28–35.	
479 480	[32]	Espensen CA, Appelt AL, Fog LS, et al. Predicting visual acuity deterioration and radiation- induced toxicities after brachytherapy for choroidal melanomas. <u>Cancers (Basel) 2019</u> .	Formatted: English (United States)