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The relationship between nonlinear large-scale dynamo action and the generation and
transport of magnetic helicity is investigated at moderate values of the magnetic Reynolds
number (Rm). The model consists of a helically forced, sheared flow in a cartesian
domain. The boundary conditions are periodic in the horizontal and impenetrable for the
vertical. The magnetic field is required to be vertical at the upper and lower boundary.
There are two consequences of this choice; one is that the magnetic helicity is not gauge
invariant, the second is that fluxes of magnetic helicity are allowed in and out of the
domain. We select the winding gauge, define all the contributions to the evolution of
the helicity in this gauge, and measure these contributions for various solutions of the
dynamo equations. We vary Rm and the shear strength, and find a rich landscape of
dynamo solutions including travelling waves, pulsating waves and non wavelike solutions.
We find that, at the Rm considered, the main contribution to the growth of magnetic
helicity comes from processes throughout the volume of the fluid and that boundary
terms respond by limiting the growth. We find that, in this magnetic Reynolds number
regime, helicity conservation is not a strong constraint on large-scale dynamo action. We
speculate on what may happen at higher Rm.

1. Introduction

Conservation of magnetic helicity and efficient dynamo action make uneasy bedfellows.
In an ideal fluid magnetic helicity, which is a measure of the topological complexity and
linkage of field lines (Berger & Field 1984; Moffatt & Dormy 2019), is conserved (Woltjer
1958). Dynamo action is the sustained generation of magnetic energy in a fluid with
finite diffusivity and often involves the generation of magnetic helicity. Clearly, when
the magnetic diffusivity is small but finite (i.e. at high magnetic Reynolds number Rm)
the two processes become difficult to reconcile. Because dynamo action is observed to
take place in nature at high Rm some reconciliation must be achievable, but the precise
form of this is the subject of intense discussion (Kulsrud & Anderson 1992; Vainshtein &
Cattaneo 1992; Gruzinov & Diamond 1994; Cattaneo & Hughes 1996; Field & Blackman
2002; Blackman & Field 2002; Shukurov et al. 2006; Sur et al. 2007).
In order to study the conservation of magnetic helicity, or lack thereof, one must define

helicity precisely. This can only be achieved when the domain enclosing the ideal plasma
is bounded by a flux surface (i.e. one for which the magnetic field is everywhere parallel
to the surface). On the other hand if the field ‘pokes through’ the surface, two things
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happen. First, the magnetic helicity is no longer gauge invariant, so some choice of gauge
is required, and second boundary (flux) terms appear that allow magnetic helicity to
be introduced into or removed from the domain (see e.g. Brandenburg & Subramanian
2005). This has led to the idea that one possible solution to the magnetic helicity problem
is to assume that dynamo action predominantly occurs in systems with magnetically open
boundaries where magnetic helicity can be readily expelled from (or injected into) the
domain (Blackman & Field 2000; Vishniac & Cho 2001; Subramanian & Brandenburg
2004; Shukurov et al. 2006; Ebrahimi & Bhattacharjee 2014; Ebrahimi & Blackman 2016).
Even though this idea is quite simple, its computational verification is not entirely

straightforward. There are a number of issues that must be addressed. One problem is
that in a magnetically open domain the magnetic helicity is not gauge invariant. Also any
computational experiment at high Rm is costly. Here the problem is particularly acute
because what one is mostly interested in is not merely dynamo action, but large-scale
dynamo action, which involves the generation of large-scale magnetic field rather than
merely the generation of magnetic energy. This problem therefore requires a separation
of scales so that it is possible to separate out the large scales from the small scales. This
implies that if the magnetic Reynolds number must be large on the small scales it will
be enormous on the large scales. It is a fact of life that, even with the computational
resources available today, one can have either large Rm or a separation of scales — but
not both in a fully nonlinear dynamo calculation. Therefore some compromise is required.
These issues were manifest in a recent work by Bodo et al. (2017), (hereinafter Paper

I). They considered dynamo action driven by the magnetorotational instability within
the shearing box approximation. That problem was chosen as it is known that it can lead
to the generation of substantial toroidal flux and therefore large-scale dynamo action can
be unambiguously identified. The requirement of large Rm was met — to some extent —
by adopting a numerical code with no explicit magnetic or viscous dissipation. This kind
of code is commonly used in astrophysical simulations; for given resources such codes can
achieve the largest dynamic range, as they are able to resolve gradients with few grid
points. The price is that , for these types of codes, there is no direct control of kinetic and
magnetic Reynolds numbers. In that work the gauge problem was addressed by adopting
a specific gauge — the winding gauge (Prior & Yeates 2014) that in their geometry
provides a natural interpretation of helicity in terms of the average pairwise winding of
the field lines. Bodo et al. (2017) found no clear relationship between large-scale dynamo
action and the flux of magnetic helicity in and out of the domain. They speculated that
this result followed from the fact that the system as a whole was nearly reflectionally
symmetric and that the MRI dynamo is essentially nonlinear. An essentially nonlinear
dynamo is one in which the dynamo velocity is itself driven or enabled by magnetic
forces (see e.g. Tobias et al. 2011). It is then more likely that correlations are maintained
between velocity and magnetic field fluctuations, which can potentially lead to large-scale
dynamo action at high Rm. An important property of these dynamos is that they have
no kinematic phase. In a more conventional situation, the so-called essentially kinematic

case, the dynamo velocity pre-exists independently of the magnetic field and it is only
modified when the field reaches finite amplitude and causes the saturation of the dynamo.
The general wisdom is that in these cases large-scale dynamo action requires a system
that is not reflectionally symmetric from the outset (cf. Ebrahimi & Blackman 2016).

In this paper we shall address these issues in a system that is not essentially nonlinear
and in which broken reflectional symmetry is externally imposed through the inclusion
of a helical forcing. To that end, we consider helically forced turbulence in the presence
of large scale shear in the simplest generalization of a periodic domain with magnetically
open boundary conditions. Furthermore, and unlike in Paper I, we want to have precise
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control of the diffusivities so that the Reynolds numbers can be meaningfully defined.
Unfortunately this limits our analysis to moderate magnetic Reynolds numbers; so we
regard the current paper as a starting point for a long-term study that will eventually
inform us of the behaviour of these systems at high Rm. As lack of reflectional symmetry
and open boundary conditions do not necessarily guarantee large-scale dynamo action,
we simply do not know in which parts of parameter space large scale dynamos can be
found. At such high Rm we would be limited to one or maybe two heroic calculations
and the risk of finding something uninformative is large.
The paper is organized as follows: in the next section we give a precise formulation of

the problem by describing its geometry, evolution equations, boundary conditions and
forcing functions. We also define the magnetic helicity and derive its evolution equation
subject to a specific choice of gauge–the winding gauge. With this choice all production
and transport terms for the magnetic helicity can be unambiguosly defined. In section
3 we describe and analyze the results of numerical simulations for different values of
the magnetic Reynolds number and vigour of the applied shear. We provide a working
definition of large-scale dynamo action in terms of either production of mean field (flux)
or phase coherence (dynamo waves). We identify dynamo solutions and distinguish those
in which a large scale magnetic field is generated. For these solutions, and in keeping with
our objectives, we compare the evolution of the magnetic helicity and the properties of
large-scale dynamo action. Concluding remarks and possible directions for future work
are included in section 4. Finally we note that hereinafter the term helicity by itself will
be taken to mean the magnetic helicity as defined in section 2. References to other types
of helicities will be made explicitly.

2. Formulation of the problem

As noted in the introduction, well-resolved dynamo calculations are difficult. We
therefore consider a highly idealised system that has all of the essential features; lack
of reflectional symmetry, magnetically open boundaries and the presence of shear, but
is also designed to be computationally efficient. To this end we consider a cartesian
domain in which two of the directions (the “horizontal” directions) are periodic and in
the third (“vertical”) direction the boundaries are picked so that they are magnetically
open. With this choice, fluxes (i.e. surface integral terms) have to be computed on only
the two horizontal surfaces. The flow is driven by two body forces; one chosen so that
it drives a horizontal shear flow. The second force drives a small-scale strongly helical
flow with good dynamo properties. A good candidate for driving this small-scale flow is
a generalisation of the Galloway-Proctor forcing (i.e. the forcing that at low Re drives
the Galloway-Proctor flow (Galloway & Proctor 1992)) — however this requires periodic
boundary conditions in all three directions. It is relatively straightforward to modify this
forcing so that it drives a helical flow that is compatible with impenetrable, stress-free
boundary conditions, see the appendix for further details.
We consider dynamo action in a cartesian domain (x, y, z) of size (2π, 2π, π). We solve

the non-dimensional induction equation

∂B

∂t
= ∇× (u×B)− η ∇× J, (2.1)

together with the incompressible non-dimensional Navier-Stokes equation

∂u

∂t
+ u · ∇u = −∇p+ J×B+ ν∇2u+ f , (2.2)
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and the solenoidal conditions

∇ · u = ∇ ·B = 0, (2.3)

for the velocity u = (u, v, w) and magnetic field B = (Bx, By, Bz). Here η is the non-
dimensional magnetic diffusivity, ν the non-dimensional viscosity, the current density
J = ∇×B, and f is a body force. The nondimensionalization is effected by choosing the
vertical size of the domain as π times the unit of length, the r.m.s. velocity as the unit of
velocity and by measuring the magnetic field intensity in units of the equivalent Alfvén
speed. We solve equations (2.1–2.3) subject to periodic boundary conditions in the two
horizontal directions and impermeable, stress-free boundary conditions on the velocity in
the vertical z direction. The magnetic boundary conditions for the field B = (Bx, By, Bz)
are ‘vertical’ boundary conditions where the magnetic field is constrained to be vertical
on the upper and lower boundaries. Mathematically these translate to

∂u

∂z
=
∂v

∂z
= w = 0, (2.4)

together with

Bx = By = 0. (2.5)

Notice that these boundary conditions are compatible with a sine/cosine expansion of
all the variables in z, which allows the solution by Fourier pseudo-spectral methods.
The forcing f is given by

f = G(x, z, t) + S(cos z, 0, 0). (2.6)

Here the small-scale forcingG is a helical vector function that satisfies the same boundary
conditions as the velocity. Its spatial structure is given by the superposition of strongly
helical cellular vector fields and is best described in terms of its Fourier representation
— see the Appendix. We note here that we choose a typical scale separation between
the cellular forcing and the domain of about 6 to 8; i.e. the small-scale forcing is a
superposition of cellular fields with horizontal wavenumber, k, between 6 and 8.

2.1. Gauges, helicity and fluxes

The objective of this paper is to monitor the evolution of the magnetic helicity and to
relate it to episodes of dynamo activity. For this we require a reasonable definition of the
magnetic helicity. We begin by introducing the vector potential A by setting

B = ∇×A. (2.7)

Clearly A is not unique and the gauge transformation

A → A+∇ψ (2.8)

leaves the magnetic field B unchanged. Uniqueness can be restored by introducing an
extra gauge condition on A so that ψ can be defined uniquely. In this paper we chose
the winding gauge that requires the vector potential to satisfy

∇H ·A = 0, where ∇H ≡ (∂x, ∂y, 0). (2.9)

Hereinafter a subscript “H” will denote a vector quantity whose third component (z-
direction) vanishes identically. As shown by Prior & Yeates (2014), for a cylindrical
domain with sides that are flux surfaces and with magnetically open top and bottom
surfaces, the helicity in the winding gauge gives the average pairwise winding of field
lines.
We now proceed by defining all relevant quantities in this gauge. The evolution equation
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for the vector potential can be obtained by “uncurling” the induction equation (2.1) to
give

∂tA−∇Φ = (u×B)− η J, (2.10)

where Φ is related to the choice of gauge (Φ = −∂tψ).
To compute A, we note that

J = ∇×∇×A = −∇2A+∇(∇ ·A) = −∇2A+∇
( ∂

∂z
Az

)

, (2.11)

because of our choice of gauge condition. In component form (2.11) becomes

JH −∇H

( ∂

∂z
Az

)

= −∇2AH , and Jz = −∇2
HAz. (2.12)

Clearly the z-component can be solved first to give Az, which in turn can be used to
solve for the two horizontal components. Because of our boundary conditions: periodic
in the horizontal and “vertical” in z, A as defined by (2.11), is still arbitrary up to a
transformation of the form

A → A+A0, with A0 = (ax(t), ay(t), 0) . (2.13)

We shall return to this point presently. The scalar function Φ can likewise be computed
by taking the horizontal divergence of (2.10) and using the winding gauge condition to
give

∇2
HΦ

′ = −∇H · (u×B) with Φ = Φ′ + η
∂

∂z
Az. (2.14)

Again, because of the periodic boundary conditions Φ is arbitrary up to transformations
of the form

Φ→ Φ+ Ψ, where Ψ = CH(t) · x. (2.15)

Clearly the functionsA0(t) and Ψ(t) arise because with our choice of boundary conditions
the horizontal Laplacian has a non-trivial null space. Consequently, in our geometry, the
winding gauge condition alone is not sufficient to specify the vector potential uniquely.
To remove the remaining arbitrariness we note that in equation (2.10), A0 and Ψ only
occur in the combination Ȧ0 − ∇Ψ , so that the time dependence can be assigned to
either quantity. Taking this into account we choose A0 ≡ 0. This choice has the desirable
property that it assigns zero helicity to a purely unidirectional horizontal field in a static
medium. Then, since 〈J〉 = 〈A〉 = 0, Ψ is uniquely determined by the volume average of
(2.10) which gives

Ψ = −〈u×B〉H · x, with 〈Φ〉 = ∇〈Φ〉 = 0, (2.16)

where the angle brackets denote a volume average.
We now define the magnetic helicity H by

H =

∫

V

A ·B dV, (2.17)

where the integral is over the entire domain. By use of the evolution equations for A

and B above, we can readily obtain an evolution equation for the helicity in the winding
gauge, this reads:

dH

dt
=WH + FI +WD + FD + FG, (2.18)

where

WH = −V0〈u×B〉 · 〈B〉H , (2.19)
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FI =

∫

S

(B · n)[A · u+ Φ′] dS, (2.20)

WD = −2 ηV〈B · J〉, (2.21)

FD = η

∫

S

(A× J) · n dS, (2.22)

and

FG = η

∫

S

(B · n)
∂

∂z
Az dS. (2.23)

Here V0 is the volume of the whole domain, S is the union of the upper and lower
boundaries and n is the outward unit normal. Clearly, if η = 0 and the domain is simply
connected and bounded by a comoving flux surface then all the terms on the R.H.S. of
(2.18) vanish identically and the helicity is both constant and gauge invariant. In this
paper however, η > 0, the domain is not simply connected, nor is it bounded by a flux
surface, so the helicity both depends on the choice of gauge and changes with time.
The first term on the R.H.S. evolves the linkage between the mean horizontal field and

mean e.m.f. 〈u ×B〉; its presence is a consequence of our periodic boundary conditions
(plus shear) and, for instance, would be absent in the geometry considered by Prior &
Yeates (2014). The second term (2.20) depends explicitly on the gauge function and
represents an ideal flux of helicity through the open top and bottom boundaries; it
would vanish if these were flux surfaces. The third term (2.21) measures the rate of
helicity generation due to diffusive processes in the interior (reconnection). The fourth
is a diffusive flux of helicity through the open boundaries; it would be non-zero even if
these boundaries were flux-surfaces. Finally, the last term (2.23) is the diffusive flux of
helicity through the vertical boundary necessary to enforce our gauge condition.

One of the convenient features of expression (2.18) is that in numerical simulations
both its L.H.S. and R.H.S. can be calculated independently. Their equality increases
one’s confidence that all the terms that contribute to the rate of change of the helicity
are accounted for, and that the simulation itself cannot be completely off. Mercifully,
that is indeed the case in our studies.

3. Results

We examine the evolution of the dynamo system using the following procedure. We
first integrate the hydrodynamic equations until a statistically steady state is reached.
As we are using a low Reynolds number, this state is reached rapidy (within an order one
timescale). These states have the following hydrodynamic properties. At low Reynolds
numbers (large values of ν) the resulting non-magnetic flow is quasi-cellular in x and z,
is independent of y and has a characteristic scale in x and z of 2π/k. Such 2 1/2D flows
have been utilised in a number of dynamo studies (see e.g. Roberts 1972; Galloway &
Proctor 1992; Tobias & Cattaneo 2008). The strength of the forcing is such that for a
given Re the resulting unmagnetised unsheared flow has approximately unit amplitude.
That being the case the Reynolds numbers on the scale of the cellular flow are of the order
of Rm ∼ 1/ηk and Re ∼ 1/νk respectively. The forcing may also drive a unidirectional
shear (U(z), 0, 0) at low values of Re, with an amplitude controlled by S. This flow
combination has been used successfully in periodic domains to examine the kinematic
growth of large-scale magnetic field at extremely high magnetic Reynolds number (of
O(105)) (Tobias & Cattaneo 2013, 2015; Nigro et al. 2017) and the nonlinear saturation
of such dynamos (albeit at more moderate magnetic Reynolds numbers of O(102)) in
a triply periodic domain (Pongkitiwanichakul et al. 2016). To the saturated stationary
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hydrodynamic state we add a small random seed magnetic field, which is then amplified
by kinematic dynamo action and saturates in a statistically steady state that depends
on the value of the shear and η selected.
We consider in detail 9 cases in which we vary the shear by setting S = 0, 1, 5 and the

magnetic diffusivity η = η0 ·(1, 1/2, 1/4), with η0 = 0.0125 – this corresponds to magnetic
Reynolds numbers Rm = 10, 20, 40. In all cases we fix the resolution at (nx, ny, nz) =
(256, 256, 257), which is large enough to resolve the dissipative structures in the magnetic
field. The viscosity is kept constant so that the magnetic Prandtl number takes the
corresponding values of ν/η = 200 · (1, 2, 4). The reason for this choice is to ensure that
for all the cases the magnetic Reynolds number is large enough to trigger dynamo action
while at the same time the Reynolds number Re remains small. For higher values of
Re the basic hydrodynamic flow becomes unstable, and eventually turbulent and it is
difficult to control the kinetic helicity or the amplitude of the shear — this regime forms
the basis for a subsequent paper. In the low Re regime studied here, with high Pm, when
the dynamo operates eventually the magnetic energy typically greatly exceeds the kinetic
energy (Brummell et al. 2001).
All cases considered display a well defined kinematic phase, which is typically short

lived, in which the magnetic energy increase exponentially. This phase is quickly followed
by a nonlinear readjustment of the flow and field and the establishment of one of possibly
many statistically stationary states. TIn general, the nonlinear states are very different
from the kinematic ones. In some cases, in the nonlinear regime, the dynamo swaps
between different states. Depending on the values of the magnetic diffusivity η and shear
parameter S we observe a variety of different nonlinear dynamo behaviours. Broadly
speaking we can distinguish between two different classes, those in which there is evidence
for propagating large-scale structures, such as dynamo waves, and those in which no
propagation is apparent. In general propagating behaviour is observed, for the same
value of η, at higher values of the shear parameter S.

3.1. Dynamo solutions

We illustrate some of the dynamo features of four representative solutions in Figures 1-
4, before examining in detail the role of magnetic helicity in section 3.2. These show the
time histories of the kinetic and magnetic energies, and, in order to reveal possible large-
scale organization, the time histories of the volume averaged values of Bx and By. In
addition, we give Hovmoller plots of Bx volume averaged in x and z, and x and y, which
are designed to show the form of the large-scale (averaged structures) in the toroidal
field.

The first case (Figure 1) has S = 5 and high η (low Rm = 10). The magnetic energy
settles down into a statistically steady state with small variations about a well-defined
mean value. The large-scale structure of the kinematic solution consists of a pair of y-
propagating dynamo waves (ky = 2), as shown in Figure 1(b). By t = 25 the kinematic
state is seamlessly replaced by the nonlinear solution which also consists of a pair of
nonlinear y propagating waves, albeit, with much lower phase speed; this can be seen by
the change in slope of the bands in the Hovmoller plot. In this solution no mean field is
generated (〈B〉 = 0 as shown in Figure 1(c)). We shall return to the issue of the large
change in frequency and the lack of mean field presently. Here we note that this is the
only case we have found in which the dominant y-wavenumber remains unchanged as the
solution becomes nonlinear.
The second case (Figure 2) has strong shear (S = 5) and moderate η (Rm = 20). Again

the kinematic solution consists of a pair of y-propagating dynamo waves, however, this
solution is quickly disrupted and replaced by a nonlinear state consisting of a travelling,
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pulsating wave with ky = 1, i.e. with a larger scale than the kinematic solution. Unlike in
the previous case, here the phase speed actually increases slightly as the solution becomes
nonlinear, presumably owing to the change in wavenumber. The pulsations are most
apparent in the magnetic energy time-traces (Figure 2(a)) as well as in the x−y averaged
Hovmoller plots in Figure 2(d). The period of the pulsations is not directly related to
the phase speed of the wave. The pulsations also correspond to a vigorous production of
mean (over the whole domain) By with no systematic corresponding production of Bx,
we shall return to this in section 3.2.
The third case has weak shear (S = 1) and moderate η – Rm = 20 – (Figure 3). The

kinematic solution consists of a non-propagating (or very slowly propagating) structure
with ky = 2. Again this is quickly disrupted and the system transitions to a series of
nonlinear states with ky = 1. Both non-propagating (t < 800) and propagating solutions
(t > 800) are apparent in the Hovmoller plot of Figure 3(b). Interestingly, the propagation
direction reverses around t = 1100. Again, we note the pronounced production of mean
By with no corresponding production of mean Bx (as shown in Figure 3(c)).
Finally, the fourth case has (weak shear) S = 1 and low η (high Rm = 40) and is shown

in Figure 4. Here the overall solution is similar to that of the previous case but with no
episodes of propagation. As before, mean By is readily produced with the occasional
sign change, as shown in Figure 4(c). We also note the following points from the cases
not shown here: the solutions with no shear (i.e. S = 0) resemble this last case, while
decreasing η (increasing Rm) for high shear S = 5, results in a propagating, pulsating
wave, much as in the case with moderate η. This wave at higher Rm has a slightly lower
phase speed and longer pulsation period.

3.2. Large-scale dynamo action: magnetic energy and helicity

Our main motivation is to examine the relationship between large-scale dynamo action
and the creation and transport of magnetic helicity. This requires the clarification of what
is meant by large-scale dynamo action so that such episodes can be identified. We note
that, with our geometry and boundary conditions, 〈Bz〉 is conserved but 〈By〉 and 〈Bx〉
are not. Thus, for instance we could identify “large-scale” dynamo action exclusively
with the net generation of magnetic flux in the x or y direction. This however may be
too restrictive. There could be large-scale structures that should still be identified as
evidence of large-scale dynamo action that do not give rise to substantial amounts of net
flux, because, for instance, they are anti-symmetric with respect to the midplane. (We
recall that large-scale dynamo action is universally acknowledged to be taking place in
the Sun, though the net toroidal flux is antisymmetric about the equator.) Thus, here,
we identify a large-scale dynamo with either the substantial generation of horizontal flux,
or the presence of well defined propagating structures (i.e. those with spatio-temporal
phase coherence (see Nigro et al. 2017)). For the purpose of this discussion, a substantial
amount of flux is one that substantially exceeds that which is compatible with a strong
suppression of the α-effect (Vainshtein & Cattaneo 1992) With this definition in mind,
we examine three representative cases, namely S = 1, low η (high Rm = 40), S = 5 high
η (low Rm = 10 and S = 5 moderate η (Rm = 20).
Figure 5 shows the time history of the total helicity as well as the time histories of all of

the terms on the R.H.S. of equation (2.18) for the first case with S = 1, low η (high Rm =
40). The total helicity for this case is negative and fluctuating, with three prominent peaks
that roughly correspond to the three peaks in the magnetic energy. We note the following
general features; the term that mostly drives the growth of helicity is the volumetric
diffusive term WD. The other two diffusive terms, both surface fluxes, only contribute
after the volumetric terms has caused a substantial growth of (negative) helicity. The
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Figure 1. Top left panel: Time histories of magnetic (black curve) and kinetic (red curve)
energies; Bottom left panel: Time histories of the volume averaged values of Bx (black curve) and
By (red curve); Top right panel: Hovmoller plot of 〈Bx〉xz(t, y); Bottom right panel: Hovmoller
plot of 〈Bx〉xy(t, z). The case is with S = 5 and low Rm = 10.

same is true for the ideal terms, both the volumetric and surface flux. A stationary state
is reached because the helicity production by the WD term is approximately balanced by
the sum of all the other terms. It is noteworthy that the the three peaks in the helicity
correspond to the epochs when both components of the mean horizontal field are small
and therefore there is no contribution to the helicity destruction by the volumetric terms
WH .
The next case with S = 5 and high η (Rm = 10) yields y-propagating dynamo waves.

As we mentioned above, the phase velocity decreases sharply in the transition between
the kinematic and the nonlinear phases and no mean field is generated. Both of these
features are related to spectral symmetries of the solution as follows. Let us begin by
noting that there is a subset of the possible solutions in which the velocity’s Fourier
components have y-wavenumbers of the form ky = 4(j − 1), j ∈ Z

+ and the magnetic
field’s components have wavenumbers of the form ky = 4(j − 1/2), j ∈ Z

+. Clearly
the kinematic solutions in which the velocity is entirely y-independent and the magnetic
field consists of a single ”eigenmode” with ky = 2 are all contained in this subset. These
symmetries are preserved because of the nature of the nonlinearities of the induction and
momentum equations. For large values of η this invariant subset is stable, so that inital
conditons in the subset remain in the subset. Thus there is no mean field generated; that
would require the interaction between Fourier components of the velocity and magnetic
field with the same wavenumbers. Moreover, in this case, the projection of the Lorentz
force onto the ky = 0 subspace is such that it can efficiently reduce the shear. This
leads to a corresponding reduction of the phase velocity of the dynamo waves, since the
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Figure 2. Top left panel: Time histories of magnetic (black curve) and kinetic (red curve)
energies; Bottom left panel: Time histories of the volume averaged values of Bx (black curve)
and By (red curve). The energy in the mean magnetic field is approximately 5% of the total
magnetic energy; Top right panel: Hovmoller plot of 〈Bx〉xz(t, y); Bottom right panel: Hovmoller
plot of 〈Bx〉xy(t, z). The case is with S = 5 and moderate Rm = 20.

frequency of the dynamo waves is controlled inter alia by the strength of the shear. From
figure 6 we see that, as for the previous case, the total helicity is negative, and its growth
is driven by WD, and eventually limited by the growth of the flux terms. We note that
in cases like this one, in which the mean horizontal fields vanish identically, WH = 0.
Moreover, the diffusive flux terms FD and FG are identical. Even though it may not be
obvious from their definitions it is nevertheless true. In the panel on the lower left in
Figure 6(c) both curves are plotted but only one is visible because they perfectly lie on
top of each other.

Finally, we consider the case with S = 5 and moderate η – Rm = 20 – (see Fig. 7). This
case consists of pulsating travelling dynamo waves. Unlike in the previous case, here the
invariant manifold is now unstable and the kinematic solution is completely destroyed
in the transition to the nonlinear phase. It is replaced by a pulsating travelling wave
with ky = 1. Once the solution spreads outside the invariant manifold, it loses the ability
to reduce the shear effectively and the resulting nonlinear phase speed remains close to
the kinematic one. Pulsations are then superposed on these high speed travelling waves.
Away from a pulsation, the magnetic energy is small and lower than the kinetic energy,
and the total magnetic helicity is close to zero. During a pulsation the magnetic energy
first rises quickly to a value several times the kinetic energy and then decreases again.
There is a corresponding cycle in the growth of (negative) total magnetic helicity. During
the pulsation the shear is slightly reduced with a corresponding reduction in the overall
kinetic energy. Along with the increase in magnetic energy there is also a corresponding
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Figure 3. Top left panel: Time histories of magnetic (black curve) and kinetic (red curve)
energies; Bottom left panel: Time histories of the volume averaged values of Bx (black curve)
and By (red curve). The energy in the mean magnetic field is approximately 3% of the total
magnetic energy; Top right panel: Hovmoller plot of 〈Bx〉xz(t, y); Bottom right panel: Hovmoller
plot of 〈Bx〉xy(t, z). The case is with S = 1 and moderate Rm = 20.

increase in the amplitude of a symmetric (with respect to the midplane) 〈By〉xy, as shown
in Figure 8, and anti-symmetric 〈Bx〉xy as illustrated in Figure 2 (bottom right).

In order better to understand the terms that lead to the growth and eventual decay of
the helicity it is useful to look in more details at a single pulsation. To this end we plot
in Figure 9 the time histories of the helicity, WD, and the sum of the rest of the terms
in (2.18) over the pulse centered around t = 960. As before, the increase in (negative)
helicity is driven by the the sharp rise in WD. The subsequent decrease in helicity is
caused by the rise in all the other terms, both volumetric and fluxes, and by the abrupt
switching off of the production term shortly before the helicity reaches its peak (t ∼ 950).
We note that the abrupt decrease inWD is not driven by a corresponding abrupt decrease
in either the current density or the magnetic field. These are both still near their peak
values when the switching off takes place. Rather, the sudden decrease is brought about
by a change in the alignment between fluctuations in J and B. Figure 10 shows the
average value of the cosine of the angle between J and B as a function of |J||B| at four
different times: at the beginning of the pulse, just before the peak in WD, just after the
peak and after WD has decreased substantially. Keeping in mind that a large part of the
contribution to WD comes from the small to moderate values of |J| and |B|, we see even
though overall the alignment is small, the rapid rise and rapid fall in WD is driven by
first a slight increase in alignment followed by a slight increase in anti-alignment of these
small to moderate values.
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Figure 4. Top left panel: Time histories of magnetic (black curve) and kinetic (red curve)
energies; Bottom left panel: Time histories of the volume averaged values of Bx (black curve)
and By (red curve). The energy in the mean magnetic field is approximately 2% of the total
magnetic energy; Top right panel: Hovmoller plot of 〈Bx〉xz(t, y); Bottom right panel: Hovmoller
plot of 〈Bx〉xy(t, z). The case is with S = 1 and high Rm = 40.

4. Conclusions

In this paper we have examined the effect of helicity flux on the generation of large-
scale magnetic field for a model system at low Reynolds number and varying (low to
moderate) magnetic Reynolds number. This approach has the advantage that, as Re is
small, the flow is closely controlled by the imposed forcing. In particular, this means that
the amount of helicity and the Lagrangian properties of the hydrodynamic flow can be
selected relatively easily. However, the disadvantages include the fact that the flow is
not really turbulent (although it may be chaotic) and so the dynamo dynamics may be
constrained. This is not as limiting as one might expect. When the suppression of the
turbulent alpha effect is discussed in the literature, the word turbulent refers to a lack
of dependence on the diffusivity and not necessarily to a driving by a turbulent flow —
a chaotic one will suffice. In this setup, i.e. at low Re, a very strong field is produced
with magnetic energy much larger than the kinetic energy (Brummell et al. 2001) and so
large changes in the magnetic field are required to drive modest changes in the velocity.
For this reason it is possible for the system to remain trapped in an invariant subspace
(for example our high shear low Rm case), with certain symmetry properties, where the
dynamics may not be representative of more turbulent flows. Furthermore our choice of
parameters mean that we are in the high Pm regime.
For a dynamo system, conservation of helicity is not enforced. Indeed, breaking of

helicity conservation is often crucial to the successful operation of the dynamo. For our
system, a number of processes contribute to the evolution of magnetic helicity. Some
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Figure 5. Top left panel: Time history of the helicity; Top right panel: Time histories of the
ideal terms FI (orange curve) and WH (black curve); Bottom left panel: Time histories of the
diffusive terms WD (green curve), FD (red curve) and FG (blue curve); Bottom right panel:
Time histories of the sum of all ideal terms (red curve) and of all diffusive terms (green curve).
The case is with S = 1 and high Rm = 40.

involve diffusive processes (either volume terms or surface fluxes) and some remain even
in the absence of diffusive terms. We find that the diffusive volume term (WD) always
leads to the generation of helicity, whilst the rest of the terms, whether diffusive or ideal,
(almost) always remove it. We find that two types of systematic field configurations may
be generated, propagating dynamo waves and non-propagating mean fields. Our non-
propagating cases have very little energy in the mean field components; open boundaries
do not really help here.
An important result is that, for the case of strong shear we have investigated the

instantaneous diffusive volume term proportional to the current helicity decreases as Rm
is increased. However, because the system undergoes oscillations, the timescale over which
it acts is longer and so the integrated diffusive term remains similar. This is consistent
with the diffusive term for magnetic helicity doing what is required to generate a large-
scale field. However the timescale needed for this term to operate effectively appears to
scale with Rm. Hence it may take a diffusive timescale for the mean field to emerge if
this is the only process of importance.
Clearly it will be necessary to extend these calculations to a much higher Rm to

see which terms are asymptotically dominant. Previous calculations for dynamos where
magnetic helicity is allowed to escape or enter the domain have produced results that
are consistent with ours. These are interesting, though inconclusive. Dynamos in open
domains do seem to produce fields with different characteristics to those in closed
domains. For example, Hubbard & Brandenburg (2010) found that, both the diffusive
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Figure 6. Top left panel: Time history of the helicity; Top right panel: Time histories of the
ideal terms FI (orange curve) and WH (black curve); Bottom left panel: Time histories of the
diffusive terms WD (green curve), FD (red curve) and FG (blue curve); Bottom right panel:
Time histories of the sum of all ideal terms (red curve) and of all diffusive terms (green curve).
The case is with S = 5 and low Rm = 10.

term and a helicity flux contribution to irreversibility decrease with increasing Rm.
Linear extrapolation of their results indicates that the boundary term would dominate
at sufficiently high Rm. Similar results have also been found by Del Sordo et al. (2013).
In all cases examined, however, the ratio of mean field to fluctuating field continues to
decrease with Rm (Brandenburg 2018). For these models, as for ours, it is of significant
interest to calculate the dynamics at higher Rm.
We conclude by stressing that, at least for these low and moderate values of Rm, the

large-scale dynamo does not seem to be constrained by helicity conservation, in the sense
that there are plenty of terms that can effectively generate and remove helicity. Before
embarking on extremely expensive calculations at high Rm it may be appropriate to
speculate on what to expect from such calculations. From the point of view of generation
of large-scale flux the key property is that the turbulence should remain irreversible. In
so far as irreversibility can be maintained the dynamo can continue to generate large-
scale field. In a magnetised fluid irreversibility is associated either with reconnection,
i.e. with the ability of the magnetic field to effectively change its topology, or with
a flow of information out of the boundary. In principle, if the magnetofluid loses the
ability to reconnect for dynamical reasons, it may still be able to maintain irreversibility
through boundary terms. However, just because information could be lost through the
boundary does not mean that it will. In this case open boundary conditions are a
necessary though not sufficient condition for large-scale dynamo action. If, on the other
hand, efficient reconnection can be maintained then open boundary conditions are not
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Figure 7. Top left panel: Time history of the helicity; Top right panel: Time histories of the
ideal terms FI (orange curve) and WH (black curve); Bottom left panel: Time histories of the
diffusive terms WD (green curve), FD (red curve) and FG (blue curve); Bottom right panel:
Time histories of the sum of all ideal terms (red curve) and of all diffusive terms (green curve).
The case is with S = 5 and moderate Rm = 20.

Figure 8. Hovmoller plot of 〈By〉xy(t, z) for case S = 5 moderate Rm = 20

even necessary. Either way, the basic question is this: in a closed system, is it magnetic
helicity conservation that drives the system towards reversibility by, say, removing the
reconnection? Or is the conservation of helicity simply a manifestation of the loss of
reconnection? We leave the reader with this thought. Magnetic helicity conservation in
an ideal fluid follows from the induction equation alone and, as such, is a kinematic and
not dynamical property. Loss of irreversibility is most likely associated with the dynamics
and so we lean towards the latter possibility and not the former — but we keep an open
mind.



16 F. Cattaneo, G. Bodo, S. M. Tobias

Figure 9. Plot of the helicity (black curve), of WD (green curve) and of the sum of all the
other terms on the R.H.S. of Eq. 2.18 (red curve) as a function of time, for the pulse centered
at t = 960 The case is with S = 5 moderate Rm = 20.

Figure 10. Average value of the cosine of the angle between J and B as a function of |J||B| at
four different times during the pulse centered at t = 960, for the case with S = 5 and moderate
Rm = 20.
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Appendix

In this appendix we describe how the vector function G(x, z, t) used in the forcing is
constructed. G(x, z, t) is the superposition of individual cellular forcings, i.e.

G(x, z, t) =
∑

k
66k68

gk(x, z, t) (4.1)

where k = |k| and each gk(x, z, t) is a cellular vector function on a scale 2π/k. Each
term in the sum, gk(x, z, t), is then computed from a single scalar function χk so that

gk · x̂ = −∂χk

∂z
and gk · ẑ =

∂χk

∂x
. To be clear what these functions look like we give the

example for k = (5, 0, 6) then χk has this form:

χk = A(
√
61) exp i(θk(t) + 5x) sin 6z. (4.2)

Clearly if χk in phase space is given by a sine representation in z then gk · x̂ and gk · ẑ
satisfy the boundary conditions. With this choice, because χk is independent of y, gk is
automatically solenoidal. The construction of gk · ŷ requires a little care. In general, it is
important to have a strongly helical forcing as this will (hopefully) engender a strongly
helical flow. Ideally, that can be achieved by selecting gk · ŷ ∼ kχk, where k is related to
the wavenumber. However, this particular choice gives a gk · ŷ that does not satisfy the
same boundary condition as v. This can be fixed by the following procedure. First the
function χk is transformed into configuration space using a sine transform. Then it is
transformed back into phase space by a cosine transform. This generates a new function
χ̃k that looks like the original function χk except near the boundaries in z where the
derivative vanishes. In general, the cosine representation of a sine function contains a lot
of high spatial frequencies which are mostly required to describe the very thin boundary
layer over which the derivative goes to zero. For our purposes, we don’t really require
a thin boundary layer, and so we regularise χ̃k by only keeping the lowest 1/3 of the
wavenumbers. With this recipe the resulting forcing satisfies the boundary conditions
and is close to being maximally helical.
In general we would like each gk(t) to be a random function of time with a correlation

time that can be adjusted to taste. This is achieved by the following method. The scalar
function χk is defined in phase space by a series of complex Fourier coefficients. The
amplitude of these coefficients is only a function of k, while the phases are randomised
by adding at every timestep a small phase shift, δ(k), taken from a uniform distribution
with |δ(k)| 6 δmax(k) and δmax(k) is chosen in such a way that in N2 steps the phase
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will on average change by a fraction c of 2π. Here N(k) is the number of timesteps in a
turnover time at scale 1/k. Clearly c = 0 corresponds to a steady flow, whilst c ∼ 1 gives
a forcing whose correlation time is similar to the turnover time.
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