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Abstract 30 

Advances in genomics generated the concept that a better understanding of individual characteristics, 31 

e.g. genotype, will lead to improved tailoring of pharmaceutical and nutritional therapies. Subsequent 32 

developments in proteomics and metabolomics, in addition to wearable technologies for tracking 33 

parameters such as dietary intakes, physical activity, heart rate and blood glucose, have further driven 34 

this idea. Alongside these innovations, there has been a rapid rise in companies offering direct-to-35 

consumer genetic and/or microbiome testing, in combination with the marketing of personalised 36 

nutrition services. Key scientific questions include how disparate datasets are integrated, how 37 

accurate are current predictions, and how these may be developed in the future. In this regard, lessons 38 

can be learned from systems biology, which aims both to integrate data from different levels of 39 

organization (e.g. genomic, proteomic and metabolomic) and predict the emergent behaviours of 40 

biological systems or organisms as a whole. This paper reviews the origins and recent advancement 41 

of ‘big data’ and systems approaches in medicine and nutrition. Conclusions are that systems 42 

integration of multiple technologies has generated mechanistic insights and informed the evolution 43 

of ‘precision’ medicine and ‘personalised’ nutrition. Pertinent ethical issues include who is entitled 44 

to access new technologies and how commercial companies are storing, using and/or re-mining 45 

consumer data. Questions about efficacy (both long-term behavioural change and health outcomes), 46 

cost-benefit, and impacts on health inequalities remain to be fully addressed. 47 

  48 



Genomics and the origins of ‘big data’ in understanding human biology 49 

As a scientific discovery that befitted the turning of a millennium, the initial sequencing of the human 50 

genome by two independent groups was announced jointly by the president of the United States and 51 

the prime minister of the United Kingdom to much fanfare in June 2000(1). Published the following 52 

February in tandem, in the journals Nature(2) and Science(3), these initial draft sequences were the 53 

result of several decades of technological achievements(4) and represented biomedical science’s first 54 

major foray into ‘big science’(5). Multiple incremental advances in several fields, including molecular 55 

biology, chemistry, physics and robotics, led to the revolutionary innovation of capillary-based DNA 56 

sequencing instruments. These, alongside advances in computer science, ultimately permitted the 57 

reconstruction of these first draft sequences(6).  58 

At the time of completion of the Human Genome Project (HGP), the estimated cost of 59 

sequencing a single human genome was a $100 million US dollars, and could be achieved in 9 months 60 

using 350 of the state-of-the-art capillary DNA sequencers running in parallel(7). In the two decades 61 

since, further remarkable advances in sequencing technology have driven the cost of sequencing a 62 

human genome down exponentially, with costs approaching only a $1,000 US dollars per genome 63 

since 2015(8). Large-scale massively parallel sequencing, or next-generation sequencing (NGS) 64 

technologies, now make possible the shotgun sequencing of several thousand human genomes a 65 

month(7). By necessity at each stage, advances in sequencing technologies have been accompanied by 66 

advances in bioinformatics and data analysis pipelines that have inextricably linked the fields of 67 

genomics and computational biology(9). This has permitted the identification of variation in the human 68 

genome in a variety of different contexts in an unprecedented manner. 69 

 Since the HGP, multiple large-scale genomics efforts have focused on identifying and 70 

understanding the scale of human genetic variation. The first of these, the International HapMap 71 

project begun in 2002, aimed to catalog common human genetic variants (single nucleotide 72 

polymorphisms; SNPs) and how they linked together (a haplotype). Initially focused on 73 

characterizing common SNPs, present at 5% or greater allele frequency, in four populations with 74 

ancestry from Africa, Europe and Asia(10), HapMap was subsumed into the 1,000 Genomes project 75 

begun in 2008 after the introduction of NGS, which ultimately provided much greater resolution of 76 

genetic variation in 14 populations(11). In addition to characterizing 38 million SNPs present at 1% or 77 

greater allele frequency, the 1,000 Genomes project mapped 1.4 million short insertions and deletions 78 

(indels), and more than 14,000 larger deletions. Such mapping efforts greatly expanded our 79 

understanding of the breadth of human genetic variation and made feasible genome-wide association 80 

studies (GWAS) relating multiple genetic variants to common complex diseases.  81 

 82 



The path towards precision medicine 83 

Essentially large case-control cohort studies, GWAS compare the distribution of SNPs in 84 

thousands of people with and without a particular disease. The first raft of these studies were 85 

published in 2007, providing insight into multiple common chronic diseases and prompting Science 86 

magazine to declare human genetic variation the breakthrough of the year(12). Perhaps most 87 

significant, and considered ‘paper of the year’ by the Lancet(13), was an unprecedented study from the 88 

Wellcome Trust Case Control Consortium (WTCCC), a group of 50 research groups across the 89 

United Kingdom. This work identified genetic associations in cohorts of 2,000 patients with one of 90 

seven chronic diseases (type 1 and type 2 diabetes, hypertension, coronary artery disease, Crohn’s 91 

disease, rheumatoid arthritis and bipolar disorder) in comparison to a set of 3,000 control 92 

participants(14). Indeed, since its participation in the international HGP, the United Kingdom has 93 

consistently remained at the forefront of large-scale efforts in genomics, with the WTCCC laying 94 

groundwork for the subsequent UK Biobank and 100,000 Genomes projects.  95 

Initiated in 2006, the UK Biobank is a prospective population-cohort of 500,000 individuals 96 

that has gathered genome-wide genetic data along with linked detailed physical and clinical 97 

information on the participants who were aged 40-69 at recruitment(15). Notable both for its scale and 98 

commitment to data sharing, the project follows participants through health-related records and 99 

national registries for hospital admissions, cancer diagnoses and deaths. Whereas the UK Biobank 100 

used array technology to analyse 825,927 genetic markers in healthy volunteers followed over time; 101 

the more recent 100,000 Genomes Project, begun in 2013 after significant reduction in the cost of 102 

NGS, has applied whole genome sequencing to patients with either rare diseases or cancer(16). Rare 103 

diseases are typically Mendelian, caused by single gene defects, and manifest before the age of five. 104 

Accurate genetic diagnosis can make an enormous difference in disease management for the patient 105 

and inform families about risk of recurrence. Similarly, understanding what genomic alterations have 106 

taken place in cancer can provide diagnostic and prognostic information and has been critical in the 107 

development of targeted therapies for select epithelial malignancies(17).  108 

 Inherent in these large-scale genomics projects has been the belief that with a better 109 

understanding of genetics will come improved treatments for individuals. Therefore, a not 110 

insignificant aim of the 100,000 Genomes Project was to imbed the infrastructure required to provide 111 

a genomic medicine service within the UK’s National Health Service (NHS)(16). It has long been 112 

recognised that many chronic diseases such as cancer, which phenotypically look broadly similar, 113 

vary significantly in molecular aetiology. Consequently, the same medication given to a group of 114 

heterogeneous patients may be beneficial in some patients and not in others, and potentially also toxic 115 

for some patients and not for others. The worst-case scenario for patients would be to receive a 116 



medicine that has no benefit and is toxic. Stratified medicine (see Table 1 for definitions) 117 

simplistically aims to subgroup and identify patients that will benefit from treatment without 118 

experiencing toxicity. Subgroups can be based on a combination of disease subtypes, clinical features, 119 

demographics, risk profiles, biomarkers or molecular assays. Possibly the best known example of 120 

stratified medicine has been the molecular subtyping of breast cancer based on hormone receptor (the 121 

estrogen and progesterone receptors) and human epidermal growth factor receptor 2 expression(18). 122 

While the most successful applications of stratified medicines to date have largely been in cancer and 123 

genetic diseases, many others therapies with associated biomarkers are beginning to be adopted (by 124 

the UK NHS) or are in the development pipeline(19). 125 

Therefore, the vision of personalised or precision medicine in most areas of medicine is 126 

arguably still aspirational. Precision medicine aims ultimately to tailor treatments to an individual 127 

based on molecular features (plus lifestyle and environment) of a patient and/or their disease; ideally 128 

also using companion diagnostics to determine responders and non-responders to the therapy. While 129 

the terms stratified, systems, personalised and precision (Table 1) have been used interchangeably, 130 

and in some cases fiercely debated(20), the term precision medicine is now preferred and has been 131 

more commonly used in the medical literature since 2010 (Fig. 1a). In calling for a new (molecular) 132 

taxonomy of disease towards precision medicine, concerns outlined by the US National Research 133 

Council were that the term personalised could be “misinterpreted as implying that unique treatments 134 

can be designed for each individual”, in part because it had been widely used in advertisements for 135 

commercial products(21). These concerns were echoed by the European Society for Medical Oncology 136 

(ESMO) in their Precision Medicine Glossary(22). Additional reasons outlined by the ESMO were that 137 

precision medicine “better reflects the highly accurate nature of new technologies that permit base 138 

pair resolution dissection of cancer genomes”. Whereas personalised medicine “could describe all 139 

modern oncology practice that takes into account patient factors such as personal preference, 140 

cognitive aspects and co-morbidities in addition to treatment and disease factors”(22). 141 

Functional genomics 142 

As the HGP was drawing to completion, came the goals of functional genomics. Namely applying 143 

high-throughput genome-wide approaches to studying gene transcription, translation and protein-144 

protein interactions. Along with the over use of the suffixes ‘-ome’ and ‘-omics’(23), emerged research 145 

efforts in transcriptomics, proteomics and metabolomics. There was early recognition that ultimately 146 

if viewed together, comprehensive datasets along the entire ‘omics cascade’ would provide 147 

significant insights into the response of biological systems to genetic, environmental or disease-148 

mediated perturbations(24). Initial functional genomic insights came from transcriptome profiling 149 

experiments, with early applications in the nutritional sciences including the identification of genes 150 



regulated by dietary zinc(25,26). The genomic sequence information from the HGP in combination with 151 

advances in lithography led to high-density DNA arrays that made it possible to measure levels of 152 

gene expression for tens of thousands of genes simultaneously; superseding the more laborious and 153 

technically challenging differential display approach(27).  154 

However, while an individual’s genome and transcriptome yield insight into ‘what can 155 

happen’, critical to precision medicine are clinical biomarkers, which are most commonly proteins or 156 

metabolites and speak to ‘what is happening’(24). Proteins and metabolites are chemically much more 157 

complex and heterogeneous than nucleic acids; and therefore, much more challenging to isolate, 158 

identify and measure. Consequently, publications in the fields of proteomics and metabolomics have 159 

risen subsequent to, and at a lower rate than, those in genomics and transcriptomics (Fig. 1(b)). 160 

Unsurprisingly then, the human proteome, the functional compartment encoded by the genome, 161 

emerged as a next logical biological challenge to be tackled internationally after completion of the 162 

HGP(28). The Human Proteome Organization (HUPO) was founded in 2001 in large part to promote 163 

and coordinate open access initiatives in this field(29). With recognition of the critical role of small-164 

molecule (<1500 Da) metabolites in clinical diagnostics and as pharmaceutical agents, 165 

complementary efforts in metabolomics followed in short order(30).  166 

Whereas sequencing an entire genome is now relatively inexpensive and technologically 167 

feasible by NGS within a few hours, measuring a proteome or metabolome in its entirety is still not 168 

possible from a single experimental approach. Nonetheless, advances in mass spectrometry and 169 

nuclear magnetic resonance spectroscopy, along with bioinformatics, databases and annotation, mean 170 

that we can now measure many, many more proteins and metabolites in ‘single runs’ than two decades 171 

ago. Building on early tissue-specific (plasma, liver, brain), antibody and data standard development 172 

initiatives, the Human Proteome Project was formally launched by HUPO in 2010(31). The work of 173 

50 international collaborating research teams is organized by chromosome, biological processes and 174 

disease categories and has since been reported collectively yearly. As of 2019, robust mass 175 

spectrometry data has been reported for 89% of the 19,823 predicted coding genes, and separate 176 

antibody-based histochemical evidence exists for the expression of 17,000 proteins(32). While such 177 

cataloging efforts are not without their detractors(33), the efforts of ‘discovery science’ clearly can and 178 

have fostered hypothesis-driven approaches(34). In the context of the Human Proteome Project, 179 

multiple strands of research have identified biomarkers and characterized molecular mechanisms of 180 

human disease, contributing to efforts towards precision medicine(32). 181 

Systems biology 182 

Systems biology as a discipline, although proposed as early as 1966(35), became truly 183 

established in the aftermath of the HGP(36,37). Representing the antithesis of reductionism, systems 184 



biology combines molecular and computational approaches to understand highly complex 185 

interactions within, and ultimately predict the behavior of, biological systems as a whole(38,39). From 186 

early in its conceptualization, both the generation and the integration of different levels of biological 187 

information (e.g. genomic, transcriptomic, proteomic, metabolomic) in order to yield predictive 188 

mathematical models, was articulated as fundamental to systems biology(36). Therefore, whereas the 189 

high throughput datasets of genomics and proteomics provide the foundation for the ‘reconstruction’ 190 

of biological networks at the genome-scale; it is computational simulation that yields insights into 191 

the systems structure and dynamics, and predicts biological outcomes(39,40).  192 

The first Institute for Systems Biology was founded in 1999 in the United States by Leroy 193 

Hood, whose early work had made seminal contributions to the fields of genomics and proteomics 194 

through the development of high throughput instrumentation for DNA and protein sequencing; in 195 

addition to this, he led significant sequencing efforts that contributed to the HGP(41). Undoubtedly a 196 

visionary, who viewed continued advances in high-throughput measurement technologies, databases 197 

and tools for integrating the various levels of biological information, essential to systems biology(36); 198 

Hood’s Institute radically brought together biologists, chemists, computer scientists, engineers, 199 

mathematicians, physicists, and physicians; and has continued to pioneer new technologies (including 200 

single cell microfluidics) and new computational platforms in the ensuing decades(42). Perhaps most 201 

revolutionary however, was Hood’s early vision for what he first termed “predictive, preventive, and 202 

personalised medicine” and later renamed “P4 medicine: predictive, preventive, personalised and 203 

participatory medicine”(43,44). Relevant to the concept of personalised nutrition discussed below, there 204 

was early recognition in the systems biology field that nutrition is a critical environmental factor that 205 

interacts with genetics (and metabolism) to determine health or disease, particularly later in life(45,46). 206 

From the systems biology perspective, disease is viewed as arising from either genetically 207 

and/or environmentally perturbed networks in the affected organ. Computational modelling allows 208 

the determination of how systemic networks are changing in individual cells, tissues or organisms, 209 

dynamically influencing pathophysiology of the disease. Systems medicine and systems 210 

pharmacology, considered the subfields of systems biology underpinning precision medicine(47), aim 211 

to integrate genetic, clinical and ‘omic’ data into network models, representing an in silico human 212 

that can yield emergent insights (Fig. 2)(48). Systems pharmacology is a logical extension of 213 

physiologically-based pharmacokinetic modelling, offering methods to account for genetic variation 214 

impacting whole!cell metabolism and the regulation of key drug metabolism enzymes(49).Whereas 215 

applications in pharmacology may be aimed at predicting responders/non-responders to a drug or 216 

identifying mechanisms of action underpinning drug off-target effects; equally systems approaches 217 



may be applied to predicting the response to dietary intervention given an individual’s background 218 

genetics, microbiome, life stage and/or disease state (Fig. 2)(38,48,50).  219 

Proving that systems level integration of genetic data with clinical and multiple omic datasets 220 

is feasible and can yield personalised predictive insights and facilitate a preventative health 221 

intervention (involving nutrition!), was a landmark study published in 2012(51), led by Michael 222 

Snyder, another pioneering leader in developing systems approaches to functional genomics and 223 

proteomics(52). The study combined whole genome sequencing with transcriptomic, proteomic, 224 

metabolomic and autoantibody profiles in blood from a single individual—Professor Snyder 225 

himself—measured sequentially over a 24 month period. Apart from the signficant computational 226 

feat in terms of data integration, this work was fascinating in monitoring Snyder’s dynamic response 227 

to two viral infections, as well as his onset of type 2 diabetes and response to dietary and lifestyle 228 

intervention. While Snyder’s elevated risk for diabetes was predicted by genome sequence analysis, 229 

the onset of a frank high glucose and elevated glycated hemoglobin (HbA1c) phenotype occurred 230 

about 10 months into the study and appeared to have been triggered by infection with respiratory 231 

syncytial virus. Choosing to implement “a dramatic change in diet, exercise and ingestion of low 232 

doses of acetylsalicylic acid”, over the course of the following eight months Snyder was able to reduce 233 

his glucose and HbA1c levels to normal(51). The work uniquely characterized molecular pathways 234 

involved in both onset and resolution of viral infections and diabetes at extraordinary depth, with 235 

unique insights provided by the combination of transcriptomic, proteomic and metabolomic profiling. 236 

Other examples of multi-omic data integration in this way that have informed cancer as well as rare 237 

and common diseases have recently been reviewed(53).  238 

Personalised nutrition and consumer genomics 239 

As in medicine, the meaning of ‘personalised’ in the context of nutrition has been 240 

deliberated(54-56); and terminology (Table 1) continues to evolve with the more recent use of the term 241 

‘precision’ emerging in the scientific literature in the last five years (Fig. 3). Analogous to the 242 

ambitions of precision medicine, the aim of personalised or precision nutrition is to tailor nutritional 243 

advice/diets to optimize health based on an individual’s characteristics(55). For a nutritionist or clinical 244 

dietitian, these characteristics have long included anthropometry, dietary history and preferences, 245 

information on lifestyle and physical activity, along with clinical parameters and biochemical markers 246 

of nutritional status. But after the sequencing of the human genome came an era of increasing research 247 

interest in nutrigenomics and nutrigenetics (Table 1 and Fig. 3), and the accompanied vision of 248 

providing personalised dietary advice to prevent diet-related diseases based on genetic differences 249 

and the predicted response to nutrients derived from genetic profiling(57,58). Notably, while scientists 250 

have remained largely circumspect about clinical utility and the extent to which genetic or polygenic 251 



risk scores can explain overall risk for common, multifactorial diseases (e.g. obesity, diabetes, fatty 252 

liver) or micronutrient status(59,60); an astonishing number of direct-to-consumer (DTC) genetic 253 

testing companies have proliferated offering personalised nutrition advice to individuals based on 254 

nutrigenetic testing via the internet(61).  255 

Public interest in these commercial genetic services has rapidly grown in the last five years. 256 

The number of genotyped consumers started rising exponentially in 2016 and surpassed 10 million 257 

worldwide at the beginning of 2018(62). The notorious, ultimately temporary, US Food and Drug 258 

Administration (FDA) ban of medically-relevant testing by 23andMe in 2013, means the majority of 259 

DTC genomic tests sold to date were marketed and sold as ancestry services(59,62). In addition to 260 

raising a host of ethical questions around data privacy, forensic genealogy, personal identity and 261 

race(63,64), this prompted a very market-based work around the regulatory legislation for health-based 262 

genetic testing(65). Specifically, a crop of third-party interpretation services have arisen that will 263 

interpret raw genotyping data that is provided to consumers by many DTC ancestry genetic services 264 

without having done the testing per se(65,66). Separately, in a much criticized reversal, in 2017 the US 265 

FDA approved a 23andMe genetic health risk test of limited clinical sensitivity (limited positive and 266 

negative predictive values)(67). Moreover, a significant number of companies are marketing ‘health 267 

and wellness insights’ that are largely unregulated and relate to common (nutrition-related) disease 268 

risk(61,68). In a survey of 246 companies offering online DNA testing, done in 2016, a majority (136) 269 

offered some form of health-related testing service(61). Seventy four companies offered nutrigenetic 270 

testing, many of which also offer tailored diet services, food supplements and/or meal plans; and 38 271 

companies offered tests for athletic ability.  272 

There are multiple scientific concerns with the personalised nutrition promises offered by 273 

DTC nutrigenetic testing companies, given the marked absence of published studies assessing either 274 

analytical or clinical/predictive validity of these tests. A merely analytical concern is the reliability 275 

of the sequence data in the first instance. A concerning study of confirmatory testing in referrals to a 276 

clinical diagnostic laboratory, found 40% of variants in a variety of genes reported in DTC raw data 277 

to be false positives(66). In terms of predictive validity, the majority of genetic risk estimates returned 278 

by DTC companies are based on only a select number of genetic variants. This is in contrast to the 279 

numerous (>100) genetic loci identified by the largest (>100,000 individuals) GWAS done to date, 280 

which still only explain a fraction (20% or less) of the heritability of common diet-related chronic 281 

diseases such as obesity and type 2 diabetes(69,70). Moreover, very recently, completely novel genome-282 

wide polygenic risk scores (GPRS) have been developed for obesity, type 2 diabetes and other 283 

common diseases; facilitated by improved algorithms and very large GWAS studies(71,72). In the case 284 

of obesity, the GPRS was comprised of 2.1 million common genetic variants and significantly 285 



outperformed a score that incorporated only the 141 independent variants that had reached genome-286 

wide levels of statistical significance in the prior GWAS(69,72). A 13 kg gradient in weight and a 25-287 

fold gradient in risk of severe obesity was observed in adults across GPRS deciles. Although practical 288 

considerations on how such a GPRS might be implemented and inform interventions for obesity 289 

prevention remain(73); and methodological and clinical utility questions have been raised(74) about an 290 

equally novel GPRS for coronary artery disease(71). Nonetheless these GPRS studies call into question 291 

any DTC genetic test and personalised nutrition advice around body weight made on a handful of 292 

SNPs.  293 

Related to nutrition status, and equally suspect in terms of predictive validity, is personalised 294 

nutrition advice from multiple companies claiming to help consumers “maintain healthy levels of 295 

vitamins, antioxidants & minerals” on the basis of a handful of genetic variants. In contrast to obesity 296 

and type 2 diabetes, to date much fewer loci have been associated with biomarkers of micronutrient 297 

status(60). These explain only a small fraction of variance in micronutrient status. Moreover, not all 298 

vitamins and minerals have been studied, and there are no data examining ‘response’ to 299 

intake/supplementation. Perhaps even more relevant for the concept of personalised nutrition beyond 300 

the much debated ‘missing heritability’(75), is that both micronutrient status and the risk for many 301 

common diseases is only partially determined by genetics; with environment playing a critical and 302 

often dominant role. Similar to the heterogeneity observed in response to pharmaceutical agents in 303 

clinical trials, humans are inherently variable in their responses to food and nutrient/dietary 304 

interventions(56,76,77). Beyond genetics, inter-individual variation in a host of factors (sex, habitual 305 

dietary habits, physical activity, epigenetics, gut microbiome) effect an individual’s absorption, 306 

distribution, metabolism and excretion of dietary compounds and metabolites(78). 307 

Wearables and digital health 308 

In addition to advances in multi-omic technologies, the miniaturization of electronic devices in the 309 

last decade in particular has heralded tremendous innovation in, and adoption of, mobile technologies, 310 

sensors and wearable devices. Globally, smartphone (considered mobile computing devices) usage 311 

increased by 40% between 2016 and 2020, and an estimated 45% of the world’s population now owns 312 

one(79). Worldwide revenue for the wearable tech industry was estimated at $23 billion dollars in 2018 313 

and is anticipated to reach $54 billion by 2023(80). So-called ‘wearables’ now permit individuals to 314 

track a multitude of parameters including diet, physical activity and sleep; and physiological 315 

measurements such as heart rate, body temperature, blood pressure, oxygen saturation and glucose 316 

levels(81). Although heartrate monitors for exercise have existed since the early eighties, the first clip-317 

on accelerometer activity tracker, the Fitbit, appeared on the market in 2007. By 2013 Fitbit (and 318 

other companies) had released a wristband tracker capable of measuring sleep as well as activity.  319 



Since then there has been a market explosion of DTC wearables and medical devices, along 320 

with associated apps, aimed at encouraging individuals to actively participate in their own 321 

health/wellness behaviour change or disease management(81,82). These have included most recently, 322 

smartwatches capable of taking an electrocardiogram reading with an accompanying app running an 323 

FDA approved algorithm for recognition of atrial fibrillation(83). By 2015, there were more than 500 324 

different health care-related wearables available facilitating real-time data collection of lifestyle and 325 

physiological measurements both by individuals and for research(84,85). In addition to the application 326 

of new technologies for dietary assessment(86), of particular relevance to personalised nutrition and 327 

the goal of prevention of diet-related diseases, has been the improvements in wearable devices for 328 

continuous glucose monitoring (CGM). In DTC fashion, data may now be released to a user’s phone 329 

and sensors can now be worn for up to two weeks. This lengthening of sensor life has greatly 330 

facilitating recent research efforts using CGM, which have underscored the remarkable high level of 331 

variability between people in response to the same meals(76,87).  332 

In a notable study for computationally driven personalised nutrition, Zeevi and coworkers, 333 

developed a predictive algorithm for postprandial glycemic response through profiling an 800-person 334 

Israeli cohort without diabetes who underwent CGM for 7 days, while recording food intake, activity 335 

and sleep in real-time via their mobile devices(76). The machine learning algorithm integrated gut 336 

microbiome data derived from 16S rRNA metagenomics profiling, as well as blood parameters, 337 

anthropometrics, dietary intakes, activity, and CGM data profiled over the week in the development 338 

cohort and first validated in an independent cohort of 100 individuals. The algorithm’s predictions 339 

for glycemic responses correlated significantly better to the CGM measured responses than 340 

‘carbohydrate counting’ (R. 0.71 vs. 0.38) or caloric counting (R. 0.33) models often utilized; a result 341 

that has now been replicated in independent American populations(88,89). Lastly, in a smaller 342 

randomized trial in 26 individuals, it was shown that the algorithm could accurately predict ‘good’ 343 

and ‘bad’ diets. In a one-week crossover design participants had lower glycemic responses and 344 

favourable changes in the composition of their gut microbiomes in response to their predicted ‘good 345 

diet’ in comparison to a week on the ‘bad diet’.  346 

Although the interpretation of the high interindividual variability in glycemic response 347 

observed by Zeevi et al. has been criticized(90), multiple research studies since have also concluded 348 

that there is both high intraindividual and interindividual variation in glycemic response to both 349 

standardized meals and mixed diets(87,91,92); with implications for the often debated concepts of 350 

glycemic index and glycemic load(93,94). Notably, the work by Hall and colleagues also applied a data 351 

driven approach to CGM defining ‘glucotypes’ based on how variable the glycemic responses were 352 

in aggregate overtime for 57 healthy participants with no diagnosis of diabetes (on screening 5 met 353 



criteria for type 2 diabetes and 14 had prediabetes). They show a relationship between their novel 354 

machine learning classification (low, moderate, severe) of glucose variability and clinical measures 355 

of aberrant glucose metabolism. Where severe glycemic variability correlated with higher values for 356 

fasting glucose, oral glucose tolerance test HbA1c and the steady-state plasma glucose test for insulin 357 

resistance. Similar to the work by Zeevi, they also demonstrated tremendous heterogeneity in the 358 

glycemic responses to three standardized meals of either bread and peanut butter, a protein bar or 359 

cornflakes and milk. While the expected relationship between carbohydrate/fiber content of the meals 360 

and severity of glycemic response was observed (cornflakes conspicuously producing a ‘severe’ 361 

response for 80% of participants), for each meal there were high and low responders in terms of blood 362 

glucose spikes. The authors show that even among their normoglycemic participants, those classed 363 

with a ‘severe glucotype’ had glycemic responses in prediabetic and diabetic ranges 15% and 2% of 364 

the time. However, whether these individuals are at increased risk for developing diabetes or other 365 

metabolic diseases requires long-term follow up studies, as does investigation of the utility of CGM 366 

for early risk detection.  367 

A critical question for public health is whether or not insights from ‘big data’ generated from 368 

wearables and multi-omic profiling can empower individuals to behavioural change. Two other recent 369 

studies, remarkable for their scope of phenotyping and big data analyses orchestrated, suggest that, 370 

at least in an intervention setting, changes with health benefits can be motivated(95,96). The first of 371 

these, the Pioneer 100 Wellness Project, was the realization of Leroy Hood’s aforementioned vision 372 

of P4 medicine(95). Here, 108 individuals had their whole genomes sequencing and were followed for 373 

a 9-month period with daily activity tracking and extensive clinical testing along with analyses of 374 

their metabolomes, proteomes, and microbiomes. Significantly, participants also received monthly 375 

behavioural coaching on ‘actionable possibilities’ based on their profiles to improve their individual 376 

health via diet, exercise, stress management, dietary supplements, or doctor referral as necessary. 377 

Longitudinal improvement in a host of clinical analytes related to nutrition, diabetes, cardiovascular 378 

disease and inflammation were observed. The second study, was an extension of Michael Snyder’s 379 

self-piloted systems approach to 109 individuals at risk for type 2 diabetes.(96). Participants’ genomes 380 

were whole exome sequenced and participants were followed prospectively with multi-omic profiling 381 

done quarterly for up to 8 years (median, 2.8 years) along with CGM and activity monitoring. Again, 382 

unique insights into temporal changes in molecular physiology were made along with ‘actionable 383 

health discoveries’ for participants, and 81% reported some change in their diet and exercise habits.  384 

Conclusions and future directions 385 

The last two decades have brought unprecedented advances in omics, wearables, and digital 386 

technologies. Undoubtedly, systems integration of multiple technologies has generated mechanistic 387 



insights and informed the evolution of precision medicine and personalised nutrition. These have 388 

prompted the recent launching of the most ambitious precision medicine cohort study to date, the All 389 

of Us Research Program, which aims to collect genetic and health data (utilising electronic health 390 

records, digital health technology), along with biospecimens for biomarker analyses, from at least 391 

one million diverse individuals in the United States(97). Nonetheless, work to date has been limited to 392 

the ground-breaking discovery studies led by a few elite research groups, and significant research and 393 

societal challenges yet need to be overcome prior to widespread adoption in clinical and public health 394 

settings(98,99). Considerable data integration and methodological issues in study design must be 395 

addressed. In addition to issues around data dimensionality reduction, data storage, handling and 396 

sharing, there are are complex challenges regarding study design, analytical assumptions and 397 

statistical validation(100). Prediction modelling is suspect to algorithmic bias, black box issues, 398 

confounders and the fundamental problem of causal inference(98).  399 

In addition, pertinent ethical issues involve who can access new technologies, and how 400 

commercial companies are storing, using and/or re-mining consumer data. Substantial questions 401 

about efficacy in terms of long-term behavioural change and health outcomes remain. Related 402 

concerns are those of overdiagnosis in healthy individuals(101), cost-benefit and impacts on health 403 

inequalities. Dietary and lifestyle choices are influenced by a broad range of socioeconomic factors 404 

including income, education, social networks and the built environment(102). Tackling diet related 405 

disease requires close scrutiny of the social determinants of food environments and population-wide, 406 

public health policies aimed at reducing health inequalities(103). Ultimately, financial investment in 407 

the future of precision medicine and digital health must be balanced with limited resources available 408 

for public health initiatives.  409 
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Table 1. Terminology 427 

Term Definition 

Stratified medicine 

Defines current practice in pharmaceutical medicine of identifying and 
subgrouping patients for optimal treatment with least toxicity. 
Subgroups can be based on a combination of disease subtypes, clinical 
features, demographics, risk profiles, biomarkers or molecular assays. 

Precision medicine 

Goes beyond stratification to tailoring treatments to individuals based 
on molecular features of the patient and the disease. Implies use of 
multi-omics data in assessing molecular features and companion 
diagnostic/prognostic indicators to predict toxicity and likely responders 
and non-responders. Preferred term over personalised medicine(21,22).  

Personalised medicine 
Taken and used by many to mean the same thing as precision medicine. 
No longer preferred because of its widespread commercial use and 
concerns it implies unique treatments can be designed for individuals(21). 

Systems biology 
An interdisciplinary field that combines molecular and computational 
approaches to study systemic network behaviours and predict the 
behavior of biological systems (cells, tissues, organisms) as a whole.  

Systems medicine 
Subfield of systems biology underpinning precision medicine and the 
integration of clinical and multi-omic data into predictive models. 

Systems pharmacology 

Subfield of systems biology focused on characterising mechanisms of 
drug actions, interactions and off-target effects at a systems level. 
Extends physiologically based pharmacokinetic-pharmacodynamic 
modelling, incorporating genetic variation and whole!cell metabolism.  

Nutrigenomics 

In broadest sense the study of any interactions between nutrition and the 
genome; implies use of high-throughput tools of functional 
genomics(105). While often used interchangeably with nutrigenetics, can 
be differentiated as the study of the effect of nutrients/diet on gene 
expression and, consequently, the proteome and the metabolome(106,107).  

Nutrigenetics  
The study of how genetic variation influences differential response to 
nutrients/diet and risk of nutrition-related disease.  

Stratified nutrition 

Nutrition advice/intervention given to groups of individuals based on 
shared characteristics. For example, population-level dietary guidelines 
are stratified accounting for sex, age, pregnancy/breastfeeding; and 
dietetic/clinical nutrition tailors on phenotypic and disease information.  

Personalised nutrition 

The tailoring of nutritional advice/diets to optimize health based on an 
individual’s characteristics. At increasing depths of personalization may 
include dietary, phenotypic and genotypic information(56). 
Commercially infers nutrigenetic profiling.  

Precision nutrition 
More recent term, used interchangeably with personalised nutrition but 
implying an in-depth quantitative level of understanding(55) from genetic 
and digital health profiling (e.g. dietary, physical activity, glucose). 

  428 



 429 

Fig 1. Recent growth in publications in PubMed database using specified terms. (a) Number of 430 

publications using adjectives “precision”, “personalised”, “systems” or “stratified” in conjunction 431 

with medicine since 2007. Data were generated by performing a PubMed [All Fields] search with 432 

terms searched in quotes e.g “precision medicine”. Personalised medicine was searched as: 433 

“personalised medicine” OR “personalized medicine”. (b) Growth in publications in genomics, 434 

transcriptomics, proteomics and metabolomics since 2001. Genomics, proteomics and metabolomics 435 

were searched as: “genomics”[MeSH] OR “genomics”[All Fields]. Transcriptomics was searched as: 436 

“gene expression profiling”[MeSH] OR “transcriptomics”[All Fields]. 437 
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 439 

Fig 2. Systems approaches integrate genetic, clinical and ‘omic’ data into in silico models. 440 

Simulations aim to understand network dynamics and predict the response to dietary or 441 

pharmaceutical intervention accounting for an individual’s genetics, lifestyle, life stage, health and/or 442 

disease state. Reprinted with permission(47). 443 
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 445 

Fig 3. Increase in publications in PubMed database related to nutrigenomics and stratified, 446 

personalised, or precision nutrition. In the cases of stratified, personalised and precision nutrition, 447 

terms were searched in quotes e.g “precision nutrition”[All fields]. Personalised nutrition was 448 

searched as: “personalised nutrition” OR “personalized nutrition”. Nutrigenomics/nutrigenetics was 449 

searched as: “nutrigenomics”[MeSH] OR "nutrigenomics"[All Fields] OR "nutrigenetics"[All 450 

Fields]. 451 

  452 



 453 
Figure Legends 454 

 455 

Fig 1. Recent growth in publications in PubMed database using specified terms. (a) Number of 456 

publications using adjectives “precision”, “personalised”, “systems” or “stratified” in conjunction 457 

with medicine since 2007. Data were generated by performing a PubMed [All Fields] search with 458 

terms searched in quotes e.g “precision medicine”. Personalised medicine was searched as: 459 

“personalised medicine” OR “personalized medicine”. (b) Growth in publications in genomics, 460 

transcriptomics, proteomics and metabolomics since 2001. Genomics, proteomics and metabolomics 461 

were searched as: “genomics”[MeSH] OR “genomics”[All Fields]. Transcriptomics was searched as: 462 

“gene expression profiling”[MeSH] OR “transcriptomics”[All Fields]. 463 

Fig 2. Systems approaches integrate genetic, clinical and ‘omic’ data into in silico models. 464 

Simulations aim to understand network dynamics and predict the response to dietary or 465 

pharmaceutical intervention accounting for an individual’s genetics, lifestyle, life stage, health and/or 466 

disease state. Reprinted with permission(48). 467 

Fig 3. Increase in publications in PubMed database related to nutrigenomics and stratified, 468 

personalised, or precision nutrition. In the cases of stratified, personalised and precision nutrition, 469 

terms were searched in quotes e.g “precision nutrition”[All fields]. Personalised nutrition was 470 

searched as: “personalised nutrition” OR “personalized nutrition”. Nutrigenomics/nutrigenetics was 471 

searched as: “nutrigenomics”[MeSH] OR "nutrigenomics"[All Fields] OR "nutrigenetics"[All 472 

Fields]. 473 

  474 



References 475 
 476 

1. The White House: Office of the Press Secretary (2000) President Clinton announces the completion 477 
of the first survey of the entire human genome. Available online: 478 
https://clintonwhitehouse3.archives.gov/WH/New/html/20000626.html Accessed on 479 
December 30 2019  480 

2. Lander ES, Linton LM, Birren B et al. (2001) Initial sequencing and analysis of the human genome. 481 
Nature 409, 860-921. 482 

3. Venter JC, Adams MD, Myers EW et al. (2001) The sequence of the human genome. Science 291, 483 
1304-1351. 484 

4. Roberts L, Davenport RJ, Pennisi E et al. (2001) A history of the Human Genome Project. Science 485 
291, 1195. 486 

5. Collins FS, Morgan M& Patrinos A (2003) The Human Genome Project: lessons from large-scale 487 
biology. Science 300, 286-290. 488 

6. Green ED, Watson JD& Collins FS (2015) Human Genome Project: Twenty-five years of big 489 
biology. Nature 526, 29-31. 490 

7. Venter JC, Smith HO& Adams MD (2015) The Sequence of the Human Genome. Clin Chem 61, 491 
1207-1208. 492 

8. Wetterstrand KA DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program 493 
(GSP) Available at: www.genome.gov/sequencingcostsdata Accessed [October 14 2019]  494 

9. Mardis ER (2011) A decade's perspective on DNA sequencing technology. Nature 470, 198-203. 495 
10. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 496 

437, 1299-1320. 497 
11. Abecasis GR, Auton A, Brooks LD et al. (2012) An integrated map of genetic variation from 498 

1,092 human genomes. Nature 491, 56-65. 499 
12. Pennisi E (2007) Breakthrough of the year. Human genetic variation. Science 318, 1842-1843. 500 
13. Summerskill W (2008) Paper of the year 2007. The Lancet 371, 370-371. 501 
14. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases 502 

of seven common diseases and 3,000 shared controls. Nature 447, 661-678. 503 
15. Bycroft C, Freeman C, Petkova D et al. (2018) The UK Biobank resource with deep phenotyping 504 

and genomic data. Nature 562, 203-209. 505 
16. Turnbull C, Scott RH, Thomas E et al. (2018) The 100 000 Genomes Project: bringing whole 506 

genome sequencing to the NHS. BMJ 361, k1687. 507 
17. Stevens EA& Rodriguez CP (2015) Genomic medicine and targeted therapy for solid tumors. J 508 

Surg Oncol 111, 38-42. 509 
18. Prat A, Pineda E, Adamo B et al. (2015) Clinical implications of the intrinsic molecular subtypes 510 

of breast cancer. Breast 24 Suppl 2, S26-35. 511 
19. Association of the British Pharmaceutical Industry (2014) Stratified medicine in the NHS: An 512 

assessment of the current landscape and implementation challenges for non-cancer 513 
applications. Available online: https://www.abpi.org.uk/publications/stratified-medicine-in-514 
the-nhs/ Accessed on October 14 2019.  515 

20. Erikainen S& Chan S (2019) Contested futures: envisioning "Personalized," "Stratified," and 516 
"Precision" medicine. New Genet Soc 38, 308-330. 517 

21. National Research Council (US) Committee on A Framework for Developing a New Taxonomy 518 
of Disease (2011) Toward Precision Medicine: Building a Knowledge Network for 519 
Biomedical Research and a New Taxonomy of Disease. Washington (DC): National 520 
Academies Press (US) National Academy of Sciences. 521 

22. Yates LR, Seoane J, Le Tourneau C et al. (2018) The European Society for Medical Oncology 522 
(ESMO) Precision Medicine Glossary. Ann Oncol 29, 30-35. 523 

23. Lederberg J& McCray AT (2001) 'Ome Sweet 'Omics--A Genealogical Treasury of Words. 524 
Scientist 15[7], 8. 525 



24. Dettmer K, Aronov PA& Hammock BD (2007) Mass spectrometry-based metabolomics. Mass 526 
Spectrom Rev 26, 51-78. 527 

25. Cousins RJ, Blanchard RK, Popp MP et al. (2003) A global view of the selectivity of zinc 528 
deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc Natl 529 
Acad Sci U S A 100, 6952-6957. 530 

26. Moore JB, Blanchard RK& Cousins RJ (2003) Dietary zinc modulates gene expression in murine 531 
thymus: results from a comprehensive differential display screening. Proc Natl Acad Sci U S 532 
A 100, 3883-3888. 533 

27. Cousins RJ, Blanchard RK, Moore JB et al. (2003) Regulation of zinc metabolism and genomic 534 
outcomes. J Nutr 133, 1521s-1526s. 535 

28. Abbott A (2001) Workshop prepares ground for human proteome project. Nature 413, 763. 536 
29. Hanash S& Celis JE (2002) The Human Proteome Organization: a mission to advance proteome 537 

knowledge. Mol Cell Proteomics 1, 413-414. 538 
30. Wishart DS (2007) Proteomics and the human metabolome project. Expert Rev Proteomics 4, 539 

333-335. 540 
31. HUPO--the Human Proteome organization (2010) A gene-centric human proteome project. Mol 541 

Cell Proteomics 9, 427-429. 542 
32. Omenn GS, Lane L, Overall CM et al. (2019) Progress on Identifying and Characterizing the 543 

Human Proteome: 2019 Metrics from the HUPO Human Proteome Project. J Proteome Res 544 
18, 4098-4107. 545 

33. Stern CD (2019) The 'Omics Revolution: How an Obsession with Compiling Lists Is Threatening 546 
the Ancient Art of Experimental Design. Bioessays 41, e1900168. 547 

34. Spanos C, Maldonado EM, Fisher CP et al. (2018) Proteomic identification and characterization 548 
of hepatic glyoxalase 1 dysregulation in non-alcoholic fatty liver disease. Proteome Sci 16, 4. 549 

35. Rosen R (1968) Systems Theory and Biology. Proceedings of the 3rd Systems Symposium, 550 
Cleveland, Ohio, Oct. 1966. M. D. Mesarović, Ed. Springer-Verlag, New York, 1968. xii + 551 
403 pp., illus. $16. Science 161, 34-35. 552 

36. Ideker T, Galitski T& Hood L (2001) A new approach to decoding life: systems biology. Annu 553 
Rev Genomics Hum Genet 2, 343-372. 554 

37. Kitano H (2002) Systems biology: a brief overview. Science 295, 1662-1664. 555 
38. Moore JB& Weeks ME (2011) Proteomics and systems biology: current and future applications 556 

in the nutritional sciences. Adv Nutr 2, 355-364. 557 
39. Fisher CP, Kierzek AM, Plant NJ et al. (2014) Systems biology approaches for studying the 558 

pathogenesis of non-alcoholic fatty liver disease. World J Gastroenterol 20, 15070-15078. 559 
40. Kitano H (2002) Computational systems biology. Nature 420, 206-210. 560 
41. Agrawal A (1999) New institute to study systems biology. Nat Biotechnol 17, 743-744. 561 
42. Hood LE (2018) Lessons Learned as President of the Institute for Systems Biology (2000-2018). 562 

Genom Proteom Bioinf 16, 1-9. 563 
43. Hood L, Heath JR, Phelps ME et al. (2004) Systems biology and new technologies enable 564 

predictive and preventative medicine. Science 306, 640-643. 565 
44. Hood L (2008) A personal journey of discovery: developing technology and changing biology. 566 

Annu Rev Anal Chem 1, 1-43. 567 
45. Desiere F (2004) Towards a systems biology understanding of human health: interplay between 568 

genotype, environment and nutrition. Biotechnol Annu Rev 10, 51-84. 569 
46. van Ommen B& Stierum R (2002) Nutrigenomics: exploiting systems biology in the nutrition 570 

and health arena. Curr Opin Biotechnol 13, 517-521. 571 
47. Stephanou A, Fanchon E, Innominato PF et al. (2018) Systems Biology, Systems Medicine, 572 

Systems Pharmacology: The What and The Why. Acta Biotheor. 573 
48. Moore JB (2019) From sugar to liver fat and public health: systems biology driven studies in 574 

understanding non-alcoholic fatty liver disease pathogenesis. Proc Nutr Soc 78, 290-304. 575 



49. Maldonado EM, Leoncikas V, Fisher CP et al. (2017) Integration of Genome Scale Metabolic 576 
Networks and gene regulation of metabolic enzymes with Physiologically Based 577 
Pharmacokinetics. CPT: Pharmacometrics Sys Pharmacol. 578 

50. Maldonado EM, Fisher CP, Mazzatti DJ et al. (2018) Multi-scale, whole-system models of liver 579 
metabolic adaptation to fat and sugar in non-alcoholic fatty liver disease. NPJ Syst Biol Appl 580 
4, 33. 581 

51. Chen R, Mias GI, Li-Pook-Than J et al. (2012) Personal omics profiling reveals dynamic 582 
molecular and medical phenotypes. Cell 148, 1293-1307. 583 

52. Schmidt S (2019) Congratulations to Michael Snyder for receiving the 2019 George W. Beadle 584 
Award! Genes to Genomes. Available online: http://genestogenomes.org/snyder-beadle/ 585 
Accessed January 22 2020  586 

53. Karczewski KJ& Snyder MP (2018) Integrative omics for health and disease. Nat Rev Genet 19, 587 
299-310. 588 

54. Gibney MJ& Walsh MC (2013) The future direction of personalised nutrition: my diet, my 589 
phenotype, my genes. Proc Nutr Soc 72, 219-225. 590 

55. Ordovas JM, Ferguson LR, Tai ES et al. (2018) Personalised nutrition and health. BMJ 361, 591 
bmj.k2173. 592 

56. Gibney ER (2019) Personalised nutrition - phenotypic and genetic variation in response to dietary 593 
intervention. Proc Nutr Soc, 1-10. 594 

57. Muller M& Kersten S (2003) Nutrigenomics: goals and strategies. Nat Rev Genet 4, 315-322. 595 
58. Trayhurn P (2003) Nutritional genomics - "Nutrigenomics". Br J Nutr 89, 1-2. 596 
59. Torkamani A, Wineinger NE& Topol EJ (2018) The personal and clinical utility of polygenic risk 597 

scores. Nat Rev Genet 19, 581-590. 598 
60. Dib MJ, Elliott R& Ahmadi KR (2019) A critical evaluation of results from genome-wide 599 

association studies of micronutrient status and their utility in the practice of precision 600 
nutrition. Br J Nutr 122, 121-130. 601 

61. Phillips AM (2016) 'Only a click away - DTC genetics for ancestry, health, love...and more: A 602 
view of the business and regulatory landscape'. Appl Transl Genom 8, 16-22. 603 

62. Khan R& Mittelman D (2018) Consumer genomics will change your life, whether you get tested 604 
or not. Genome Biol 19, 120. 605 

63. Blell M& Hunter MA (2019) Direct-to-Consumer Genetic Testing's Red Herring: "Genetic 606 
Ancestry" and Personalized Medicine. Front Med  6, 48. 607 

64. Aldous P (2019) 10 Years Ago, DNA Tests Were The Future Of Medicine. Now They’re A Social 608 
Network — And A Data Privacy Mess. Available online: 609 
https://www.buzzfeednews.com/article/peteraldhous/10-years-ago-dna-tests-were-the-610 
future-of-medicine-now Accesed on January 11 2020  611 

65. Saey TH (2018) What consumer DNA data can and can’t tell you about your risk for certain 612 
diseases. Science News. Available at: https://www.sciencenews.org/article/health-dna-613 
genetic-testing-disease Accessed January 20 2020.  614 

66. Tandy-Connor S, Guiltinan J, Krempely K et al. (2018) False-positive results released by direct-615 
to-consumer genetic tests highlight the importance of clinical confirmation testing for 616 
appropriate patient care. Genet Med 20, 1515-1521. 617 

67. Wynn J& Chung WK (2017) 23andMe Paves the Way for Direct-to-Consumer Genetic Health 618 
Risk Tests of Limited Clinical Utility. Ann Intern Med 167, 125-126. 619 

68. Kalokairinou L, Howard HC, Slokenberga S et al. (2018) Legislation of direct-to-consumer 620 
genetic testing in Europe: a fragmented regulatory landscape. J Community Genet 9, 117-132. 621 

69. Locke AE, Kahali B, Berndt SI et al. (2015) Genetic studies of body mass index yield new insights 622 
for obesity biology. Nature 518, 197-206. 623 

70. Fuchsberger C, Flannick J, Teslovich TM et al. (2016) The genetic architecture of type 2 diabetes. 624 
Nature 536, 41-47. 625 



71. Khera AV, Chaffin M, Aragam KG et al. (2018) Genome-wide polygenic scores for common 626 
diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50, 627 
1219-1224. 628 

72. Khera AV, Chaffin M, Wade KH et al. (2019) Polygenic Prediction of Weight and Obesity 629 
Trajectories from Birth to Adulthood. Cell 177, 587-596.e589. 630 

73. Torkamani A& Topol E (2019) Polygenic Risk Scores Expand to Obesity. Cell 177, 518-520. 631 
74. Curtis D (2019) Clinical relevance of genome-wide polygenic score may be less than claimed. 632 

Ann Hum Genet 83, 274-277. 633 
75. Genin E (2020) Missing heritability of complex diseases: case solved? Hum Genet 139, 103-113. 634 
76. Zeevi D, Korem T, Zmora N et al. (2015) Personalized Nutrition by Prediction of Glycemic 635 

Responses. Cell 163, 1079-1094. 636 
77. Drew JE (2019) Challenges of the heterogeneous nutrition response: interpreting the group mean. 637 

Proc Nutr Soc, 1-10. 638 
78. de Roos B& Brennan L (2017) Personalised Interventions-A Precision Approach for the Next 639 

Generation of Dietary Intervention Studies. Nutrients 9. 640 
79. Turner A (2020) How many smartphones are in the world? Available online: 641 

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world Accessed January 23 642 
2020.  643 

80. Globaldata (2019) Wearable Tech – Thematic Research. Available at: 644 
https://store.globaldata.com/report/gdtmt-tr-s219--wearable-tech-thematic-research/ 645 
Accessed January 20 2020  646 

81. Yetisen AK, Martinez-Hurtado JL, Unal B et al. (2018) Wearables in Medicine. Adv Mater, 647 
e1706910. 648 

82. Dias D& Paulo Silva Cunha J (2018) Wearable Health Devices-Vital Sign Monitoring, Systems 649 
and Technologies. Sensors 18. 650 

83. Isakadze N& Martin SS (2019) How useful is the smartwatch ECG? Trends Cardiovasc Med. 651 
84. Li X, Dunn J, Salins D et al. (2017) Digital Health: Tracking Physiomes and Activity Using 652 

Wearable Biosensors Reveals Useful Health-Related Information. PLoS Biol 15, e2001402. 653 
85. Witt D, Kellogg R, Snyder M et al. (2019) Windows Into Human Health Through Wearables 654 

Data Analytics. Curr Opin Biomed Eng 9, 28-46. 655 
86. Forster H, Walsh MC, Gibney MJ et al. (2016) Personalised nutrition: the role of new dietary 656 

assessment methods. Proc Nutr Soc 75, 96-105. 657 
87. Hall H, Perelman D, Breschi A et al. (2018) Glucotypes reveal new patterns of glucose 658 

dysregulation. PLoS Biol 16, e2005143. 659 
88. Mendes-Soares H, Raveh-Sadka T, Azulay S et al. (2019) Model of personalized postprandial 660 

glycemic response to food developed for an Israeli cohort predicts responses in Midwestern 661 
American individuals. Am J Clin Nutr 110, 63-75. 662 

89. Mendes-Soares H, Raveh-Sadka T, Azulay S et al. (2019) Assessment of a Personalized Approach 663 
to Predicting Postprandial Glycemic Responses to Food Among Individuals Without 664 
Diabetes. JAMA Netw Open 2, e188102. 665 

90. Wolever TM (2016) Personalized nutrition by prediction of glycaemic responses: fact or fantasy? 666 
Eur J Clin Nutr 70, 411-413. 667 

91. Matthan NR, Ausman LM, Meng H et al. (2016) Estimating the reliability of glycemic index 668 
values and potential sources of methodological and biological variability. Am J Clin Nutr 104, 669 
1004-1013. 670 

92. Meng H, Matthan NR, Ausman LM et al. (2017) Effect of macronutrients and fiber on 671 
postprandial glycemic responses and meal glycemic index and glycemic load value 672 
determinations. Am J Clin Nutr 105, 842-853. 673 

93. Meng H, Matthan NR& Lichtenstein AH (2018) Reply to Brighenti F et al. Am J Clin Nutr 107, 674 
846-847. 675 

94. Vega-Lopez S, Venn BJ& Slavin JL (2018) Relevance of the Glycemic Index and Glycemic Load 676 
for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients 10. 677 



95. Price ND, Magis AT, Earls JC et al. (2017) A wellness study of 108 individuals using personal, 678 
dense, dynamic data clouds. Nat Biotechnol 35, 747-756. 679 

96. Schussler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ et al. (2019) A longitudinal big data 680 
approach for precision health. Nat Med 25, 792-804. 681 

97. The All of Us Research Program Investigators (2019) The “All of Us” Research Program. NEJM 682 
381, 668-676. 683 

98. Prosperi M, Min JS, Bian J et al. (2018) Big data hurdles in precision medicine and precision 684 
public health. BMC Med Inform Decis Mak 18, 139. 685 

99. Wang DD& Hu FB (2018) Precision nutrition for prevention and management of type 2 diabetes. 686 
Lancet Diabetes Endocrinol 6, 416-426. 687 

100. Misra BB, Langefeld CD, Olivier M et al. (2018) Integrated Omics: Tools, Advances, and Future 688 
Approaches. J Mol Endocrinol. 689 

101. Vogt H, Green S, Ekstrom CT et al. (2019) How precision medicine and screening with big data 690 
could increase overdiagnosis. BMJ 366, l5270. 691 

102. Moore JB& Boesch C (2019) Getting energy balance right in an obesogenic world. Proc Nutr 692 
Soc 78, 259-261. 693 

103. Moore JB& Fielding BA (2019) Taxing confectionery, biscuits, and cakes to control obesity. 694 
BMJ 366, l5298. 695 

104. Cousins RJ (2016) Driving Along the Zinc Road. Annu Rev Nutr 36, 1-15. 696 
105. Mathers JC (2017) Nutrigenomics in the modern era. Proc Nutr Soc 76, 265-275. 697 
106. Mutch DM, Wahli W& Williamson G (2005) Nutrigenomics and nutrigenetics: the emerging 698 

faces of nutrition. FASEB J 19, 1602-1616. 699 
107. Ferguson LR, De Caterina R, Gorman U et al. (2016) Guide and Position of the International 700 

Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1 - Fields of Precision 701 
Nutrition. J Nutrigenet Nutrigenomics 9, 12-27. 702 

 703 


