

Deposited via The University of Sheffield.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/161821/>

Version: Accepted Version

Article:

Giovannelli, I., Heath, P., Shaw, P.J. et al. (2020) The involvement of regulatory T cells in amyotrophic lateral sclerosis and their therapeutic potential. *Amyotrophic lateral sclerosis & frontotemporal degeneration*, 21 (5-6). pp. 435-444. ISSN: 2167-9223

<https://doi.org/10.1080/21678421.2020.1752246>

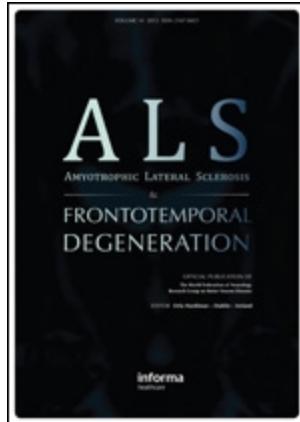
This is an Accepted Manuscript of an article published by Taylor & Francis in Amyotrophic lateral sclerosis & frontotemporal degeneration on 02 Jun 2020, available online: <http://www.tandfonline.com/10.1080/21678421.2020.1752246>.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.


UNIVERSITY OF LEEDS

**University of
Sheffield**

**UNIVERSITY
of York**

The Involvement of Regulatory T Cells in Amyotrophic Lateral Sclerosis and Their Therapeutic Potential.

Journal:	<i>Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration</i>
Manuscript ID	MALS-2019-0221.R1
Manuscript Type:	Review Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Giovannelli, Ilaria; The University of Sheffield, Heath, Paul; The University of Sheffield Shaw, Pamela; Sheffield, University of, Dept of Neurology Kirby, J; Sheffield, University of, Academic Neurology Unit
Keywords:	amyotrophic lateral sclerosis, neuroinflammation, neuroimmunology, regulatory T cells, T cells, Clinical trials

SCHOLARONE™
Manuscripts

1
2
3
4
The Involvement of Regulatory T Cells in Amyotrophic Lateral
Sclerosis and Their Therapeutic Potential.
5
6
7
8
9

10 I Giovannelli^a, P Heath^a, PJ Shaw^a & J Kirby^{a*}.
11
12

13 ^a*Sheffield Institute of Translational Neuroscience (SITraN), Department of*
14 *Neuroscience, University of Sheffield, Sheffield, UK.*
15
16

17 * Corresponding author, contact details: j.kirby@sheffield.ac.uk
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Abstract

Neuroinflammation, meaning the establishment of a diffuse inflammatory condition in the CNS, is one of the main hallmarks of amyotrophic lateral sclerosis (ALS). Recently, a crucial role of regulatory T cells (Tregs) in this disease has been outlined. Tregs are a T cell subpopulation with immunomodulatory properties. In this review, we discuss the physiology of Tregs and their role in ALS disease onset and progression. Evidence has demonstrated that in ALS patients Tregs are dramatically and progressively reduced in number and are less effective in promoting immune suppression. In addition, Tregs levels correlate with the rate of disease progression and patient survival. For this reason, Tregs are now considered a promising therapeutic target for neuroprotection in ALS. In this review, the clinical impact of these cells will be discussed and an overview of the current clinical trials targeting Tregs is also provided.

Keywords: amyotrophic lateral sclerosis, neuroinflammation, neuroimmunology, regulatory T cells, clinical trials.

1 2 3 **Introduction** 4 5

6 Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised
7 by the progressive loss of both upper and lower motor neurons which causes death
8 usually within 3-5 years of diagnosis (1). Currently, there is no effective disease
9 modifying treatment available (2). Riluzole, is the only available drug which has been
10 approved by both the U.S. Food and Drug Administration (FDA) and the European
11 Medicine Agency (EMA). However, riluzole only extends patients survival by 3 months
12 on average (3, 4). Edaravone, a free-radical scavenger, was approved by the FDA for
13 the treatment of ALS, although, longer-term effects of this drug are still to be evaluated
14 (<https://www.fda.gov/news-events/press-announcements/fda-approves-drug-treat-als>, 5,
15 6).

16 ALS is considered a multifactorial disease as a series of mechanisms and pathways are
17 implicated in the disease (7, 8). Among them, neuroinflammation is perceived as a
18 dysregulation of the glial cells which surround neurons in the CNS and which can create
19 an inflammatory milieu. Its main features are: activation of microglia and astrocytes,
20 production of excessive quantities of pro-inflammatory cytokines and infiltration by T
21 lymphocytes (9). Recently, a key role for regulatory T cells (Tregs) in the
22 pathophysiology of ALS has been demonstrated.

23 24 **Physiology of regulatory T cells** 25 26

27 Tregs are fundamental modulators of the immune response: they maintain self-tolerance
28 and homeostasis, preventing the onset of autoimmune diseases. These cells are
29 generally classified into two subgroups: thymus-derived and peripheral inducible (10).
30
31 The first subtype is produced in the thymus during the negative selection process; they
32 then migrate into peripheral tissues to perform their functions. They are also known as
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

naturally occurring or CD4⁺CD25⁺ Tregs because of the surface molecules they express.

The presence of CD25⁺, also referred to as interleukin-2 receptor alpha (IL2RA), indicates the importance of IL-2 for Treg functions (10). Another key feature of these cells is the expression of Forkhead box protein 3 (FOXP3) (11). The second subtype of Tregs are peripheral in origin. These cells are derived by antigen-exposed CD4⁺ T cells in peripheral tissues following the exposure to specific molecules. Induced CD4⁺ Tregs can be further classified into FOXP3⁺ or FOXP3⁻ cells (12).

Clearly, FOXP3 has a crucial role for Tregs. It is a transcriptional regulator which is fundamental for their development and function. It can act both as a transcriptional activator or repressor because it interacts with several transcription factors and proteins involved in epigenetic regulation (13). In particular, it prevents the transcription of pro-inflammatory cytokines such as IL-2 and IFN- γ and it concomitantly activates immune suppressors including cytotoxic T lymphocyte antigen 4 (CTLA4) (13). Furthermore, other key markers for Tregs are glucocorticoid-induced tumour necrosis factor receptor (GITR) and inducible T cell co-stimulator (ICOS). GITR, also referred to as TNFRSF18, plays a role in Treg suppressive activities, in fact, antibodies against GITR can abrogate Treg immune modulatory functions, and it is also crucial for thymus Tregs differentiation process (14, 15, 16). ICOS is a costimulatory molecule which is known to exert various roles within the immune system, participating both to inflammatory and suppressive processes (17). However, ICOS appears to play a role in Treg functions. In fact, the blockage of ICOS interaction with its ligand (ICOSL) causes a decrease in the expression of CTLA4 and ICOS deficiency induces reduction in FOXP3 expression (18, 19).

Another key mediator of Treg activity is IL-2. This cytokine is known to be essential for the development and survival of these cells (20). Although IL-2 is known to exert

1
2
3 pleiotropic functions on the immune system, evidence from IL-2 or IL-2 receptor (IL-
4
5 R) knockout mouse models, demonstrates that these mice do not develop immune
6 deficiency syndromes, but they do show features of autoimmune diseases (21). IL-2
7 administration promotes the activation of different pathways in effectors T cells (Teffs)
8 and Tregs. In fact, the binding of this cytokine with its receptor in Teffs results in the
9 activation of STAT5 and S6 kinases, which triggers PI3K-Akt and mTOR pathways. In
10 contrast, in Tregs, IL-2 binding mediates direct activation of STAT5 and then FOXP3
11 becomes functional (22). Interestingly, it seems that after administration of low-dose IL-
12 2 (ld-IL-2), there is a selective increase in phosphorylation, and thus activation, of
13 STAT5 in Tregs, which corresponds to a decrease in the same modification in Teffs
14 (23). Consistent with this, multiple studies demonstrate that low-dose IL-2-based
15 treatment promotes the selective expansion of the Treg population in both mice and
16 humans (24), (25), (26).

17
18 Tregs exert several immunosuppressive functions: they suppress Teffs, B cells, natural
19 killer cells (NKs) and antigen-presenting cells by inhibiting their activation,
20 proliferation and function (27). Moreover, they can alter the activation state of
21 microglia/macrophages by promoting the M2 (or anti-inflammatory) phenotype (28).
22
23 Several mechanisms have been proposed to mediate these functions (**Figure 1**):

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

- *Inhibitory cytokine release*: Tregs can secrete anti-inflammatory cytokines including IL-10, IL-35 and TGF- β which inhibit the function of Teffs (29).
- *Cytolysis induction*: Tregs are able to produce and release granzyme B and perforin which induce cytolysis and apoptosis in Teffs, B cells and NKs (30), (31), (32).
- *Metabolic disruption*: This proposed mechanism is based on the consumption of

local IL-2 by Tregs. This would cause the deprivation of this cytokine which is necessary for Teffs, leading to Teffs IL-2-deprivation-mediated apoptosis (33), (34).

- *CTLA4-mediated mechanism:* Tregs can physically interact with dendritic cells (DC) due to the binding of CTLA4 on the Treg surface and the co-stimulatory molecules CD80/CD86 expressed by DC. This leads to the production of indoleamine 2,3-dioxygenase (IDO) in DC, a potent immune regulator which suppress T cells and NKs (35), (36).
- *cAMP-mediated mechanism:* Tregs express high levels of cAMP and this molecule can be transferred to Teffs through gap junctions. This provokes the activation of inducible cAMP early repressor (ICER) which inhibits nuclear factor of activated T cells (NFAT), a transcription factor which is necessary for IL-2 production. Thus, this can lead to IL-2 deprivation-mediated apoptosis (37), (38).

Regulatory T cells in ALS

Evidence demonstrates a key role for Tregs in ALS disease onset and progression. In 2009, a dramatic decrease in the number of CD4⁺CD25⁺ Tregs in the peripheral blood of sporadic ALS patients was first reported (39). Since then, **several laboratories have been studying** these cell types and their possible role in ALS.

Changes in the Treg population over the disease course were demonstrated in mutant SOD1 (mSOD1) mouse models of ALS. In particular, in an early phase of the disease the number of CD4⁺CD25⁺ and CD25⁺FOXP3⁺ Tregs is increased while, as the disease progresses, they gradually decrease. More precisely, in 18-week old mice **which reflect a later disease phase**, a shift from the neuroprotective Treg/Th2 and M2 (“alternatively

1
2
3 activated" or anti-inflammatory) microglia population to a neurotoxic Th1/M1
4 ("classically activated" or inflammatory) phenotype is detected, and this enhances
5 disease progression (40, 41). In fact, in the early phase of the disease Tregs appear to be
6 functionally active and able to inhibit the activation of microglia through the secretion
7 of IL-4. This cytokine is not entirely secreted by Tregs but also by Th2 and so, this
8 latter cell type is also crucial for neuroprotection. Moreover, a mixture of IL-4, IL-10
9 and TGF- β is required to suppress Teffs. (41). On the contrary, as the disease
10 progresses, an increased expression of NOX2, IL-1 β and IL-12, which are markers of
11 M1 microglia activation, and of IFN- γ , secreted by Th1, was reported. Moreover, an
12 elevation in the levels of IL-6, which can completely inhibit Tregs, was detected (40).
13 Interestingly, the passive transfer of healthy Tregs to mSOD1 mice seems to prolong the
14 early phase and extend survival (40).

15
16 Given this background **but also considering the limitation that findings in disease**
17 **models may not translate to humans**, it was questioned what was the role of Tregs in
18 ALS patients. Tregs were found to be significantly decreased in their peripheral blood
19 (42), perhaps as an attempt of the CNS to recruit Tregs to suppress neuroinflammation,
20 which correlates with an increase of Tregs in the CNS in the early disease phase.
21
22 However, as disease progresses, this compensatory attempt fails and Tregs are inhibited
23 and decrease in number (42) (Figure 2). Moreover, the quantity of Tregs in the
24 peripheral blood negatively correlates with the ALSFRS-R score, a questionnaire used
25 to rate the stage and progression of the disease (43). Thus, a lower Treg count is
26 associated with a poor ALSFRS-R score and a more aggressive disease course (40, 42).
27
28 Moreover, the percentage of Treg in patient blood also negatively correlates with ALS
29 progression expressed in terms of AALS (Appel ALS score) an ALS clinal rating scale
30

(44, 45, 46). This score is independent from ALSFS-R and thus this finding reinforces the hypothesis of a Treg dysfunction occurring over time in ALS patients.

Interestingly, Tregs were found not only to be reduced in number but they also appear dysfunctional and less effective in promoting Teffs suppression and this dysfunction is more evident in rapidly progressing patients (44). In fact, the expression of key genes for the normal function of Tregs such as FOXP3, CD25, GATA3 and some anti-inflammatory cytokines including: TGF- β , IL-10 and IL-4, were found to be all downregulated in the peripheral blood of rapidly progressive ALS patients. Thus, their expression levels were found to be inversely correlated with the disease progression rate. Moreover, FOXP3 could be considered a prognostic factor since its levels can efficiently predict the speed of disease. (46). Furthermore, evidence of epigenetic alteration in TSDR, a CpG-rich regulatory region within the first intron of FOXP3 gene, was documented in ALS. This element is physiologically demethylated only in Tregs which stably express FOXP3 but it is fully methylated in CD4 $^{+}$ T cells. TSDR is partially methylated in ALS patients and this modification occurred more significantly in rapidly progressive cases (44).

Recently, evidence demonstrated that Tregs isolated from ALS are not permanently impaired but their function can be restored by culturing them *in vitro* in the presence of IL-2 and rapamycin (47). This latter compound is known to suppress the activity of Th1 and Th17 because it suppresses the mechanistic target of rapamycin (mTOR) signalling pathway which is crucial for these cells. In contrast, rapamycin promotes Tregs differentiation and proliferation because they are independent from mTOR (48). After treatment with IL-2 and rapamycin, Tregs from ALS subjects and healthy controls have comparable suppressive functions. Evidence was provided of the generation of a large-

1
2
3 scale GMP-compliant method for Treg isolation and expansion in the presence of IL-2
4
5 and rapamycin (47).
6
7

8 More recently, specific Treg subtypes have been correlated with ALS progression rate
9
10 (ALSFRS-R). Tregs can be classified into CD45RO⁺, functionally active Tregs, and
11 CD45RA⁺ which are resting Tregs. In rapidly progressive patients, reduction in the
12 number of CD45RO⁺ Tregs was reported, and the amount of this cell type can be
13 correlated with disease progression (49).
14
15

16 Furthermore, intraperitoneal injection of rapamycin and IL-2c (IL-2 combined with its
17 monoclonal antibody which increases the magnitude and duration of IL-2 activity) in
18 mSOD1 mice promoted CD45RO⁺ Treg expansion and prolonged their survival. In
19 addition, a reduction in astrogliosis and microgliosis by 40 and 50% respectively was
20 demonstrated together with an increase in FOXP3 and M2 microglia in the spinal cord
21 and the sciatic nerve, and increased levels of GATA3 in sciatic nerve of these treated
22 mice. Thus, these latter findings establish that Tregs can not only promote
23 neuroprotection in the CNS, but they can also exert an equivalent function in the
24 periphery (49).
25
26

27 This body of evidence demonstrate a key role of Tregs and a dual trend during the
28 disease course: these cells seem to be increased in an early disease phase, probably as
29 an anti-inflammatory attempt made by the CNS, but as disease progresses, Tregs
30 progressively and dramatically decrease leading to a worsening in neuroinflammation.
31 Moreover, Treg levels can be considered as a prognostic factor of the disease
32 progression and survival and enhancing Tregs can probably constitute a promising
33 therapeutic strategy. However, the possible effect of this Tregs expansion is still to be
34 investigated and, for this reasons, several clinical trials are currently trying to elucidate
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 their efficacy. In addition, research is being conducted alongside the clinical trials to
4
5 elucidate the molecular and immunological effects of this drug on ALS patients.
6
7
8

9 Targeting regulatory T cells 10

11 Since the role of the immune system in ALS has been documented, different drugs,
12 aiming to suppress neuroinflammation, have been screened for the treatment of this
13 disease. For example, prednisone, celecoxib, minocycline and thalidomide have been
14 evaluated in clinical trials for ALS. Unfortunately all of them failed to show disease
15 progression modulation and some of these agents caused serious adverse reactions (50),
16 (51), (52), (53). These compounds negatively regulate the overall function of the
17 immune system, and thus, it is now believed that indiscriminate immunosuppression is
18 not an appropriate therapeutic strategy for ALS. In contrast, drugs which exert
19 immunomodulatory effects, aiming to restore the normal neuroimmune homeostasis, are
20 considered promising. In this respect, Tregs constitute a new therapeutic target in ALS
21 and different clinical trials, which aim to expand the immune modulatory Tregs, are
22 reported in this section (**Table 1**).
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41 *Rapamycin* 42

43 This drug has already been approved by both the FDA and EMA for the prevention of
44 organ rejection after transplant. Rapamycin mediates mTOR inhibition which in turns
45 promotes Treg differentiation and stimulation of autophagy. Rapamycin facilitates the
46 formation of autophagosomes and thus it promotes the clearance of pathological protein
47 aggregates which are a prominent feature in ALS (54). As previously mentioned, the
48 mTOR pathway is essential for the differentiation of naïve CD4+ T cells into Th1 and
49 Th17 subtypes but it is not necessary for Treg development and, for this reason, it is
50 believed to induce the expansion of protective Tregs (48). However, conflicting
51
52
53
54
55
56
57
58
59
60

1
2
3 preclinical results have been reported. In fact, while different studies showed rapamycin
4 to be neuroprotective by promoting the elimination of protein aggregates in several
5 cellular and animal models; in an another one this drug appeared to be harmful for ALS
6 mSOD1 mice causing increase in motor disfunctions, acceleration in MN degeneration
7 and decrease survival (55, 56, 57, 58, 59). Nonetheless, a phase II clinical trial (RAP-
8 ALS) is evaluating the effect of rapamycin as add-on therapy to riluzole on 63 ALS
9 patients (54, <https://clinicaltrials.gov/ct2/show/NCT03359538>). Alongside clinical
10 assessments, scientific and investigatory outcomes are also scheduled including:
11 immune phenotyping, inflammatory cytokines measurements and blood/CSF
12 biomarkers evaluation.

27 ***Autologous Treg transplant***

28
29 Recently, a phase I trial consisting in the autologous transplantation of Tregs has been
30 completed. Tregs from were isolated, expanded *in vitro* and then reinfused
31 intravenously for a total of 8 injections. Concomitantly, subcutaneous administration of
32 IL-2 (2x10⁵ international units (IU)/m², 3 times weekly) was performed. Treatment was
33 well tolerated although some infections were reported. At the end of the trial, increased
34 suppressive properties of Tregs were observed, along with a slowing of disease
35 progression (60), <https://clinicaltrials.gov/ct2/show/NCT03241784>). These promising
36 results have boosted the interest in this type of treatment and a
37 placebo-controlled phase IIa trial to investigate the effect of autologous Treg infusions
38 in combination with low-dose-IL-2 in a larger number of patients is now underway (12,
39 <https://clinicaltrials.gov/ct2/show/NCT04055623>).
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

57 ***RNS60***

58
59 RNS60 is an experimental nanostructured drug which consists in different oxygen
60

1
2
3 nanobubbles. Preclinical studies indicate a significant effect of this compound in
4 extending survival of mSOD1 mice, as well as protecting their spinal cord motor
5 neurons and NMJs from degeneration. These results appear to be due to RNS60 action
6 on several ALS pathological mechanisms: i) RNS60 activates the p-Akt pro-survival
7 pathway in MN, astrocytes and Schwann cells; ii) it reduces mitochondrial alteration
8 and oxidative stress; iii) it promotes M2/Th2 activation over M1/Th1; iv) it induces the
9 overproduction of IL-4 and activates Tregs (61). In 2018, a pilot RNS60 phase I clinical
10 trial was completed. Sixteen participants were involved who received RNS60 by
11 infusions (375ml) once weekly and nebulized RNS60 (4ml/day) for the remaining 6
12 days of the week for a total of 18 weeks. Results showed that this drug is safe and well
13 tolerated with no adverse events reported throughout the trial. Unfortunately, no
14 significant change in IL-17 and FOXP3 expression or differences in neuroimaging
15 markers were reported during the treatment period. This was probably due to the small
16 patient size and the lack of a placebo group (62),
17 <https://clinicaltrials.gov/ct2/show/NCT02525471>). Thus, to further investigate the
18 therapeutic potential of RNS60, two different placebo-controlled phase II clinical trials
19 are now active evaluating the effect of either intravenous and/or nebulized inhaled
20 RNS60 in 142 (<https://clinicaltrials.gov/ct2/show/NCT03456882>) and 140
21 (<https://clinicaltrials.gov/ct2/show/NCT02988297>) ALS patients respectively.

48 **Vitamin D**

49
50 Vitamin D (VitD) is believed to have immune-modulatory properties. In particular, this
51 vitamin appears to exert functions on Tregs: it promotes Treg differentiation over
52 cytotoxic T cells, induces FOXP3 expression and IL-10 secretion (63). Recently, a role
53 of VitD in ALS has been proposed. However, contradictory results have emerged.
54 While some studies reported that VitD deficiency correlates with a decreased survival,

1
2
3 another reported the association between high levels of VitD and worse ALS prognosis
4
5 (64), (65), (66). Despite these discrepancies, a clinical trial called “T cell phenotype in
6
7 ALS, influence of vitamin D” or VITALS is currently in the recruiting phase. Seventy
8
9 ALS patients and 27 healthy controls will be screened for VitD levels in their blood and
10
11 patients with VitD deficiency will be supplemented with this molecule.
12
13

14
15 (<https://clinicaltrials.gov/ct2/show/study/NCT02756104>). Immune phenotyping will be
16
17 conducted throughout the trial to monitor changes within the T cell population.
18
19

20 21 **Low-dose IL-2** 22

23
24 Although IL-2 is known to exert pleiotropic functions on the immune system, it is a
25
26 crucial mediator of Treg differentiation and survival (20). In particular, ld-IL-2 seems to
27
28 specifically promote Treg expansion without having any significant effects on Teffs
29
30 (23). This can be explained by the different IL-2 receptors these two cell types show on
31
32 their surface membranes. In fact, while Tregs constitutively express high-affinity IL-2R
33
34 (made of three subunits: IL-2RA, IL-2RB and IL-2RG), Teffs express it only after T
35
36 cell receptor (TCR) activation. Without this stimulus, Teffs constitutively express only
37
38 the intermediate-affinity receptor (IL-2RB and IL-2RG). This means that Teffs require
39
40 much more IL-2 to become active compared to Tregs (23, 67). In particular, a study
41
42 shows that the amount of IL-2 required for the activation of Teffs is about 5000 higher
43
44 than the dose required for Tregs (67). For this reason, IL-2 at low doses is able to exert
45
46 a specific expansion effect only on Tregs and it is now under investigation for ALS
47
48 treatment.
49
50

51
52 A pilot phase II trial, IMODALS, using two different concentrations of ld-IL2 (1MIU
53
54 and 2MIU) in combination with riluzole was undertaken. Although the recruiting phase
55
56 of this trial is completed, the results of the study are still to be published
57
58 (<https://clinicaltrials.gov/ct2/show/NCT02059759>).
59
60

1
2
3 However, MIROCALS, a 1d-IL-2 phase II clinical trial using 2MIU IL-2 is currently in
4 the recruiting phase. Its purpose is to evaluate the clinical efficiency and safety of 2MIU
5 IL-2 as an add-on therapy to riluzole in 216 ALS patients, recruited at diagnosis
6
7 (https://clinicaltrials.gov/ct2/show/NCT03039673). Together with clinical evaluations,
8 additional research including deep immune-phenotyping, genomics, blood
9 transcriptomics as well as CNS biomarker analysis will be conducted to investigate the
10 effect of 1d-IL-2 on this patients (http://www.mirocals.eu/en/).
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Dimethyl fumarate (DMF)

This drug is currently approved by both the FDA and the EMA for the treatment of psoriasis and relapsing-remitting forms of multiple sclerosis (MS) with the commercial name of Tecfidera. Evidence shows that DMF exerts its beneficial effects by a dual mechanism. It promotes the antioxidant response through the activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway and it has immune modulatory properties. In fact, it stimulates type II dendritic cells which secrete the anti-inflammatory IL-10, reduces in the synthesis of pro-inflammatory cytokines and promotes a shift in the T lymphocyte population (68, 69, 70). In particular, MS patients treated with DMF showed a significantly decrease Th1 cells proportion, while an increase in Th2 and Treg cells is documented, although, a different study reported the effect of Tregs to be of short term (71, 72). Moreover, DMF seems to increase the sensibility of Teffs to Tregs and in turns this promotes their suppression (73, 74). Given this background, DMF or Tecfidera is currently being investigated in a phase II clinical trial called TEALS. The aim of the study is to evaluate safety and efficacy of this treatment on 90 sporadic ALS patients (https://www.australianclinicaltrials.gov.au/anzctr/trial/ACTRN12618000534280) (75).

Conclusions

ALS is a fatal neurodegenerative disease and currently, there is no effective disease modifying therapy for this condition. A range of mechanisms contribute to the disease onset and progression. Amongst these, neuroinflammation has a key role and its potential efficacy as a therapeutic target is now of growing interest. However, drugs which indiscriminately suppress the immune system do not appear to be effective (50, 51, 52, 53). Therefore, immunomodulatory treatments, which can re-establish the normal immune phenotype, could represent a more appropriate target. In particular, several trials, with the aim of expanding Tregs, are currently ongoing and after their completion we will understand whether this type of treatment has an effect on disease progression and/or patient survival. However, from preliminary studies, regulatory T cells seem to represent a promising therapeutic opportunity to restore the physiological equilibrium among immune cell types.

Acknowledgements

The research was supported by the NIHR Sheffield Biomedical Research Centre (BRC) grant ref. NIHR-INF-0476 . PJS and JK is supported by the MNDA grant ref. 974-797 and the European Union's Horizon 220 research and innovation programme under grant agreement No. 633413. PJS is a NIHR Senior Investigator.

Declaration of interest

No conflicts of interest.

FIGURE AND TABLE LEGENDS

Figure 1: Mechanisms of action of Tregs. Summary of the different mechanisms of Treg-mediated immune suppression. **A:** Inhibitory cytokine release, **B:** Cytolysis induction, **C:** Metabolic disruption, **D:** CTLA4-mediated mechanism, **E:** cAMP-mediated mechanism.

Figure 2: The early phase versus the later phase of disease: focusing on the role of Tregs. The early phase is characterized by a recruitment of regulatory T cells in the CNS from the periphery (a). This is a neuroprotective attempt made by the CNS to reduce neuro-inflammation. At this stage, Tregs secrete anti-inflammatory compounds which promote the activation of M2 microglia known for their anti-inflammatory properties. In the later stage, as the disease progresses, the number of Tregs in the CNS decreases, while inflammatory mediators prevail (b). This includes Th1, which secretes cytokines that activate M1 microglia and promote inflammation and neurotoxicity.

Table 1: Targeting Tregs: ongoing clinical trials

These ongoing clinical trials aim to expand the protective regulatory T cells. Names and IDs are reported together with drug information, phase of the study, status and number of participants involved. For more information, group divisions and treatment regimens are also described.

References:

1. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, et al. Amyotrophic lateral
2. sclerosis. *Nat Rev Dis Primers.* 2017;3:17071.
3. Al-Chalabi A, Hardiman O, Kiernan MC, Chiò A, Rix-Brooks B, van den Berg LH. Amyotrophic lateral
4. sclerosis: moving towards a new classification system. *Lancet Neurol.* 2016;15(11):1182-94.
5. Nagoshi N, Nakashima H, Fehlings MG. Riluzole as a neuroprotective drug for spinal cord injury:
6. from bench to bedside. *Molecules.* 2015;20(5):7775-89.
7. Fang T, Al Khleifat A, Meurgey JH, Jones A, Leigh PN, Bensimon G, et al. Stage at which riluzole
8. treatment prolongs survival in patients with amyotrophic lateral sclerosis: a retrospective analysis of data
9. from a dose-ranging study. *Lancet Neurol.* 2018.
10. Writing group on behalf of the Edavarone (MCI-186) ALS 19 study group. Open-label 24-week
11. extension study of edaravone (MCI-186) in amyotrophic lateral sclerosis. *Amyotroph Lateral Scler*
12. *Frontotemporal Degener.* 2017;18(sup1):55-63.
13. Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients
14. with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. *Lancet Neurol.*
15. 2017;16(7):505-12.
16. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury
17. in amyotrophic lateral sclerosis. *Nat Rev Neurol.* 2011;7(11):616-30.
18. Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new
19. insights into underlying molecular mechanisms and opportunities for therapeutic intervention. *Antioxid*
20. *Redox Signal.* 2012;17(9):1277-330.
21. Liu J, Wang F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms
22. and Therapeutic Implications. *Front Immunol.* 2017;8:1005.
23. Male M. BJ, Roth D. B., Roitt I. *Immunology.* Seventh Edition ed: Elsevier; 2006.
24. Mills KH. Regulatory T cells: friend or foe in immunity to infection? *Nat Rev Immunol.*
25. 2004;4(11):841-55.
26. Yadav M, Stephan S, Bluestone JA. Peripherally induced tregs - role in immune homeostasis and
27. autoimmunity. *Front Immunol.* 2013;4:232.
28. Vent-Schmidt J, Han JM, MacDonald KG, Levings MK. The role of FOXP3 in regulating immune
29. responses. *Int Rev Immunol.* 2014;33(2):110-28.
30. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T
31. cells through GITR breaks immunological self-tolerance. *Nat Immunol.* 2002;3(2):135-42.
32. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, et al. CD4(+)CD25(+)
33. immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced
34. TNF receptor. *Immunity.* 2002;16(2):311-23.
35. Ronchetti S, Ricci E, Petrillo MG, Cari L, Migliorati G, Nocentini G, et al. Glucocorticoid-induced
36. tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. *J Immunol*
37. *Res.* 2015;2015:171520.
38. Wikenheiser DJ, Stumhofer JS. ICOS Co-Stimulation: Friend or Foe? *Front Immunol.* 2016;7:304.
39. Zheng J, Chan PL, Liu Y, Qin G, Xiang Z, Lam KT, et al. ICOS regulates the generation and function of
40. human CD4+ Treg in a CTLA-4 dependent manner. *PLoS One.* 2013;8(12):e82203.
41. Landuyt AE, Klocke BJ, Colvin TB, Schoeb TR, Maynard CL. Cutting Edge: ICOS-Deficient Regulatory T
42. Cells Display Normal Induction of. *J Immunol.* 2019;202(4):1039-44.
43. Garg G, Tyler JR, Yang JH, Cutler AJ, Downes K, Pekalski M, et al. Type 1 diabetes-associated IL2RA
44. variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. *J*
45. *Immunol.* 2012;188(9):4644-53.
46. Malek TR. The biology of interleukin-2. *Annu Rev Immunol.* 2008;26:453-79.
47. Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and
48. immunity. *Immunity.* 2010;33(2):153-65.

1 23. Matsuoka K, Koreth J, Kim HT, Bascug G, McDonough S, Kawano Y, et al. Low-dose interleukin-2
2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. *Sci Transl
3 Med.* 2013;5(179):179ra43.

4 24. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, et al. IL-2 regulates FOXP3 expression in
5 human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of
6 these cells in vivo. *Blood.* 2006;108(5):1571-9.

7 25. Tang Q, Adams JY, Penaranda C, Mell K, Piaggio E, Sgouroudis E, et al. Central role of defective
8 interleukin-2 production in the triggering of islet autoimmune destruction. *Immunity.* 2008;28(5):687-97.

9 26. Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, et al. IL-2 reverses
10 established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. *J Exp Med.*
11 2010;207(9):1871-8.

12 27. Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system
13 pathologies. *J Neurosci Res.* 2018;96(6):951-68.

14 28. Liu G, Ma H, Qiu L, Li L, Cao Y, Ma J, et al. Phenotypic and functional switch of macrophages induced
15 by regulatory CD4+CD25+ T cells in mice. *Immunol Cell Biol.* 2011;89(1):130-42.

16 29. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. *Nat Rev Immunol.*
17 2008;8(7):523-32.

18 30. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ. Cutting edge: contact-mediated suppression
19 by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. *J
20 Immunol.* 2005;174(4):1783-6.

21 31. Zhao DM, Thornton AM, DiPaolo RJ, Shevach EM. Activated CD4+CD25+ T cells selectively kill B
22 lymphocytes. *Blood.* 2006;107(10):3925-32.

23 32. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, et al. Granzyme B and perforin are
24 important for regulatory T cell-mediated suppression of tumor clearance. *Immunity.* 2007;27(4):635-46.

25 33. de la Rosa M, Rutz S, Dorninger H, Scheffold A. Interleukin-2 is essential for CD4+CD25+ regulatory
26 T cell function. *Eur J Immunol.* 2004;34(9):2480-8.

27 34. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ regulatory T cells induce
28 cytokine deprivation-mediated apoptosis of effector CD4+ T cells. *Nat Immunol.* 2007;8(12):1353-62.

29 35. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, et al. Modulation of
30 tryptophan catabolism by regulatory T cells. *Nat Immunol.* 2003;4(12):1206-12.

31 36. Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. *Nat
32 Rev Immunol.* 2004;4(10):762-74.

33 37. Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, et al. Cyclic adenosine
34 monophosphate is a key component of regulatory T cell-mediated suppression. *J Exp Med.*
35 2007;204(6):1303-10.

36 38. Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression.
37 *Front Immunol.* 2012;3:51.

38 39. Mantovani S, Garbelli S, Pasini A, Alimonti D, Perotti C, Melazzini M, et al. Immune system
39 alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory
40 process. *J Neuroimmunol.* 2009;210(1-2):73-9.

41 40. Beers DR, Henkel JS, Zhao W, Wang J, Huang A, Wen S, et al. Endogenous regulatory T lymphocytes
42 ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with
43 amyotrophic lateral sclerosis. *Brain.* 2011;134(Pt 5):1293-314.

44 41. Zhao W, Beers DR, Liao B, Henkel JS, Appel SH. Regulatory T lymphocytes from ALS mice suppress
45 microglia and effector T lymphocytes through different cytokine-mediated mechanisms. *Neurobiol Dis.*
46 2012;48(3):418-28.

47 42. Rentzos M, Evangelopoulos E, Sereti E, Zouvelou V, Marmara S, Alexakis T, et al. Alterations of T cell
48 subsets in ALS: a systemic immune activation? *Acta Neurol Scand.* 2012;125(4):260-4.

49 43. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, et al. The ALSFRS-R: a revised ALS
50 functional rating scale that incorporates assessments of respiratory function. *BDNF ALS Study Group
51 (Phase III).* *J Neurol Sci.* 1999;169(1-2):13-21.

1 44. Beers DR, Zhao W, Wang J, Zhang X, Wen S, Neal D, et al. ALS patients' regulatory T lymphocytes
2 are dysfunctional, and correlate with disease progression rate and severity. *JCI Insight*. 2017;2(5):e89530.

3 45. Appel V, Stewart SS, Smith G, Appel SH. A rating scale for amyotrophic lateral sclerosis: description
4 and preliminary experience. *Ann Neurol*. 1987;22(3):328-33.

5 46. Henkel JS, Beers DR, Wen S, Rivera AL, Toennis KM, Appel JE, et al. Regulatory T-lymphocytes
6 mediate amyotrophic lateral sclerosis progression and survival. *EMBO Mol Med*. 2013;5(1):64-79.

7 47. Alsuliman A, Appel SH, Beers DR, Basar R, Shaim H, Kaur I, et al. A robust, good manufacturing
8 practice-compliant, clinical-scale procedure to generate regulatory T cells from patients with amyotrophic
9 lateral sclerosis for adoptive cell therapy. *Cytotherapy*. 2016;18(10):1312-24.

10 48. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially
11 regulates effector and regulatory T cell lineage commitment. *Immunity*. 2009;30(6):832-44.

12 49. Sheean RK, McKay FC, Cretney E, Bye CR, Perera ND, Tomas D, et al. Association of Regulatory T-Cell
13 Expansion With Progression of Amyotrophic Lateral Sclerosis: A Study of Humans and a Transgenic Mouse
14 Model. *JAMA Neurol*. 2018.

15 50. Tan E, Lynn DJ, Amato AA, Kissel JT, Rammohan KW, Sahenk Z, et al. Immunosuppressive treatment
16 of motor neuron syndromes. Attempts to distinguish a treatable disorder. *Arch Neurol*. 1994;51(2):194-
17 200.

18 51. Cudkowicz ME, Shefner JM, Schoenfeld DA, Zhang H, Andreasson KI, Rothstein JD, et al. Trial of
19 celecoxib in amyotrophic lateral sclerosis. *Ann Neurol*. 2006;60(1):22-31.

20 52. Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, et al. Efficacy of minocycline
21 in patients with amyotrophic lateral sclerosis: a phase III randomised trial. *Lancet Neurol*. 2007;6(12):1045-
22 53.

23 53. Stommel EW, Cohen JA, Fadul CE, Cogbill CH, Gruber DJ, Kingman L, et al. Efficacy of thalidomide for
24 the treatment of amyotrophic lateral sclerosis: a phase II open label clinical trial. *Amyotroph Lateral Scler*.
25 2009;10(5-6):393-404.

26 54. Mandrioli J, D'Amico R, Zucchi E, Gessani A, Fini N, Fasano A, et al. Rapamycin treatment for
27 amyotrophic lateral sclerosis: Protocol for a phase II randomized, double-blind, placebo-controlled,
28 multicenter, clinical trial (RAP-ALS trial). *Medicine (Baltimore)*. 2018;97(24):e11119.

29 55. Caccamo A, Majumder S, Deng JJ, Bai Y, Thornton FB, Oddo S. Rapamycin rescues TDP-43
30 mislocalization and the associated low molecular mass neurofilament instability. *J Biol Chem*.
31 2009;284(40):27416-24.

32 56. Staats KA, Hernandez S, Schönefeldt S, Bento-Abreu A, Dooley J, Van Damme P, et al. Rapamycin
33 increases survival in ALS mice lacking mature lymphocytes. *Mol Neurodegener*. 2013;8:31.

34 57. Cheng CW, Lin MJ, Shen CK. Rapamycin alleviates pathogenesis of a new *Drosophila* model of ALS-
35 TDP. *J Neurogenet*. 2015;29(2-3):59-68.

36 58. Madill M, McDonagh K, Ma J, Vajda A, McLoughlin P, O'Brien T, et al. Amyotrophic lateral sclerosis
37 patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms. *Mol Brain*.
38 2017;10(1):22.

39 59. Zhang X, Li L, Chen S, Yang D, Wang Y, Wang Z, et al. Rapamycin treatment augments motor neuron
40 degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. *Autophagy*. 2011;7(4):412-25.

41 60. Thonhoff JR, Beers DR, Zhao W, Pleitez M, Simpson EP, Berry JD, et al. Expanded autologous
42 regulatory T-lymphocyte infusions in ALS: A phase I, first-in-human study. *Neurol Neuroimmunol
43 Neuroinflamm*. 2018;5(4):e465.

44 61. Vallarola A, Sironi F, Tortarolo M, Gatto N, De Gioia R, Pasetto L, et al. RNS60 exerts therapeutic
45 effects in the SOD1 ALS mouse model through protective glia and peripheral nerve rescue. *J
46 Neuroinflammation*. 2018;15(1):65.

47 62. Paganoni S, Alshikho MJ, Luppino S, Chan J, Pothier L, Schoenfeld D, et al. A pilot trial of RNS60 in
48 amyotrophic lateral sclerosis. *Muscle Nerve*. 2019;59(3):303-8.

49 63. Goldsmith JR. Vitamin D as an Immunomodulator: Risks with Deficiencies and Benefits of
50 Supplementation. *Healthcare (Basel)*. 2015;3(2):219-32.

51 64. Karam C, Barrett MJ, Imperato T, MacGowan DJ, Scelsa S. Vitamin D deficiency and its
52 supplementation in patients with amyotrophic lateral sclerosis. *J Clin Neurosci*. 2013;20(11):1550-3.

1 65. Camu W, Tremblier B, Plassot C, Alphandery S, Salsac C, Pageot N, et al. Vitamin D confers
2 protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis. *Neurobiol Aging*.
3 2014;35(5):1198-205.

4 66. Blasco H, Madji Hounoum B, Dufour-Rainfray D, Patin F, Maillet F, Beltran S, et al. Vitamin D is Not a
5 Protective Factor in ALS. *CNS Neurosci Ther*. 2015;21(8):651-6.

6 67. Dupont G, Demaret J, Venet F, Malergue F, Malcus C, Poitevin-Later F, et al. Comparative dose-
7 responses of recombinant human IL-2 and IL-7 on STAT5 phosphorylation in CD4+FOXP3+ cells versus
8 regulatory T cells: a whole blood perspective. *Cytokine*. 2014;69(1):146-9.

9 68. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3
10 study of oral BG-12 for relapsing multiple sclerosis. *N Engl J Med*. 2012;367(12):1098-107.

11 69. Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, et al. Fumaric acid esters exert
12 neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. *Brain*.
13 2011;134(Pt 3):678-92.

14 70. Ghoreschi K, Brück J, Kellerer C, Deng C, Peng H, Rothfuss O, et al. Fumarates improve psoriasis and
15 multiple sclerosis by inducing type II dendritic cells. *J Exp Med*. 2011;208(11):2291-303.

16 71. Gross CC, Schulte-Mecklenbeck A, Klinsing S, Posevitz-Fejfár A, Wiendl H, Klotz L. Dimethyl
17 fumarate treatment alters circulating T helper cell subsets in multiple sclerosis. *Neurol Neuroimmunol
18 Neuroinflamm*. 2016;3(1):e183.

19 72. Holm Hansen R, Højsgaard Chow H, Christensen JR, Sellebjerg F, von Essen MR. Dimethyl fumarate
20 therapy reduces memory T cells and the CNS migration potential in patients with multiple sclerosis. *Mult
21 Scler Relat Disord*. 2019;37:101451.

22 73. Schröder J, Berges C, Luessi F, Jonuleit H. Dimethyl Fumarate Therapy Significantly Improves the
23 Responsiveness of T Cells in Multiple Sclerosis Patients for Immunoregulation by Regulatory T Cells. *Int J
24 Mol Sci*. 2017;18(2).

25 74. Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, et al. Dimethyl fumarate
26 targets GAPDH and aerobic glycolysis to modulate immunity. *Science*. 2018;360(6387):449-53.

27 75. Vucic S, Ryder J, Mekhail L, Rd H, Mathers S, Needham M, et al. Phase 2 randomized placebo
28 controlled double blind study to assess the efficacy and safety of tecfidera in patients with amyotrophic
29 lateral sclerosis (TEALS Study): Study protocol clinical trial (SPIRIT Compliant). *Medicine (Baltimore)*.
30 2020;99(6):e18904.

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

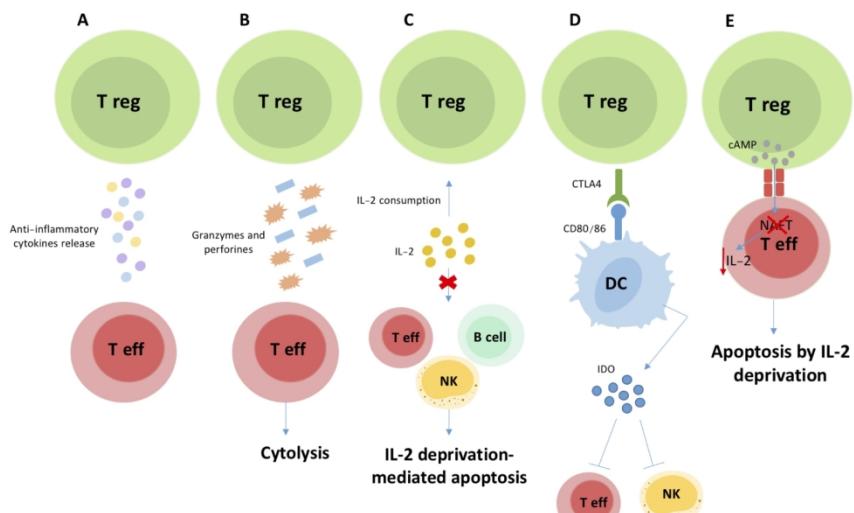


Figure 1: Mechanisms of action of Tregs. Summary of the different mechanisms of Treg-mediated immune suppression. A: Inhibitory cytokine release, B: Cytolysis induction, C: Metabolic disruption, D: CTLA4-mediated mechanism, E: cAMP-mediated mechanism.

297x209mm (300 x 300 DPI)

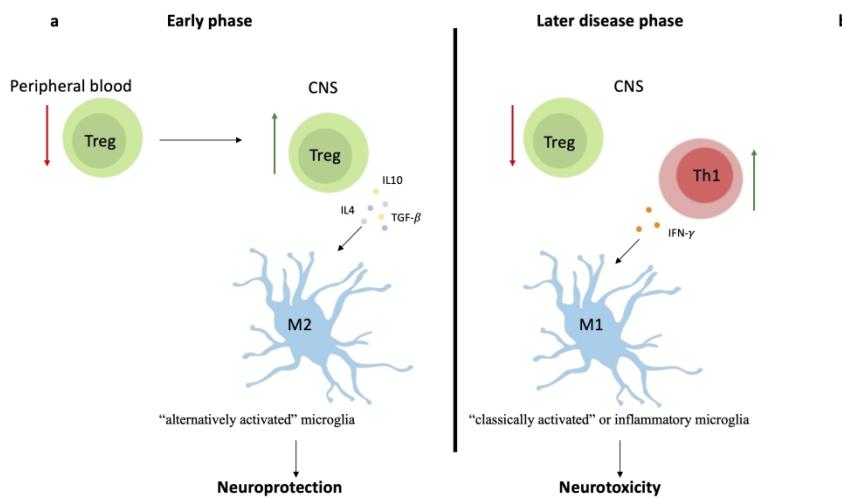


Figure 2: The early phase versus the later phase of disease: focusing on the role of Tregs. The early phase is characterized by a recruitment of regulatory T cells in the CNS from the periphery (a). This is a neuroprotective attempt made by the CNS to reduce neuro-inflammation. At this stage, Tregs secrete anti-inflammatory compounds which promote the activation of M2 microglia known for their anti-inflammatory properties. In the later stage, as the disease progresses, the number of Tregs in the CNS decreases, while inflammatory mediators prevail (b). This includes Th1, which secretes cytokines that activate M1 microglia and promote inflammation and neurotoxicity.

297x209mm (300 x 300 DPI)

1 Trial name	2 Drug	3 Clinical trial ID	4 Trial phase	5 Status	6 Participants	7 Group division and treatment types
1 RAP-ALS	2 Rapamycin	3 NCT03359538	4 Phase II	5 Active, not recruiting	6 63	7 21 patients: placebo 21 patients: 1mg/m ² /day rapamycin 21 patients: 2mg/m ² /day rapamycin 1 administration daily for 18 weeks
8 T-regulatory in ALS (Tregs in ALS)	9 Autologous Treg + IL2	10 NCT04055623	11 Phase IIa	12 Active, not recruiting	13 12	14 The study is divided in 2 parts: 1. First 6 months: -Treated patients: Treg will be taken, expanded in lab and reinjected each month + 1d-IL2 subcutaneous injections 3 times per week -Placebo patients: monthly placebo infusions + 3 placebo subcutaneous injection per week. 2. Second 6 months: all participants will receive autologous expanded Tregs monthly + 1d-IL2 3 times weekly.
16 The effect of RNS60 on ALS biomarker	17 RNS60 (intravenous and inhaled)	18 NCT03456882	19 Phase II	20 Active, not recruiting	21 142	22 71 patients: placebo 71 patients: RNS60 (normal saline plus oxygen in nanobubbles) 1 intravenous infusion per week and 1 nebulized inhalation daily for 24 weeks.
22 Nebulised RNS60 for the treatment of ALS	23 RNS60 (inhaled)	24 NCT02988297	25 Phase II	26 Not yet recruiting	27 140	28 70 patients: placebo 70 patients: RNS60 Daily inhalation for 24 weeks
26 VITALS	27 Vitamin D (VD)	28 NCT02756104	29 NA	30 Recruiting	31 97	32 27 healthy volunteers 70 ALS patients: VD-deficient patients will be supplemented for 6 months
29 MIROCALS	30 1d-IL-2	31 NCT03039673	32 Phase II	33 Active, not recruiting	34 216	35 108 patients: placebo 108 patients: 2MIU IL-2 1 injection daily for 5 days every 4 weeks for 18 months
33 TEALS	34 Dimethyl fumarate (Tecfidera)	35 ACTRN12618000534280	36 Phase II	37 Not yet recruiting	38 90	39 30 patients: placebo 60 patients: 240mg of Tecfidera (oral tablets) Two administrations daily for 36 weeks.