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A Computationally Efficient Method for
Probabilistic Parameter Threshold Analysis
for Health Economic Evaluations

Zoë Pieters, Mark Strong, Virginia E. Pitzer,

Philippe Beutels, and Joke Bilcke

Background. Threshold analysis is used to determine the threshold value of an input parameter at which a health care

strategy becomes cost-effective. Typically, it is performed in a deterministic manner, in which inputs are varied one

at a time while the remaining inputs are each fixed at their mean value. This approach will result in incorrect thresh-

old values if the cost-effectiveness model is nonlinear or if inputs are correlated. Objective. To propose a probabilistic

method for performing threshold analysis, which accounts for the joint uncertainty in all input parameters and

makes no assumption about the linearity of the cost-effectiveness model. Methods. Three methods are compared: 1)

deterministic threshold analysis (DTA); 2) a 2-level Monte Carlo approach, which is considered the gold standard;

and 3) a regression-based method using a generalized additive model (GAM), which identifies threshold values

directly from a probabilistic sensitivity analysis sample. Results. We applied the 3 methods to estimate the minimum

probability of hospitalization for typhoid fever at which 3 different vaccination strategies become cost-effective in

Uganda. The threshold probability of hospitalization at which routine vaccination at 9 months with catchup cam-

paign to 5 years becomes cost-effective is estimated to be 0.060 and 0.061 (95% confidence interval [CI], 0.058–

0.064), respectively, for 2-level and GAM. According to DTA, routine vaccination at 9 months with catchup cam-

paign to 5 years would never become cost-effective. The threshold probability at which routine vaccination at 9

months with catchup campaign to 15 years becomes cost-effective is estimated to be 0.092 (DTA), 0.074 (2-level),

and 0.072 (95% CI, 0.069–0.075) (GAM). GAM is 430 times faster than the 2-level approach. Conclusions. When the

cost-effectiveness model is nonlinear, GAM provides similar threshold values to the 2-level Monte Carlo approach

and is computationally more efficient. DTA provides incorrect results and should not be used.
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Background

Health economic evaluations compare 2 or more alterna-

tive courses of action in terms of costs and consequences.

For instance, cost-effectiveness analyses can evaluate if a

new health care strategy is preferred over the existing

strategy (i.e., considering it cost-effective) by comparing

costs and health benefits of the strategies.1 However, the

decisions are often surrounded by considerable uncer-

tainty, which arises from insufficient information about

important aspects of the disease process and the different

health care strategies under study. The assessment of an

uncertain decision involves expressing how confident

we are about the best course of action given current
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information and identifying the most important targets

for information gathering through new research.2

Several methods have been developed to characterize

the sensitivity and uncertainty in health care decisions.1

Traditionally, the impact of parameter uncertainty has

been explored using a deterministic approach. Input

parameter values are varied one at a time, or several at a

time, over plausible ranges to test a model outcome’s

responsiveness to these variations.3 A special case of

deterministic sensitivity analysis is deterministic thresh-

old analysis (DTA), which determines the input para-

meter value at which the preferred health care strategy

changes, and is referred to as ‘‘the parameter threshold

value.’’1,2,4 Threshold analysis is typically used to deter-

mine the price at which a health care strategy becomes

cost-effective, but it can also be used, for instance, to

determine the minimum disease incidence at which a

health care strategy would be cost-effective in a given set-

ting.5 Deterministic threshold analysis is straightforward

for analysts and easily understood by decision makers.

However, one of the major problems with only accounting

for uncertainty in a deterministic way is that the estimated

cost-effectiveness, and its associated threshold values, can

be incorrect in the case of a nonlinear relationship between

the input parameters and the model’s outcomes.1

Probabilistic sensitivity analysis (PSA) can overcome

this limitation.2,3 PSA accounts for the plausible values

of uncertain input parameters as well as how likely each

of these values are. The result of a PSA can be used to

obtain an unbiased estimate of the expected value of the

cost-effectiveness outcome and a quantification of the

uncertainty around this outcome. In addition, the rela-

tionship between the uncertain input parameters and the

corresponding uncertainty around the cost-effectiveness

of a health care strategy can be assessed using a range of

statistical methods, including value of information analy-

sis.6 McCabe et al.7 proposed a probabilistic threshold

analysis based on a 2-level Monte Carlo approach. In

complex health economic evaluations, a 2-level Monte

Carlo simulation can be computationally demanding.

We propose an efficient alternative to DTA, namely, a

generalized additive model (GAM), that gives correct

threshold values in the case of a nonlinear relationship

between inputs and outputs of the health economic

model while accounting for the uncertainty in all other

input parameters. We evaluate the accuracy and compu-

tational efficiency of GAM in estimating threshold values

by comparing it with the 2-level Monte Carlo probabilis-

tic threshold analysis. Our working example is a recent

peer-reviewed health economic evaluation of vaccination

against typhoid fever. In this example, there is a non-

linear relationship between the uncertain input para-

meters and the corresponding cost-effectiveness of the

typhoid vaccination program, which is due in part to the

use of a dynamic transmission model.8

Methods

Net Benefit as Measure for Cost-Effectiveness

A health economic evaluation compares the costs and

health effects (such as deaths or disability-adjusted life-

years [DALYs] averted) of alternative courses of action

(including ‘‘current practice’’). As such, it informs deci-

sion makers about the relative efficiency of a change in

policy (e.g., the adoption of a new policy option). The

relative efficiency of one policy option v. another is usu-

ally expressed as an incremental cost-effectiveness ratio

(ICER) or as an incremental net monetary (or health)

benefit. Throughout this article, we use incremental net

monetary benefit (INB) as the measure of cost-

effectiveness so that the threshold methods we propose

are general applicable. Indeed, when uncertainty is

accounted for in a probabilistic way, the expected ICER

is only interpretable when comparing 2 decision options

(e.g., new strategy v. current strategy) and when all incre-

mental costs and effects are positive.9 The INB is defined

as

INBd ¼ lDEd � DCd

¼ lðEd � Ed0Þ � ðCd � Cd0Þ
ð1Þ

where INBd represents the incremental net benefit for

option dðd ¼ 1; . . . ;DÞ, one of D alternative health care

strategies under consideration, relative to the baseline
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strategy, d0; l represents the decision maker’s maximum

willingness to pay (WTP) per unit gain in health; DEd is

the incremental health benefit of option d compared to

the baseline strategy; and DCd is the difference in costs

between strategy d and the baseline strategy. The opti-

mal health care strategy is that which has the highest

INB.1,9,10 The current strategy is typically chosen as the

baseline strategy, but any strategy can be chosen, as long

as the same baseline strategy is chosen for all options

compared.

Usually, there is considerable uncertainty around the

expected values of input parameters due to limited evi-

dence on the expected costs and effects of a health care

strategy d. Therefore, the expected INBd will also be sur-

rounded with uncertainty. We account for this uncer-

tainty by assigning appropriate probability distributions

to the input parameters (u), denoted by pðuÞ.1 We sam-

ple K values from pðuÞ and calculate the K correspond-

ing INBd values. The most cost-effective strategy is the

strategy with the highest expected incremental net bene-

fit. We adapt equation (1):

Eu½INBdðuÞ�’
1

K

XK

k¼1

lðE
ðkÞ
d � E

ðkÞ
d0
Þ � ðC

ðkÞ
d � C

ðkÞ
d0
Þ

n o
,

ð2Þ

where Eu½INBdðuÞ� denotes the expected INB of health

care strategy d based on distribution of all parameters.

Definition of Threshold Value

The threshold value for a parameter ui is the value u
�
i , for

which the following 2 conditions hold:

1. We can identify decision options, d0 and d00, where

d0 6¼ d00, which have expected net benefits, condi-

tional on ui, that are equal, that is,

Eu�ijui ½INBd0 ðui; u�iÞ� ¼ Eu�ijui ½INBd00ðui; u�iÞ�: ð3Þ

2. There must be no decision option with expected net

benefit, conditional on ui, that is greater than that

for d0, that is,

Eu�ijui ½INBd0ðui; u�iÞ� � Eu�ijui ½INBdðui; u�iÞ� ð4Þ

for all d,

where ui in equations (3) and (4) has an appropriate

probability distribution (pðuiÞ) to characterize its uncer-

tainty. The first condition determines that u�i is a value

for which decision option d0 has the same conditional

expected net benefit as option d00 and is therefore a

threshold value, and the second condition determines

that u�i is a threshold value where the optimal health care

strategy changes. Determining the threshold value, u�i , in

the net benefit framework leads to a dependence between

u�i and the chosen WTP value, l.

Deterministic Threshold Analysis

Deterministic threshold analysis seeks to identify the

value of a parameter for which the optimal health care

strategy changes while keeping all other input parameters

constant. More formally, the deterministic parameter

threshold value (u�i ) must satisfy 2 conditions:

1. ui is the parameter for which we can identify policy

options, d0 and d00, where d0 6¼ d00, which have INB,

conditional on ui, that are equal, that is,

INBd0ðui;E½u�i�Þ ¼ INBd00ðui;E½u�i�Þ: ð5Þ

2. There must be no decision option with net benefit

(conditional on ui) greater than that for d0, that is,

INBd0ðui;E½u�i�Þ � INBd00ðui;E½u�i�Þ ð6Þ

for all d,

where ui in equations (5) and (6) refers to point estimates.

The first condition determines that u�i is a parameter

value where decision option d0 has the same INB (evalu-

ated at the mean values of u�i) as option d00, and the sec-

ond condition determines that u�i is a threshold value,

where the optimal health care strategy changes to d0.

Again, the threshold value, u�i , depends on the chosen

WTP value, l, in the net benefit framework.

The analysis proceeds as follows11,12:

1. Define the uncertain parameter of interest, ui.

2. Fix remaining input parameters u�iði 6¼ �iÞ at their

expected values.

3. The threshold value u�i can be obtained in the follow-

ing ways:

(a) Graphically: Vary the values ui (generally 5–10

different values) and assess the impact on the

cost-effectiveness (e.g., plot INBd for each

health care strategy d relative to a baseline

option d ¼ 0 as a function of the different val-

ues of the uncertain parameter of interest); the

point at which any of the top 2 lines cross is u�i .

Pieters et al. 671



(b) Algebraically: Solve the linear system composed

of 2 health economic models, one for d0 and the

other for d00, to find u�i satisfying equations (5)

and (6). Solve the linear system for any combi-

nation of d0 and d00. Make sure that u�i is

obtained within the range of plausible values of

ui.

(c) Numerically:

i Vary over K (k ¼ 1; . . . ;K) values of ui and
record the corresponding INB d, for each d.

ii Sort the values of INBd , for each d, accord-

ing to ascending ui values.

iii Set INB
ðkÞ
d ¼ 0 for the ‘‘baseline’’ decision

option d = 0.

iv Determine the health care strategy with the

highest INBd for u
ðkÞ
i , dðkÞ ¼ argmaxdINB

ðkÞ
d .

v Determine any value, k�, such that dðk
�Þ 6¼

dðk
� + 1Þ.

vi Each k� will define a threshold value u�i that

lies in the interval u
ðk�Þ
i \u�i\u

ðk� + 1Þ
i (see

note).

Note: There may be no values of k�, in which

case, there are no threshold values, and the opti-

mal health care strategy does not depend on the

value of the input parameter ui considered. Or

there may be a single value of k�, in which case

there is a single threshold value, u�i . Since the

closest we can get to u�i is u
ðk�Þ
i or u

ðk� + 1Þ
i , we

approximate u�i by the midpoint of the interval.

If the cost-effectiveness measure (INBd) has a nonlinear

relationship with the input parameters u�i, then

Eu�ijui ½INBdðui; u�iÞ� 6¼ INB dðui;E½u�i�Þ: ð7Þ

Consequently, a deterministic threshold analysis will

result in an incorrect estimate of the threshold value u�i .
13

Probabilistic Parameter Threshold Analysis

When a deterministic threshold analysis results in incor-

rect estimates for u�i , one can rely on a probabilistic

parameter threshold analysis. The advantage of a prob-

abilistic parameter threshold analysis is that it incorpo-

rates the joint uncertainty in all parameters, resulting in

the correct estimation of u�i even when nonlinear rela-

tionships exist between INB d and u�i. The key to find-

ing the value u�i that satisfies the conditions (3) and (4)

lies in finding a way to estimate Eu�ijui ½INB dðui; u�iÞ�.
The most obvious way to do this is via Monte Carlo

sampling, but this leads to a ‘‘nested’’ 2-level scheme in

which values of ui are sampled in an outer loop, and con-

ditional on this, values of u�i are sampled in an inner

loop. The existing 2-level Monte Carlo approach is com-

putationally costly; therefore, we propose an alternative

method to estimate Eu�ijui ½INBdðui; u�iÞ� using a non-

parametric regression-based method, called a GAM, first

proposed by Strong et al.14

Two-Level Monte Carlo Approach

We can estimate the term Eu�ijui ½INBdðui; u�iÞ� in equa-

tions (3) and (4) using a 2-level Monte Carlo approach.

A detailed overview of the approach is given in

Algorithm 1.

This approach is very computationally intensive for all

models except for very simple models due to the need to

Algorithm 1 Two-Level Monte Carlo Scheme for Estimating

Threshold Value u�i for Parameter ui

1 Sample K times from the distribution of the parameter of
interest pðuiÞ.

2 Order sampled values such that

u
ð1Þ
i \u

ð2Þ
i \ . . .\u

ðK�1Þ
i \u

ðKÞ
i .

3 for k ¼ 1 to K do
4 for j ¼ 1 to J do

5 Sample u
ðj;kÞ
�i from the conditional distribution of the

remaining parameters, pðu�iju
ðkÞ
i Þ(the same parameter

uncertainty distributions are assumed as in PSA).
6 Evaluate the incremental net benefit function for each

d and store INBdðu
ðkÞ
i ;u

ðj;kÞ
�i Þ.

7 end
8 Compute and store inner loop mean for each of the

alternative strategies d ¼ 1; . . . ;D,

INB
ðkÞ

d ¼ 1

J

PJ
j¼1

INBdðu
ðkÞ
i ; u

ðj;kÞ
�i Þ. These are estimates of

the conditional expected value Eu�ijui ½INBdðu
ðkÞ
i ;u�iÞ�.

9 Set INB
ðkÞ

d ¼ 0 for the ‘‘baseline’’ decision option d ¼ 0.
10 Determine the policy option with the highest expected

INB given u
ðkÞ
i , dðkÞ ¼ arg maxdINB

ðkÞ

d .
11 end

12 Determine any value(s), k�, such that dðk
�Þ 6¼ dðk

� + 1Þ (see
note).

13 Each k� will define a threshold value u�i that lies in the

interval u
ðk�Þ
i \u�i\u

ðk� + 1Þ
i .

Note: There may be no values of k�, in which case there are no

threshold values, and the optimal health care strategy does not depend

on the value of the input parameter ui considered. There may be a

single value of k�, in which case, there is a single threshold value, u�i .

Or, there may be multiple values of k� and therefore multiple

threshold values. We approximate u�i by the midpoint of the interval

u
ðk�Þ
i ; u

ðk� + 1Þ
i

n o
. This is justified as long as sufficient values are

sampled from the distribution of ui.
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evaluate the incremental net benefit function K3 J

times.14–16 Ideally, K should span the range of the para-

meter of interest ui, and K and J should be large. In

practice, a stepwise approach can be used to determine

the area of the input parameter (outer loop) containing

the threshold value. Indeed, due to the complexity of the

chosen health economic evaluation (section ‘‘A Real-

World Example’’), we were only able to sample 7 values

from pðuiÞ (K ¼ 7) in order to keep J large (J ¼ 10; 000).
At first, we used a broad range of ui and narrowed the

range until we had a precise (up to 3 decimals) parameter

threshold value. Since we performed only a limited num-

ber of outer iterations, we refer to this approach as the

adjusted 2-level Monte Carlo approach. Last, we recom-

mend the values of J be varied until a stable u�i is

obtained.

Regression-Based Approach Using a Generalized

Additive Model

As an alternative to the 2-level Monte Carlo approach,

we propose a meta-model approach, based on a GAM,

summarizing the relationship between the inputs and the

outputs postsimulation. This regression-based approach

only requires the PSA sample to correctly estimate u�i
while satisfying the conditions in (3) and (4).

A GAM allows for flexible specification of the rela-

tionship between the INBd and the input parameters u

for each health care strategy under consideration. Hence,

detailed parametric specifications are not needed. First,

we define the PSA sample as a set of K samples from the

joint distribution of the model input parameters,

fu1; . . . ; uKg, and the corresponding evaluations of the

INB function fINB dðu
1Þ; . . . ; INBdðu

KÞg for each

health care strategy d ¼ 1; . . . ;D compared to a baseline

option d0. In general, a GAM is defined as follows:

INBd(u
k
i )=E

u�iju
k
i
½INBd(u

k
i , u�i)�+ e

k ð8Þ

= gd(u
k
i )+ e

k , ð9Þ

where equation (8) expresses the INBd as the sum of the

conditional expectation we require and a mean-zero

error term e, and equation (9) reexpresses the conditional

expectation as an unknown function of ui. See Strong

et al.14 for a detailed derivation.

We do not know the form of the unknown function

gdðuiÞ, but we do expect it to be smooth, so we choose to

model it using a GAM. Different choices can be made

for the smooth function sð�Þ (equation (10)), but a typical

choice is a third-order polynomial spline. A third-order

polynomial spline is a curve constructed from sections of

cubic polynomials that are joined together end to end at

a series of ‘‘knots.’’ Any cubic spline can also be repre-

sented by the weighted sum of a series of ‘‘basis’’ func-

tions (in the same way that any sound wave can be

constructed from the sum of a series of sine waves of dif-

ferent frequencies) Thus, we can write

gdðuiÞ ¼ sðuiÞ ¼
XL

l¼1

blblðuiÞ; ð10Þ

where blð�Þ are basis functions, with corresponding

weights bl that are estimated from the data. The value L

and smoothing parameter control the model’s smooth-

ness. The latter adds a penalty to the likelihood of the

spline to suppress overly flexible terms. In the implemen-

tation of the GAM in the mgcv package in R, the optimal

penalty is by default learned from the data using cross-

validation, while the value L must be prechosen and is

fixed to be large.17 In our example, we chose cubic regres-

sion splines with dimension 20 and smoothing parameter

obtained using cross-validation to model the data. We

obtained the basis and the dimension after a sensitivity

analysis. Changing both the basis and the dimension did

not influence the threshold value. Therefore, we opted

for a combination of basis and dimension that provided

a stable threshold value and was not too computationally

demanding at the same time (for a detailed overview, see

Appendix C, available online). For a more extended

explanation on GAMs, we refer to other sources.14,17

We propose algorithm 2 to obtain the parameter

threshold value, u�i , using a GAM.

Quantification of Uncertainty

We use a bootstrap procedure to provide a measure of

precision and accuracy of the parameter threshold value

in the presence of possible model violations. We opted

for a nonparametric bootstrap because it does not rely

on asymptotic normality and hence will be applicable for

a wider range of applications. If asymptotic normality

holds, Strong et al.14 described a method to obtain the

standard errors directly from the GAM. The nonpara-

metric bootstrap relies on sampling with replacement

from the observed PSA sample fu; INBg. We sample B

times from the PSA sample, generating b ¼ 1; . . . ;B
bootstrap sampled versions of the PSA sample

fub; INBbg. For each of the bootstrap samples, the para-

meter threshold value, u�b, is calculated using algorithm

Pieters et al. 673



2. The uncertainty about the threshold value can then be

expressed through a ð1� aÞ% interval from u�ða=2Þ to

u�ð1�a=2Þ where u�ða=2Þ represents the a=2 percentile of the

bootstrap values u�b.19,20

Depending on the bootstrap sample, a different num-

ber of parameter threshold values might arise compared

to the original PSA sample, particularly when the input

parameter does not influence the cost-effective strategy

(i.e., low expected value of obtaining perfect information

[EVPPI] value). To acknowledge this type of uncertainty

about the number of threshold values, we denoted the

number of bootstrap samples resulting in the same num-

ber of threshold values as the original PSA sample as

Bretain. The lower Bretain, the more uncertainty there is

about the number of threshold values. If a bootstrap

sample produces a different number of threshold values

than the original PSA sample, then this bootstrap sample

is discarded before calculating the bootstrap uncertainty

interval.

A Real-World Example

We chose a health economic evaluation comparing

typhoid conjugate vaccination strategies in Gavi-eligible

countries as a real-world example, in which there is a

nonlinear and even nonmonotone relationship between

some of the uncertain input parameters and the corre-

sponding cost-effectiveness of the typhoid vaccination

program. This example allowed us to illustrate the vari-

ous possible outcomes of threshold analysis. The health

economic evaluation aimed to inform decision makers

on the cost-effectiveness of 3 different vaccination strate-

gies compared to each other and to no vaccination (no

vac; d0): routine vaccination of infants at 9 months of

age or routine vaccination at 9 months with a catchup

campaign up to either 5 years (RC5) or 15 years of age

(RC15). In this article, threshold values were determined

for an evaluation comparing only 2 health care strategies

(vaccination strategy RC15 compared to the baseline

option [no vac]) and for an evaluation comparing 3

health care strategies (vaccination strategies RC5 and

RC15 v. the baseline option [no vac]), since routine vac-

cination without catchup was never the optimal strategy

in the original analysis.8

We chose to obtain threshold values for uncertain

input parameters for 3 countries (Nicaragua, Uganda,

and Cambodia), assuming WTP values per DALY

averted that allowed us to illustrate different possible

outcomes (no threshold value, a single threshold value,

and more than 1 threshold value).

We assessed parameter threshold values for 3 uncer-

tain input parameters: typhoid case fatality risk when

hospitalized (CFRhosp), the probability of hospitalization

for typhoid fever (PrðhospÞ), and the duration of illness

for patients seeking medical care (DOIcare) (Table 1). The

case fatality risk and probability of hospitalization were

chosen because in some settings, they had a nonlinear,

respectively, nonmonotone relationship with the cost-

effectiveness outcome and had a big impact on the opti-

mal health care strategy (i.e., they had the highest

EVPPI), for the countries and WTP values we consid-

ered. Hence, threshold values for these parameters

informed changes to the optimal strategy. The parameter

duration of illness was chosen because it had a much

lower EVPPI value for the countries and WTP values

considered and hence less impact on the optimal strategy.

This parameter was chosen to illustrate the performance

of the different threshold methods when a threshold

value was not necessarily expected.

Table 1 shows the uncertainty distributions for the 3

input parameters considered in this article. The uncer-

tainty distributions around the expected case fatality risk

Algorithm 2 Regression-Based Scheme for Estimating

Threshold Value u�i for Parameter ui

1 Sample K times from the joint distribution of all
parameters pðuÞ.

2 Order sampled values of u with respect to ui such that

u
ð1Þ
i \u

ð2Þ
i \ . . .\u

ðK�1Þ
i \u

ðKÞ
i .

3 for k ¼ 1 to K do
4 Evaluate the incremental net benefit function for each d

and store INBdðu
ðkÞÞ. This is the standard ‘‘PSA’’ sample.

5 end
6 for d ¼ 1 to D do

7 Regress INBdðu
ð1;...;KÞÞ on u

ð1;...;KÞ
i using a GAM (R code

available in Appendix A, available online).

8 Compute the regression fitted values, dINB
ð1; ... ;KÞ
d . These

are estimates of the conditional expected values

Eu�ijui ½INBdðu
ð1; ... ;KÞ
i ;u�iÞ�.

9 end
10 for k ¼ 1 to K do

11 Set dINB
ðkÞ
d ¼ 0 for the ‘‘baseline’’ decision option d ¼ 0.

12 Determine the policy option with the highest expected

INB given u
ðkÞ
i , dðkÞ ¼ argmaxd dINB

ðkÞ
d .

13 end

14 Determine any value(s), k�, such that dðk
�Þ 6¼ dðk

� + 1Þ (see
note).

15 Each k� will define a threshold value u�i that lies in the

interval u
ðk�Þ
i \u�i\u

ðk� + 1Þ
i (A function, written in R,18 is

available in Appendix A, available online).

Note: There may be no values of k�, in which case, there are no

threshold values. There may be a single value of k�, in which case,

there is a single threshold value, u�i . Or, there may be multiple values

of k� and therefore multiple threshold values. We approximate u�i by

the midpoint of the interval u
ðk�Þ
i ; u

ðk� + 1Þ
i

n o
.
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and probability for hospitalization are right skewed.

Their means and standard errors are estimated from a

random-effects meta-analysis. As a consequence of the

logistic regression model, the standard errors are only

available on the logit scale. After sampling from the nor-

mal distribution on the logit scale, the values are trans-

formed to their original scale using the inverse logit

( ex

1+ ex
). The mean and standard error of DOIcare are also

estimated using a random-effects meta-analysis. Since

DOIcare is Poisson distributed, we sample from a Gamma

distribution. The sampled values are rescaled such that

DOIcare is expressed in years.8

Results

The appropriate method to perform threshold analysis

depends on the features of the health economic model.

Figure 1 presents a flowchart describing the most suit-

able method to carry out parameter threshold analysis.

A GAM would be the most suitable method to obtain

parameter threshold values in our example due to the

nonlinear relationship between the uncertain input para-

meters and INBd . However, we perform all 3 methods—

a deterministic threshold analysis, an adjusted 2-level

Monte Carlo method, and a GAM—to compare the

threshold value(s) obtained by each method. Table 2

shows the parameter threshold values for different sce-

narios. We kept the size of the samples equal in all sce-

narios and for all input parameters (K ¼ 10; 000 for

GAM and deterministic threshold analysis, K ¼ 7 and

J ¼ 10; 000 for the adjusted 2-level Monte Carlo analy-

sis). The same holds for the number of values for K that

were used in the adjusted 2-level Monte Carlo approach

(K ¼ 7) (Appendix B, available online).

Deterministic threshold analysis is computationally

faster than the adjusted 2-level Monte Carlo approach

but slower than GAM. In this example, it consistently

overestimates the value of u�i (i.e., it overestimates the

Table 1 Distributional Characteristics of the Uncertain Input Parameters

Parameter Mean Median 95% Credible Interval Uncertainty Distribution

CFRhosp 0.059 0.044 0.008–0.196 logit�1ðNð�3:07; 0:87Þ
PrðhospÞ 0.061 0.038 0.004–0.249 logit�1ðNð�3:25; 1:20Þ
DOIcare (years) 0.043 0.043 0.034–0.054 Gammað16; 2Þ=365

Is the health economic model a linear model? 

YesNo

Determinis�c threshold analysis

OR

Monte Carlo approach: instead of 

an inner loop, ‘plug in’ the 

expected values of the input 

parameter in health economic 

model.

Are none of the model input 

parameters correlated?

Yes

No
2-level Monte Carlo approach

Is the 2-level Monte Carlo 

approach too computa�onally 

expensive?

No

Yes

Generalized Addi�ve Model (GAM)

and bootstrap procedure
Is (Are) the threshold value(s) stable? 

Yes

Finished

No, then increase K or J

Figure 1 A guide for performing parameter threshold analysis.
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Table 2 Comparison of the Parameter Threshold Values Obtained with DTA, Adjusted 2-Level MC Approach, and GAM for Different Settingsa

DTA Adjusted 2-Level MC GAM

K ¼ 10; 000 K ¼ 7, J ¼ 10; 000 Cubic Regression Splines, L ¼ 20, K ¼ 10; 000

ui EVPPI u�i dðk
� + 1Þ Timeb u�i dðk

� + 1Þ Timeb u�i dðk
� + 1Þ Timeb 95% CI Bretain=B Timeb

Nicaragua, WTP = $1000, 1 health care strategy (D ¼ 1; RC15) compared to no vaccination (d0)
CFRhosp 700,094 0.062 RC15 16.6 0.040 RC15 235.6 0.036 RC15 0.6 0.035–0.039 998/1000 159.5
PrðhospÞ 1,276,475 0.052 RC15 14.4 0.043 RC15 220.0 0.041 RC15 0.6 0.040–0.043 1000/1000 160.2
DOIcare 0 Nonec No vac 14.6 None RC15 231.0 None RC15 0.5 NA 391/1000 159.2

Nicaragua, WTP = $1000, 2 health care strategies (D ¼ 2; RC5 and RC15) compared to no vaccination (d0)
CFRhosp 1,860,599 0.113 RC15 15.9 0.069 RC15 219.2 0.064 RC15 0.7 0.060–0.071 983/1000 199.1
PrðhospÞ 2,665,148 0.093 RC15 14.5 0.074 RC15 207.7 0.070 RC15 0.6 0.066–0.073 1000/1000 189.9
DOIcare 0 None No vac 16.7 None No vac 214.3 None No vac 0.6 NA 191/1000 189.6

Uganda, WTP = $800, 2 health care strategies (D ¼ 2; RC5 and RC15) compared to no vaccination (d0)
CFRhosp 18,451,230 0.109 RC15 23.3 0.056

0.070
RC5
RC15

241.0 0.058
0.071

RC5
RC15

0.6 0.052–0.061
0.065–0.076

965/1000 199.2

PrðhospÞ 25,018,120 0.092 RC15 14.9 0.060
0.074

RC5
RC15

214.8 0.061
0.072

RC5
RC15

0.6 0.058–0.064
0.069–0.075

999/1000 194.5

DOIcare 4256 None No vac 14.9 None RC5 217.3 0.033 RC5 0.7 0.030–0.061 98/1000 202.1
Cambodia, WTP = $100, 2 health care strategies (D ¼ 2; RC5 and RC15) compared to no vaccination (d0)

CFRhosp 2,788,364 0.114 RC15 16.8 0.053
0.080

RC5
RC15

227.5 0.055
0.083

RC5
RC15

0.6 0.052–0.062
0.076–0.091

955/1000 188.9

PrðhospÞ 4,837,512 0.083 RC15 16.5 0.059
0.083

RC5
RC15

226.8 0.060
0.085

RC5
RC15

0.7 0.058–0.062
0.081–0.090

998/1000 191.4

Cambodia, WTP = $8000, 2 health care strategies (D ¼ 2; RC5 and RC15) compared to no vaccination (d0)
CFRhosp 0 None RC15 13.7 None RC15 219.1 None RC15 0.6 NA 966/1000 188.5
PrðhospÞ 0 None RC15 14.5 None RC15 218.6 None RC15 0.6 NA 714/1000 198.4

CI, confidence interval; DTA, deterministic threshold analysis; EVPPI, expected value of partial perfect information; GAM, generalized additive model; MC, Monte Carlo; NA, not

applicable when no parameter threshold value is obtained; No vac, no vaccination; RC5, routine vaccination with catchup campaign to 5 years; RC15, routine vaccination with

catchup campaign up 15 years; WTP = willingness to pay for 1 disability-adjusted life-year averted (in USD).
aui ¼ parameter of interest; u�i ¼ threshold value(s), if present, for ui; d

ðk� + 1Þ ¼ health care strategy with the highest expected incremental net monetary benefit (INB) at u
ðk� + 1Þ
i . If not

mentioned otherwise, the health care strategy at dk
�

is no vaccination; Bretain = number of bootstrap samples retained to calculate the 95% CI; EVPPI quantifies the value of obtaining

perfect information on the parameter of interest. The EVPPI is calculated based on Strong et al.14

bIndicate the time needed to perform, respectively, the method and the bootstrap (GAM: excluding the time needed to obtain the probabilistic sensitivity analysis sample).
c‘‘None’’ indicates that no parameter threshold value was obtained, meaning that the health care strategy with the highest expected INB remains the same and is denoted under

dðk
� + 1Þ.

6
7
6



minimum value at which a vaccination strategy is pre-

ferred over no vaccination). Where the adjusted 2-level

Monte Carlo approach and GAM result in 2 parameter

threshold values, deterministic threshold analysis is only

able to obtain 1. According to the deterministic thresh-

old analysis, RC5 will never be the optimal health care

strategy.

GAM is able to calculate the threshold value(s) in a

fraction of the time that is needed for the adjusted 2-level

Monte Carlo approach. Although the bootstrap proce-

dure is time-consuming, GAM is still faster than the

adjusted 2-level Monte Carlo approach.

There is a good agreement between GAM and the

adjusted 2-level Monte Carlo approach. In most settings,

the 2 approaches provide a parameter threshold value

that is precise up to 2 decimals, with the exception of the

input parameter DOIcare in Uganda. In Uganda (WTP =

$800, D ¼ 2), the adjusted 2-level Monte Carlo approach

shows no parameter threshold value, whereas GAM does

suggest a threshold value; however, the 95% CI of the

threshold DOIcare in the GAM approach spans almost

the entire range of possible values for that parameter,

indicating a lot of uncertainty about the parameter

threshold value. The proportion of bootstrap samples

retained was low for DOIcare in Nicaragua and Uganda,

indicating uncertainty about whether and how many

threshold values could be identified. Therefore, we do

not recommend to interpret threshold values when the

number of bootstrap samples retained is low. For more

technical details, see Appendix D (available online).

For Cambodia, we considered 2 different WTP values,

$100 and $8000. When we considered a WTP value of

$100, both the adjusted 2-level Monte Carlo approach

and GAM find 2 threshold values. For the higher WTP

value, no parameter threshold values are found. This was

expected, since the EVPPI was low at the higher WTP

value.

Discussion

We propose GAM as a novel regression-based approach

to calculate a parameter’s threshold value(s) in health

economic evaluations. The GAM approach only requires

the PSA sample of a cost-effectiveness analysis and is

flexible, easy to use, and computationally efficient. In

our example, GAM does not provide incorrect threshold

values or fails to find threshold values (as the determinis-

tic approach does). GAM also outperforms the 2-level

Monte Carlo approach in terms of computational time.

GAM has several advantages over the existing meth-

ods. First, GAM results in the same threshold values as

the adjusted 2-level Monte Carlo approach when cost-

effectiveness measures are nonlinearly related to the

inputs, unlike the deterministic threshold analysis. Our

example (Table 2) showed that threshold values were

overestimated and that not all threshold values were

identified with the deterministic threshold approach.

Therefore, threshold values obtained from a determinis-

tic threshold analysis should not be interpreted when

there is a nonlinear relationship between inputs and out-

puts. Second, GAM is easy to use because it relies on the

PSA sample to account for uncertainty in the input para-

meters’ distribution, and there is no need to assume plau-

sible values as in the deterministic threshold approach.21

Third, GAM is computationally fast compared to the 2-

level Monte Carlo approach. In order to perform the 2-

level Monte Carlo approach, we needed at least 208 sec-

onds for K ¼ 7. The time needed to perform a GAM,

including the bootstrap procedure, was at most 199 sec-

onds (Table 2). Last, threshold values obtained by GAM

were quite robust against changes in dimension and the

smoothing function chosen (Appendix C, available

online).

There are some limitations of this work. First, we per-

formed the comparison of the 3 threshold approaches on

only 1 example. However, this proved to be sufficient to

show the incorrectness in the deterministic threshold val-

ues. Second, we were limited in the number of samples

we could use in the 2-level Monte Carlo approach

because running our health economic evaluation was

computationally too intensive. Thus, we could not per-

form a complete 2-level Monte Carlo method on a nor-

mal personal computer. The focus of this article was not

to optimize the 2-level Monte Carlo method but rather

to use it as a comparison for the alternatively proposed

GAM method. Complex evaluations, including dynamic

transmission models, numerous intervention options,

multiple countries, and considering a long time horizon,

will become more common in the future. This in itself is

an important reason for using GAM. But increasing the

computational efficiency of complex models will also be

helpful here. Third, although we use bootstrapping to

provide a measure of uncertainty about the threshold

value (and therefore avoid making assumptions of nor-

mality and homoscedasticity of the regression residuals),

the nonparametric bootstrap itself has a limitation due

to the nature of the statistic we are interested in. Due to

sampling with replacement, it is possible that more or

fewer parameter threshold values arise compared to the

number obtained from the original PSA sample.

Parameter threshold analysis provides a useful and

intuitively appealing source of information to inform
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policy makers and developers of technology. For example,

threshold analysis can help to identify the maximum price

that a government might be willing to pay for a drug.

Such information can be used to inform research and

development prior to drug licensing or price setting prior

to marketing but also—and probably currently most

frequently—to inform price negotiations when drugs (or

other health care technology) are considered for reimbur-

sement.22 We showed that this price could be under- or

overestimated when based on deterministic threshold anal-

ysis. Furthermore, while EVPPI allows for the identifica-

tion of uncertain input parameters that affect most on the

optimal strategy,2 threshold analysis can single out more

precisely at which values of an uncertain parameter the

optimal strategy changes. This could inform the design of

new trials to obtain more information about a particular

uncertain parameter. Also, the threshold parameter value

directly informs researchers and decision makers about the

(change in) optimal strategy when a more precise estimate

becomes available for a particular uncertain parameter

based on new evidence. We believe that parameter thresh-

old analysis has a wide range of applications, even beyond

the field of health economics.

However, we recommend caution in instances where

the parameter of interest is a noninfluential parameter

(i.e., when it has a low EVPPI value). As shown in our

example for DOIcare in the setting of Uganda (WTP =

$800, D ¼ 2), it is possible to obtain a threshold value

for a noninfluential input parameter using GAM, but

knowing the threshold value may have little consequence

for policy makers, as the 95% CI covers almost the

whole range of parameter values. In general, threshold

values will be most relevant for uncertain input para-

meters that have an important impact on the optimal

strategy of choice, and although GAM works well, it

remains important to carefully interpret the results. If

Bretain is low, we do not recommend the interpretation of

the threshold value and the corresponding 95% CI due

to the uncertainty.

In conclusion, we provide a flexible, easy to code, and

fast alternative to the 2-level Monte Carlo approach for

parameter threshold analysis. The GAM method pro-

vides correct estimates of parameter threshold value(s)

when there is a nonlinear relationship between the uncer-

tain input parameter of interest and the outcome of the

health economic model. In this study, we only considered

the threshold value for a single parameter. In the future,

the GAM-based method could be extended to incor-

porate more than 1 parameter to conduct simultaneous

multiparameter threshold analysis.
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