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Abstract Probabilistic topic modelings, such as latent

Dirichlet allocation (LDA) and correlated topic models

(CTM), have recently emerged as powerful statistical tools

for processing video content. They share an important prop-

erty, i.e., using a common set of topics to model all data.

However such property can be too restrictive for modeling

complex visual data such as crowd scenes where multiple

fields of heterogeneous data jointly provide rich informa-

tion about objects and events. This paper proposes graph-

based extensions of LDA and CTM, referred to as GLDA

and GCTM, to learn and analyze motion patterns by trajec-

tory clustering in a highly cluttered and crowded environ-

ment. Unlike previous works that relied on a scene prior, we

apply a spatio-temporal graph (STG) to uncover the spatial

and temporal coherence between the trajectories of crowd

motion during the learning process. The presented mod-

els advance the conventional approaches by integrating a

manifold-based clustering as initialization and iterative sta-

tistical inference as optimization. The output of GLDA and

GCTM are mid-level features that represent the motion pat-

terns used later to generate trajectory clusters. Experiments

on three different datasets show the effectiveness of the ap-

proaches in trajectory clustering and crowd motion model-

ing.
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1 Introduction

Trajectory clustering and analysis of crowd motion have

been vital components of various applications in public

surveillance, such as flow estimation. The goal is to ana-

lyze individuals’ movements by a trajectory associated with

a cluster label, thus representing individuals’ pathways. A

highly crowded scene is particularly challenging because of

the density, heavy occlusions and variations in the view. Ad-

ditionally interaction between individuals can lead to mis-

detection of body parts [24]. The presence of such chal-

lenges makes it difficult to analyze movements using con-

ventional techniques such as background subtraction and

motion segmentation, although they may work effectively

for less-crowded scenes.

To overcome the shortcomings of conventional tech-

niques, motion patterns have been investigated for process-

ing crowd scenes. In such scenarios objects are represented

by a small number of pixels; there is thus ambiguity in ap-

pearance caused by the dense packing [18]. Defining the

motion patterns in a crowd scene becomes a key to the prob-

lem. Examples of motion pattern techniques include scene

structure-based force models [3] and the Bayesian frame-

work with spatio-temporal motion models [12]. Typically

these models are based on the assumption that the objects

move coherently in one direction throughout a video. This

is a major shortcoming, as they fail to represent complex

crowd scenes with multiple dominant crowd behaviors in

multiple locations.

1.1 Related Work

Trajectory clustering is fundamental to solve the multi-

object tracking problem in various applications such as

crowd analysis and video surveillance. In many applications
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a vast amount of trajectories and motion patterns are ex-

tracted and clustered into groups without manually label-

ing the data based on various methods including distance-

based clustering [28], waypoint clustering [11], tree-based

clustering [36], grid-based clustering [19] and kernel clus-

tering [35]. Despite the vast literature [26,30,14], this prob-

lem still remains a challenging especially in very crowded

scenes with occlusions leading to false detection.

Based on the social force model [23], Pellegrini et

al.[21] proposed a linear trajectory avoidance (LTA) model

to predict the optimal path for individuals that prevents col-

lisions with each other and the obstacles. They performed

experiments using non-crowded scenes with lower applica-

bility for collision than to dense crowded scenes. Lin et al.

[16] detected motion trajectories in crowd scenes by pro-

cessing the flow fields. They applied a two-step clustering

process to define semantic regions which were used later to

recognize pre-defined activities in the crowd. Lu et al. [17]

extracted motion trajectories to investigate characteristics of

pedestrians in an unstructured scene. In their work trajec-

tories were firstly represented as a four-dimensional vector,

then clustered using the fuzzy c-means (FCM) algorithm to

form motion patterns. Sharma and Guho [28] proposed a

two-step trajectory clustering approach (TCA) to segment-

ing crowd flow patterns; a trajectory extraction step to de-

tect and track blocks or regions in the video, followed by a

clustering step that utilized the shape, the location and the

density of the trajectory in the neighborhood. Rabiee et al.

[22] detected abnormal behaviors from crowd scenes using

a spatio-temporal tracklet based descriptor extracted from

3D patches. The tracklets were extracted by tracking ran-

domly selected points in video frames within a short period

of time. Using the orientation and magnitude of extracted

tracklets, one-dimensional descriptors were derived and fed

into one-class support vector machine (SVM) classifier for

abnormality detection. Recently, Burceanu and Leordeanu

[9] proposed a neural network object tracker with two path-

ways; the FilterParts and the ConvNetPart. The first pathway

is robust to background noises while the second one is robust

to object appearance changes over time. The object’s next

moved tracking is determined based on the vote for center

maps from the two pathways.

Many works have been proposed for trajectory cluster-

ing based on mid-level features learning. These features are

usually observed as pathways defined by individuals’ move-

ments, thus designed to map the segments of trajectories

from a low-level feature space to their clusters [39]. A tra-

jectory for mid-level features can be learnt using hierarchi-

cal latent variable Bayesian models, such as latent Dirich-

let allocation (LDA) [6] and correlated topic models (CTM)

[5]. These models are known as ‘topic models’, adopted

from the text-processing field. They often have hierarchical

structures where latent variables lie at multiple levels. Us-

ing these models documents are represented by trajectories

and visual words are defined by observations of object tra-

jectories. With these approaches the learnt topics represent

mid-level features of trajectories.

CTM was adopted to the video-processing domain by

Rodriguez et al. [24] as a mid-level feature to represent

multiple motion behaviors in one scene. Their tracker was

weighted to predict a rough displacement using a codebook

generated from all the moving pixels in a scene, along with

the learnt high-level behavior. Although CTM was an effec-

tive model, it only processed motions at each spatial location

and disregarded the temporal correlation between sequential

motions that could naturally occur in crowd scenes, hence it

could not create discriminative mid-level features for mul-

tiple clusters. Rodriguez et al.[25] proposed a data-driven

crowd analysis algorithm that learn the crowd behaviour pri-

ors from large database using the CTM. The crowd patches

in the testing videos were then matched to the database us-

ing local and global Scene Matching. Their method based

on the assumption that all crowd behaviours were learnt

from the database. Thus, it may fail if a tested video in-

volves any behaviours that have no corresponding matches

in the database. A scene prior belief based correlated topic

model (BCTM) [39] was then proposed to construct a mid-

level features for trajectory clustering. A feature tracker was

firstly employed to generate trajectories. A spanning tree

method was then used to define the initial clusters. The mid-

level features were generated using BCTM followed by a

hierarchical clustering algorithm to produce the final clus-

ters. Their experiment showed that BCTM as a trajectory

clustering method outperformed CTM, but it could only be

applied if a scene prior was available.

Zhou et al. [38] proposed a random field topic (RFT)

model to perform trajectory clustering in a crowd scene. It

extended the LDA models by integrating a scene prior and

using a Markov random field (MRF). RFT significantly im-

proved the clustering performance over LDA models; how-

ever the performance could drop in crowd scenes with corre-

lated topics where topics were shared with multiple clusters

and where clusters were also shared with multiple topics.

Chen et al. [10] presented a patch-based topic model for

group detection. They used the feature points distribution

over the orientation space as a patch-level descriptor, which

was then fed into the LDA model to learn the semantic mo-

tion within each patch. Their model utilized MRF as a prior

to enforce the spatial coherence and to cluster the features

based on a prior of the corresponding patch.

1.2 This Work

Although recent approaches offered effective solutions,

most of them ignored the temporal relationship within crowd

scenes and the distribution of data. Instead they required



Trajectory Clustering in Crowd Videos 3

!"# !$# !%#

!"#$%&"'()
!"#$%&"'()

!"#$%&"'()

!&# !'# !(#

!"#$%&"'()

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

Fig. 1 Sample frames (the first row) and the motion patterns (the second row) of crowded indoor scenes, from Al-Masjid Al-Haram (S1), (S2) in

Mecca [4], Grand Central Station in New York [38] and the Collective Motion (CUHK) Database [37]. (Seen better in color.)

complex parameter estimation and variable inference pro-

cedures. This paper presents two graph-based topic mod-

els, graph-based latent Dirichlet allocation (GLDA) and the

graph-based correlated topic model (GCTM) [2], for ana-

lyzing crowd motion and clustering trajectory in a complex

crowd scene. Both models extended the conventional mod-

els by integrating a spatio-temporal graph (STG) to enforce

the spatial and temporal coherence between trajectories dur-

ing the learning process. The goal of this work is to address

the problem of trajectory clustering and motion pattern (or

movement direction) analysis in high-density crowds with-

out using any prior knowledge of the motion pattern of

a scene. Different from previous works, both GLDA and

GCTM have a manifold-based cluster initialization step, that

is followed by iterative optimization with Bayesian infer-

ence. The initialization step helps our models to generate

topics which means motion patterns (mid-level features),

that effectively reflect data distribution and cluster informa-

tion. After the iterative optimization the generated topics are

discriminative where different trajectories are clustered sep-

arately in the manifold space.

This paper is an extended version of our earlier work

published in [2], which presented the GCTM to learn

and analyse motion patterns by trajectory clustering in a

highly cluttered and crowded environment. In this paper, we

present the GLDA as a spatio-temporal graph-based exten-

sion of the LDA, which is widely-used model in the family

of statistical topic models and is more suitable over the CTM

specially when documents are long and the correlation be-

tween topics is not important [15]. Additionally, we present

a comprehensive analysis of the results obtained using both

GCTM and GLDA on three crowd datasets with a range of

diversities to show the effectiveness of the extended models.

Our other work in [2] extended the CMT using the spatio-

temporal graph followed by the k-nearest neighbourhood

(kNN) clustering method without dimensionality reduction.

In that paper [1], tracklets cluster prediction was performed

based on the minimum entropy. While in the method pre-

sented in [3] and in this paper, the GCTM does trajectory

clustering after dimensionality reduction and the tracklets

cluster prediction are performed using the maximum likeli-

hood. Both previous papers [1,2] presented comparable re-

sults and outperformed the related approaches. The GCTM

presented in [2] run faster thanks to the manifold embed-

ding.

The presented methods started by apply the Kanade-

Lucas-Tomasi (KLT) tracker [31] to extract trajectories

points, that are used later by the locality-constrained lin-

ear coding (LLC) technique [34] to generate a set of visual

codes as low-level features. The STG is then constructed to

uncover the spatio-temporal relations between the trajecto-

ries and projected to lower-dimensional space to initialize

clusters in a manifold embedding space. Using cluster la-

bels, topics are learnt by GLDA and GCTM for final trajec-

tory clustering. Experiments are performed on three differ-

ent video datasets; one collected from multiple indoor loca-

tions at crowded Al-Masjid Al-Haram [4], the second one

collected at the Grand Central Station in New York [38] and

the third one collected from different indoor and outdoor

crowd scenarios (Figure 1).

The remainder of the paper is organized as follows: the

proposed graph-based models are introduced in Section 2.

The initial and final trajectory clustering techniques are pre-

sented in Section 3. Datasets and experimental setup are pre-

sented in Section 4, which are followed by results and dis-

cussion. Finally Section 6 concludes the paper.

2 Graph-based Topic Models

LDA assumes that a word in topics contains a multinomial

distribution, that a document contains multiple topics and

that the ration of topics varies following a Dirichlet distri-

bution. CTM follows the same generative process of LDA
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but, instead of the Dirichlet distribution, it uses the logistic

normal distribution to capture the correlation among topics.

This section presents the approach to learning mid-level fea-

tures (topics) as motion patterns (movement direction) using

GLDA (Section 2.2) and GCTM [2] (Section 2.3). We show

that, by extending LDA and CTM to utilize initial clusters

based on spatio-temporal graph, we are able to greatly sim-

plify the training algorithm, thus creating distinctive topics

for clustering without using any scene prior. This means that

different trajectories will have different clusters in the man-

ifold space.

2.1 Notation

Figures 2(a) and (d) show graphical representations of the

conventional LDA [6] and CTM [5] that were originally de-

veloped in the text-processing field. Both models assume

that M , N and K denote the number of documents, the

number of words in a document and the number of hidden

variables (or ‘topics’) in the model, respectively. The circles

in the figures are random variables or model parameters, and

the edges specify the probabilistic dependencies (or the con-

ditional independences) among them; boxes, with M , N and

K, are compact notations for multiple instances of the vari-

ables or parameters. Shaded variables represent the observed

variables, while unshaded variables indicate the latent vari-

ables.

Corpus, document, topic and words (for text data) in the

conventional models are replaced with pathway, trajectory,

motion pattern (or movement direction) and visual codes

(for video data) in the graph-based models. The topic mix-

ture of a document corresponds to a set of different motion

patterns in a trajectory. The graph-based models learn crowd

motion by clustering trajectories. The graphical representa-

tions of GLDA and GCTM are presented in Figures 2(b) and

(e). Observed visual codes (low-level features) and initial

clusters are the inputs for both models. Section 3 describes

the construction of the visual codes and initial clusters as

low-level features.

We begin with some notations and definitions for param-

eters used with both models:

– M is the number of trajectories in the pathway, each

of which is modeled as a mixture of K topics. m =

1, . . . ,M is the index of an individual trajectory in the

pathway.

– N is the total number of visual occurrences in a trajec-

tory m. n = 1, . . . , N is the index of a visual code oc-

currence in a document m.

– K is the number of hidden topics in the model, where

each topic is a distribution over a code set given by a

hyper-parameter βk.

– c ∼ p(c | η) where c = 1, . . . , C is an initial cluster de-

fined for each trajectory. C is the total number of initial

clusters and η is a C-dimensional vector of a multino-

mial distribution.

– πm (or π) in GLDA is a discrete variable sampled from

a Dirichlet distribution for choosing the topic p(πm |
α, c).

– θm (or θ) in GCTM is a continuous variable sampled

from a Gaussian distribution for choosing the topic

p(θm | µ,Σ, c).

– µ is a K-dimensional vector and Σ is a K ×K covari-

ance matrix, parameters of a multivariate Gaussian pro-

cess.

– α is a C×K matrix, and αc is a K-dimensional Dirichlet

parameter conditioned on the topic c.
– zm,n (or zn) is a hidden variable assigned to a visual

code xn drawn from a multinomial distribution.

– xm,n (or xn) is a visual code n in the trajectory m.

2.2 GLDA: Graph-based Latent Dirichlet Allocation

LDA assumes that there is a different discrete distribution

π for each document to generate topics for words and that

all documents share a Dirichlet prior α. In Figure 2(a), πm

(or π) is a K-dimensional vector representing a topic prior

for each document; zm,n (or zn) is a hidden variable, fol-

lowing a parameterized multinomial distribution Mult(π);

xm,n (or xn) is the random variable whose value is the ob-

served word (i.e., ‘feature’); and β is a hyper-parameter cor-

responding to the mid-level features. The generative process

of LDA is outlined as follows:

– Choose π ∼ Dirichlet(α).

– For each visual word xn for n ∈ {1, . . . , N}:

1. Choose a topic zn | π according to Mult(π);

2. Choose a word xn | {zn, β1:K} according to xn ∼
p(xn | zn, β).

Using this model the document probability, given a topic

variable π, a word x and an individual topic assignment z,

is expressed as

P (x, z, π | β, α) = p(π | α)
N
∏

n=1

P (zn | π)P (xn | zn, β)

(1)

Note that the topic-level information given by π and z is

hidden, while the word-level representation is observed.

GLDA requires both observed visual words and initial

clusters as inputs to the model. Given the parameters α, η

and β, the joint probability of GLDA, with a set of N topics
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Fig. 2 Graphical representation of (a) LDA, (b) GLDA, (c) its approximate distribution, (d) CTM, (e) GCTM and (f) its approximate distribution.

z, a set of N visual codes x and a cluster c, is

p(x, z, π, c | η, β, α) =

p(c | η)p(π | α, c)
N
∏

n=1

p(zn | π)p(xn | zn, β) (2)

where

p(xn | zn, β) =
K
∏

k=1

p(xn | βk) (3)

p(π | α, c) =
C
∏

c=1

Dirichlet(π | αc) (4)

p(c | η) = Mult(c | η) (5)

p(zn | π) = Mult(zn | π) (6)

The distribution of p(c | η) is always assumed as a fixed

uniform distribution p(c) = 1/C. Therefore we leave out

the estimation of η. The log probability for x is given as

p(x | α, β, c) =
∫

p(π | α, c)

(

∑

z

N
∏

n=1

p(xn | zn, β)p(zn | π)

)

dπ (7)

We use the variational breaking algorithm in [6] to esti-

mate parameters of the GLDA. Figure 2(c) is the graphical

representation for the approximate distribution for GLDA.

We now have

log p(x | α, β, c) = L(γc, φc;αc, β)

+KL{q(π, z | γc, φc) ‖ p(π, z | x, αc, β)} (8)

where KL{·} implies the Kullback-Leibler distance. We it-

eratively maximize the term L(·), instead of p(x | α, β, c),
which results in the minimum of the difference between dis-

tributions in Figure 2(b) and Figure 2(c). Further details of

computation is found in [6]. We give modified parameters

and variables as

φc
ki ∝ exp(γc

k)βk (9)

βk ∝
∑

i

φc
k,ini (10)

where m is used to index the trajectory, i to index the word

and k to index a topic. φk,i denotes the probability that the

ith word belongs to the kth topic, ni is the word count and

βk is the kth topic’s representation in the word space.

2.3 GCTM: Graph-based Correlated Topic Model

In the Dirichlet distribution the components are considered

independent, thus each topic cannot have a relation with

other topics. This independence practically prevents occur-

rence of a word in other topics — that is, if topics are fully

independent, a word in one topic cannot appear in other top-

ics. In order to address the issue CTM assumes that each

document is a mixture of words given a set of hidden topics,

and in turn each topic is determined by a distribution over

the entire vocabulary. It employs more flexible logistic nor-

mal distribution to represent a covariance structure among

the components. The formulation of GCTM is analogous to

the one for GLDA. It is presented below to contract the sim-

ilarity and the difference between GLDA and GCTM.

In Figure 2(d), θm (or θ) is a K-dimensional vector,

specifying a topic prior for each document; zm,n (or zn) is a

hidden variable, following a parameterized multinomial dis-

tribution Mult(θ); xm,n (or xn) is a random variable whose

value is an observed word (i.e., ‘feature’); and β is a hyper-

parameter corresponding to the mid-level features. Finally µ

and Σ are the mean and the covariance matrix of the multi-

variate normal distribution. The generative process of CTM

is outlined as follows:

– Draw θ | {µ,Σ} ∼ N (µ,Σ).
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– Draw a document-specific topic component π as π =
exp(θ)
∑K

i=1
θi

.

– For each visual word xn for n ∈ {1, . . . , N}:

1. Assign a topic zn | θ according to Mult(π);

2. Choose a word xn | {zn, β1:K} according to p(xn |
zn, β).

Using this model the document probability, given a topic

variable θ, a word x and an individual topic assignment z, is

expressed as

p(θ, z, x | µ,Σ, β) = p(θ | µ,Σ)

N
∏

n=1

p(zn | θ)p(xn | zn, β)

(11)

Note that the topic-level information given by θ and z is

hidden, while the word-level representation is observed.

GCTM requires both observed visual words and initial

clusters as inputs to the model. Given the parameters Σ, µ, η

and β we can now write a full set of generative equations for

the GCTM model. The joint probability of a topic mixture θ,

a set of N topics z, a set of N visual codes x and the cluster

c is

P (x, z, θ, c | η, β, µ,Σ) =

p(c | η)p(θ | µ,Σ, c)

N
∏

n=1

p(zn | θ)p(xn | zn, β) (12)

where

p(θ | µ,Σ, c) =
C
∏

c=1

N (θ | µc, Σc) (13)

p(c | η) = Mult(c | η) (14)

p(zn | θ) = Mult(zn | θ) (15)

The log probability for x is given as

p(x | µ,Σ, β, c) =
∫

p(θ | µ,Σ, c)

(

∑

z

N
∏

n=1

p(xn | zn, β)p(zn | θ)

)

dθ

(16)

In order to estimate parameters for GCTM, we used

parts of video sequences as training data and adopt the varia-

tional expectation maximization (EM) algorithm to do vari-

able inference and parameter estimation [5]. Figure 2(c) is

the graphical representation of the approximate distribution

for GCTM where γM×K , vM×K and Φ are variational pa-

rameters. The log-likelihood for a document m is given by

log p(x | µ,Σ, β, c) = L(γc, vc, φc;µc, Σc, β)

+KL{q(θ, z | γc, vc, φc) ‖ p(θ, z | x, µc, Σc, β)} (17)

Video 

sequence

KLT 

tracker

Initial clustering (STG + 

manifold embedding ) 

GCTM

or

GLDA

Visual codes 

(LLC)

Tracklets 

clustering

Low-level features Mid-level features

Fig. 3 The framework for crowd behavior modeling using GLDA or

GCTM.

As before we iteratively maximize the term L(·) which re-

sults in the minimum of the difference between the distribu-

tion in Figure 2(e) and Figure 2(f). Modified parameters and

variables are given as

φc
ki ∝ exp(γc

k)βk (18)

βk ∝
∑

i

φc
kini (19)

µ =
1

M

∑

m

γc
m (20)

Σ =
1

M

∑

m

{

diag(vcm) + (γc
m − µc)(γ

c
m − µc)

⊤
}

(21)

where m is used to index the trajectory, i to index the word

and k to index a topic. φki denotes the probability that the

ith word belongs to the kth topic, ni is the word count and

βk is the kth topic’s representation in the word space.

3 Trajectory Clustering

The first step for trajectory clustering is to generate low-

level features by extracting trajectory segments and repre-

senting them with a collection of visual codes (i.e., words).

Secondly, a spatio-temporal graph is applied on the visual

codes to uncover spatio-temporal relations among trajecto-

ries and embed them in the lower dimensional space to iden-

tify initial clusters. Given initial clusters and a set of visual

codes, mid-level features are learnt by GLDA or GCTM

(Sections 2.2 and 2.3) to produce the final trajectory clus-

tering. The framework is shown by a flow chart in Figure

3.

3.1 Low-level Features

Given a video sequence, the KLT tracker [31] is applied to

calculate M trajectories. The LLC algorithm is employed to

represent each trajectory with a set of visual codes X as low-

level features. LLC is a coding scheme proposed by Wang et

al. [34] to project features onto their respective local coordi-

nate systems and encode them using fewer codebook basis

in the high-dimensional feature space.
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Given a trajectory m with a set of points m =

{t1, . . . , tN}, a set of codes X = {x1, . . . , xN} are de-

rived by firstly constructing a neighborhood graph based on

the geodesic distances between the trajectory points and the

codebook, then computing the shortest path performing a

kNN search, and finally solving the following constrained

least square fitting problem:

min
X

N
∑

i=1

‖ti −Bxi‖
2 + λ‖di ⊙ xi‖

2 st. 1⊤xi = 1 ∀i

(22)

where ⊙ implies the element-wise multiplication, B is a

codebook, and λ is a sparsity regularization term. Further-

more, ‘1⊤xi = 1 ∀i’ means the shift-invariant requirements

for the LLC code. The locality-constrained parameter di rep-

resents each basis vector with different freedom based on its

shortest path to the trajectory point ti. The final step uses

the multi-scale max pooling [27], where a set of codes com-

puted for each trajectory are grouped together to create the

corresponding pooled representation X .

3.2 Initial Clustering

To obtain the initial clusters C for the trajectories, the STG

algorithm [2] is applied to uncover spatio-temporal relations

among trajectories. The structure in the high-dimensional

space is transferred to a spatio-temporal distance graph of

nodes with LLC representations. The method reconstructs

the order of the LLC representations based on their spatio-

temporal relationship and recalculates distances along them

to ensure the shortest distance. Firstly the similarity matrix

R is calculated between the LLC representations using the

Euclidean distance. The value of Rij defines the distance

between Xi and Xj of two trajectories (i, j = 1, . . . ,M ).

Then for each instance Xi (i = 1, . . . ,M):

1. L codes, closest to Xi, are connected. They are referred

to as spatial neighbors SXi
:

SXi
=

{

Xj1, . . . , XjL | argmin
j

L(Rij)

}

(23)

where argmin
j

L implies L node indices with the shortest

distances to Xi.

2. Another L chronologically ordered neighbors around Xi

are set as temporal neighbors TXi
:

TXi
=
{

Xj−L
2

, . . . , Xj−1, Xj+1, . . . , Xj+L
2

}

(24)

3. Optimally TS is selected from temporal neighbors of

spatial neighbors as:

TSXi
=
{

TXj1
∪ . . . ∪ TXjL

}

∩ TXi
(25)

4. The union between spatial and temporal sets represents

spatio-temporal neighbors UXi
for code Xi:

UXi
= SXi

∪ TSXi
(26)

The above formulation of UXi
effectively selects Xi’s tem-

poral neighbors that are similar, with a good chance, to its

spatial neighbors.

Given the spatio-temporal neighborhood graph, a new

correlation δ based on the geodesic distances is defined by

applying Dijkstra’s distance algorithm between the neigh-

boring nodes [32]. The value of δ represents the shortest path

distance (neighbor weights) between two nodes Xi and Xj .

If node Xj is a spatio-temporal neighbor of Xi and j ∈ UXi
,

then δ(Xi, Xj) = ωij and their trajectory has a neighbor re-

lation, otherwise, δ(Xi, Xj) = 0.

The manifold embedding is then modeled by applying

the multidimensional scaling (MDS) [7]. It is formed as

a transformation of the high-dimensional data in terms of

the correlation δ into a new d-dimensional embedded space

that best preserves the neighboring relations of the clusters.

In the lower dimensional manifold embedding space, a k-

means algorithm is adopted to perform clustering and obtain

initial trajectory cluster labels.

3.3 Final Clustering

After the mid-level features are learnt and the topic proba-

bilities of trajectories are computed, each trajectory has a set

of K topics to choose from. A topic label with the highest

probability is assigned to the trajectory. Given a new tra-

jectory m with an unknown path, LLC representation X is

firstly defined with N visual codes and the probability of

each cluster is computed with GLDA as:

p(c | x, α, β, η) ∝ p(x | c, α, β)p(c | η) ∝ p(x | c, α, β)
(27)

where α, β and η are parameters learnt by the GLDA model.

The decision of the topic is made by comparing the likeli-

hood of X given each cluster label as argmaxc p(x | β, α, c)
where the term p(x | β, α, c) is defined as in Eq.(7).

Similarly, with GCTM:

p(c | x, µ,Σ, β, η) ∝ p(x | c, µ,Σ, β)p(c | η)

∝ p(x | c, µ,Σ, β) (28)

where µ,Σ, β and η are parameters learnt by the GCTM

model. The decision of the topic is made by comparing the

likelihood of X given each cluster label as argmaxc p(x |
β, µ,Σ, c) where the term p(x | β, µ,Σ, c) is defined as in

Eq.(16).
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dataset resolution duration codebook size trajectories

Al-Masjid (S1) 960× 540 5, 600 sec 96× 54× 4 87,321

Al-Masjid (S2) 960× 540 3, 400 sec 96× 54× 4 61,760

Station 720× 480 1, 800 sec 72× 48× 4 47,866

CUHK 920× 520 10, 300 sec 92× 52× 4 218,787

Table 1 The resolution, duration, codebook size and the number of ex-

tracted trajectories for Al-Masjid (S1), (S2) [4], Grand Central Station

[38] and CM [37] datasets.

4 Experiments

We evaluated the graph-based topic models, GLDA and

GCTM, using a trajectory clustering task with crowd videos.

Once both models were learnt, trajectories were clustered

based on the motion pattern (or the movement direction).

For each trajectory the topic was assigned to the cluster with

the highest likelihood. Three datasets were employed for

evaluation:

• Al-Masjid Al-Haram [4] — collected from indoor

scenes at the holy mosque of Mecca, Saudi Arabia. This

dataset involved a number of difficult problems, such

as lighting changes, occlusions, a variety of objects,

changes of views and environmental effects. There were

two scenes with Al-Masjid videos. The first (S1) was at

one of the Tawaf area stairs used to enter or leave the

Tawaf. It was a very busy area and needed monitoring to

ensure individuals’ safety. Multiple pathways could be

identified with this scene, including a direct pathway to

approach the Tawaf and the left and the right side path-

ways leading to the seating areas. The second scene (S2)

was recorded at the second and the third floors of SAFA

and MARWA area, which was a long walkway with two

different directions. Along these walkways there were

multiple doors used to enter and exit the areas.

• Grand Central Station [38] — collected from the in-

side of the Grand Central Railway Station in New York,

USA. It contained multiple entrances and exits where

individuals had multiple pathways to follow. The crowd

presented multiple behaviors (or pathways) in various

moving directions.

• Collective Motion Database (CUHK) [37] — collected

from 62 indoor and outdoor crowded scenes with various

densities and scales including streets, shopping malls,

airports and parks. It has 413 video clips containing both

human and vehicles movements. Manual annotations for

the video clips are included in the dataset containing

groups or clusters that can be used to evaluate methods

for group detection and crowd classification.

For simplicity we denote the datasets as ‘Al-Masjid (S1)’,

‘Al-Masjid (S2)’, ‘Station’ and ’CUHK’. Some details of all

datasets are presented in Table 1.

4.1 Experimental Setup

For the low-level feature step, the initial codebook B used

for the LLC codes was learnt from a half of the trajectories

randomly selected. The W ×H scene was divided into 10×
10 cells and the velocities of key-points were quantized into

four directions. The pooled representations from the LLC

codes were computed for each sub-region (of 4 × 4, 2 × 2

and 1 × 1) and pooled together using the multi-scale max

pooling. The number of neighbors was set as k = 5 and λ =
500 in Eq.(22). For the initial clustering we used Elkan’s k-

means clustering algorithm from the VLFeat toolbox [33],

which was faster than the standard Lloyd’s k-means. The

pooled features were concatenated and normalized using the

ℓ2-norm. For STG the similarity matrix was computed using

the geodesic distance and the kNN graph was constructed

with L = 20.

4.2 Evaluation Criteria

For quantitative evaluation of the clustering performance,

we adopted correctness and completeness introduced by

[20]. We based the evaluation on the criteria that individ-

uals in the same group have a common pathway and form

a motion pattern. Thus, the correctness is defined as the

accuracy with which a pair of trajectories from different

pathways (with the ground-truth) are clustered into differ-

ent groups. While the completeness is defined as the accu-

racy with which a pair of trajectories from the same path-

way are clustered into the same group. In an extreme case a

100% completeness and a 0% correctness may be achieved

when all the trajectories are clustered into a single group.

Another extreme is a 0% completeness and a 100% correct-

ness achieved when each trajectory is clustered into a dif-

ferent group. A good clustering algorithm should achieve

high scores in both correctness and completeness. We man-

ually labelled 2,500 trajectories for correctness and 1,700

trajectories for completeness with Al-Masjid (S1), 2,000

for correctness and 1,500 for completeness with Al-Masjid

(S2), and 2,000 for correctness and 1,500 for completeness

with Station. For the CUHK dataset, we used the provided

ground-truth and defined 3,500 trajectories for correctness

and 2,500 trajectories for completeness.

5 Results and Discussion

Various comparisons have been conducted to evaluate the

presented models. Section 5.1 compares the presented mod-

els with the related methods reviewed in Section 1.1. The

second comparison in Section 5.2 aims to demonstrate the

effectiveness of the low-level features, including the KLT

tracker and the LLC method used in both GCTM and
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GLDA. Section 5.3 validates the effectiveness of the initial

clustering, including the STG and the dimensionality reduc-

tion used in both GCTM and GLDA, by comparing its per-

formance with other methods.

5.1 The Performances of the Models

Figure 4 presents trajectory clusters for Al-Masjid (S1)

video by various approaches, including LDA, CTM1 [6],

RFT2 (random field topic) [38], GLDA and GCTM. Dif-

ferent colors in the figure represent different clusters (path-

ways). It can be observed that the graph-based topic models,

GLDA and GCTM, were able to produce the cleanest tra-

jectory paths. The other three approaches, LDA, CTM and

RFT, failed to perform trajectory clustering well because of

their heavy occlusion, which was particularly evident with

the side pathways towards the exits. RFT achieved better re-

sults for the central pathways in comparison to LDA and

CTM. The latter two did not perform well because both of

them ignored the temporal correlations. Although they were

able to cluster the trajectory segments at one end of the

crowd motion (either the starting or the ending position) as

one pathway, the other end was not clustered with the same

pathway.

Completeness and correctness for LDA, CTM, RFT,

GLDA and GCTM are reported in Figures 5 and 6. The re-

sults show that GLDA and GCTM outperformed the other

three approaches in all three datasets with clear margins. The

margins were even wider for completeness when the num-

ber of topics was larger. GLDA and GCTM with the STG

were able to learn discriminative mid-level features better,

even with a large number of topics to share the clusters.

The other three approaches did not cluster trajectories well

because most of these trajectory segments were short and

mixed, thus they were difficult to be clustered. RFT had ad-

vanced LDA [6] by accommodating belief priors based on

the position and the spatial correlation of trajectories along

the video sequence. However the spatio-temporal correla-

tion between trajectories was disregarded. LDA and CTM

considered four motion directions at each spatial location,

but they ignored the temporal relation between sequential

local motions in crowd scenes. CTM performed better than

LDA because it considered the correlation between topics.

All three methods processed low-level features of the trajec-

tories in the high-dimensional feature space, which was very

sparse, making it difficult to directly perform clustering.

Because the Al-Masjid two scenes, S1 and S2, con-

tains more crowded videos than the Station and the CUHK

1 Both LDA and CTM were implemented following the approach in

[24].
2 We used the publicly available code from the authors’ website

[38].

datasets, most of the trajectories generated in the Al-Masjid

dataset were short and mixed. It clearly affected adversely

the completeness and the correctness accuracies, particu-

larly for LDA, CTM and RFT. In the Al-Masjid (S2) videos,

some trajectories were absorbed towards the both sides (blue

and yellow trajectories in Figure 1(4)), for which LDA,

CTM and RFT failed to perform trajectory clustering. In

contrast GLDA and GCTM, with no scene priors, performed

well (Figure 5(b) and Figure 6(b)).

Unlike the other two, the CUHK dataset is more chal-

lenging because it contains longer clips with various mov-

ing objects such as cars and bicycles. It has a number of

indoor and outdoor crowd scenarios with different densities.

Regardless of types of the object being moved, both GLDA

and GCTM were able to identify most of motion patterns

and achieved the highest performances in Figure 5(d) and

Figure 6(d). Consideration of the temporally coherent mo-

tions helped the graph-based models to define the movement

directions in various crowd density in the scenes, while the

other methods detected the motions frame by frame sepa-

rately, thus neglecting the temporal smoothness. As a conse-

quence they could not maintain a stable performance along

time-series.

The GLDA achieved the highest performance in the

CUHK dataset at K = 8, although the performance slightly

dropped as the number of topics increased. This was caused

by the independent assumption of the topic proportion gen-

erated from a Dirichlet in the GLDA. More topics would

become correlated with increasing K, and the Dirichlet dis-

tribution would no longer be a good fit for such topic pro-

portions. Construction of the STG helped the GLDA to per-

form much better than the other methods except the GCTM,

which considered the correlations between topics during the

learning process and thus had better ability to support larger

numbers of topics.

Overall, GCTM performed better than GLDA. This was

due to the limitation of LDA being incapable of modeling

correlated topics, while CTM alleviated this limitation by

introducing a logistic normal prior of topics to replace a

Dirichlet prior and by using the covariance matrix of vari-

ables in the logistic normal model to capture correlations

among topics. GLDA can be best applied to scenes in which

each scene contains multiple topics, while the GCTM can be

used to identify the relationships among the topics as well as

topic detection.

Finally Figure 7 presents comparison of LDA, CTM,

RFT, GLDA and GCTM with regard to the topic learning

time. They included the processing time for feature extrac-

tion, codebook generation, topic learning and the final clus-

tering. The figures show that the learning process of the pro-

posed GLDA and GCT model were faster than LDA, CTM

and RFT. Generating the LLC codes as low-level features,

defining the STG between the trajectory segments and sup-
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(a) Original trajectory set

(f) GCTM(e) GLDA(d) RFT

(c) CTM(b) LDA

Fig. 4 Comparison of trajectory clustering approaches using the Al-Masjid (S1) dataset: (a) original trajectory set, (b) LDA, (c) CTM, (d) RFT,

(e) GLDA and (f) GCTM.
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Fig. 5 Completeness of trajectory clustering against the number of topics.
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Fig. 6 Correctness of trajectory clustering against the number of topics.

porting the topic learning process with initial clusters helped

to improve the computational aspects for topic modeling,

while computing the scenes prior for RFT and tracking in-

dividuals with optical flow for LDA and CTM computation-

ally more expensive.

5.2 The Effectiveness of the Low-level Features

The low-level features (Section 3.1) were generated using

the KLT tracker followed by the LLC algorithm to repre-

sent the extracted trajectories with a set of visual codes as

low-level features. To demonstrate the effectiveness of this

step, we compared its performance on the CUHK dataset

with other models created in two approaches. In the first

approach, low-level motion features were extracted through

computing optical flow [8]. These motion features were then

quantized into video words using the LLC. The second ap-

proach employed the KLT tracker to generate the trajecto-

ries which were then quantized into video words using the

bag-of-words (BOW) algorithm [13]. We named the mod-

els in the first approach as GCTM-OP and GLDA-OP (OP

for ’optical flow’) and the models in the second approach as

GCTM-BOW and GLDA-BOW.

Completeness and correctness for GCTM, GLDA,

GCTM-OP, GLDA-OP, GCTM-BOW and GLDA-BOW are
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Fig. 7 Comparison of the model learning time against the number of topics. A 2.6 GHz machine was used for computation.
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(a) Correcteness accuracy
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Fig. 8 Comparing the Completeness and Correctness of trajectory

clustering using the presented models on the CUHK dataset with dif-

ferent low-level feature algorithms.

reported in Figure 8. As shown in the results, use of the KLT

followed by the LLC for low-level features achieved better

performances than the other methods. This was because the

KLT tracklet are more conservative and less likely to drift in

the crowd, while the optical flow was designed to detect lo-

cal changes, not for recovering long-range motion patterns.

Further, the neighbourhood graph in the LLC helped to han-

dle the overlapping motion patterns, since each point was

assigned to only one cluster. On the other hand, the BOW

method utilized the spatial distance between the points to

define the clusters. Replacing the LLC with the BOW had

the largest impact in the models performances because it

was the main step in creating the initial clusters used dur-

ing the learning process. Consequently, replacing the KLT

with optical flow followed by LLC achieved lower than the

presented models but better than replacing the LLC with the

BOW.

5.3 The Effectiveness of the Initial Clustering

To define the initial clusters (Section 3.2), the STG was gen-

erated to uncover the spatio-temporal relations between the

trajectories and then projected to lower-dimensional space

using the MDS [7]. To demonstrate the effectiveness of this

step, we compared its performance on the CUHK dataset

(the most challenging one) with other models created in

two approaches. In the first approach, the STG was replaced

in both the GCTM and the GLDA models with the spatial

shortest path graph [29] that only considered the spatial in-
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Fig. 9 Comparing the Completeness and Correctness of trajectory

clustering using the presented models on the CUHK dataset with dif-

ferent algorithms to define the initial clusters.

formation between the trajectories. While in the second ap-

proach, the manifold embedding was removed and the initial

clusters were defined using the k-means algorithm on the

STG. We named the models in the first approach as SPG-

CTM and SPG-LDA (SPG for ’shortest path graph’) and the

models in the second approach as GCTM-NM and GLDA-

NM (NM for ’no manifold’).

Completeness and correctness for GCTM, GLDA, SPG-

CTM, SPG-LDA, GCTM-NM and GLDA-NM are reported

in Figure 9. It is clear that the result of the STG followed

by the manifold embedding achieved better than the other

methods. It showed the effectiveness of combing the STG

with the manifold embedding techniques in utilizing the

spatio-temporal correlation between trajectories in the learn-

ing process. The lowest performances were achieved by the

models in the first approach with the shortest path graph.

6 Conclusions

In this paper we presented a graph-based topic models,

GLDA and GCTM, for learning and clustering crowd mo-

tion from trajectory segments. Using a spatio-temporal

graph and manifold-based clustering, the graph-based topic

models could effectively capture the relations between tra-

jectories, and learn discriminative motion patterns (topics)

from crowd scenes. In the experiment they were compared

with recent approaches, such as LDA, CTM and RFT, show-

ing that GLDA and GCTM were faster to learn and more

capable of modeling visual scenes for the trajectory cluster-
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ing task. In particular the results showed that learnt topics

by GLDA and GCTM were able to (1) separate different

pathways at a fine scale with good accuracy, and to (2) cap-

ture the global structures of the scenes in long ranges, thus

clearly interpreting crowd motion.
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