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Abstract 31 

The long-term dynamics of regeneration in tropical forests dominated by single tree species remains 32 

largely undocumented, yet is key to understanding the mechanisms by which one species can gain 33 

dominance and resist environmental change. We report here on the long-term regeneration 34 

dynamics in a monodominant stand of Brosimum rubescens Taub. (Moraceae) at the southern 35 

border of the Amazon forest. Here the climate has warmed and dried since the mid-1990’s. Twenty-36 

one years of tree and liana regeneration were evaluated in four censuses in 30 plots by assessing 37 

species abundance, dominance, and diversity in all regeneration classes up to 5 cm diameter. The 38 

density of B. rubescens seedlings declined markedly, from 85% in 1997 to 29% in 2018 after the 39 

most intense El Niño-driven drought. While the fraction contributed by other tree species changed 40 

little, the relative density of liana seedlings increased from just 1% to 54% and three-quarters of 41 

liana species underwent a ten-fold or greater increase in abundance. The regeneration community 42 

experienced a high rate of species turnover, with changes in the overall richness and species 43 

diversity determined principally by lianas, not trees. Long-term maintenance of monodominance in 44 

this tropical forest is threatened by a sharp decline in the regeneration of the monodominant species 45 

and the increase in liana density, suggesting that monodominance will prove to be a transitory 46 

condition. The close association of these rapid changes with drying indicates that monodominant B. 47 

rubescens forests are impacted by drought-driven changes in regeneration, and therefore are 48 

particularly sensitive to climatic change. 49 

 50 

Keywords: drought • regeneration dynamics • saplings • seedlings • lianas.  51 

 52 

Introduction 53 

 Tropical forests are renowned as being global centres of tree species richness and diversity 54 

(Connell et al. 1984; Gentry 1988). In general, tropical forests are also hyper-diverse at the local, 55 

community scale, with one hectare having as much as 30 times more tree species than an equivalent 56 
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area in temperate forests (e.g., Gentry 1988; Condit et al. 1996; Torti et al. 2001). Such high alpha 57 

diversity typically pertains across the most extensive tropical forests of all in Amazonia (e.g., ter 58 

Steege et al. 2003), yet for some tropical forests the rule of high alpha-diversity does not hold. 59 

Across the tropics, several studies have reported ‘monodominant’ mature forests even on well-60 

drained soils, in which one species may comprise from 50% to as much as 100% of the individuals 61 

and the total biomass (Connell and Lowman 1989; Marimon et al. 2001a; Peh et al. 2011b). 62 

 Several researchers have attempted to identify factors and mechanisms that enable a single 63 

species to reach and maintain monodominance in the tropics (e.g., Connell and Lowman 1989; Hart 64 

1990; Torti et al. 2001; Marimon and Felfili 2006; Marimon et al. 2008, 2012, 2014; Peh et al. 65 

2014; Nascimento et al. 2017; Elias et al. 2018). Peh et al. (2011b) discussed a total of eight 66 

hypotheses that have been proposed to explain the origin and maintenance of monodominance in 67 

tropical forests. They concluded that a variety of mechanisms likely interact to induce a species to 68 

attain monodominance locally, even when that species also grows in similar environmental 69 

conditions in adjacent mixed forests which have much greater tree diversity.  70 

 Meanwhile, it has long been appreciated that disturbance regimes can have a strong impact 71 

on tropical forest diversity; Connell’s ‘intermediate disturbance’ hypothesis (Connell 1978), for 72 

example, suggests that there is an optimal level of disturbance frequency and intensity above and 73 

below which species diversity declines. Indeed disturbance regimes appear to be intimately 74 

associated with the phenomenon of monodominance (Tovar et al. 2019). Thus, while Ibanez and 75 

Birnbaum (2014) observed that monodominance can occasionally be a non-persistent state that 76 

occurs after severe disturbances (‘early successional monodominance’), one of the factors most 77 

often hypothesised as responsible for favouring a species to reach monodominance is a long-term 78 

lack of large-scale disturbances (Connell and Lowman 1989; Hart 1990; Marimon et al. 2012). In 79 

this situation, species whose seedlings are able to grow under deep shade, and which also have high 80 

parental survivorship and potential to dominate canopies are expected to gain a long-term 81 

advantage. In all, multiple related biological traits and environmental characteristics are likely to be 82 
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responsible for helping a species develop a monodominant state, including low gap formation 83 

frequency, strong interspecific competition, high parental survivorship and high survivorship under 84 

strong shading, litter characteristics, large seed size, and masting events (i.e., massive, infrequent 85 

seed production in regional synchrony with trees of the same species) (Connell and Lowman 1989; 86 

Hart 1990; Torti et al. 2001; Marimon and Felfili 2006; Peh et al. 2011b; Marimon et al. 2012; Hart 87 

2012; Read et al. 2017; Henkel and Mayor 2019). 88 

 Evidently then most of the factors and mechanisms invoked in explanations of 89 

monodominance may be best evaluated through examining species regeneration (Connell and 90 

Lowman 1989; Read et al. 2017). For example, if diversity in tropical forests is normally 91 

maintained by compensatory mechanisms that benefit rare species (Connell et al. 1984), then 92 

monodominance may occur when regeneration mechanisms uncharacteristically instead favour 93 

common species and tree diversity remains low. More generally, evaluation of long-term 94 

regeneration dynamics should be able to determine whether changes in diversity occur in 95 

conjunction with changes in disturbance mechanisms, such as droughts, logging and anthropogenic 96 

climate change – all of which impact tree mortality, recruitment, carbon sequestration and species 97 

composition in Amazonia (Phillips et al. 2009; Costa et al. 2010; Brienen et al. 2015; Meir et al. 98 

2015; Feldpausch et al. 2016; Esquivel-Muelbert et al. 2019). Yet studies of the stand dynamics of 99 

monodominant forest regeneration are difficult, extremely few, and so far have relied on single 100 

census inventories or short-term monitoring (c.f., Hart 1995; Marimon et al. 2012; Valverde-101 

Berrantes and Rocha 2014). 102 

 As well as understanding species regeneration processes, exploring the ecological 103 

interactions between trees and lianas is also essential for understanding how tropical forests 104 

function (Caballé and Martin 2001; Comita et al. 2007). Lianas not only compete effectively with 105 

trees for water, light, space and nutrients (e.g., van der Heijden and Phillips 2009), but by  106 

contributing to gap formation they can accelerate processes of species substitution and forest 107 

dynamics (e.g., Phillips et al. 2005; van der Heijden and Phillips 2009; van der Heijden et al. 2013; 108 
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Magnago et al. 2017). Since lianas can grow almost ten times faster than trees during the dry 109 

season, they can also have a competitive advantage in forests subject to strongly seasonal 110 

environments (Schnitzer and Bongers 2011). If extreme events of drought and high temperature 111 

become more frequent (Fauset et al. 2012; Boisier et al. 2015) such climate changes could therefore 112 

drive large-scale increases in lianas. Indeed, the recent increases in Amazonian dry season intensity 113 

(e.g. Malhi et al. 2009; Gloor et al. 2013; Feldpausch et al. 2016; Esquivel-Muelbert et al. 2019) 114 

might help explain the increase in liana dominance that has been reported from many forests (e.g., 115 

Phillips et al. 2002; Nepstad et al. 2007; van der Heijden et al. 2013). 116 

 In Amazonia, one of the few species capable of attaining monodominant status is Brosimum 117 

rubescens Taub., a canopy tree in the Moraceae. Brosimum stands covered areas of up to 5,000 118 

hectares, especially, until recently, in the transition zone between the two largest biomes in the 119 

continent, the Amazonian Forest and the Cerrado (savannah), in the Brazilian states of Mato 120 

Grosso, Pará and Tocantins (Marimon et al. 2001a, b, 2008, 2012, 2014). With large-scale regional 121 

deforestation for pasture and soya agriculture, and logging focussed on this species for use as fence-122 

posts for pastures, today the Brosimum-dominated forests are few and small, restricted mostly to 123 

indigenous reserves and forest reserves on large farms. Typically the remaining patches of this 124 

unique habitat lack any management plan or any type of conservation action (Marimon et al. 2001a, 125 

b, 2008). Where Brosimum monodominant forests still occur they are situated in an area of 126 

particularly rapid recent climate change, and where future climates are expected to be warmer and 127 

drier (Costa et al. 2010, 2019). This climate change may already be inducing a regional acceleration 128 

of forest dynamics (Marimon et al. 2014; Elias et al. 2018), which could have the potential to 129 

radically alter the regeneration dynamics and liana dominance of the remaining intrinsically slow 130 

nutrient turnover monodominant systems (Torti et al. 2001; Peh et al. 2011a, b). 131 

In the present study, we evaluated richness, species diversity and change of the regeneration 132 

in a monodominant B. rubescens forest over a 21-year period in the transition zone between the 133 

Cerrado and the Amazonian biomes. Because adult tree mortality in this patch has increased 134 
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markedly over recent years, our main prediction was that the density of young individuals of 135 

Brosimum would have declined over time, while species diversity increased. We evaluated 136 

regeneration of woody plants over time and tested the hypotheses that after severe droughts density 137 

of the monodominant declines, and species composition changes. By including lianas as well as 138 

trees in our forest regeneration censuses we were able to investigate the role of lianas in forest 139 

regeneration. To our knowledge the present study represents by far the longest-running assessment 140 

of regeneration in monodominant forests to date anywhere in the tropics, and is the first attempt in 141 

such systems to explicitly account for the long-term regeneration of woody lianas as well as trees. 142 

 143 

Materials and methods 144 

 145 

Study site 146 

The study was conducted in Brosimum rubescens monodominant forest located at 14º50’S 147 

and 52º10’W in a patch of about 1,000 ha inside an area bigger than 8,000 ha of the Vera Cruz 148 

Farm legal reserve. Brosimum dominates the forest biomass and comprises more than half of all 149 

individuals (Marimon 2005; Marimon et al. 2001a, 2014). This forest has been monitored since 150 

1996 by the senior author using permanent plots. The climate is type Aw, according to Köppen’s 151 

classification, with a dry season from May to September and five to six months of rain (Alvares et 152 

al. 2013), leading to maximum cumulative water deficits (MCWD, Aragão et al. 2007) exceeding 153 

400 mm in most years. Mean annual precipitation is 1432 mm and mean annual temperature 25°C. 154 

Severe droughts (here considered as total annual precipitation below 1,000 mm and with MCWD 155 

above 640 mm year-1, were experienced in the study area in 2007-2008 and 2015-2016 (Feldpausch 156 

et al. 2016; Jiménez-Muñoz et al. 2016; Rifai et al. 2018), with a general trend of markedly 157 

increasing temperature and declining precipitation (more negative MCWD values) over the past 22 158 

years (Fig. 1). 159 

 160 
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Data collection  161 

In July 1997, within a permanent 1 ha plot, we established two parallel transects (10 m x 150 m) 10 162 

m away from each other, each of which followed the gentle relief of the landscape so as to maintain 163 

the same altitude. Each transect was subdivided into 15 contiguous subplots of 10 m x 10 m each, 164 

where we counted and identified to species (or morphospecies) all individuals < 5 cm in dbh 165 

(diameter at breast height). Within these subplots we nested smaller plots to sample vegetation in 166 

different size classes, totaling 30 per class: 1 m × 1 m (seedlings: height < 30 cm), 2 m × 2 m 167 

(saplings: > 30 cm to < 60 cm), 5 m × 5 m (poles or young stems: > 60 cm to < 200 cm) and 10 m × 168 

10 m (treelets: height > 200 cm and diameter < 5 cm). To evaluate temporal regeneration dynamics 169 

the forest was resampled in July 2002, December 2010 and August 2018, using the same 170 

procedures, and the data from the two transects were grouped for each class. The same botanist and 171 

field leader (BSM) participated in all four inventories to ensure standardized identification of the 172 

species. We consider in the different size classes all species whose stems can reach diameters > 5 173 

cm, including woody lianas and palms.  174 

 175 

Data analysis 176 

To characterize the change in moisture stress, we calculated temporal trends in MCWD 177 

(Aragão et al. 2007). MCWD is an annual water deficit metric based only on climatic variables and 178 

for which the starting point each year is defined as the wettest month, when the soil is completely 179 

saturated. Climate data were obtained from the INMET (National Institute of Meteorology) 180 

meteorological station (World Weather Station 83319; inmet.gov.br), located in Nova Xavantina, 181 

Mato Grosso state, 25 km from the study area. Evapotranspiration data were based on Malhi et al. 182 

(2009). 183 

We calculate Pielou’s evenness and Shannon diversity (H’) indices for each regeneration 184 

class (seedlings, saplings, poles and treelets) for each census using the veganR package (Oksanen 185 

et al. 2018), both when including (All= all species) and excluding lianas (WL= without lianas) from 186 
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the analyses. In order to compare the species richness of all regeneration classes among the 187 

censuses, we used sample-based rarefaction curves (Gotelli and Colwell 2001) performed in the 188 

BiodiversityR package (Kindt and Coe 2005), and based on 9999 Monte Carlo permutations. 189 

To evaluate changes in the species composition of the regeneration classes among censuses, 190 

we performed a permutation-based test of multivariate homogeneity of group dispersions 191 

(PERMDISP) on each distance matrix using ‘permutest.betadisper’ function in the vegan package 192 

(Oksanen et al. 2018). If one of the groups (here surveys) has a significantly higher mean distance, 193 

then this group has more dissimilar assemblages on average and greater beta diversity (Anderson et 194 

al. 2006). Euclidean distance among the groups was estimated in a Principal Coordinates Analysis 195 

(PCoA). The significance and pairwise comparisons of Betadisper’s groups were tested by a 196 

permutational multivariate analyses of variance – PERMANOVA (Anderson 2001; Anderson and 197 

Walsh 2013) based on 9999 permutations.  198 

We tested the spatial autocorrelation on the abundance and richness in plots and subplots 199 

using Mantel Correlogram (Borcard and Legendre 2012) performed in the ncf package (Bjornstad 200 

2018). To evaluate patterns in density of individuals in all regeneration classes between censuses 201 

we used repeated-measured ANOVA based in the stats package (R Core Team 2018). All 202 

statistical analyses and graphs were performed in software R 3.5.1 at 5% alpha-level (R Core Team 203 

2018). 204 

 205 

Results 206 

For most size-classes rarefaction curves rapidly saturated (Supplementary Fig. S.1), 207 

indicating that the local woody regeneration community was effectively sampled. No spatial 208 

autocorrelation was detected for any regeneration class in any census. There were notable 209 

differences in diversity between censuses however. In particular, when we consider all species 210 

together, for both the seedling and treelet size-classes, species richness had significantly increased 211 

by 2018. Yet once lianas were removed from the analysis, in all four regeneration size classes tree 212 
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species richness was maximal in 2002, and had declined substantially by the time of the inventories 213 

conducted after the 2007-2008 drought (2010) and the 2015-2016 drought (2018) (Supp. Fig. S.1).  214 

 When all regeneration size classes are treated together there was no obvious trend in species 215 

richness (Table 1). However, when we analyzed the data by each size class, we detected a marked 216 

increase in the species richness of seedlings and saplings between 1997 and 2018. Furthermore, in 217 

all regeneration size classes the proportion of liana species and liana abundance increased (Table 1). 218 

The increases in both absolute and relative abundance of lianas were particularly marked among the 219 

seedling and sapling classes, and particularly so in the latter censuses, with lianas contributing less 220 

than 1% of woody plant seedlings in 1997 but more than 50% of all woody plant seedlings by 2018.  221 

 Overall, the abundance of seedlings and saplings declined over the monitoring period, 222 

especially after the drought events. This was true whether analyses were conducted with or without 223 

lianas (Fig. 2). Nevertheless, the species richness of treelets (F= 49.67, P= 0.001), and the 224 

Shannon’s diversity of treelets (F= 28.52, P= 0.001) and seedlings (F= 7.07, P= 0.006) were all 225 

higher after the 2015-2016 extreme drought event, but only significantly so when lianas are 226 

included (Fig. 2). Evenness varied between the regeneration classes, being lower in 2018 for poles 227 

(All: F= 12.56, P= 0.001; WL: F= 11.99, P= 0.002), higher in 2018 for seedlings (All: F= 12.01, P= 228 

0.002; WL: F= 22.47, P= 0.001) and saplings (All: F= 6.61, P= 0.009; WL: F= 13.01, P= 0.001), 229 

while for treelets it did not change over the censuses (Fig. 2).  230 

While total species richness varied little (Table 1), except for the treelet size class when 231 

lianas were included (cf Fig. 2), there was substantial species turnover through time for all 232 

regeneration classes (Supp. Fig. S.2). For instance we observed: (1) 13 species in the first survey 233 

that were not observed in the second; (2) 15 in the second that were not observed in the first; (3) 18 234 

in the second not observed in the third; (4) 14 in the third not observed in the second; (5) eight in 235 

the third not observed in the fourth; and (6) 18 species in the fourth survey that were not observed 236 

in the third. This resulted in an average rate of change in species composition of nearly three species 237 

per year. Thus, while we find that overall species diversity was remarkably stable, species 238 
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composition changed substantially, and this holds whether or not lianas are included in the analysis 239 

(Supp. Fig. S.2).  240 

 The most abundant species sampled in all regeneration classes in all four surveys were 241 

Brosimum rubescens Taub. (Moraceae), Protium pilosissimum Engl. (Burseraceae), Ephedranthus 242 

parviflorus S.Moore (Annonaceae), Inga heterophylla Willd. (Fabaceae), and Myrciaria floribunda 243 

(H.West ex Willd.) O.Berg (Myrtaceae). Other species, such as Cheiloclinium cognatum (Miers) 244 

A.C.Sm. (Celastraceae), Protium altissimum (Aubl.) Marchand (Burseraceae), and the liana, 245 

Anthodon decussatus Ruiz & Pav. (Celastraceae), were also well represented, but in some surveys 246 

did not appear in all regeneration classes. Among the most abundant species, the only one that 247 

increased in number of individuals in all regeneration classes and in all surveys was the liana 248 

Anthodon decussatus. We registered a total of 19 species of lianas in all regeneration classes and all 249 

surveys. Of these 16 increased by between 1 to 2,324 individuals/100 m2 from the first (1997) to the 250 

last (2018) survey. Three-quarters of all liana species underwent a ten-fold or greater increase in the 251 

number of individuals. 252 

Most of the changes observed for tree seedlings was due to a sharp decrease in the 253 

Brosimum rubescens population over time (Fig. 3). There were significantly more B. rubescens 254 

seedlings in the first census than in any other, with particularly low densities of seedlings and 255 

saplings by the time of the final two surveys (Fig. 3). Over the 21 year period, the proportion of B. 256 

rubescens seedlings as a fraction of the total population declined from 82% to 45%. In addition, B. 257 

rubescens seedlings as a fraction of the whole community declined from 85% in 1997 to just 29% 258 

in 2018. Part of this relative decline in B. rubescens seedlings was due to increase in the 259 

regeneration of ten liana species, which had only one seedling species and almost no seedling 260 

individuals in the first census, but represented 53.3% of the community’s total seedlings by 2018 261 

(Table 1; Fig. 3). Between 1997 and 2018, the proportion of lianas of the combined regeneration in 262 

the forest increased from 1 to 37% (Table 1), with a significant increase in all regeneration classes 263 

(Fig. 3). The remarkable gains in liana seedling and sapling relative abundance is thus not only 264 
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because lianas increased greatly, but also because there was in numerical terms an even bigger 265 

reduction of B. rubescens and other tree species in these classes (Fig. 3). 266 

 267 

Discussion 268 

 Here we report the first long-term analyses of trends in the recruitment of a monodominant 269 

tropical forest. We found unexpectedly large changes, including a dramatic decline in dominance of 270 

the smaller size classes of Brosimum rubescens, and a compensatory shift towards dominance of the 271 

seedling community by lianas. The nature and the timing of the shifts and the length of the 272 

observation window is consistent with drought events inducing long-term shifts in the structure and 273 

floristic composition of the forest regeneration (seedlings, saplings, poles and treelets), particularly 274 

via increases in liana richness and abundance.  275 

Differences in beta diversity over the years indicate that the regeneration component of the 276 

monodominant forest has been undergoing a shift in floristic composition, again with lianas playing 277 

a key and growing role. Thus the community richness and diversity of the regeneration classes in 278 

the forest changed significantly throughout time, especially comparing the first (1997) and last 279 

surveys (2018), and this occurred because nine species of lianas entered the community. Regardless 280 

of mortality patterns among larger trees (Meir et al. 2015; Elias et al. 2018), these changes in the 281 

regenerating cohorts could eventually drive the disappearance of species from the community as the 282 

floristic composition of juveniles will shape the woody community that reaches the canopy in 283 

coming years (Hart 1995; Schnitzer et al. 2000; Marimon et al. 2012, 2014). 284 

We also find a sharp decline in the density of Brosimum rubescens among regenerating taxa. 285 

Such declines in principle might be attributable to several internal and external factors, including 286 

increases in drought frequency and intensity, air temperature, interspecific competition for 287 

resources, and human-induced disturbances among others (Feldpausch et al. 2016; Elias et al. 2018; 288 

Esquivel-Muelbert et al. 2019). While our study forest showed no signs of recent human-induced 289 

disturbance nor herbivory or disease outbreaks, it did experience substantial increases in 290 
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temperature and declines in precipitation (more negative MCWD) especially between 2007 and 291 

2017. Thus, we infer that the observed temporal change in regeneration of B. rubescens is 292 

associated with the recent, strong and repeated drought events (c.f. Marengo et al. 2011; Boisier et 293 

al. 2015; Brienen et al. 2015; Feldpausch et al. 2016; Esquivel-Muelbert et al. 2019) that in turn 294 

have long-term cumulative effects in diversity and richness of the whole community. Elsewhere, in 295 

north-eastern Amazonia, some species studied by Costa et al. (2010) during a seven year 296 

experimental drought showed similar rates of mature tree mortality as we reported here for B. 297 

rubescens regeneration. Observations from our site and elsewhere suggest that drought (1) 298 

negatively affects production and survivorship of monodominant species seeds, whose dispersion 299 

usually occurs at the dry-season peak, and (2) limits their germination, which occurs in the 300 

beginning of the rainy season, as persistent water deficits inhibit germination and so act as a 301 

regeneration filter in low rainfall years (Marimon and Felfili 2006). However, it is also possible that 302 

numbers at the initial survey (1996) were boosted partly by higher than normal rainfall in years 303 

prior to the first sampling (Marimon et al. 2012), or other factors such as interspecific competition 304 

may also affect recruitment. However even if Brosimum seedlings were boosted by earlier higher 305 

rainfall, we can be sure that this didn’t happen again over the subsequent 21 years. Moreover, while 306 

reliable weather records locally only date to the 1990s, we know from other records in the oldest 307 

weather station of Mato Grosso, dating back to 1911 (Bombled 1976; Silva 2015; INMET 2019) 308 

that our monitoring period was climatically exceptional. The precipitation registered in Nova 309 

Xavantina in both the 2007 and 2015-16 droughts were unprecedented in terms of low rainfall in the 310 

recorded history of the region. 311 

Some studies suggested that intense reproductive investment, mast-fruiting and exceptional 312 

seedling survival all tend to characterise monodominant species (Torti et al. 2001; Peh et al. 2011b; 313 

Henkel and Mayor 2019). Marimon and Felfili (2006) observed these same characteristics in 314 

Brosimum rubescens, and also suggested that this species has an episodic recruitment. These 315 

authors also observed that in 1997 there was a large seedling bank in the forest, probably originated 316 
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from prior mast-fruiting events, thus is possible that drought mortality can have disproportionate 317 

impacts on the recruitment capacity of this species particularly if the drought occurs in the same 318 

year as the episodic recruitment. Elsewhere, in a Mediterranean environment, Pérez-Ramos et al. 319 

(2010) observed from a long-term data set and a rainfall exclusion experiment that mast-fruiting of 320 

Quercus ilex itself declined significantly under drier conditions, leading to negative consequences 321 

for recruitment.  322 

Regardless of the cause, the decline in B. rubescens sapling density between the second 323 

(2002) and third survey (2010), and between the third and fourth surveys (2018) resulted from a 324 

lack of seedlings to replace individuals in this category, indicating that this species’ size structure is 325 

unstable and that the population is declining. Notably, other, earlier studies of Neotropical 326 

monodominant forests found no such evidence for decline of the dominant. Both in a 327 

monodominant forest of Peltogyne gracilipes Ducke in northern Amazonia (Nascimento and 328 

Proctor 1997; Nascimento et al. 2014) and a gallery forest in central Brazil (Felfili 1997), the 329 

dominant taxon appeared to have a stable population, with large numbers of individuals in each 330 

class, a high density of seedlings, and a constant proportion among classes through time. 331 

 In contrast to the performance of our dominant, the density of seedlings of some other 332 

species increased through time. These winners included especially the liana species, which may be 333 

benefiting from the openness of the forest (Schnitzer et al. 2000) recorded in recent years after 334 

increased mortality of adult trees (Elias et al. 2018), but also the tree species Protium altissimum, 335 

whose seed production occurs in the middle of the rainy season (Marimon and Felfili 2006) when 336 

the forest is fully hydrated so that even in low rainfall periods seed production is less likely to be 337 

affected. Ultimately though, these species’ populations may be controlled by competition from the 338 

monodominant for space and light, since the seedlings of B. rubescens are able to establish and 339 

survive under closed canopy. This enables this species to occupy the available understory sites and 340 

grow quickly when a canopy gap forms, suppressing the other competitors by limiting their space 341 

and available light (Marimon and Felfili 2006; Hirzel and Lay 2008). The competitive advantage of 342 
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some liana species in drier conditions (Cai et al. 2009; Campanello et al. 2016) may lead to the 343 

replacement of B. rubescens (as clearly recorded for 2010 and 2018) by other species. Indeed 344 

elsewhere in the tropics, studies clearly show more liana infestation of trees in more seasonal 345 

climates and less rain, and potential for liana growth to be several times more rapid than trees in the 346 

dry season (De Walt et al. 2010; Toledo et al. 2011; Schnitzer and Bongers 2011). In addition to B. 347 

rubescens, the group of more abundant tree species also declined in number of individuals over the 348 

21 years of study, indicating instability in their regeneration and suggesting that they too may be in 349 

decline as an oligarchy. Consistent with our findings and interpretation that this forest is undergoing 350 

drought-induced shifts in tree species composition, a recent Amazon-wide analysis of trees >10 cm 351 

diameter found that dry-affiliated genera have become more abundant and that small-statured non-352 

pioneer taxa have decreased in abundance in the last 30 years (Esquivel-Muelbert et al. 2019). 353 

While drought is clearly capable of shifting Amazon tree communities (Costa et al. 2010; Meir et al. 354 

2015), our analysis suggests that some monodominant forests may be particularly vulnerable to 355 

drought-induced shifts in the long-term.  356 

 The large increase in the proportion of liana seedlings in our forest may also be at least in 357 

part a consequence of changes in regional climate. In particular, the increase in temperatures and 358 

the highly variable precipitation experienced over the last two decades has already impacted 359 

Amazon tree biomass and mortality rates (Phillips et al. 2009; Brienen et al. 2015; Feldpausch et al. 360 

2016; Esquivel-Muelbert et al. 2019). This mortality increase may be changing the illumination and 361 

moisture conditions experienced by young plants in the understory sufficiently to favour lianas. The 362 

strong competitive capacity of lianas (Putz 1980; Phillips et al. 2005) contributes to their abundance 363 

in tropical forests, and their ability especially to compete below-ground for scarce water resources 364 

(e.g., Schnitzer 2005) may help to explain a tendency within Amazonia for lianas to be particularly 365 

dominant in some forests with long dry seasons (e.g., Pérez-Salicrup et al. 2001).  366 

 In our study, by the time of the final survey the proportion of lianas in the total community 367 

of regenerating plants (37%) was greater than expected in mixed tropical forests where lianas 368 
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usually account for between 15 and 25% of stems and woody species (Gentry 1991; Condit et al. 369 

1996; Torti et al. 2001; Oliveira et al. 2014). The proportion of lianas in our forest is also higher 370 

than reported from Barro Colorado Island in Panama, where lianas composed 17% of the 371 

individuals > 20 cm in height and < 1 cm dbh (Comita et al. 2007). However, in three surveys 372 

carried out by Marimon (2005) in our forest, adult lianas (dbh ≥ 5 cm) accounted for less than 10% 373 

of the woody individuals, while Nascimento et al. (2007) likewise observed a low density of adult 374 

lianas in a monodominant forest of Peltogyne gracilipes in Amazonia. This suggests that the 375 

proportion of lianas in low turnover monodominant forests, like other late successional 376 

communities (Ladwig and Meiners 2010), is generally low. This strengthens the interpretation that 377 

the general increase of liana regeneration observed in our study is related to changes in the 378 

frequency of disturbance caused by drought-induced tree mortality and tree-fall (Marimon et al. 379 

2014; Elias et al. 2018). 380 

Elsewhere in Neotropical forests, gains in lianas have also been noted but these reports all 381 

come for mixed forests with higher initial populations of lianas than in the monodominant forests. 382 

A general increase in Amazon liana dominance and density was first reported almost two decades 383 

ago (Phillips et al. 2002), and was linked to the long-term increase in forest dynamics already being 384 

experienced in mature old-growth forests across Amazonia (Phillips et al. 2004). More recent work 385 

has tended to confirm that many neotropical forests have been experiencing a prolonged increase in 386 

liana density and dominance (e.g., Schnitzer and Bongers 2011), but the mechanism(s) responsible 387 

remain unclear. Our study strengthens the case for drought as a driver of long-term increases in 388 

neotropical liana populations. 389 

 The observed increase in the proportion of lianas may therefore represent an additional 390 

threat to the stability of this forest and to the maintenance of Brosimum rubescens monodominance. 391 

This is because lianas alter interspecific competitive relationships by impacting the growth of some 392 

tree species more than others (van der Heijden and Phillips 2009). Further, by increasing the rate of 393 

tree fall (Phillips et al. 2005), lianas may create conditions suitable for further expansion and affect 394 
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the regeneration and dynamics of woody seedlings (Schnitzer et al. 2000; Restom and Nepstad 395 

2004). 396 

 In conclusion, we found that changes in the richness and diversity of the forest regeneration 397 

were determined by the liana species. The greatest increase in density was also observed for lianas, 398 

such that during the 21-year study period this guild went from being initially almost 399 

inconsequential, to attaining levels higher than those found in tropical forests with high diversity, 400 

and well above levels reported for monodominant forests elsewhere. This recent increase in lianas is 401 

in line with observations from across Amazonia and beyond but is considerably more marked here. 402 

This may be because our forest is situated at the climatic margins of Amazonia, where recent 403 

droughts and a long-term increase in temperatures may be especially favourable to lianas. In 404 

parallel, there has been a sharp decline in the smallest size-classes of the monodominant tree 405 

species, Brosimum rubescens. If these trends (increase in lianas, hotter and more variable climate, 406 

and decline in B. rubescens regeneration) continue, we anticipate that the structure and the floristic 407 

composition of this tropical monodominant forest will experience large changes, potentially 408 

becoming transformed into a mixed forest. Since ongoing land-use change, climatic changes, and 409 

increases in lianas appear to be almost ubiquitous among tropical forests of the Americas, our 410 

results suggest a high level of threat to the survival and maintenance of remaining Brosimum 411 

rubescens monodominant forests. 412 
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Table 1 Total species richness (Sp), proportion of liana species (%Lsp) and liana abundance (%Lab) 720 

in relation to total community, by year and regeneration size classes in a monodominant forest in 721 

Southern Amazonia, Brazil. Note the rapid increase in liana diversity and especially in liana 722 

dominance in all regeneration classes. Seedlings: height < 30 cm; saplings: > 30 cm to < 60 cm; 723 

poles or young stems: > 60 cm to < 200 cm; treelets: height > 200 cm and diameter < 5 cm. 724 

Regeneration 

class 

1997 2002 2010 2018 

Sp %Lsp %Lab Sp %Lsp  %Lab Sp %Lsp %Lab Sp %Lsp %Lab 

Seedlings 10 10 0.8 15 20 1.7 14 28 23.1 19 53 53.3 

Saplings 13 15 0.9 28 18 3.1 18 22 3.2 22 32 16.9 

Poles 50 16 6.0 53 9 3.9 43 21 4.4 49 27 10.3 

Treelets 52 11 2.7 56 4 0.3 53 21 6.3 62 24 14.7 

All 64 11 1.0 63 10 2.3 60 23 13.3 71 24 36.8 
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Figure captions 738 

 739 

Fig. 1 A) MCWD (maximum climatological water deficit, mm year-1) and B) average air 740 

temperature (ºC) from 1996 to 2018, with the first month of the dry season (May) representing the  741 

beginning of each year’s climatic calendar. Precipitation and temperature data were collected at the 742 

Meteorological Station (World Weather Station 83319) in Nova Xavantina, Mato Grosso state, 25 743 

km from the study area. Dashed lines indicate the year of each census (1997, 2002, 2010 and 2018). 744 

 745 

Fig. 2 Average (and confidence intervals) values of the density (100 m-2), species richness, 746 

evenness and Shannon’s diversity (H ') in four regeneration classes (seedlings: height < 30 cm; 747 

saplings: > 30 cm to < 60 cm; poles or young stems: > 60 cm to < 200 cm; and treelets: height > 748 

200 cm and diameter < 5 cm; N= 30 plots per class) in a monodominant forest in Southern 749 

Amazonia. Different letters denote significant differences between surveys in each regeneration 750 

class (Repeated-Measures PERMANOVA). Note that lianas form a small fraction of woody 751 

regeneration early on but become increasingly more important especially in the smallest size-752 

classes. 753 

 754 

Fig. 3 Average number of individuals and confidence interval of Brosimum rubescens, other woody 755 

species, and liana-only regeneration in four classes (seedlings: height < 30 cm; saplings: > 30 cm to 756 

< 60 cm; poles or young stems: > 60 cm to < 200 cm; and treelets: height > 200 cm and diameter < 757 

5 cm; N= 30 plots per class) and four surveys in the monodominant forest in Southern Amazonia, 758 

Brazil. Density = average number of individuals per 100 m2 plots. Different letters mean significant 759 

differences between surveys in each regeneration class (Repeated-Measures PERMANOVA).  760 
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Supplementary file 1 related to “Drought induces large, long-term changes in the regeneration of a monodominant 816 

Amazon forest” (B. S. Marimon, C. Oliveira-Santos, B. H. Marimon-Junior, F. Elias, E. A. de Oliveira, P. S. Morandi, 817 

N. C. C. dos S. Prestes, L. H. Mariano, O. R. Pereira, T. R. Feldpausch and O. L. Phillips) 818 

 819 

 820 

 821 

 822 

Supplementary Fig. S.1 Sample-based rarefaction curves for species richness for each census (1997, 2002, 2010 and 823 

2018) and for each regeneration size class (seedlings: height < 30 cm; saplings: > 30 cm to < 60 cm; poles or young 824 

stems: > 60 cm to < 200 cm; and treelets: height > 200 cm and diameter < 5 cm) in a monodominant forest in Southern 825 

Amazonia, Brazil. The level of probability of the confidence intervals is 95%. WL= without lianas. 826 
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Supplementary file 2 related to “Drought induces large, long-term changes in the regeneration of a monodominant 831 

Amazon forest” (B. S. Marimon, C. Oliveira-Santos, B. H. Marimon-Junior, F. Elias, E. A. de Oliveira, P. S. Morandi, 832 

N. C. C. dos S. Prestes, L. H. Mariano, O. R. Pereira, T. R. Feldpausch and O. L. Phillips) 833 
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 854 

 855 

 856 

Supplementary Fig. S.2 Beta diversity of treelets, poles, saplings and seedlings over 21 years in a monodominant 857 

forest in Southern Amazonia. Principal coordinates (PCoA) biplots show the Euclidean distance between floristic 858 

composition assemblages within each survey. The black circles indicate group centroids, and lines, symbols and colors 859 

represented the minimum convex hulls around each group. Black: 1997, Red: 2002, Green: 2010 and Blue: 2018. WL= 860 

without lianas. 861 


