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Abstract 

It is demonstrated that the dielectric permittivity and piezoelectric coefficients in 

relaxor-PbTiO3 single crystals close to the morphotropic phase boundary (MPB) can be 

augmented by contributions from domain walls. Landau-Ginzburg-Devonshire models, 

incorporating both polarization and strain gradients through the domain walls, show 

that wall contributions in domain engineered single crystals originate from enhanced, 

field-induced polarization rotation in static domain walls, unlike ceramics, in which 

piezoelectricity is enhanced by domain wall translation. For 71° domain walls in 0.7 

Pb(Mg1/3Nb2/3)O3 – 0.3PbTiO3 the piezoelectric charge coefficient d33 at the center of the 

wall ranges from 5000 to >30,000 pC N-1 depending on the wall width. Thus, a sufficiently 

high domain wall density can account for the experimentally observed augmentation in 

the measured properties compared to single domain models. The symmetry of the 

domain walls explains both the variety of average symmetries observed close to the 

MPB and the experimentally observed switching of the [001]-oriented crystals into the 

tetragonal phase via a symmetry-improbable MC phase. For a crystal of rhombohedral 

ground state, the presence of domain walls will impart monoclinic symmetry, the 

predominance of which increases with increasing domain wall density.  
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1. Introduction 

Single crystals of lead-based relaxors in solid solution with lead titanate, such as 

Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), are the highest performing of known piezoelectric 

materials in terms of their piezoelectric coupling coefficient (k33 ≈ 0.9) and piezoelectric 

charge coefficient (d33 > 2000 pC N-1). [1, 2] These values correspond to approximately 

three times the charge coefficient of commercial ceramic Pb(Zr, Ti)O3 (PZT) and with 

60% greater energy conversion. They are the preferred materials for the manufacture 

of ultrasound imaging transducers [3] and sonar devices [4], as well as finding new 

applications in high power electromechanical devices. [5] Whilst their room 

temperature piezoelectric performance is unique amongst piezoelectric materials, the 

disadvantageously low Curie temperature (TC = 130 to 180°C) and the imperative to 

eradicate lead in electronic materials [6] is driving a search for new, particularly lead-

free, materials, but with improved properties compared to the present generation of 

single crystals. It is therefore important that we fully understand the origin of the “giant” 

piezoelectric properties in this class of materials. 

Since the first demonstration of the large piezoelectric activity in these crystals, 

[1] the most commonly cited mechanism has been polarization rotation. The highest 

performing crystals have compositions close to what is known as a morphotropic phase 

boundary (MPB), a boundary separating two perovskite symmetries in the composition-

temperature phase diagram. The boundary is also apparent in the corresponding phase 

diagrams for the variables of electric field and stress. In the case of PMN-PT, the phase 

sequence on passing through the boundary can be complex and is dependent not only 

on composition and sample history, but also it is particularly sensitive to the direction 

and magnitude of the poling and measurement fields. Here, we initially describe the 

conventional polarization rotation model in terms of a simplified phase boundary 
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between the rhombohedral R3c symmetry and the tetragonal P4mm, with fields applied 

parallel to the [001] direction. An unpoled crystal on the PMN-rich, rhombohedral side 

of the boundary comprises eight domain variants with polar axes parallel to the <111> 

directions. Following the temporary application of a sufficiently large, positive, poling 

field parallel to the [001] direction, only the 4 domain variants with a positive l Miller 

index remain, resulting in an average macroscopic polar direction parallel to [001] (Fig. 

1(a)). Subsequent [001] field excursions result in large piezoelectric distortion due to 

the polar axis in each domain rotating towards the [001] direction via a monoclinic 

symmetry that is intermediate to the tetragonal and rhombohedral forms. This model is 

informed by X-ray diffraction under applied field [7], confirming that the average 

symmetry under increasing applied fields transforms from approximately 

rhombohedral, through a monoclinic phase to the tetragonal. There are alternative 

monoclinic symmetries governing the path the polarization rotation takes. These differ 

in the orientation of the plane within which the polarization lies and are often 

designated MA, MB and MC; as shown in Fig. 1(b). In the MA and MB phases, the 

polarization vector lies within a {110} plane, whilst the polarization vector of the MC 

phase lies within a {100} plane. According to Baia et al. [7] for 0.7 Pb(Mg1/3Nb2/3)O3-0.3 

PbTiO3, on [001]-poling, the average zero-field symmetry changes from rhombohedral 

to MA. However, as the angle between the MA polar direction and <111>+l is very small, 

a model with R3c as the zero-field state is still conceptually valid. It was also shown [7] 

that on applying an increasing electric field to a [001]-poled crystal, that whilst the 

symmetry at low field is MA, with polarization rotating in the {110} planes, it switches to 

MC, with the polarization completing its rotation towards [001] in the [100] or [010] 

planes. Considering the symmetry of the initial and final states, combined with the 
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direction of the applied field, switching via the MC phase is counterintuitive compared 

to a continuous MA path.  

 

Figure 1. (a) Orientation of polarization vectors (red arrows) in the domain variants in a [001]-

poled rhombohedral crystal and (b) example polarization vectors corresponding to monoclinic 

symmetry (MA, MB and MC), compared to tetragonal (T), orthorhombic (O) and rhombohedral 

(R) in perovskite crystals; the experimentally observed high-field polarization rotation path in 

PMN-PT[7] is marked in red; (c) and (d) example polarization orientations for 71° and (e) and (f) 

109° domain walls in a [001]-poled rhombohedral perovskite crystal; schematic of polarization 

vectors in (g) Néel and (h) Ising model domain walls. 

 

In addition to the MPB, a common feature of single crystals with giant 

piezoelectric activity is that their non-PbTiO3 end members are classified as relaxors, the 

properties of which are widely attributed to the dynamics of microscopic fluctuations of 

the polarization, so-called polar nanoregions (PNRs). [8] The relaxor phenomenon 

originates in the of chemical disorder in the crystal lattice giving rise to random, local 

electric fields or lattice strains [9] that limit the polar coherence length resulting in the 

existence of PNRs rather than long-range, coherent polarization. In the case of PMN-PT, 

although the addition of PT increases chemical disorder, it also increases the polar 
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coherence length in the solid solution, such that compositions beyond 0.6PMN-0.4PT 

are not relaxors, but true ferroelectrics. This relaxor-ferroelectric boundary is also close 

to the MPB, hence the key compositions close to 0.7PMN-0.3PT, whilst exhibiting some 

relaxor characteristics around the peak in permittivity close to TC, effectively behave as 

ferroelectrics at room temperature, exhibiting aspects of conventional long-range 

ferroelectric order, including the presence of macroscopic ferroelectric and ferroelastic 

domains.  

A key question in developing improved materials is whether it is the proximity to 

the MPB or the chemical disorder that is more dominant in developing giant 

piezoelectricity. Such discussions are hindered by the rarity of MPB single crystals in 

which a relaxor phase is not an end member. Hence, it is difficult to test the hypothesis 

that the phenomenon is mainly due to MPB-enhanced polarization rotation.  

Although the polarization rotation model recognizes the existence of multiple 

domain states within the poled crystals, polarization rotation is often described as a 

purely macroscopic phenomenon occurring within a single domain state and does not 

introduce any aspects of domain wall dynamics. As we demonstrate below, such a 

macroscopic model is consistent with Landau-Devonshire theory [10] over a wide 

temperature range. However, this model breaks down at low temperatures (≲ 100 K) 

where a major relaxation of the dielectric permittivity is observed experimentally.[11] 

The relaxation in permittivity is also observed in the piezoelectric charge coefficients 

[12] and as the charge coefficient and permittivity are closely related, it can be assumed 

that the two relaxations are of the same origin. Circumstantially, there is an implication 

that the polarization mechanism that relaxes below 100 K is also responsible for the 

giant room temperature piezoelectricity in [001]-oriented crystals; the nature of the 

relaxation suggests that the mechanism is temperature activated. However, 
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macroscopic polarization rotation, as described above, is free of temperature-activated 

phenomena; there is no activation energy in the rotation model. Such behavior begs the 

question of whether a more microscopically based model should be considered. 

Recently the potential role of cation disorder has been highlighted by Li et al., 

[12, 13] who have developed a 2-dimensional phase-field model for the case of a 

tetragonal single crystal in which the cation disorder produces localized orthorhombic 

regions. These result in an augmentation of the piezoelectric coefficient and relative 

permittivity due to field-stabilization (rotation) of the orthorhombic polarization 

towards the [001] direction. The origin of the relaxation at 100 K is shown to be freezing-

in of the orthorhombic state. It is inferred that for the real case of PMN-PT, a 3D model 

of tetragonal fluctuations in a rhombohedral matrix would apply.  

Nevertheless, the above model is difficult to reconcile with recent experimental 

data. Shepley et al. [14] have characterized single crystals of Pb(In1/2Nb1/2)O3-

Pb(Mg1/3Nb2/3)O3-PbTiO3 before and after poling in the [001] and [111] directions. The 

composition is rhombohedral, but is close to the MPB with the tetragonal phase and 

exhibits similar properties to 0.7PMN-0.3PT, but with a slightly higher Curie 

temperature. Before poling, the permittivity appears to be virtually identical for the 

[001] and [111] directions. However, after poling, the [001]-oriented crystal exhibits a 

significant increase in permittivity at room temperature, with a major relaxation below 

100K, whilst the permittivity of the [111]-oriented crystal decreases markedly on poling, 

with only a small relaxation around 100 K. It is not clear how the phase fluctuation model 

would account for such distinctive behavior. 

Moreover, it has been shown for 0.7 PMN-0.3PT crystals that AC poling regimes 

result in both an increase in the domain wall density and an enhancement of the 

permittivity and piezoelectric charge coefficient compared to conventional DC poling. 
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[15] Similarly, Yu et al. [16] showed an increase in the d33 of Pb(Zn1/3Nb2/3)O3 - PbTiO3 

with increased nucleation of domains due to pulse poling. PMN-PT has been recognized 

as a “domain boundary-dominated system”, [17] one in which the density of domain 

walls is exceptionally high and in which specific conformations of high symmetry 

domains can lead to lowering of the average macroscopic symmetry [18]. 

In conventional ferroelectric crystals, Akishige et al measured a large dielectric 

relaxation around 100K in top-seeded solution grown BaTiO3 single crystals,[19] whilst 

Wada et al. [20] have also shown that increasing domain wall density in BaTiO3 single 

crystals results in an increase in the piezoelectric charge coefficient. In all the above 

cases the orientation of the field with respect to the crystal prohibits ferroelastic domain 

wall motion, thought to be responsible for significant contributions to piezoelectricity in 

PZT ceramics. However, Rao and Wang [21] have proposed a domain wall broadening 

mechanism to account for the results of Wada, [20] which suggests that broadening of 

non-Ising walls is responsible for increases in piezoelectric activity in domain engineered 

crystals such as BaTiO3 and PMN-PT. 

In this paper we investigate the potential role of domain walls in facilitating 

polarization rotation in PMN-PT type single crystals at both low and high fields and as a 

function of composition near the MPB, through a one-dimensional Landau-Ginzburg 

Devonshire (LGD) model of the polar structure of 71° and 109° domain walls.  

 

2. Theory 

In the following, we assume a rhombohedral ground state for the infinite domain-free 

crystal. Although this may appear to contradict experimental evidence for the crystals 

studied, one of the objectives of this work is to demonstrate that rhombohedral crystals 
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with high domain wall densities will exhibit an average, monoclinic symmetry to a probe 

of sufficiently long coherence length (e.g. X-rays). 

Throughout the following discussion, the polarization vector is treated as the 

resultant of three orthogonal vectors parallel to the <100> directions of the crystal. In 

a [001]-poled rhombohedral crystal, there are generally four types of domain walls, as 

shown in Fig. 1(c-f). In all cases, the domain walls separate polarization vectors that lie 

in the same {110} plane and correspond to mirror planes between the two polar axes. 

In two cases, the polarization directions lie approximately 71° apart, with only one of 

the orthogonal components of polarization changing sign through the wall (Figs. 1(c) & 

(d)), whilst for the two 109° walls, two components change sign (Figs. 1(e) & (f)). 

Conventionally, there is a further distinction between the domain types depending on 

whether the component of polarization normal to the domain wall changes sign or not. 

In the former case, (Figs. 1(d) & (f)) such domain walls are regarded as being charged, 

whereas for those in which the normal component does not change sign (Figs. 1(c) & 

(e)), the domain wall is said to be uncharged. Conventional wisdom suggests that so-

called charged domain walls are rare. However, if, as shown below, the change of sign 

is accomplished over a significant number of unit cells, the electrostatic hindrance to 

charged walls may be less than is intuitively expected. 

Assuming the domain walls to be larger than one unit-cell in width, the change 

in magnitude and direction of polarization on passing through a wall may, in principle, 

correspond to Bloch, Néel (Figs 1(g)) or Ising (Fig. 1(h)) configurations. Bloch walls 

comprise rotation of the polarization vector out of the common {110} plane and are 

therefore considered unlikely close to an MPB which favors <111> and <100> 

orientations. In both Néel and Ising configurations, the polarization vector remains 

within the common {110} plane. For Ising walls, the magnitude of polarization decreases 
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towards the center of the wall, with the change of direction occurring only at the wall 

center, whilst for Néel walls the direction of polarization rotates through the wall, whilst 

the magnitude remains approximately constant. In the case of Néel walls, assuming a 

gradual rotation of the polarization vector between the two domain orientations, the 

orientation of the polarization at the center of a 71° domain wall is parallel to a [101] 

direction, corresponding to orthorhombic symmetry, but with the outer parts of the wall 

exhibiting MB symmetry. For a 109° wall, the polarization at the center would be parallel 

to [001], corresponding to tetragonal symmetry, with the remainder of the wall being 

MA. Hence, under [001] applied fields a Néel wall could act as a nucleation site for 

initiation of polarization rotation. Also, for a crystal with a homogenous rhombohedral 

ground state, but with a high density of Néel walls, the average symmetry may depart 

from rhombohedral towards MA or MB. 

The Landau-Devonshire model for ferroelectrics considers the free energy 

density due to the ferroelectric state, G, to be a power series expansion in terms of 

polarization. [10] In the stress-free case, 

 𝐺(𝑷) = 𝛼𝑚𝑛𝑝𝑃𝑖2 + 𝛼𝑚𝑛𝑝𝑃𝑖2𝑃𝑗2 + 𝛼𝑚𝑛𝑝𝑃𝑖2𝑃𝑗2𝑃𝑘2 − 𝐸𝑖𝑃𝑖, (1) 

in which Pi are the components of the polarization vector P. Likewise, E is the applied 

electric field. The coefficients mnp, hereafter known as the Landau coefficients, are the 

non-linear dielectric stiffness coefficients for the 2nd, 4th and 6th power of polarization; 

the subscripts take the values of the powers of the three components of polarization. 

Only the first order dielectric stiffness is required to be temperature dependent and is 

of the form 200 = ′(T-T0), where T is temperature and T0 is the Curie-Weiss 

temperature. The spontaneous strains associated with the polarization in the absence 

of applied stress can be calculated from 

 xij = QijklPkPl,  (2) 



10 

 

where Qijkl are the electrostriction coefficients.  

 In the case of spatially non-uniform polarization, Ginzburg [22] proposed a 

simple method of incorporating polarization gradients into the theory, avoiding full 

solutions to the Maxwell equations, by including energy terms dependent upon the 

polarization gradient, of the form 

   |𝛼200|𝛾𝑖𝑗2 (𝑑𝑃𝑖𝑑𝑟𝑗)2, (3) 

in which ij is the polarization coherence length and 
𝑑𝑃𝑖𝑑𝑟𝑗 is the gradient of Pi in direction 

j. The gradient in polarization through a domain wall will also result in a gradient in 

strain, which can give rise to stress components within the wall. In this case it is more 

appropriate to use the H 

 𝐹(𝑷, 𝒙) = 𝛼𝑚𝑛𝑝′ 𝑃𝑖2 + 𝛼𝑚𝑛𝑝′ 𝑃𝑖2𝑃𝑗2 + 𝛼𝑚𝑛𝑝′ 𝑃𝑖2𝑃𝑗2𝑃𝑘2 − 𝐸𝑖𝑃𝑖  
 + 12 𝑐𝑖𝑗𝑘𝑙𝑥𝑖𝑗𝑥𝑘𝑙 − 𝑞𝑖𝑗𝑘𝑙𝑥𝑖𝑗𝑃𝑘𝑃𝑙 + |𝛼200′|𝛾𝑖𝑗2 (𝑑𝑃𝑖𝑑𝑟𝑗)2 + 𝑐𝑖𝑗𝑘𝑙𝛿𝑖𝑗2 (𝑑𝑥𝑖𝑗𝑑𝑟𝑗 )2, (4) 

 

In the following, the equilibrium values of P and x are determined by numerical 

minimization of F with respect to P and x for given values of E and T. Permittivity is 

determined numerically from 𝜀𝑖𝑗 = ∆𝑃𝑖∆𝐸𝑗 and the piezoelectric charge coefficient (d) is 

calculated from 𝑑𝑖𝑗𝑘 = ∆𝑥𝑖𝑗∆𝐸𝑘 , where E is a small probe field of magnitude 1 kV m-1. By 

convention, the component P3 is parallel to the [001] direction.  

To check for self-consistency, values of polarization for the homogenous, stress-

free case were determined by minimisation of G with respect to P (Eqn. (1)) and the 

strains calculated from the electrostriction equation (Eqn. (2)); the results were identical 

to the polarizations and strains found by minimization of F with respect to P and x with 

no gradients in the order parameters. 
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 To determine the influence of electric field upon domain walls, we have 

constructed simple one-dimensional finite element models of 71° and 109° domain walls 

in a [001]-poled PMN-PT crystal, based on the Helmholtz potential in Eqn. (4). The model 

comprises 100 cells, each of which is seeded with a value of spontaneous polarization 

resulting from the solution for the stress-free homogeneous system. To allow a one-

dimensional model to represent a 3D system, it is assumed that ij is isotropic (referred 

to hereon as ), and all 3 polarization components couple from cell to cell. The only strain 

gradients which can influence the solutions are those for which there is cell to cell strain 

coupling along the direction normal to the domain wall. The details of the models are 

shown in Table 1. 

 For the 71° walls, cells 1 to 50 are seeded with solutions for the homogeneous 

system ( =  = 0) which are initially constrained to P1 = -P2 = P3, whilst for cells 51 to 

100 initial solutions are constrained to P1 = P2 = P3 with P3 positive. This results in a 

domain wall of zero width at the interface between cells 50 and 51. For 109° walls, the 

corresponding initial constraints are -P1 = -P2 = P3 and P1 = P2 = P3. The structure of 

the domain wall is then allowed to evolve by minimization of F(P, x) for each cell, 

including the gradient terms, and then iterating until the total polarization and free 

energy for the array converge. The polarization gradient terms for the nth cell are 

introduced as: 

(𝑑𝑃𝑖𝑑𝑟 )2 = ((𝑃𝑖(𝑛) − 𝑃𝑖(𝑛 − 1))2 + (𝑃𝑖(𝑛) − 𝑃𝑖(𝑛 + 1))2) /2,  (2) 

where Pi(n) is the subject of the current iteration and 𝑃𝑖(𝑛 − 1) and 𝑃𝑖(𝑛 + 1) are 

values from the previous iteration. A similar procedure is followed for strain gradients. 

As r,  and  share the same dimensions, the length scale is effectively dimensionless. 

The above methodology provides the freedom for Ising, Néel or Bloch wall structures to 
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develop from the convergence process. The total polarization and free energy of the 

arrays converge to better than 1 in 107 and 1 in 108 respectively, within 500 to 5000 

iterations, depending on the magnitudes of ,  and applied electric field. As each energy 

minimization step employs the previous step’s values of polarization and strain as a 

starting point and the methodology does not seek minima far from the previous 

iteration, phemomena such as domain wall splitting may be missed by the method.  

 The stress distributions in the wall were calculated by solving  𝑥𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙𝑋𝑘𝑙 + 𝑄𝑖𝑗𝑙𝑘𝑃𝑘𝑃𝑙 (3) 

for Xkl as a function of position, n. The contribution of the domain wall to the weak field 

permittivity, 33, is estimated by calculating the difference in the average polarization  𝑃3̅̅ ̅ = (∑ 𝑃3(𝑛)𝑛 )/𝑁  (4) 

for E3 = 0 and E3 = 1000 V m-1 and then subtracting the homogeneous contribution, 

where Nis the total number of cells. 

 The piezoelectric coefficient of each cell is calculated from  𝑑3𝑖 = ∆𝑥𝑖𝑖/𝐸3  (5) 

where ∆𝑥𝑖𝑖  is the change in strain on application of field for applied fields of E3 = 0 and 

E3 = 1000 V m-1. The electrostriction coefficients, Q11 and Q12 are assumed to be 

independent of temperature. The charge coefficient for the whole array is taken as the 

average of the individual cell contributions. 

 The Landau coefficients in Eqns. (1) and (4) are those presented by Zhang et al 

for PMN-0.3PT.[27] Zhang’s method of determination of the Landau coefficients is based 

on high field measurement and therefore they are free of domain wall contributions. 

 

3. Results 

3.1 Single Domain Polarization Rotation 
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Initially we consider the homogeneous model ( =  = 0) for an infinite single domain of 

0.7PMN-0.3PT. Fig. 2(a) shows the (110) free energy surface G(P) at 300 K, with local 

minima in directions corresponding to <001>, <011> and <111>. Fig. 2(b) plots the 

locus of minimum G, as a function of the angle , between the resultant polarization 

and the [001] direction. The absolute minima lie at ±54.7° and ±125.3°, corresponding 

to the <111> directions and representing rhombohedral symmetry; the secondary 

minima at 0° and 180° are metastable tetragonal states. The apparent maxima at ±90° 

correspond to orthorhombic symmetry; we note that these are saddle points on the free 

energy surface and so still represent relatively low-lying energy states on the surface 

depicted in Fig. 2(a). 

 

 

Figure 2. (a) Free energy surface in the (110) plane for 0.7PMN-0.3PT as a function of 

polarization with P1 = P2, (b) free energy density as a function of the angle of the resultant 

polarization, to the [001] axis, (c) free energy as function of  and applied field, E3 and (d) 

lattice strain parallel to [001] as a function of applied field E3. 

 Fig. 2(c) shows G() as a function of applied field E3. At low applied field, the 

minimum energy moves to decreasing values of , corresponding to MA symmetry. At a 



14 

 

critical field value of 4 kV cm-1, the minimum energy state shifts discontinuously to  = 

0°corresponding to a first order transition to tetragonal symmetry. This is confirmed by 

the discontinuity in lattice strain (x3) as a function of field, as shown in Fig.2(d). The 

continued existence of the metastable MA state above 4 kV cm-1 indicates that the field 

induced transition would exhibit hysteresis and that at low temperatures the transition 

may appear temperature activated. However, there is no activation energy involved in 

the weak field polarization rotation in the (110) plane and attendant properties, so this 

would not explain the experimentally observed 100 K relaxation in weak field properties. 

There is no value of field where a monoclinic MC phase is the most stable; indeed, the 

symmetry of a field applied parallel to [001] in a rhombohedral or MA crystal renders an 

MC solution highly improbable, hence the experimental observation of a field-induced 

MC phase [7] requires an additional mechanism to that of the homogeneous LGD crystal.  

 

3.2 Domain Wall Structure 

For brevity, we have assumed the most likely scenario, in which the polarization and 

strain coherence lengths are equal. Hence simulations were carried out for  =  with 

values from 1 to 8. Figures 3(a) and 3(b) show the values of polarization for PMN-0.3PT, 

as a function of cell number, n, at 300 K, with  =  = 5 for 71° and 109° uncharged walls, 

respectively. For the 71° wall, P1 and P3 are equal, whereas for the 109°wall P1 and P2 

are equal. The values of polarization as a function of position are virtually independent 

of whether the walls are charged or uncharged. However, for the strain distributions 

there are some differences in peak amplitude between charged and uncharged walls. 

Those shown in Figs 3(c) and 3(d) are for uncharged 71° and 109° walls with  =   = 5; 

the corresponding stress distributions are shown in Figs. 3(e) and 3(f). The summation 

of stresses over all cells approximates to zero within the accuracy of the calculation.   
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 The simulations confirm that a Néel wall emerges as the stable solution in all 

cases, with structures as proposed above: i.e. the 71° and 109° wall centers assume 

orthorhombic and tetragonal symmetries respectively. It is notable that the value of P3 

at the center of the 109° wall is significantly greater than that of P3 and P1 in the 71° 

wall. 

 The increase in energy density caused by the presence of a domain wall, 

increases with  in an almost linear relationship, as shown in Fig. 4(a), with little 

difference between charged and uncharged walls. The 109° walls represent 

approximately twice the energy cost of 71° walls for the same values of  and .  
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Figure 3. (a) and (b) Polarization, (c) and (d) lattice strain and (d) and (e) stress as a function of 

position for 71° and 109° domain walls. 

 Defining the width of the domain wall is not trivial. In fact, P3(n) > |P2(n)| for all 

values of n, implying that the presence of a domain wall imposes monoclinic symmetry 

throughout the domains, albeit with vanishingly small distortion from the parent 

rhombohedral symmetry at n = 0 and 100. Hence it is apparent how a material with a 

rhombohedral ground state, but with a high density of domain walls, may appear to 

have monoclinic symmetry in diffraction experiments. [7] We define the wall half-width 

w1/2 as the number of cells between the two positions at which P3 is equal to half the 

difference between its maximum and minimum values. As shown in Fig. 4(b), the 

dependence of w1/2 on  is slightly sub-linear, but with surprisingly little variation 

between the 4 types of wall. Due to the cancellation of units in Eqn. 4, both  and the 

cell width are effectively dimensionless; hence w1/2 also defines the ratio of domain wall 

width to domain width. 

 

Figure 4. (a) Excess energy density, (b) half-width, (c) permittivity contribution and 

piezoelectric charge coefficient contribution of domain walls as a function of equal polarization 

() and strain () coherence length. 
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3.3 Weak-Field Properties 

 The contributions of the domain wall to permittivity and piezoelectric charge 

coefficient averaged across the full range of n, as a function of coherence lengths,  and 

, are shown in Figs. 4(c) and (d) respectively. All the contributions are positive, and 

virtually linearly dependent upon . The relative permittivity of the uncharged 71° wall 

exceeds 4500 at  = 8, whilst that of the 109° walls without strain gradient energies 

exceeds 1000 for  = 6. For 109° walls beyond  = 6, the calculations of permittivity and 

piezoelectric charge coefficient become unreliable as the width of the walls starts to 

extend beyond the width of the model. All the above trends are repeated in the 

piezoelectric charge coefficients (Fig. 4(d)), with the uncharged 71° wall contributing an 

excess charge coefficient of more than 1400 for  = 8.  

 

Figure 5. The variation across uncharged domain walls of the permittivity (33) for (a) 71° and 

(b) 109° domain walls and the piezoelectric charge coefficients (d33, d31 and d32)  for (c) 71° and 

(d) 109° walls at 300 K for  =  = 5.  
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 The variation of the permittivity 33 across 71° and 109° walls at 300 K is shown 

in Figs. 5(a) and (b) for  =  = 5. For the 71° wall, 33 passes through a maximum at the 

orthorhombic wall center, due to the field induced increase in P3 at the expense of P1 

and P2, rotating the resultant polarization vector in a (010) plane (MC symmetry). This is 

an easier path than from [111] to [001] via MA, which the bulk material experiences. In 

contrast, in the 109° wall, 33 passes through a minimum at the tetragonal wall center 

and exhibits a lower permittivity than the bulk materials. This is consistent with the fact 

that at the wall center, the polarization is already oriented along [001] and therefore no 

rotation occurs under applied field. However, there are peaks in permittivity in the wall 

margins, where the symmetry corresponds to MA and polarization rotation in a (110) 

plane occurs. Hence the overall contribution of the 109° wall to 33 is also positive.  

 The variation of the charge coefficients across the domain walls (Figs. 5(c) and 

5(d)) reflects that of the permittivity. For the 71° wall, whilst d33 and -d31 pass through 

maxima at the wall center, d32 tends towards zero. However, for the 109° wall, the 

permittivity and all three charge coefficients are at a minimum at the wall center, with 

the maximum values occurring in the wall margins. In this case d31 = d32 throughout. 

Again, this is consistent with the fact that at the wall center, the polarization is oriented 

along [001] at zero field and therefore no rotation occurs under applied fields. However, 

the enhanced contributions in the margins are through polarization rotations in the 

{110} planes.  
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Figure 6. Relative permittivity for uncharged (a) 71° and (b) 109° domain walls and 

piezoelectric charge coefficient for charged (c) 71° and (d) 109° domain walls; for  =  = 6. 

 33 as a function of temperature is shown in Figs. 6(a) and 6(b), for uncharged 

domain walls with  = 6. For 71° walls, 33 decreases from a value of 4000 at 300K to a 

minimum of 500 at approximately 0 K. For 109° walls, the permittivity contribution at 

300 K is approximately 7000, considerably larger than that for 71° walls, however, it 

decreases continuously with decreasing temperature to 500 at 0 K.  

 For a 71° domain wall (Fig. 6(c)), the contribution to the average charge 

coefficient at 300 K is approximately 1200 pC N-1, decreasing with temperature to 300 

pC N-1 at 0 K. On the other hand, the contribution of the 109° wall is >3000 pC N-1 at 

300 K (Fig. 6(d)), 50% larger than the intrinsic value, but decreases continuously with 

temperature to a value only 30% of the lattice contribution at 0 K.  

 

3.4 High Field Properties  

Figure 7 shows how the polarization rotation progresses with increasing field for the 

case of  = 3. To recap, at zero field, the domain symmetry is rhombohedral, whilst for 
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the 71° domain wall, the center is orthorhombic with domain wall margins exhibiting MB 

symmetry. For the 109° wall, the center is tetragonal, with MA margins.  

 

 

 

Figure 7. Polarization profile for 71° and 109° domain walls for  =3 at applied fields of 0, 3 and 

4.25 kV cm-1; for higher fields P1 = P2 = 0 and P3 > 0.32 C m-2 for all values of n.  
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Fig. 8. Polarization directions through (a) an uncharged 71° domain wall at 0 kV cm-1 and (b) 4 

kV cm-1 and through an uncharged 109° wall (c) at 0 kV cm-1 and (d) at 4 kV cm-1. 

 Up to 3 kV cm-1, a similar broadening of both types of domain wall is apparent. 

For the 71° wall there is divergence between the values of P2 and P3 in all cells, whilst at 

the wall center P1 = 0 and P2 is depressed compared to the value in the domain itself. 

Hence, whilst there is some polarization rotation in the domain, which has assumed MA 

symmetry, there is greater rotation in the domain wall, which now exhibits MC 

symmetry at the center. As the field is increased the domain wall broadens to cover 

more than 50% of the domain width at 4.25 kV cm-1. The symmetry over most of the 71° 

domain wall approximates to MC. This is emphasized in Fig. 8, showing the direction of 

polarization in Cartesian coordinates through the domain walls. At zero applied field 

(Fig. 8(a)), the polarization lies within the (101) plane, whilst with a field applied along 

[001], the polarization within the 71° domain wall rotates out of the (101) plane towards 

the [001], with the angle of rotation being greatest at the center of the wall (Fig. 8(b)). 
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Above 4.25 kV cm-1 the whole crystal switches into the tetragonal state. Overall, the 

presence of 71° domain walls at sufficiently high density would give the appearance of 

a crystal that follows a high-field polarization rotation path that starts as MA but switches 

to MC at higher fields before reaching the tetragonal state. Such a path is disallowed by 

symmetry considerations under the homogeneous 6th order LGD model, but is 

commensurate with experimental observations. [7] 

 For the 109° wall, similar broadening is observed as a function of field, however 

P1 is equal to P2 in all cells and the resultant polarization vector remains in the (110) 

plane throughout the wall at all fields (Figs. 7(c), 7(d) 8(c) and 8(d)). Hence the symmetry 

is MA throughout the domain and the wall margins, but with a central region that 

approximates to tetragonal symmetry that broadens significantly with increasing field. 

Hence for 109° domain walls the experimentally observed rotation path would be 

predominantly MA in symmetry.  

 

Figure 9. Field induced strain as a function of  =   for 71° and 109° domain walls compared 

with the single domain response. 

 The average strain across uncharged walls as a function of applied field is shown 

in Fig. 9 for  = = 3 and  =  = 6, in comparison with the homogenous, domain-free 

model. The first-order nature of the field-induced rhombohedral-tetragonal transition is 
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modified by domain wall broadening to a more continuous transformation. The field 

required to complete the transformation to tetragonal appears to increase with respect 

to the infinite single domain, however this could be due to convergence issues at higher 

fields. Nevertheless, despite the presence of domains encouraging polarization rotation 

and acting as nucleation sites for this process, they do not decrease the transition field. 

This is to be expected, as a homogeneous tetragonal phase is not stable below the 

critical phase calculated by the simple Landau-Devonshire model. For both types of wall, 

the slope below the transition is significantly increased by the presence of the domain 

walls, confirming their role in enhancing the piezoelectric coefficient. Although the 

piezoelectric coefficient increases with increasing , the induced strain prior to transition 

is seen to decrease. This is because the centers of the domain walls already possess 

larger strain components parallel to [001] than the homogenous case. The greater the 

value of , the greater is the width of the domain wall or domain wall density, therefore 

for the 109° wall there is less volume subject to the full polarization rotation from [111] 

to [001].  

 

4. Discussion 

The Landau-Devonshire model for a single, infinite domain of PMN-0.3PT, using the 

coefficients of Zhang, [27] shows that at low fields, the piezoelectric properties are 

dominated by macroscopic polarization rotation via MA symmetry, with no temperature-

activated mechanisms implied. At higher fields the rotation continues but is superseded 

by a 1st order transition directly into the tetragonal phase. Neither MB nor MC 

symmetries are favored as rotation paths by this model. Under weak fields, at room 

temperature, the calculations suggest that macroscopic polarization rotation is a valid 

model. However, both the high-field and low temperature properties are a poor match 
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to experiment in terms of the low temperature relaxation and the observation of MC 

symmetry at high field.  

 The results from the Landau-Ginzburg domain wall model in [001]-poled crystals 

can explain several of the experimentally observed features. According to the model, 

the preferred structure for both 71° and 109° domain walls corresponds to the Néel-

type, in which the polarization vector rotates in the [110] plane through either a [101] 

(71°) or [001] (109°) direction, with only small modulations of the resultant magnitude. 

Hence, at the center of the wall, the structure corresponds to orthorhombic perovskite 

symmetry for the 71° wall and tetragonal symmetry for the 109° wall. The symmetries 

in the wall margins correspond to monoclinic MB and MA respectively. Hence for certain 

conditions of composition and values of coherence length the model would suggest 

average symmetries that are monoclinic and not normally observed in a simple 6th order 

Landau model. 

 The model predicts that for [001]-poled crystals, on the application of a field 

parallel to [001], the domain walls can make significant contributions to both the 

permittivity and piezoelectric charge coefficient, with the magnitudes dependent upon 

the value of . In the case of 71° walls, the augmentation in 33 and dij is due to a larger 

field-induced increase in P3 at the center of the wall than in the domain, corresponding 

to an augmented rotation of the polarization at the center of the wall away from [011] 

towards [001] and accompanied by broadening of the wall. For 109° walls, the 

augmentation of properties originates in the wall margins rather than the wall center.  

 For unpoled crystals, for walls with a negative P3 component, the polarization 

and piezoelectric contributions are out of phase with those with a positive P3 

component. Assuming equal populations of walls with positive and negative P3 

components, the wall contributions would average to zero, hence the wall-augmented 
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properties and any accompanying relaxations would not be observed in unpoled 

crystals. After [001]-poling, there is an increase in permittivity commensurate with the 

removal of the negative-P3 walls. However, for [111] poled crystals, all domain wall 

contributions including 180° wall translations are removed, resulting in a reduction in 

permittivity parallel to [111]. These arguments are consistent with the experimental 

data of Shepley [14]. 

 At high field, the symmetry of the 71° walls tends towards MC with increasing 

field before the switch to tetragonal, whereas the 109° walls are dominated by MA 

symmetry. Given the experimental observation of high field switching from 

rhombohedral to tetragonal via both MA and then MC symmetries, it seems likely that 

both types of domain are present in poled samples, as observed experimentally by 

Chang et al. [15]  

 The experimental data for PMN-PT from Martin et al. [11] shows the low 

temperature relaxation for PMN-PT is characterized by permittivity step of  = 2000 

to 3000. Assuming 71° walls to be dominant, this range of  is consistent with a model 

value of  = 5 and w1/2 of 20.  

 Assuming domain walls to be responsible for all the augmentation in properties, 

the relaxation of these properties below 100 K requires explanation in the context of the 

model. In the case of classical ferroelectrics such as BaTiO3 [19, 20] similar low 

temperature relaxations have been attributed to the thermal activation of domain wall 

translation contributions. The most frequently cited mechanism is that thermal 

activation is required to overcome pinning of the domain walls by defects. It has been 

argued that dipolar defect pairs formed from oxygen vacancies and cation acceptor 

impurities, aligned with the local polarization direction, impose an energy barrier 

sufficient for domain wall translation to freeze out at cryogenic temperatures. By direct 
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analogy, we propose that domain wall broadening in [001]-poled PMN-PT crystals is also 

temperature activated due to defect states in the wall and the surrounding environment 

that act to inhibit polarization rotation and wall broadening.  

 Whilst the model shows that domain wall broadening is a potential mechanism 

for property enhancement seen in PMN-PT single crystals, there are a number of 

shortcomings of the model which need to be considered. Firstly, the concept of the 

Ginzburg approach results in an approximation, which avoids a full treatment according 

to Maxwell’s equations and in the case of the elastic interactions a full mechanics 

analysis. The way in which head-to-head domains are treated in the Ginzburg model may 

be judged to be suboptimal. Also, in this specific case, we have employed Landau-

Devonshire coefficients derived form a real material, which may already have embedded 

within them the phenomena we are attempt to model. At worst, this may lead to an 

overestimate of the property augmentation due to wall broadening, but does not negate 

the existence of the phenomenon itself. For comparison, we have also applied the model 

to BaTiO3 at a temperature close to the rhombohedral-orthorhombic phase transition. 

Although wall broadening is observed, the contribution to the permittivity is actually 

negative, highlighting the importance of a true MPB to the positive domain wall 

contributions in PMN-PT. It is also noted that the model treats PMN-PT as chemically 

homogenous materials, which it clearly is not. We would expect that the chemical 

heterogeneity may have a controlling influence on the position and paths of domain wall 

in the crystals. Finally, a further difficulty with the model is that experimental input is 

required to assign a length scale to the cell size and hence the coherence length. 

Currently, we do not believe there is sufficient reliability in the estimates of domain wall 

widths in PMN-PT to provide scaling of the model, but look forward to studies, possibly 

using transmission electron microscopy, that can provide a quantitative analysis of the 
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variation of polarization vectors through a domain wall. Whilst all of the above factors 

may influence the accuracy of the calculations, they do not undermine the basic concept 

that static walls close to an MPB can increase the permittivity and charge coefficient 

through broadening via locally enhanced polarization rotation. It remains to be seen 

whether this this is the dominant extrinsic contribution or whether the PNR model of Li 

et al. [12, 13] is more important.   

 The model shares a number of similarities with that proposed by Li [12, 13] In 

the “PNR model”, the cation disorder is responsible for phase heterogeneities, of which 

the polarization can be aligned with the field more easily than that of the bulk. This 

process freezes out at low temperature due to the increasing energy difference between 

the PNRs and the matrix state. In the model proposed here, the domain walls also 

represent regions of phase heterogeneity which can be aligned more easily with the 

applied field than can the body of the domain. However, in the latter case, these regions 

are a natural consequence of the existence of domain walls, which are observed 

experimentally to exist at high density in these crystals and can be augmented in number 

by selected poling processes. [15] The high density of domain walls in these crystals is 

thought to be a consequence of the shallow free energy landscape, with minima 

representing rhombohedral, tetragonal and orthorhombic states in close proximity in 

polarization space. The domain wall energies are therefore low, allowing a high density 

of domain walls to be established. The domain wall density will increase on approaching 

the MPB as the energy difference between bordering states is reduced, providing an 

increasing enhancement in properties at the MPB. It has been proposed that the shallow 

minima are also a consequence of the cation disorder in the system..[28] Hence 

according to the above findings, both cation disorder and proximity to an MPB are 

necessary for giant domain wall contributions to piezoelectricity to exist.  
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5. Conclusions 

Given the ubiquitous nature of domain wall contributions to ferroelectric materials and 

that the domain wall density of PMN-PT single crystals is considered high, it should not 

be unexpected for the domain walls in this system to make significant contributions to 

the functional properties. However, until recently, these contributions were ignored as 

conventional domain wall models are based on domain wall translation. In the case of 

[001]-poled PMN-PT type crystals, the domain walls do not move under subsequent 

[001]-field excursions, however we have shown that the structure of the walls 

themselves provides easier paths for polarization rotation. Hence it is the material 

within the domain walls that is responsible for augmentation of weak-field properties 

over and above that predicted by single domain Landau theory. For higher fields, 

polarization rotation is augmented, compared to the domain-free state, by broadening 

of the domain walls leading to further increase in field-induced strain.  

 It can be argued that the Landau approach is circular, in that the influence of 

domains is already included in the coefficients. Whilst that may be true, the theory itself 

is ignorant of the origin of such contributions. This should be borne in mind when 

considering the quantitative results, where the calculated total of the bulk and domain 

wall contributions may exceed the experimental values. More importantly, the set of 

coefficients represent a material that is close to an MPB and the mechanisms of domain 

wall broadening that result should be considered to be qualitatively correct. 

 The domain walls are features that break the symmetry of the crystal in such a 

way as to allow for the observation of MB and MC symmetry, which are forbidden under 

the homogenous 6th power Landau model. This behavior is evident experimentally under 

high field switching from rhombohedral to tetragonal via the MC phase and is explained 

in the model by a superposition of near-MC walls and MA domain interiors.  
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 Other heterogeneity-based contributions, such as those described as PNRs by Li 

et al., [12] may also play a role in enhancing the piezoelectric and dielectric properties 

and contribute to their low temperature relaxation. However, domain walls are clearly 

observed experimentally and therefore should be regarded as a likely origin of the 

anomalous properties. In which case, it is proposed that both cation disorder and 

proximity to an MPB are necessary for the giant domain wall contributions to 

piezoelectricity to exist. 
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Table 1. Geometrical details of the one-dimensional domain wall models 

 

71
o
 wall 109

o
 wall 

 
uncharged charged uncharged charged 

Polarization directions [111]/[11̅1] [111]/[11̅1] [111]/[1̅1̅1] [111]/[1̅1̅1] 
Common polarization plane (101̅) (101̅) (11̅0) (11̅0) 
Domain wall plane (101) (020) (002) (110) 
Rotation components P2 P2 P1 & P2 P1 & P2 

Model direction [101] [010] [001] [011] 
Coupled strain components x22 x11, x33, x13 x11, x22, x12 x33 
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Appendix 

The full expansions of the Gibbs (G) and Helmholtz (F) energies employed are shown below using 

Voigt notation for the elastic terms: 𝐺 = 𝛼200(𝑃12 + 𝑃22 + 𝑃32) 
 +𝛼400(𝑃14 + 𝑃24 + 𝑃34)+𝛼220(𝑃12(𝑃22 + 𝑃32) + 𝑃22(𝑃32 + 𝑃12) + 𝑃33(𝑃12 + 𝑃22)) 

 +𝛼600(𝑃16 + 𝑃26 + 𝑃36) + 𝛼420(𝑃14(𝑃22 + 𝑃32) + 𝑃24(𝑃32 + 𝑃12) + 𝑃34(𝑃12 + 𝑃22)) + 𝛼222𝑃12𝑃22𝑃32 

 −𝐸1𝑃1 − 𝐸2𝑃2 − 𝐸3𝑃3 (A1) 

and 𝐹 = 𝛼200(𝑃12 + 𝑃22 + 𝑃32) 

 +𝛼400′(𝑃14 + 𝑃24 + 𝑃34)+𝛼220′(𝑃12(𝑃22 + 𝑃32) + 𝑃22(𝑃32 + 𝑃12) + 𝑃33(𝑃12 + 𝑃22)) 

 +𝛼600(𝑃16 + 𝑃26 + 𝑃36) + 𝛼420(𝑃14(𝑃22 + 𝑃32) + 𝑃24(𝑃32 + 𝑃12) + 𝑃34(𝑃12 + 𝑃22)) + 𝛼222𝑃12𝑃22𝑃32 

 −𝐸1𝑃1 − 𝐸2𝑃2 − 𝐸3𝑃3 

 + 12 𝑐11(𝑥12 + 𝑥22 + 𝑥32) + 𝑐12(𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥1) + 2𝑐44(𝑥42 + 𝑥52 + 𝑥62) 

 −𝑞11(𝑥1𝑃12 + 𝑥2𝑃22 + 𝑥3𝑃32) − 𝑞12(𝑥1(𝑃22 + 𝑃32) + 𝑥2(𝑃32 + 𝑃12) + 𝑥3(𝑃32 + 𝑃12)) 

 −2𝑞44(𝑥4𝑃2𝑃3 + 𝑥5𝑃1𝑃3 + 𝑥6𝑃1𝑃2) 

 +𝛿2|𝛼𝑖| ((𝑑𝑃1𝑑𝑟 )2 + (𝑑𝑃1𝑑𝑟 )2 + (𝑑𝑃1𝑑𝑟 )2) 

 +𝜇2 [12 𝑐11 ((𝑑𝑥1𝑑𝑟 )2 + (𝑑𝑥2𝑑𝑟 )2 + (𝑑𝑥2𝑑𝑟 )2) + 2𝑐44 ((𝑑𝑥4𝑑𝑟 )2 + (𝑑𝑥5𝑑𝑟 )2 + (𝑑𝑥6𝑑𝑟 )2)] (A2) 

For the calculation of polarization and strain gradients, r is the vector normal to the domain wall. 

The qij coefficients are related to the more normally quoted Qij coefficients by 𝑞11 = 𝑐11𝑄11 + 2𝑐12𝑄12 𝑞12 = 𝑐11𝑄12 + 𝑐12(𝑄11 + 𝑄12) (A3) 𝑞44 = 2𝑐44𝑄44 

As implied in the equations, only the 4th order dielectric stiffness coefficients differ between the 

Gibbs and Helmholtz energies. The relationship between these two sets can be found at zero stress 

by setting the energies equal and substituting the strain components with the appropriate QijPiPj 

components: 𝛼400′ = 𝑎400 + 𝑐11 (12𝑄112 +𝑄122 ) + 𝑐12𝑄12(2𝑄11 + 𝑄12) 𝛼220′ = 𝛼220 + 𝑐11(2𝑄11𝑄12 + 𝑄122 ) + 𝑐12(𝑄112 + 2𝑄11𝑄12 + 3𝑄122 ) + 2𝑐44𝑄442  (A4) 

 

 


