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Abstract: Background: The parameter uncertainty in the six-dimensional health state short form

(SF-6D) value sets is commonly ignored. There are two sources of parameter uncertainty: uncertainty

around the estimated regression coefficients and uncertainty around the model’s specification. This

study explores these two sources of parameter uncertainty in the value sets using probabilistic

sensitivity analysis (PSA) and a Bayesian approach. Methods: We used data from the original

UK/SF-6D valuation study to evaluate the extent of parameter uncertainty in the value set. First, we

re-estimated the Brazier model to replicate the published estimated coefficients. Second, we estimated

standard errors around the predicted utility of each SF-6D state to assess the impact of parameter

uncertainty on these estimated utilities. Third, we used Monte Carlo simulation technique to account

for the uncertainty on these estimates. Finally, we used a Bayesian approach to quantifying parameter

uncertainty in the value sets. The extent of parameter uncertainty in SF-6D value sets was assessed

using data from the Hong Kong valuation study. Results: Including parameter uncertainty results

in wider confidence/credible intervals and improved coverage probability using both approaches.

Using PSA, the mean 95% confidence intervals widths for the mean utilities were 0.1394 (range:

0.0565–0.2239) and 0.0989 (0.0048–0.1252) with and without parameter uncertainty whilst, using

the Bayesian approach, this was 0.1478 (0.053–0.1665). Upon evaluating the impact of parameter

uncertainty on estimates of a population’s mean utility, the true standard error was underestimated

by 79.1% (PSA) and 86.15% (Bayesian) when parameter uncertainty was ignored. Conclusions:

Parameter uncertainty around the SF-6D value set has a large impact on the predicted utilities

and estimated confidence intervals. This uncertainty should be accounted for when using SF-6D

utilities in economic evaluations. Ignoring this additional information could impact misleadingly on

policy decisions.

Keywords: parameter uncertainty; health utility; Bayesian methods; SF-6D

1. Introduction

The need to appropriately quantify the health benefits produced by competing healthcare strategies

in terms of quality-adjusted life years (QALYs) has become an increasingly important consideration

for decision makers tasked with allocating healthcare funding. In the National Health Service (NHS)

for England and Wales, the National Institute for Health and Care Excellence (NICE) considers the

use of QALYs as a key requirement for any health technology submission undergoing the Institute’s
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appraisal process [1]. The QALY is a composite outcome that combines mortality and morbidity effects

into a single numeraire. The most recent NICE guide to the methods of technology appraisal stipulates

that morbidity should be measured using a preference-based measure of health-related quality of life

(HRQoL), and currently recommends using the EuroQol five-dimensional (EQ-5D-3L) [2].

Heath state values deriving the QALYs incorporated in cost-effectiveness analysis (CEA) are

obtained from a large variety of preference-based measures, including the EQ-5D questionnaire

three-level and five-level versions [2], health utilities index 2 (HUI2) and 3 [3,4], 15D [5,6], Assessment

of Quality of Life [7], Quality of Well-Being scale (QWB) Q5 [8] and the six-dimensional health state

short form (derived from a short-form 36 health survey) (SF-6D) [9].

Measures of HRQoL such as the EQ-5D-3L, SF-6D, and HUI2 consist of a series of statements

asking respondents to value their own health, for example the SF-6D consists of six statements, with

between four and six response choices, giving a total of 18,000 health states. It is not feasible to value

all possible health states, hence only a selection of these are typically measured. These states will have

been selected based on designs, such as orthogonality, to ensure that those selected are representative

of the full set of possible health states; they are also selected so that utility preference weights for all

states can be estimated using statistical models.

The statistical models fitted to health states (N3 model for EQ-5D-3L [10], SF-6D [9] and HUI2 [11])

will consist of one or more parameter estimates (known as preference weights) and, for each estimate,

there will be a measure of uncertainty—for example, a standard error. When the preference weights

(point estimates of the model parameters) are applied to other datasets to estimate utility values, which

are then used to estimate QALYs, this measure of uncertainty is typically ignored. Although there is no

clear reason for not including this information in tariffs associated with preference-based instruments,

it is possible that at the time that methods for devising tariffs were developed, the methodological

and computational challenges were insurmountable. Thus, economic evaluations that derive cost per

QALY estimates from these models do not present the full uncertainty around the utility estimate, as

noted by Ara and Wailoo [12].

The two main sources of parameter uncertainties were brought to light by Gray et al. [13], who

distinguished between parameter uncertainty around the coefficients and model uncertainty around

the model’s specifications. In fact, they deduced that parameter uncertainty around the coefficients is

of little importance in the estimated confidence intervals for incremental QALY, and thus it could be

ignored. However, Pullenayegum et al. [14] concluded that model uncertainty around the model’s

specifications constitutes a major source of uncertainty in value sets, hence it is cardinal to the analysis.

Probability distributions are commonly used to reflect uncertainty in the mean parameter estimates

used to populate a cost-effectiveness model, and their impact on the study results is typically explored

by means of probabilistic sensitivity analysis (PSA). This approach assigns appropriate distributions to

model parameters and use simulation methods to capture uncertainty, in a similar way to those used

by Young and Thompson [15] to capture model parameter uncertainty in published prognostic models.

However, this approach only captures the sampling uncertainty that arises as a result of the study

population completing a health-related quality of life instrument. Sampling uncertainty is inherent in

the values assigned to individual health states arising from direct valuation methods, yet this is not

captured under the current practice of ascribing point estimates to health state values. Additionally,

there is no estimate of variance in those health state values currently derived through interpolation

methods based on the sample of directly valued states. Alternatively, Pullenayegum et al. [14]

developed a Bayesian approach to quantifying parameter uncertainty in the value sets, which accounts

for parameter uncertainty around the estimated regression coefficients, and illustrated its impact on

studies that use the EQ-5D-3L to measure health utility.

The aim of this paper is to illustrate the extent of parameter uncertainty through applying PSA

and the Bayesian methods to explore the two sources of uncertainties in value sets when an HRQoL

measure is used to compute the population’s mean utility. First, we will demonstrate that the parameter

uncertainty in the Brazier model [9] creates discrepancies between the predicted and the observed
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mean utilities and serves as a guide for the PSA to propagate parameter uncertainty. Then, parameter

uncertainty, accounting for both uncertainty around the coefficient (estimated in the Brazier model)

and uncertainty around the model’s specifications, will be quantified using a Bayesian approach,

allowing us to estimate parameter uncertainty for the Brazier model and show its impact on studies

measuring health utility using the SF-6D. For this reason, we will use the SF-6D value set from the

UK valuation study specifically gathered from a sample of 4596 Hong Kong (HK) general population

using regression coefficients and their intercorrelation, and standard errors.

2. Methods

2.1. The SF-6D

The SF-6D stands for the short-form six-dimensions value set, derived from the original short-form

36 (SF-36). It is composed of six health dimensions, including physical functioning, role limitation,

social functioning, bodily pain, mental health and vitality, each having between four and six levels [9].

Defining a health state requires choosing a level from each dimension, hence creating 18,000 possible

combinations. Since every possible health state is described by six digits, from 1 to 6, thus the perfect

health state (full health) is indicated by the combination 111111, whereas the “pits” (worst health state)

is indicated by 645655.

2.2. The Valuation Survey and Data Set

2.2.1. UK

The SF-6D UK value set was derived from a sample of 249 health states described through the

SF-6D and then valued by a representative sample of the UK population (n = 836). The selection

methods of respondents along with health states are discussed elsewhere [9]. Of the original 836

respondents, a total of 225 respondents had to be excluded for several reasons. Each of the total

611 included respondents valued six health states according to the McMaster ‘ping pong’ variant of

the standard gamble (SG) technique, giving 3666 valuations. Of these, 148 missing values from 117

respondents were present, thereby resulting in a total of 3518 observed SG valuations across the 249

health states. Further details pertaining to the valuation of the 249 SF-6D UK health states can be found

in [9].

2.2.2. Hong Kong

The HK study comprised a sample of 197 health states (selected using the same approach as

the UK procedures) which were valued using the same valuation procedures as those in the UK

study [16]. Each respondent was asked to rank and value eight health states, and the interview

procedure was modelled on the basis of that in the UK study. Out of the original 641 respondents, a

total of 59 respondents were disqualified, leaving 582 respondents’ data for the analysis. Each of the

582 respondents made eight SG valuations, giving 4596 valuations. Of these, 60 missing health state

values were present and so 4596 observed SG valuations across 197 health states were finally included

in the analysis. A detailed description to the valuation of the 197 SF-6D HK health states has been

reported elsewhere [16].

2.2.3. Modelling

Generally, a model for health state valuations can be expressed as

yi j = f (xi j,α j) + εi j (1)

where, for i = 1, 2, . . . , n j and j = 1, 2, . . . , m, xij represents the ith health state valued by respondent

j with the dependent variable yij being the adjusted SG score. Two sets of zero-mean, independent
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terms of random effects are involved in this general model. First, εi j is a random observation-related

error term, while α j is a respondent-j-related term accounting for the individual characteristics.

Respondent j’s health state utility has been defined by Brazier et al. [9] by the following model

f (xi j,α j) = µ+ θ
′I(xi j) + α j (2)

where µ and θ are unknown parameters, and I(xi j) is a vector of dummy explanatory variables.

Considering a simple case with no interactions, I(xi j) would be a vector of terms Iδλ(xi j) for each level

λ > 1 of dimension δ of the SF-6D. For instance, I32(xij) is level λ = 2 (health limits social activities

a little of the time) of dimension δ = 3 (social functioning). Moreover, for any given health state xij,

Iδλ(xi j) is defined as:

Iδλ(xi j)= 1 if, for state xi j, dimension δ is true at level λ

Iδλ(xi j)= 0 if, for state xi j, dimension δ is not true at level λ

Overall, the 25 defined terms have level λ = 1 as the baseline for each dimension. Hence, the

health state utility value for state 111111 is represented by the intercept parameter µ, which, by adding

it to the sum of the coefficients θδλ of the ‘on’ dummies, derives the value of any other state. For

example, health state utility value for state 111215 is: µ+ θ42 + θ65.

Broadly, interactions between the levels of different dimensions can be accounted for by including

other dummy variables in I(xi j). The term MOST, in the model selected by Brazier et al. [9], fulfilled

this action by having a value of 1 should any dimension in the health state be at one of the most severe

levels (Most severe is defined as levels 4 to 6 for physical functioning, levels 3 and 4 for role limitation,

4 and 5 for social functioning, mental health and vitality, and 5 and 6 for pain.), and 0 in other cases.

The generalized least square (GLS) model and maximum likelihood can estimate this random

effect model. Additionally, since α j has a mean of zero, then the population health state utility for state

x in this model is simply expressed as µ+ θ′I(x).

However, the within- and between-respondent error terms are connected in those models, hence

the Random Effect (RE) model, an improved specification, separates those error terms by acknowledging

that the error may not be independent of the respondent, namely

ui + ei j

where ui is the respondent specific variation, assumed to be random across individual respondents, and

eij is an error term for the jth health state valuation of the ith individual, assumed to be random across

observations. Additionally, this model assumes that the allocation of health states to respondents is

random, i.e., cov(ui, eij) = 0.

Here, the re-estimation of the Brazier model (Equation (2)) from the original data provided a

covariance matrix and standard errors for each coefficient. This re-estimation was used to compute

mean utility values and respective standard errors for each of the 249 health states of the valuation

study. Despite the misspecification resulting from omitted variables or incorrect functional errors in the

published Brazier model, the main aim of this paper is to examine the consequences of incorporating

parameter uncertainty in the existing model rather than to propose a different model specification.

2.2.4. PSA Approach to Parameter Uncertainty in the Value sets

Economic valuations calculate utilities for patients based on the point estimate of the utility for

each health state, while ignoring the existing parameter uncertainty in the value sets. In this paper, the

impact of parameter uncertainty is generally examined in the SF-6D UK valuations on health utility

measurement, and particularly quantified in the valuations when the SF-6D is used to measure a

population’s mean utility.
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2.2.5. HK Population’s Mean Utility Using Regression Coefficients Only

The mean utility and 95% confidence interval for the HK survey population became readily

available through applying the derived UK model to the HK survey population. In other terms, the

value of any of the HK states in the HK study were derived by summing the coefficients θδλ of the ‘on’

dummies, using only the regression coefficients obtained from the UK model.

2.2.6. HK Population’s Mean Utility Using Regression Coefficients and Their Standard Errors

The uncertainty in the regression coefficients was accounted for using the Monte Carlo simulation

techniques, which resulted in the generation of 10,000 sets of multivariate normally distributed

regression coefficients. The means and standard errors of the 10,000 generated sets mimicked those

of the sets derived from the RE model fitted to the UK data. The statistical computer package R

was used to generate these results. After using all the 10,000 sets of regression coefficients to derive

UK model scores, they were applied to the HK cohort in order to generate 10,000 sets for the HK

survey population, for which the mean utilities, overall mean utilities and 95% confidence intervals are

readily available.

2.2.7. Bayesian Approach to Parameter Uncertainty in the Value Sets

We then used a Bayesian approach similar to the approach used by Pullenayegum et al. [14] to

quantify parameter uncertainty in the value sets, considering both parameter uncertainty around the

regression coefficients and parameter uncertainty around the specification of the model. Bayesian

analysis rests upon computing the posterior probability distribution for model parameters, thus making

it easy to characterize parameter uncertainty. It is in this sense that Bayesian methods are getting very

popular in economic evaluations.

For respondent j, the health state utility of state xij is

f
(

xi j, δi

)

= µ+ θ′I
(

xi j

)

+ α j + δi (3)

where δi acknowledges the possibility of model misspecification, which is equal to zero i.e., δi = 0

for all i if there is no model misspecification. We assigned independent normal distributions to the

respondent residual and model misspecification terms

δi ∼ N
(

0, σ2
δ

)

, α j ∼ N
(

0, σ2
α

)

where σ2
δ

and σ2
α are further parameters to be estimated.

The specialist software WinBUGS (version 1.4; MRC Biostatistics unit: Cambridge, UK) facilitated

the fitting of the model using the Bayesian Markov Chain Monte Carlo (MCMC) simulation

method [17,18]. The relevant code is available from the corresponding author. The prior distributions

for all the regression coefficients were defined to be Normal (0, 106); in other words, they were centered

on 0 with a large non-informative variance. The latter are not defined in WinBUGS, but instead

precisions are specified as τ = 1/σ2. Since τ is the inverse of a variance parameter (always an absolute

value), an additional minimally informative prior was required, hence, the common choice of Gamma

(0.001, 0.001).

σ2
δ, σ

2
α ∼ InverseGamma(0.001, 0.001)

Initially, 10,000 iterations were run as a “burn in” for the MCMC sampler to reach convergence,

which was assessed by Gelman and Rubin diagnostic [19]. The process involved starting two parallel

chains from scattered starting values and monitoring the within-chain and between-chain variance

until reaching convergence at 1. Afterwards, an additional 10,000 iterations were run for parameters

estimation purposes.
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We next considered the impact of parameter uncertainty in the value sets on studies using the

SF-6D to estimate mean health utility. In particular, we quantified the impact of parameter uncertainty

in the valuations when the SF-6D is used to measure the mean utility of a population. To meet this

objective, we used the UK valuation study to estimate utility values for the full set of health states and

then applied this value set to SF-6D health states collected from a sample of 4596 HK general population.

The mean utility for the SF-6D HK population was computed by first using the valuation sample

to estimate utility values for the full set of health states and then fitting the Pullenayegum model [14]

to the HK data as follows

Utilityj = fi(j)

where i(j) is subject j’s health state and j = 1, ..., 4596

i(j)~Multinomial(p)

where p is a vector of probabilities where the ith element pi represents the probability of a randomly

selected respondent having self-reported health state i, and prior information

p ∼ Dirichlet (α), α = (α1,α2, . . . ,α18000)

with α1 = 1/18000 for i = 1, . . . , 18000. Therefore, the mean utility f for the SF-6D HK population is
∑18000

i=1 piui with variance

var
(

f
)

= E
{

var( f |value set )
}

+ var
{

E( f
∣

∣

∣

∣

value set)
}

(4)

As already mentioned in [14], the variance in the mean utility f for the SF-6D HK respondents is

equal to the variance in the sample mean when ignoring parameter uncertainty in the value set plus

the variance in the sample mean as the value set varies over its posterior distribution.

3. Results

Parameter Uncertainty in the SF-6D UK Value Set

In total, 25 health states valued in the UK sample were systematically selected from the initial 249

health states. Table 1 shows the observed sample mean health state utility and the predicted mean

and standard deviation for the population’s mean health state utility with and without parameter

uncertainty for the 25 health states. As observed, the standard errors of the mean utilities for all health

states when parameter uncertainty is tolerated using the PSA approach were larger than those ignoring

parameter uncertainty. Therefore, the mean utilities of the 25 valued health states have slightly wider

95% confidence intervals than those without parameter uncertainty. This is reflected in Figure 1a,

showing the estimates and 95% confidence intervals for the mean utilities of the 25 health states.

Evidently, tolerating the possibility of parameter uncertainty improves coverage probability through

wider confidence intervals.
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Table 1. Inference for a selection of health states.

Brazier Model [9]
Probabilistic Sensitivity

Analysis (PSA)
Bayesian

Health State (HS)
Number

HS Observed Predicted
Standard

Deviation (SD)
Predicted SD Predicted SD

1 111111 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

2 112543 0.6070 0.6648 0.0252 0.6648 0.0253 0.6386 0.0393

3 122211 0.6927 0.8588 0.0227 0.8590 0.0224 0.8384 0.0377

4 133132 0.5691 0.7503 0.0247 0.7500 0.0246 0.7212 0.0391

5 144144 0.6842 0.6896 0.0221 0.6897 0.0219 0.6718 0.0364

6 212453 0.6483 0.6396 0.0259 0.6393 0.0261 0.6406 0.0381

7 221535 0.6960 0.6174 0.0255 0.6171 0.0254 0.6247 0.0387

8 232111 0.7589 0.7550 0.0251 0.7550 0.0247 0.7283 0.0395

9 244313 0.6343 0.7085 0.0265 0.7083 0.0263 0.7023 0.0406

10 315515 0.5587 0.6295 0.0259 0.6294 0.0258 0.6342 0.0370

11 323153 0.5656 0.6623 0.0241 0.6621 0.0240 0.6427 0.0357

12 331244 0.7450 0.6620 0.0246 0.6621 0.0247 0.6515 0.0414

13 342322 0.7000 0.6615 0.0249 0.6616 0.0251 0.6518 0.0378

14 412152 0.5010 0.6481 0.0258 0.6483 0.0259 0.6413 0.0389

15 423333 0.5725 0.6678 0.0224 0.6676 0.0222 0.6630 0.0359

16 431443 0.6133 0.6323 0.0248 0.6323 0.0250 0.6123 0.0379

17 442343 0.6500 0.5800 0.0258 0.5803 0.0256 0.5835 0.0388

18 513531 0.5992 0.7132 0.0230 0.7129 0.0231 0.6760 0.0378

19 531635 0.4386 0.5280 0.0231 0.5275 0.0229 0.5249 0.0358

20 535422 0.4771 0.6108 0.0248 0.6107 0.0247 0.6031 0.0368

21 542345 0.6446 0.5484 0.0246 0.5489 0.0243 0.5453 0.0367

22 545122 0.5517 0.6461 0.0227 0.6463 0.0225 0.6417 0.0367

23 614434 0.6523 0.6212 0.0277 0.6208 0.0276 0.6252 0.0387

24 625141 0.7030 0.5254 0.0242 0.5258 0.0243 0.5481 0.0384

25 635255 0.4560 0.3921 0.0218 0.3922 0.0219 0.4328 0.0385
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(a) 

(b) 

Figure 1. Estimates and 95% intervals for the 25 selected health states. The black circles give the

observed mean utilities for each valued health state. The gray crosses and lines indicate the predicted

means and 95% confidence intervals, ignoring parameter uncertainty. The black lines are the 95%

confidence intervals from (a) the probabilistic sensitivity analysis (PSA) approach and (b) the Bayesian

approach, respectively, that acknowledge uncertainty.

The Supplementary Material shows the inference for the mean health state utility values of the 249

health states valued in the sample. Across all 249 states, the mean 95% confidence intervals widths are

0.0942 (range: 0.0480–0.1149) and 0.0285 (range: 0.002–0.0483) with and without parameter uncertainty,
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respectively, with a difference of 0.0657. Further, only 15% of the observed means fell within the 95% CI

when ignoring parameter uncertainty, in comparison to 36% when parameter uncertainty is considered.

We now use a Bayesian approach to quantifying parameter uncertainty in the value sets, considering

both parameter uncertainty around the regression coefficients and parameter uncertainty around the

specification of the model. The final two columns of Table 1 present the posterior predicted mean

and standard deviation for the population mean health state utility f
(

xi j, δi

)

of those 25 health states

included in the valuation study. Acknowledging the possibility of model misspecification leads to a

further increase in the standard errors of the mean unities for all health states, and therefore wider

credible intervals and improved coverage probability are obtained. This can also be seen from Figure 1b,

which shows the estimates and 95% confidence intervals for the mean utilities of the 25 selected health

states. As can be seen, acknowledging the possibility of model uncertainty leads to wider confidence

intervals and improved coverage probability. Finally, across all 249 states that were used in the study,

the mean 95% credible intervals width is 0.1478 (range: 0.053–0.1665), and 54% of the observed means

fell within the 95% credible intervals.

We finally quantify the impact of parameter uncertainty in the valuations when the SF-6D is used

to estimate a population’s mean utility. This is achieved by using the UK valuation study to estimate

utility values for the full set of health states and then applying this value set to SF-6D health states

obtained from a sample of 4596 HK general population. Given the HK valuations and using the PSA

approach, the mean health utility was found to be 0.576 with a standard error of0.001689. Ignoring

parameter uncertainty in the value set, the standard error of the measurement sample’s mean utility

was found to be 0.000353. This implies that the true standard error was underestimated by 79.1% when

parameter uncertainty was not accounted for. This is also the case using the Bayesian approach, as the

true standard error was underestimated by 86.15% when ignoring parameter uncertainty (see Table 2).

Table 2. Impact of parameter uncertainty in the value set on estimates of a population’s mean

health utility.

PSA Bayesian

Estimate
Standard
Error (SE)

Variance Estimate SE Variance

Mean health utility

1. Usual estimate of uncertainty

2. Uncertainty due to the value set

0.576 0.001689017 0.000002853 0.589 0.01284 0.000164866
0.000353456 0.000000125 0.001778340 0.000003162
0.001651620 0.000002728 0.012716254 0.000161703

Total 0.000002853 0.000164866

4. Discussion

In this paper, we have explored the two sources of uncertainty: (1) parameter uncertainty around

the coefficients estimated in the Brazier et al. model and (2) model uncertainty around the specification

of the model used to estimate the Brazier et al. model. We have used PSA and Bayesian methods

to account for both types of uncertainty simultaneously in the value set when a measure of HRQoL

(SF-6D here) is used to measure a population’s mean utility. We have shown, using both approaches,

that parameter uncertainty around the value sets is substantial and should not be ignored in economic

evaluations, and thus should be fully represented when reporting results. This finding is in line with

previous work [13] which suggested that the impact of parameter uncertainty due to scoring was the

largest for small valuation studies and that the uncertainty around the specification of the model was

found to be a larger contributor to this parameter uncertainty [14].

We have illustrated how acknowledging the possibility of parameter uncertainty leads to wider

confidence intervals and improved coverage probability using both approaches. Across all 249

states, the mean 95% credible intervals widths were 0.0942 (range: 0.0480–0.1149) and 0.0285 (range:

0.002–0.0483) with and without parameter uncertainty, respectively, using PSA. Whilst using the

Bayesian approach, the mean 95% credible intervals widths was 0.1478 (range: 0.053–0.1665). Further,

only 15% of the observed means fell within the 95% CI when ignoring parameter uncertainty, in
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comparison to 36% and 54% when parameter uncertainty is considered, using the PSA and Bayesian

approaches, respectively. Finally, upon quantifying the impact of parameter uncertainty in the

valuations when the SF-6D is used to estimate a population’s mean utility, the true standard error was

underestimated by 79.1% and 86.15% when parameter uncertainty was not accounted for using the

PSA and Bayesian approaches, respectively.

We have shown that the Bayesian approach is superior to the frequentist PSA equivalent for our

presented results as it led to wider credible intervals and improved coverage probability. Another

potential advantage of the Bayesian model is its ability to produce probability distributions describing

the uncertainty in the expected health state values—an increasingly important input to cost effectiveness

analyses for health technology assessment. Although it is common that parameter standard error

estimates give some clue about the uncertainty of estimates, the posterior distributions capture the

full range of uncertainty inherent in these utility estimates. For example, they provide estimates of

the uncertainty in the health state predictions from the model, which the frequentists cannot do. This

leads to the conclusion that the Bayesian method is more flexible in characterizing inputs to regression

models and more comprehensive in characterizing the uncertainty in the model outputs.

Given the centrality of either EQ-5D or SF-6D and the QALY in the international health policy

context, an accurate estimation of health state utility values, along with an understanding of the

uncertainty inherent in these values, becomes paramount for ensuring efficiency in the allocation of

healthcare resources. We have illustrated how parameter uncertainty in the value set can be accounted

for in both PSA and in Bayesian analysis. Currently, parameter uncertainty around the value sets tends

to be ignored in economics evaluations. As a result, this gives committees on reimbursement a false

level of confidence in the evidence and risks reimbursing interventions that are not cost-effective [14].

Following the development of revised tariffs in this research, it will be necessary to ensure

that these can be applied in decision analysis modelling—that is, to explore the implications for

decision uncertainty of using the newly devised method through a comparison of cost-effectiveness

analyses conducted using a standard index value set compared with the revised set developed here.

There is a scope for incorporating the novel methods within economic evaluations using patient-level

data [20–23]. Such evaluations use individual patient health state values in estimating cost-effectiveness.

It is anticipated that in these circumstances the substitution of a fixed utility estimate with the uncertain

estimate will be methodologically straightforward. Further research is required to clarify this.

5. Conclusions

In conclusion, this article evaluates the importance of accounting for parameter uncertainty

around the SF-6D value sets and its impact on studies that use the SF-6D to measure health utility. We

have shown, using two different approaches: PSA and a Bayesian approach, that parameter uncertainty

around the value sets is substantial and should not be ignored in economic evaluations, and thus

should be fully represented when reporting results. Ignoring this additional information could impact

misleadingly on policy decisions.
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