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1.  Sample layout and fabrication

Figure S1: Full schematics of the structure. As a result of the fabrication process, the antenna coupled-metamaterial is 

bonded on a GaAs host substrate through an adhesive (not shown).  A planar metallic mirror (Ti: 5 nm, Au: 150 nm) is 

evaporated on the adhesive+substrate in order to decouple them from the rest of the structure. The LC meta-atoms are 

encapsulated in a t1=3μm Si3N4 layer that has been evaporated on the top of the TiAu  mirror. A schematics of the LC resonator 

meta-atom is shown (see also Ref. [1]). The two capacitive parts of contain each semiconductor GaAs/AlGaAs quantum well 

absorbing region which is detailed in the next section. To achieve the antenna layer, the LC meta-material is covered by another 

t2= 500 nm thick Si3N4 layer, and rectangular TiAu patches are evaporated on the top of this layer. The patches are aligned with 

the 1μm wide capacitive parts of neighboring LCs. The combination between the bottom TiAu mirror, the Si3N4 layer with full 

thickness t1+t2=3.5μm and the metal patch form a double-metal wire antenna (see Ref. [2,3]). The dotted rectangles on the 

antenna scheme indicate the capacitive parts of two neighboring LC meta-atoms. In both the antenna and LC resonator 

schematics, the blue and red arrows indicate the electric field of each resonant structure.

The full structure studied in this work is detailed in Figure S1. It consists of antenna-coupled LC “meta-atom” 

resonators. The LC resonator fabrication has been described in Ref. [1], but we recall here the main steps. The 

bottom part of the circuit, composed of two capacitor plates and the straight wire, is patterned on top of the 

absorbing GaAs/AlGaAs region (detailed in the next Section 2) using standard electron beam lithography (EBL) 

and electron beam evaporation of the Ti/Au structure. The metal acts as a mask for the subsequent inductively 

coupled plasma reactive ion etching (RIE-ICP) step defining the capacitor pillars. The whole structure is 

encapsulated in a t1=3μm thick Si3N4 layer deposited using low-temperature plasma enhanced chemical vapor 

deposition (LT-PECVD) at 150°C, followed by the deposition of a metallic (Ti: 5 nm, Au: 150 nm) mirror. The 

sample is then bonded to a host GaAs substrate using epoxy glue, and the original growth substrate is etched away, 

revealing the absorbing region encapsulated in Si3N4. The final part of the LC resonator can then be patterned in a 
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co-aligned fashion using EBL again. As a result of this fabrication process, we obtain an array of three-dimensional 

LC resonators each with two capacitve parts; the GaAs/AlGaAs absorbing region is placed only in the capacitors, 

while the rest of the resonators is encapsulated in the t1=3 μm thick Si3N4 layer.   

To achieve the antenna layers, we then add a t2=500nm thick Si3N4 layer using LT-PECVD. This layer modifies the 

dielectric environment of the LC resonator, thus changing its resonant frequency, as discussed in section 7. Finally, 

the antennas are fabricated using EBL. As shown in Figure S1, the combination between each metal patch, the 

Si3N4-spacer with full thickness t1+t2=3.5 μm and the bottom planar TiAu mirror form a patch antenna resonator 

[2,3], which sustains a fundamental half-wavelength mode with a resonant wavelength λ=2neffLA, where  LA is the 

length of the metal stripe and neff an effective index, as commented in the main text. Since the stripe width, 1 μm, is 

typically much smaller than LA~10 μm, this type of patch antenna is called “wire patch antenna” [3]. 

2. Absorbing region design and characterization

The absorbing region hosting the two dimensional electron gas consists in five 32 nm GaAs quantum wells (QWs) 

separated by 20 nm Al0.15Ga0.85As barriers. In the final device, shown in Fig. S1, absorbing region is sandwiched 

between the two metal layers of the capacitors of the LC resonators.  The QWs are modulation-doped by Si δ-
doped regions placed 5 nm away from the QW, with a nominal sheet carrier density of 2×1011 cm-2. As detailed in 

previous work [1], care must be taken in designing the 300 nm thin active region to avoid depletion of the QWs due 

to the band bending at the metal-semiconductor interfaces. To compensate for this effect, we introduced doped 

GaAs and Al0.15Ga0.85As layers on each side of the active region. 

Figure S2: Bandstructure diagram of the absorbing region with 5QW embedded between two metals. Owe to band bending 

and carrier depletion effects only the central QW is effectively doped and optically active.

In order to fully characterize the active region and determine precisely the relevant parameters for the analysis 

presented in the main text, we use the same approach as in Refs. [1-3]. We process square patch double metal 

microcavities on the exact same sample. Such double-metal cavities sustain a resonance at λ=2neffs where s is the  

size of the patch, and neff the effective index of the confined mode. They will serve as a reference to our current LC 

samples [1-3]. 
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Patch cavities and LC resonators without antenna are studied in a reflectivity experiment at low temperature, from 

which we extract the frequencies of the upper and lower polaritons. Using the procedure detailed in Ref. [1] we 

determine that the doping layer only moderately compensate for the band bending. In the case of the patch cavities, 

we find that only a single QW is doped at 1.6×1011cm-2 (Figure S2). Lateral depletion in the 1 μm wide 

semiconductor pillars forming the capacitor are responsible for a lower doping of the QWs in the LC resonator 

sample, which explains why it shows a slightly lower vacuum Rabi splitting and intersubband plasmon frequency 

than its patch cavity counterpart. However, we can determine that the doping density is 1.4×1011cm-2, and the 

effective mode volume is Veff = 1.2V0=10-6λ0
3, where V0 =1 μm x 1 μm x 0.3 μm= 0.3μm3 is the volume of the 

semiconductor material in each capacitive part and λ0 is the resonant wavelength of the LC meta-atom.   

3. Maximum absorption cross section of a quantum well “particle”

We consider a cubic “particle” filled with the quantum wells described in the main text. The system is a “particle” 

in the sense that its dimensions are much smaller than the wavelength λ that corresponds to the energy of the 

electronic transition of the quantum wells. In particular, the absorbing region inserted in the capacitive parts of our 

system can be considered as a particle, since all of its dimensions V0 = 1 μm x 1 μm x 0.3 μm are much smaller than 

the typical wavelength λ = 88 μm of the absorbed THz radiation. Our aim is to determine the maximum absorption 

cross section of the particle when it is illuminated by a plane wave.  To this end, we apply a very general theory of 

Tretyakov [4], which provides the following expression of the absorbing cross section:
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Here k=nω/c is the propagation wavevector, and ξ ‘, ξ ‘’ are coefficients related to the real and imaginary part of the 

inverse polarizability α:
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The quantity ξ ’’   thus accounts for the non-radiation loss, while the second term in the parenthesis accounts for the 

radiation loss of the particle. With respect to Ref. [4] we consider anisotropic absorption where dipoles are excited 

only along the growth axis of the well, and θ is the angle between the dipoles and the direction of propagation of the 

incident plane wave. Furthermore, we suppose that the particle is inserted in a homogeneous medium with a 

refractive index n and a dielectric constant ε =n².

In order to determine explicitly the coefficients ξ ’, ξ ‘’ we consider the absorption quantum efficiency of a quantum 

well system as described in Ref. [5] (page 11, Eq. (20)):
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Here NQW is the number of quantum wells, ns is the areal electron density per well, e is the electron charge, ћ is the 

Plank’s constant, d21 is the dipole matrix element of the quantum well transition, and γ is the broadening of the 

electronic transition at a frequency ω21. With respect to Eq. (20) in Ref. [5] we have used the explicit expression of 

the transition oscillator strength  f21 = 2m*ω21d21²/ ћ, with m* the effective electron mass. 

In order to identify the coefficients ξ ’, ξ ‘’ from (S3) we proceed as follows. We consider a finite surface of the 

particle S, then the absorption cross section becomes σabs=ηS. Furthermore, the theory in Ref. [5] is valid for 

negligible radiation loss, ξ ‘’ >> k3/6πεε0  and optimum overlap with the impinging electric field, sinθ=1. Comparing 

(S1) and σabs=η S with these approximations, we obtain the following identifications:

(S4)                                                          21' ( ), ''ξ β ω ω ξ βγ= − =
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Here Ne = nsS is the total number of electrons in each quantum well. Replacing back into (S1), we obtain are very 

general expression of the absorption cross section of the quantum well particle at resonance ω = ω12:
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Here Γrad  is the emission rate of the particle:
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Here the prefactor NqwNe expresses the superradiant nature of the quantum well emitter [6].  Clearly, equation (S6) 

is a very general result that can be applied to any solid-state emitter. In accordance with the general result stated in 

Ref. [4] the maximum possible absorption cross section is σabs = 3λ²/8πε, reached in the case where radiation and 

non-radiation loss are equal, γ = Γrad. This condition is very similar to the critical coupling condition for total 

absorption in quantum well slabs with areas much larger than λ² [7].

Using the parameters of our devices, from (S7) we estimate Γrad = 3.2x10-5 THz and Coupled-Mode Theory (CMT) 

fits provide γ = 0.2 THz, as explained further. Note that the value of γ compares very well with the typical linewidth 

of the absorption spectra obtained from very similar quantum well samples [2].

4. Absorption cross section from Coupled-Mode Theory

We now translate the results of the previous section in terms of Coupled-Mode Theory. This formalism allows 

considering more complex situations where the absorber is coupled to an antenna or to an antenna-coupled 

microcavity. 
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Figure S3. Single absorber coupled to free space. (a) The absorption process can be quantified in terms of an absorption cross 

section σabs, defined such as all of the photons impinging on the area σabs are absorbed by the system.  (b) The problem 

translated in the language of the CMT. An incident photon flux is coupled to the emitter/absorber with a coupling parameter 

Γrad. The internal loss rate of the absorber is γP.

a) Single absorber coupled to free space.

We consider a single absorber described in terms of a macroscopic polarization vector P coupled with the free space 

(Fig. S3). In that case the CMT equations become:

(S8)                                                  ( )P 2
P P rad rad in

dP
i S

dt
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This equation is easily solved in the harmonic regime. Considering the resonant case ω = ωP, we can infer the rate 

of energy absorption 2γP|P|² normalized on the incident photon flux |Sin|²:
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This quantity provides the fraction of incoming photons that are absorbed by the nano-particle. The function at the 

right hand side of equation (S10) is always less than unity, and peaks at 1 when γP=Γrad. By comparing with the 

previous result, (S6), we obtain Eq.(2) in the main text.  Note that our theory is developed for the case where only 

the reflection port is present, but not the transmission; this corresponds to experiments with quantum wells [5], 

however does not constitute an important restriction of our theory.

In a periodic array with a unit cell area Σ each unit cell receives an incident power Σ|Sin|2. A fraction η of this power 

is absorbed by the electronic system with a rate 2γP. Since the power absorbed by the electronic system is ηΣ|Sin|2  

the absorption cross section in a periodic system is σabs= ηΣ, as stated by eq. 3 in the main text. This is compatible 

with the result by Tretyakov [4], except for a factor of 2 as in our case the transmission port is absent. 
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Figure S4 (a) Single absorber P coupled to an electromagnetic resonator a. (b) The problem translated in the language of the 

CMT. 

b) Absorber coupled to a resonator

We now consider the case where the absorber is inserted in a resonator, as depicted in Figure S4. The resonator is 

coupled to free space through a radiation loss rate Γa.  The absorber and the resonator interact with a coupling 

constant ΩR. The electromagnetic resonator is characterized by a non-radiative loss rate γa and a resonant frequency 

ωa. It can be called an “antenna” if its radiation loss is much stronger than the non-radiative one, Γa >> γa, or a 

“microcavity” in the opposite regime: Γa << γa . For simplicity we neglect the possible leakage of photons directly 

from free space to the absorber, as we suppose that the intrinsic coupling of the absorber to free space is very weak, 

γP  >> Γrad. The CMT equations now become:

(S11)                        
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dt
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a a a R a in
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We now assume that the absorber and the resonator are resonantly coupled, ωa=ωP. Guided by the definition (S10), 

we look to express the fraction of incident photons effectively absorbed by the polarization P, η= 2γP|P|²/|Sin|², 

which also provides the absorption cross section in the system. 

We now have an additional parameter ΩR, which allows the system to be in the weak or strong coupling regime.  

We first examine the frequency dependence of the parameter η for different values of the coupling strength ΩR. To 

this end, we use the parameters for the LC resonators as described in the main text. In Figure S5 (a) we plot the ratio 

η as a function of the frequency for different values of the Rabi frequency. For small values of ΩR the absorption is 

maximum at the frequency ω =ωP=ωa as expected.
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Figure S5.  (a) Spectral dependence of η for different values of the coupling constant ΩR. (b) Peak values of η as a function of 

the coupling constant ΩR. 

For sufficiently high values of ΩR the system enters the strong coupling regime, and two eigenstates appear that are 

mixed light-matter coupled polariton states. The absorption is maximum at the frequencies of the two polariton 

states, which are provided by:

(S14)                                                                     P R
ω ω± = ±Ω

It is interesting to note that, once the system reaches the strong coupling regime, the peak value of the absorption 

coefficient η becomes constant. Using equations (S11-S14) we can obtain an expression for the maximum 

coefficient that is valid both for the weak and strong coupling regimes:
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In the weak coupling regime ( ), the first term in the denominator of  Eq. (S15) is negligible, and we obtain 0
R

Ω →

eq. 4 from the main text: 
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Here the quantity   is the coupling rate between the cavity and the electronic polarization. This equation 24 / ( )
R a a
γΩ +Γ

can be understood as product of two branching ratios: the first one is the probability that a photon is emitted from 

the electronic transition in the cavity mode, ( , and the second that a photon exits the cavity, 24 / ( ) /
R a a P
γ γ⎡ ⎤Ω +Γ⎣ ⎦

. The probability of a photon absorption is therefore exactly equal to the probability of a photon / ( )
a a a
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emission out of the system. Since by definition ΩR << (γa +Γa ), γP  the absorption efficiency is very small.

In the opposite limit of strong coupling with large ΩR the second term in the denominator of Eq. (S15) becomes 

negligible, and we have:
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We have further assumed that Γa >> γa.  This expression is very similar to eq.(S10), expect that now the radiative 

loss rate of the absorber is replaced with that of the microcavity/antenna. In that case the coupling with the antenna 

is clearly an advantage, as antennas can be designed as very efficient absorbers/receivers, and the system can be 

brought close to the ideal limit of almost perfect absorption . However, this limit implies that the nano-particle 1η ≈
is in the strong coupling regime with the optical resonator that acts as an antenna. The coupling constant is inversely 

proportional to the square root of the effective mode volume, .  This implies that perfect absorption can 
1/21 / V

R eff
Ω ≈

be achieved in systems that have both large radiation loss and provide very small effective volumes. This 

requirement is not naturally satisfied with optical antennas. For instance, in the case of double-metal structures the 

radiation loss is proportional to the effective volume Veff [3]. We therefore consider a more complex situation as 

described in the next paragraph. 

Figure S6. (a) Absorber coupled to an electromagnetic resonator, which is itself coupled to an antenna element.   (b) The 

problem translated in the language of the CMT. 

c) Absorber inserted in an antenna-coupled resonator

We now consider a system which can have both a large radiative loss and where the absorber is strongly coupled to 

an electromagnetic resonator. This situation is depicted in Figure S6. The absorber is coupled to an electromagnetic 

resonator (“a”) for which we neglect the radiative loss. The resonator is coupled to an antenna (“A”) through a 

coupling constant G. In order to simplify our analysis, we neglect the non-radiative loss of the antenna. The CMT 

system of equations now becomes:
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P P R

dP
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dt
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(S21)
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As for the previous case, we first consider the spectral dependence of the parameter η as a function of the Rabi 

frequency ΩR. This is shown in Figure S7, where we have considered that the three oscillators are resonant, ωP =ωa 

= ωA. The parameters for the coupling coefficient G and the loss parameters that we consider are the ones for our 

systems. In the strong coupling regime, the absorption is maximum at the polariton frequencies, however the 

absorption remain strong at the central frequency ωP = ωa = ωA. Furthermore, the peak absorption now has non-

trivial dependence on ΩR. Therefore, in order to understand our system, it is sufficient to consider the peak 

absorption at the central frequency ωP = ωa = ωA.

Figure S7.  (a) Spectral dependence of η for different values of the coupling constant ΩR, for the system shown in 

Figure S6. (b) Peak values of η as a function of the coupling constant ΩR. The blue dots correspond to the system in 

Figure S4, and the red triangles to the system depicted in Figure S6. 

The peak absorption coefficient now becomes:
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Seen as a function of  ΩR this expression has a bell-like shape that is optimized at a particular value of the Rabi 

frequency provided by:
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 The maximal possible absorption efficency then becomes:
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This is a simple expression that is independent from the intrinsic loss rate of the absorber.  Our system thus 

introduces degrees of freedom that allow optimizing the photon absorption rate in any type of absorbing particle. 

The strong subwavelength confinement of the LC resonator allows engineering coupling constants high enough so 

that the optimizing condition (S23) is satisfied. 

5. Fitting experimental spectra with Coupled-Mode Theory

a) Full model

To compare CMT with experiments we estimate the reflection coefficient R(ω) = |Sout|²/|Sin |² which is compared to 

the experimental reflectivity spectra. The data is modeled with extended set of equations that correspond to the 

diagram in Figure S8. With respect to the simplified theory presented above, we include the non-radiative loss of 

the antenna, γA, the radiative loss of the resonator Γa, as well as light-matter coupling between the antenna and the 

polarization ΩA.

Figure S8.  Diagram for the full CMT equations used to model the experimental data.

b) Data and fit parameters for LC structures alone

As stated in the main text, we have studied 4 LC resonators with variable length of the inductor, PL = 10 μm, 11 μm, 

12 μm, 14 μm. An additional structure PL = 9 μm was fabricated for the optimized antenna-coupled LC as 

described further. In Figure S9 we present high temperature spectra S9(a), low temperature spectra S9(b) as well as 

the corresponding η-parameter S9(c). Baseline correction has been applied on the experimental data in order to 

facilitate the comparison with CMT predictions. 
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Figure S9.  (a) Room temperature spectra of the LC resonators (solid line). The dotted curve is CMT fits. (b) Reflectivity 

spectra taken with the same samples at 7K. Now the QW is included in the CMT fits. (c) η parameter from CMT.

The following Table S1 resumes the fit parameters, as well as the value of the array unit cell for each structure:

PL (μm) fLC (THz) γa(THz)

300K

γa(THz)

7K

Γa(THz) ΩR(THz) fQW (THz) γP(THz) Σ (μm²)

10 3.53 0.3 0.18 0.02 0.4 3.3 0.2 34.8

11 3.23 0.3 0.15 0.0136 0.4 3.3 0.2 39.3

12 3.17 0.25 0.15 0.0136 0.4 3.3 0.2 42.6

14 2.8 0.18 0.15 0.012 0.4 3.3 0.2 51.1

The non-radiation loss increase of the γa is due to free carrier absorption [2].

c) Data and fit parameters for antenna-coupled LC,  room temperature

In Figure S10 we present the room temperature data for the structures from Figure 4 in the main text. We found that 

the bare resonances of the antenna-coupled LC had a systematic shift of -0.3 THz with respect to the LC resonator 

alone, due to the 500nm thick Si3N4 covering layer in the antenna geometry (see sections 1 and 8 for details). 

Therefore we fabricated and additional LC structure with PL=9 μm so that it is resonant with the electronic 

transition of the quantum well in the antenna-coupled arrays. For that structure we systematically varied the antenna 

length LA to explore structures with different antenna resonances fA.



13

Figure S10.  Room temperature spectra of antenna-coupled  LC resonators (solid line) with CMT fits (dotted curve). (a) 

Variable LC resonance (b) Variable antenna resonance. 

The following Table S2 resumes the fit parameters, as well as Σ for each structure:

PL (μm) LA (μm) fLC (THz) γa(THz)

300K

Γa(THz) fA (THz) γA(THz)

300K

ΓA(THz) G (THz) Σ (μm²)

10 5 3.18 0.15 0.004 4.65 0.85 0.6 -0.65 34.8

11 5 2.9 0.12 0.00125 4.65 0.85 0.65 -0.6 39.3

12 5 2.85 0.11 0.00125 4.65 0.85 0.62 -0.6 42.6

14 5 2.6 0.16 0.00045 4.65 0.85 0.72 -0.7 51.1

9 5 3.35 0.25 0.011 4.65 0.75 0.75 -0.65 31.8

9 7 3.35 0.2 0.005 4.3 1 0.55 -0.65 42.4

9 9 3.35 0.2 0.0018 3.88 0.48 0.30 -0.75 53

9 10 3.35 0.25 0.0025 3.75 0.6 0.28 -0.65 58.3

9 11 3.35 0.28 0.00045 3.4 0.45 0.245 -0.7 63.6

9 12 3.35 0.28 0.0005 3.35 0.45 0.211 -0.75 68.9
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The reduction of γA can be explained with reduced Si3N4 loss at lower frequencies.

The variations of the coupling parameters ΓA can also be due to slight misalignments of the setup form one structure 

to another; this result in variations of the values of the reflectivity dips of the experimental curves. We estimate 

typical errors to be on the order of 5%.

d) Data and fit parameters for antenna-coupled LC,  7K

The experimental data and fits are presented in Figure 4 of the main text. With respect to the values of Table S2 we 

observe reduction of the non-radiation loss of the LC and resonances, γa =0.15 THz.   In the following Table S3 we 

provide the evolution of ΩR in the fits:

PL (μm) LA (μm) ΩR(THz)

10-14 5 0.4

9 7 0.4

9 9 0.32

9 10 0.4

9 11 0.38

9 12 0.36

The variations of ΩR can also be ascribed in temperature variations of the samples. 

All other fit parameters are identical or very close to Table S2.  Best fits are obtained when we include small QW-

antenna coupling ΩA=0.1 THz, which yields a blue shift of the high energy reflectivity dip at low temperature. 

6. Energy conservation from Coupled-Mode Theory

Starting from the CMT equations detailed in the previous paragraph, it is straightforward to obtain the following 

conservation law:

(S25)                          
*2 | |² 2 | |² 2 | |² | |² | |² 4 Re( )

P A a in out a A
P A a S S Aaγ γ γ+ + = − + Γ Γ

This equation has a clear meaning as it expresses the energy conservation in the system. The terms of the left hand 

side are easy to interpret as the non-radiative loss rate of the material polarization (2γP|P|2), the antenna (2γA|A|2), and 

of the LC meta-atom (2γa|a|2). On the right hand side of Eq. (S25) we see the difference between the incoming and 

out-coming photon flux, |Sin|²-|Sout|², a quantity which readily related to the reflectivity of the system R=  |Sout /Sin|². 

The last term appears as interference effect between the radiation loss rates of the antenna and the LC resonator. 

This term is interesting, however it plays little role in the present study because of the assumption that the LC 

radiation rate Γa is small, and shall not be commented further. 
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So far, we have been exclusively concerned with the fraction of photons η = 2γP|P|2/|Sin|² absorbed by the material 

system. However, we can also define quantities ηA= 2γA|A|2/|Sin|² and ηa= 2γa|a2/|Sin|² that represent the photons 

absorbed by the antenna element and the LC resonator; this absorption occur mainly in the metal parts of the 

electromagnetic resonators, as well as in the Si3N4 layer in the case of the antenna. CMT allows discriminating 

between all types of loss in our complex system. To illustrate this fact and to underline the difference between η 

which describes the QW absorption only with respect to the other type of losses, we have plotted in Figure S11 the 

different contributions of eq. (S25). For this plot, we use the CMT parameters that describe low temperature 

spectrum of the PL=10 μm LA=5 μm structure (lowest spectrum in Figure 4(a) from the main text). For this plot we 

set |Sin|² = 1.

Figure S11: Plots of the different terms of Eq. (S25) using the definitions η = 2γP|P|2/|Sin|² ,ηA= 2γA|A|2/|Sin|² and ηa= 2γa|a2/|Sin|²  

for a PL=10 μm LA=5 μm structure. The dashed curve represents the interference term (last term in Eq. (S25)).

This plot reveals several interesting features. First, the QW loss appears in a relatively narrow band around the QW 

electronic transitions. Instead, the antenna loss appears on a very wide frequency range, and it is comparable with 

the QW absorption even if the antenna resonance is strongly detuned from the electronic transition. We interpret 

this with the fact that the coupling strength G is very large, and distributes spectrally the antenna loss even at 

frequencies that are far from the antenna resonance.  

7. Finite elements method simulations

While providing a better physical insight on the physics at play in our triply coupled system, the CMT formalism 

suffers from a large number of free parameters. In order to validate our approach, we carried out finite elements 

method (FEM) simulations of our system, where the intersubband polarization is modeled through an anisotropic, 

dispersive complex dielectric permittivity tensor [8,9]. The results are presented in Error! Reference source not 

found., where we can see that the overall agreement is good. Even though FEM simulations predict resonances 

with a better quality factor, the frequencies of the coupled resonances are well reproduced. The two approaches thus 
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give consistent results, but the CMT theory formalism conveniently allows one to deduce the vacuum Rabi splitting 

as well as other fundamental quantities, such as the absorption cross section as discussed in the main text. 

Figure S12: Comparison between the CMT fits (left) and the FEM simulations (right) of the triply coupled system at low 

temperature. The colormap represents the reflectivity, while the red dots are the experimental data.

8.  Effect of the Si3N4 coating layer

In order to account for the frequency shift of the LC resonance induced by 500nm Si3N4 layer (see Figure S1) we 

performed finite element method simulations of the response of a LC resonator in the presence and absence of this 

layer. A typical simulation result is shown in Figure S13. The LC resonance is the lowest frequency one, which 

experiences a red-shift of around 0.4 THz in the presence of the Si3N4 cover. This value is close to the one used in 

our CMT fits of the room-temperature spectra of the LC resonators before and after antenna fabrication (~0.3-0.4 

THz). 

Figure S13: Effect of the 500 nm thick Si3N4 layer on the reflectivity spectrum of the LC resonator array.
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9. Temperature dependence of the reflectivity spectra

For completeness we provide in Figure S14 typical examples of the reflectivity spectra as a function of the 

temperature, without any baseline corrections.

Figure S14: Temperature evolution of the reflectivity spectra, in the case of (a) LC resonator, (b) Antenna-coupled LC 

resonator. As the temperature is decreased, one can observe the appearance of the absorption feature related to the QW. 
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