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ABSTRACT 

A similarity theory, proposed with a limited success some years ago and subsequently refined in a more 

complex form in further efforts, has been applied in a recent published work to perform Direct Numerical 

Simulations (DNS) of heat transfer to turbulent flow, with four different fluids at supercritical pressure. The 

obtained results showed an exceptionally good behaviour of the theory in the addressed cases, suggesting 

that the initial proposal, though it had only limited success in the cases considered at that time, possibly 

caught some of the basic features to be preserved in scaling. 

The theory, based on dimensionless definitions that provided a reasonable degree of universality in the 

analysis of flow stability, found immediate difficulties to be applied with a comparable success to heat 

transfer problems. These difficulties mainly stemmed from the fact that, while it is relatively easy to scale 

fluid density, having a major role in stability analyses, it is definitely much harder to scale at a comparable 

level of accuracy the fluid thermo-physical properties, relevant in heat transfer. The very good results 

obtained in the recent work by DNS stimulated new reflections that shed light on the merits and limitations 

on the old theory.  

The present paper, starting from these recent results and discussing them in front of RANS calculations, is 

aimed to highlight the promising features of this theory, envisaging the missing steps that should be 

completed to make it more general, in order to give to its consequences a higher level of universality. 
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1. INTRODUCTION 

Similarity theories are among the most powerful means for quantitatively predicting physical phenomena, 

e.g., by setting up suitable engineering correlations. Identifying relevant dimensionless parameters, often in 

the frame of geometrical similarity, is a way of translating conclusions obtained from a limited number of 

experiments to more general cases, thus improving both phenomena understanding and model predictive 

capabilities. In all the fields of physics and engineering, dimensionless numbers are introduced to translate 

the relations between competing phenomena, to identify prevailing effects, phenomenological thresholds 

and the relative relevance of driving forces, in the hope to get an essential picture of the observed data. As 

known, this methodology can be used on the basis of well assessed models or even in the lack of exact 

theories.  

Fluids at supercritical pressure exhibit a considerable level of complexity in their behaviour, partly shared 

with the even more complex case of two-phase flows. Notwithstanding the lack of interfaces and of the 

related surface tension effects, the steep changes they show in thermodynamic and thermo-physical 

properties, e.g., as a function of temperature at a constant pressure, make it much harder to establish 

analogies between heat and mass transfer than in single-phase fluids. As a consequence, despite of numerous 

efforts in the past, reliable correlations for heat transfer and turbulence models for CFD predictions are still 

only applicable in simple cases, mostly for normal or enhanced heat transfer conditions, while deteriorated 

heat transfer represents still a challenge for most models, with only a few exceptions applicable in a limited 

range of operating conditions. This is of course a problem in the design of equipment making use of 

supercritical pressure fluids, including future nuclear Generation IV Supercritical Water Reactors (SCWRs). 

Classical references on this subject are [1]-[3] while recent accounts on ongoing research are reported in [4] 

and [5]. 

Part of this situation is due to a limited capability in predicting the complex phenomena occurring at the 

transition across the pseudocritical temperature (i.e., the temperature at which the specific heat at constant 

pressure has a high maximum) and in its neighbourhood. This is reflected by the fact that most similarity 

theories developed to date have shown significant limitations in this operating range. Recently, [6] and [7] 

coped with the problem of assessing existing similarity theories suitable for supercritical pressure fluid 

conditions, on the basis of comparisons with experimental data, reaching the rather sad conclusion that: “The 

prospects of deriving relatively simple empirical means of accounting accurately for differences in the 

thermodynamic behaviour of different fluids at supercritical pressures do not appear to be very promising” 

[7]. This conclusion, which can be only partly shared on the basis of the results to be presented herein and 

those of previously performed work ([8] and [9]), expresses in an effective way the sense of frustration for 

several decades of work on supercritical pressure fluids, which accumulated plenty of good experimental 

evidences, though yet the advancement of modelling tools for their prediction is somehow limited. 
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In this frame, an important aspect to be borne in mind is that supercritical pressure fluids can be considered 

“false friends” because, despite the fact that they could be conceived as single-phase fluids, their properties 

evolve continuously along any heated or cooled duct, so that their behaviour cannot be evaluated only basing 

on local conditions, being dependent on the previous history of the fluid starting from the entrance. This 

aspect is shared with two-phase flows, especially when considering deteriorated heat transfer (DHT) 

phenomena, being a milder counterpart of the thermal crisis occurring in subcritical pressure conditions. In 

fact, it is well known that in subcritical conditions at high enough heat flux-to-mass flux ratios, Departure 

from Nucleate Boiling (DNB) or Dry-Out (DO) may occur, depending on the local void fraction. These 

subcritical fluid phenomena are at different degrees conditioned by upstream fluid history, something 

accounted for by the classical critical length-critical quality relations or Tong factors (see e.g. [10] for a 

classical treatment of these aspects). So, it can be expected that also fluids at supercritical pressures, 

exhibiting so large changes in fluid density (leading almost to a two-phase mixture without real interfaces), 

may behave in analogy. 

As it will be shown later on, the presently considered similarity theory mainly considers the capability of the 

fluid to expand or contract in bulk and at the wall owing to heating or cooling, depending on inlet conditions 

and a dimensionless power-to-flow ratio, i.e., on upstream fluid history as in the case of two-phase flow. 

Moreover, one of the parameters to be introduced, being the dimensionless specific enthalpy, has a close 

resemblance with the definition of quality in two-phase flows and represents one of the most important 

factors in this frame, owing to an interesting link to the values of a dimensionless fluid density, to be defined 

below. 

As it will be recalled later on, starting with a first paper on the subject by Ambrosini [8], showing the first 

embryonal choices of the presently discussed similarity theory, but also highlighting the first problems in its 

application, a more complex form of the theory was developed in [9]. The latter work successfully compared 

the behaviours of four different fluids based on results of RANS calculations, in view of assessing a general 

similarity theory.  

In this regard, it must be clarified that the recourse to computations for establishing a similarity rationale is 

presently necessary because it is really difficult (if not impossible) to find experiments made with different 

fluids suitable to assess the proposed dimensionless numbers. Just to mention one relevant aspect, data 

obtained with carbon dioxide have inlet conditions generally much closer to the pseudocritical point in 

dimensionless terms than those obtained with water, being the coolant of SCWRs; this makes any close 

similarity between CO2 and H2O very difficult or impossible to discover by empirical means, unless achieved 

in dedicated experiments that do not yet exist at the moment. 

By the way, coming back to the very interesting work by Mouslim [6] and Mouslim and Tavoularis [7], it seems 

that the previous efforts by Ambrosini [8] and Pucciarelli and Ambrosini [9] were considered, though they 

were not given enough attention because they were based on inlet conditions and not judged of interest in 
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their purposes. However, it must be considered that recent experiments adopting supercritical CO2 by Kline 

[11] showed the importance of entrance conditions on the occurrence of different heat transfer regimes, 

including “normal”, “enhanced” and “deteriorated” heat transfer. The list of examples based on experimental 

evidence supporting this conclusion is long. By the way, the prediction of Kline’s data by a turbulence model 

based on an algebraic evaluation of the turbulent heat transfer (see [12]and [13]) resulted a fair success for 

relatively low flow rates, being able to explain most of the experimentally observed features, including the 

termination of heat transfer deterioration at the transition to gas-like conditions. 

Recently, He et al. [14] re-assessed the work by Ambrosini [8] by performing DNS analyses for the same four 

fluids and the same pressures considered in that paper and making use of the same similarity principles, with 

the noticeable addition of the preservation of the value of the inlet Reynolds number as a further constraint. 

While Ambrosini [8] mostly preserved the dimensionless inlet subcooling, the power-to-flow ratio and the 

Froude number, also making sensitivity analyses with a scaled geometry that implied a rough correspondence 

of the inlet Peclet number, He et al. [14] changed their geometry case by case in order to also impose the 

same inlet Reynolds number. As a result, while Ambrosini [8] had only a rough qualitative matching of the 

scaled behaviour among the different fluids, He et al. [14] actually reported rather improved similar trends 

of dimensionless variables at the wall as well as in the bulk fluid, in an exceptional display of good coherence. 

These results triggered interest for understanding the reasons of this better success, obtained as a 

modification of the similarity principles used in Ambrosini [8]; in particular, the discussion tried to clarify if 

imposing exactly the same inlet Reynolds number was the main reason for the obtained improvement. As it 

will be shown later on, there is another important detail which largely contributed to cause this success, with 

respect to the more modest qualitative indications obtained by Ambrosini [8], and the discussion is now 

bringing to interesting conclusions, to be described in the following.  

 



 

5 

 

2. BASES FOR THE CONSIDERED SIMILARITY THEORY 

As mentioned in the Introduction, Mouslim [6] reports an overview of the different scaling theories proposed 

for supercritical pressure fluids to date. Here we briefly summarise the evolution of the many similarity 

theories that appeared in literature.  

The theory due to Jackson and Hall [15] and other similar works were mainly making reference to the critical 

point as reference condition with respect to which it was suggested to scale the fluid behaviour, something 

coherent with the assumptions of the corresponding state theory. Actually, considering the behaviour of fluid 

properties at supercritical pressure, it later became evident that the pseudocritical temperature at each given 

pressure had to be considered as the most important bifurcation point, virtually discriminating between 

liquid-like and gas-like conditions. An example of the relevance given to this parameter is in the formulations 

proposed by Cheng et al. [16]; previously, in 2006 and 2008, Ambrosini and Sharabi [17] had recognised the 

overwhelming importance of the pseudocritical point in scaling the stability phenomena in heated channels 

with supercritical fluids. An interesting feature of the dimensionless relations proposed by [17] is the fact 

that the dimensionless density, defined as the ratio of the density to the one at the pseudocritical 

temperature at any given pressure, has a nearly unique trend as a function of a dimensionless enthalpy. This 

result was found to be largely independent of the fluid and of the considered supercritical pressure, with 

modest deviations in the liquid-like region (see e.g., [17]). The two definitions introduced in this regard are: 

 dimensionless density: 
*

pc   ; 

 dimensionless enthalpy:  *

,pc pc p pch h h C  . 

The origin of these formulations, as repeatedly recognised in the early papers on the subject, was a sort of 

occasional finding discovered while searching for relations similar to those adopted for boiling channel 

stability (see e.g., [18]) suitable for providing a good degree of universality to the treatments adopting them. 

In this regard, additional parameters were introduced, again in analogy with boiling channel instabilities 

formalism (see e.g., [18]): 

 the trans-pseudocritical number, as a sort of dimensionless power-to-flow ratio: 

  ,TPC pc p pcN Q W C , replacing the phase change number in two-phase flow; 

 the sub-pseudocritical number, as a sort of dimensionless inlet subcooling with respect to the pseudo-

critical threshold:  *

,SPC inlet inlet pc pc p pcN h h h C     , replacing the subcooling number; 

 the Froude number at the inlet, to be defined in later treatments either on the basis of the pipe length 

or of the diameter: i.e.,  2

inletFr w gL  or  2

inletFr w gD . 

The role of these parameters has been explained several times in previous papers (e.g., [17] together with 

earlier and later papers by Ambrosini and collaborators on the issue of stability of supercritical pressure 
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fluids). However, in the present context the following considerations can be drawn (see e.g., [9] for a similar 

discussion): 

 given the good level of universality of the trend of dimensionless density as a function of dimensionless 

enthalpy, a firm link is established between heating and all the phenomena at the root of the relevant 

dynamic and heat transfer behaviours, e.g., the density difference between channel inlet and outlet 

(governing both instability and heat transfer phenomena) and across the channel radius (e.g., ruling the 

mixed convection phenomena which cause deteriorated heat transfer and its extinction approaching gas-

like conditions, as shown by [13]); 

 since along a heated channel the supercritical fluid continuously changes its properties, up to the 

dramatic changes occurring at the pseudo-critical point, the flow is never fully developed and a memory 

of the previous history is necessary to be kept in modelling heat transfer: this function is accomplished 

by the dimensionless power-to-flow ratio, 
TPCN , and by the dimensionless inlet subcooling with respect 

to the pseudocritical point, expressed by 
SPCN , that should be both preserved in the similarity; 

 buoyancy effects, instead, are mainly governed by the Froude number, another number to be preserved 

at channel inlet. 

For ease of the reader, an argument already discussed in [8] is repeated here with reference to Figure 1. As 

it can be noted, the expansion of the four considered fluids as a function of increasing values of 
*h  is nearly 

the same, with the above-mentioned slight deviation in the liquid-like region, and 
TPCN  represents the 

difference between the outlet and the inlet dimensionless enthalpies, whereas 
SPCN  is equal to the negative 

of the inlet dimensionless specific enthalpy (i.e., 
*

SPC inletN h   in the figure). It can be therefore noted that 

SPCN  and 
TPCN  represent the operating region of the fluid in terms of capability to expand because of 

heating, something that is approximately the same for any fluid and any supercritical pressure. Indeed, this 

is the most important basis for the present fluid-to-fluid similarity theory. 

 

Figure 1. Relation between dimensionless density and specific enthalpy for four different fluids  

(adapted from [8]). 

Slight deviations in 

the liquid-like region 
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This said, local conditions also have a role. In particular, Pucciarelli and Ambrosini [9] highlighted the role of 

the Stanton number and of the Peclet number, whose values should not be too different for different fluids, 

and the difference can be minimised through the choice of the “similar” pressures for the different fluids (see 

the referenced papers for details).  

Actually, a key point in the first attempts made by Ambrosini [8] which is found very important to explain the 

recent good results by He et al. [14], is that the supercritical pressures of the four fluids were selected in 

order to have the same peak value of the Prandtl number at the pseudocritical conditions (around 8 for water 

at 25 MPa). This selection of pressures was actually inspired by the interesting choice made by researchers 

at TU Delft in the design of the DeLight facility, where R23 at 5.7 MPa was used, just to get a trend of the 

Prandtl number similar to the one of water at 25 MPa (see e.g., [19]). This interesting principle was extended 

also to CO2 and to the more exotic choice of NH3, selected just for its greater similarity to water in terms of 

property trends. In fact, it must be noted that having the same Prandtl number for the reference and the 

model fluids can largely ease the achievement of similarity. Nevertheless, the trends reported in Figure 2 

clearly show that even equalising the values of Pr at the pseudocritical points  

(
*

0h  ) discrepancies continue to appear especially in the negative 
*h  region (i.e., in liquid-like conditions), 

while in the positive 
*h  region (gas-like conditions) the deviations are much more limited.  

 

Figure 2. Prandtl number as a function of the dimensionless specific enthalpy  

for the selected fluids and operating pressures. 

This argument helped to understand the results obtained by Ambrosini [8], achieved by RANS models 

available in the STAR-CCM+ CFD code [20] taking an experimental geometry from Pis’menny et al. [21] as 

reference case and making use of the above values of pressures for the different fluids (though the 

experiments by Pis’menny et al. [21] were run with water at 23.5 MPa). In fact, since the inlet dimensionless 

enthalpy was slightly higher than -1.5, the fluid at the entrance of the channel was subcooled with respect to 

the pseudocritical point in a region where the Prandtl numbers of the four fluids are quite different. This is 

shown in Figure 3, where it can be noted that a higher value of the Prandtl number in the liquid-like region 

of a fluid causes the deteriorated heat transfer to start earlier in that case.  
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Figure 3. Wall and bulk dimensionless enthalpies for the cases considered in [8] for the four fluids and 

operating pressures (adapted from the data in the referenced paper) 

Figure 3 is here useful also to state what is meant by “similarity” in the theory proposed by Ambrosini [8] as 

well as in the present one: owing to the link between dimensionless specific enthalpy and dimensionless 

density, it is considered that two fluids behave in a similar way when they have the same trends of the 

dimensionless specific enthalpy in bulk and at the wall. As it is noted in the figure, the bulk specific enthalpy 

has the same trend in the four cases, because the CFD calculations (see [8] for further details) were made by 

assigning the same dimensionless power-to-flow ratio (
TPCN ), the same inlet subcooling (

*

SPC inletN h  ) 

and the same Froude number. The two first constraints assure the same observed linear increase of 

dimensionless specific enthalpy in bulk, being the red dashed line in the plot of Figure 3. However, owing to 

the different values of the Prandtl number in the key region where deterioration may first develop, the 

already described result of displaced deterioration occurrence was unfortunately obtained. Other attempts 

were made in order to get better results, which showed only slight improvements. However, a general 

qualitative similarity between the trends was observed, considering for instance the results obtained with 

higher inlet flow rate or larger pseudo-subcooling (see [8] for details). 

The above results motivated the already mentioned step made by Pucciarelli [9] who developed in his PhD 

thesis a similarity rationale based on principles made more complex than in the previous attempt. However, 

the focus of this paper is not to discuss again that improvement, that is anyway worth per se, but the 

exceptionally accurate results obtained by He et al. [14] based on the proposal by Ambrosini [8], something 

which looked at first somehow strange in front of previous poorer results, though it can now be easily 

explained. The rest of the paper is devoted to summarise these results and to explain them in front of new 

computational information.  
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3. RECENT RESULTS BY DNS IN SUPPORT TO THE OLD THEORY  

He et al. [14] ran DNS calculations for the system reported in Figure 4. Methodology and tools for performing 

the calculations are described in the referred paper and will not be repeated here. However, it is worth 

considering that the four fluids already mentioned in the previous section were adopted at the operating 

pressures selected in [8] for achieving a similar value of the peak Prandtl number. Moreover, the boundary 

conditions applied in dimensionless form (different from the one adopted by Ambrosini [8]) allowed for 

imposing the same 
TPCN , 

SPCN  and the same inlet Reynolds and Froude numbers.  

 

Figure 4. Computational domain adopted by He el al. [14] (adapted from the reference) 

Table 1. Boundary conditions from the DNS calculation cases [14] 

Case q” [W/m2] Gin [kg/m2s] hin [J/kg] D [m] L [m] NTPC NSPC Fr Re0 Pe0 

CO2 30870 166.62 2.712x105 0.002 0.06 0.1783 0.5669 0.08249 5234.02 14954 

H2O 113739.32 128.68 1.815x106 0.0025 0.074 0.1783 0.5669 0.08249 5234.02 8806 

NH3 54050.83 94.01 1.064x106 0.0026 0.078 0.1783 0.5669 0.08249 5234.02 11390 

R23 20884.68 179.76 2.439x105 0.0028 0.055 0.1783 0.5669 0.08249 5234.02 10954 

 

These choices, summarised in Table 1, resulted particularly effective in achieving good results, in close 

similarity among the four fluids, as it is shown hereafter, though the simultaneous requirement to preserve 

the inlet Reynolds number and Froude resulted in the need to change the diameter and length of the pipe 

(preserving the L/D ratio) for each addressed fluid. 

Figure 5 reports some of the most significant data obtained by He et al. [14] in relation to the similarity. As it 

can be noted from Figure 5a, the bulk dimensionless enthalpy (as defined in the present paper) is increasing 

linearly with the distance from the pipe inlet, as a consequence of the uniform value of the power-to-flow 

ratio. An important detail to be noted is that, with respect to the cases considered by Ambrosini [8], the 

dimensionless inlet enthalpy, still negative, is now closer to the pseudocritical condition (
*

0h  ). 

Considering Figure 2 this assures that the bulk fluid is in the region of the liquid-like fluid where the values of 

the Prandtl number are very close for all fluids, being really a key point for the success of the similarity theory.  
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Figure 5. Streamwise distribution of wall temperatures and integrated values of the four cases  

from He et al. [14] (adapted from the reference) 

Figure 5 also shows that the Nusselt number assumes very similar values for the four fluids (Figure 5c) and 

that the axial evolution of the dimensionless temperature is also quite similar, exhibiting deterioration and 

recovery phenomena at the same values of x/D in the four cases (Figure 5d). Finally, it can be also noted that 

imposing the same values of the Reynolds number at the inlet, a “must” for turbulence similarity in single-

phase fluids, is certainly playing a role on the good results achieved, though this number evolves in different 

ways along the pipe for the four fluids (Figure 5b). In this case, owing to the limited length of the domain and 

to the adopted parameters, the discrepancies are limited, but this cannot be always the case. 

An even more striking similarity is revealed if the values of the dimensionless temperatures as defined by He 

et al.[14] (
ŵT  in Figure 5d) are expressed in terms of the dimensionless specific enthalpy, 

*h , as defined in 

this paper. As it can be noted in Figure 6, the values computed by the DNS analyses at the wall match very 

closely with each other, with exceptional accuracy considering that the matching of fluid properties is only 

approximate in dimensionless form. It can be also noted that the values of the dimensionless specific 

enthalpy at the wall belong to a range in which the values of the Prandtl number are very close to each other 

for the four fluids (see again Figure 2). This, together with the previous similar observation for the bulk 

dimensionless specific enthalpy, suggests that in the whole computational domain the four fluids have very 

close values of Pr, something that is now understood to be clearly at the root of the exceptionally good 

behaviour exhibited by the similarity theory in this case. In fact, comparing this behaviour with the much less 

a) dimensionless bulk enthalpy b) local Reynolds number 

c) local Nusselt number d) dimensionless wall temperature 

 

ŵT  
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exciting ones shown by the plot in Figure 3, it is clearly seen that the most relevant difference is the more 

limited range of 
*h  considered in the DNS data, possibly together with the choice to preserve the same value 

of the Reynolds number at the inlet. Since it was shown that unavoidably the Reynolds number, despite being 

preserved in the channel, will then vary with fluid property changes, it is argued that such principle can be 

only approximately satisfied.  

 

Figure 6. Values of the dimensionless specific enthalpy at the wall from the DNS calculations 

As a consequence of the above, we can now further interpret also the success in representing the similarity 

in terms of Nusselt numbers for the different fluids. In this regard, it can be noted that the analysis performed 

by Pucciarelli and Ambrosini [9] expressed the Newton’s law of convection in the following formalism, 

coherent with the dimensionless definitions adopted herein, 

 * * 4
TPC w

L
N St h h

D
    ,   (1) 

in which the averaged Stanton and Prandtl numbers are defined as: 

Nu
St

RePr
   

pC
Pr

k


      (2) 

In the above relationships 
*h  represents the bulk value of the dimensionless specific enthalpy, while the 

averaged specific heat, pC , entering the definitions of the averaged Prandtl and Stanton numbers is defined 

as 

w
p

w

h h
C

T T





      (3) 

with h  and T  being the “bulk” values of the fluid specific enthalpy and temperature. From the above 

definitions, it is then clear that if the bulk and the wall dimensionless specific enthalpy differences are 

preserved in the similarity and the Prandtl and Reynolds numbers are nearly the same, preserving the TPCN  

results in preserving the Nusselt number as well.  

*h  
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We leave to the reader to consider in the paper by He et al. [14] the very close trends of axial fluid velocity, 

dimensionless density and temperature obtained by the DNS calculation for the different fluids, shifting now 

our interest to repeat similar analyses with RANS models, in order to get an independent check of the 

obtained results. 
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4. CONFIRMATION OF THE SIMILARITY THEORY BY RANS ANALYSES 

In order to get the appropriate independent confirmation of the good results obtained by the DNS 

calculations and to accumulate further material for the present discussion, the same computational domain 

and boundary conditions considered by He et al. [14] were addressed by RANS turbulence models. However, 

making use of RANS models, it was possible to efficiently run the calculations in 2D axial-symmetric geometry, 

making use of mesh refinement close to the wall, with a number of meshes variable case by case, being 

anyway in the order of 200 axial nodes and 50 radial nodes with decreasing size along the radius from the 

centre to the wall. The analyses make use of both the Lien et al. model [22], implemented in the STAR-CCM+ 

code [20] and of a variant of it developed on the basis of the algebraic heat flux model (AHFM) being applied 

to an increasingly broad set of experimental data (see e.g. [23] and[12]). The latter has been found to greatly 

improve the predictions with respect to two-equations models as the Lien et al. [22] one in many conditions 

of interest. However, as it will be shown, regardless of the different levels of accuracy with respect to 

experimental data that was previously assessed for the adopted models, the presently proposed theory 

always provides similar behaviour for the four considered fluids, showing that its results are mainly 

consequence of the behaviour of the physical properties of the fluid and much less of the specific turbulence 

model adopted. 

The RANS analyses performed to assess the similarity theory were made considering the same physical cases 

and boundary conditions adopted for the DNS cases (except for the mentioned 2D geometry). In order to get 

a fully developed velocity profile at the inlet of the pipe, velocity and turbulence distributions were computed 

for a relatively long pipe and fed as boundary conditions to the inlet cross section. We stress again the fact 

that the calculations were performed using the same boundary conditions as in the DNS cases, i.e., preserving 

TPCN , 
SPCN  as well as the inlet values of the Reynolds and the Froude numbers. The axial and radial 

discretisation of the computational domain was performed following well assessed principles (see e.g., 

previous works as [23], [9], [13]), including the achievement of a y+ lower than one close to the wall, as 

prescribed in the use of low-Reynolds number turbulence models. 

The obtained results, discussed below, are expectedly slightly deviating from the DNS data, owing to the 

greater simplicity of the adopted RANS models, but they confirm the accuracy of the fluid-to-fluid similarity 

theory. Figure 7 reports the data of wall dimensionless specific enthalpy for the four fluids as a function of 

the dimensionless specific enthalpy of the bulk fluid. Remember that the latter variable linearly increases 

from the inlet to the outlet of the duct as a function of x/D, so that the comparison with the data in Figure 6 

in terms of the latter variable is straightforward. As it can be noted, the trends are similar for the DNS and 

the RANS analyses, though expectedly not exactly the same. The RANS model, in fact, tends to predict an 

earlier dimensionless enthalpy peak with respect to DNS, though the maximum values are similar. However, 

it can be noted the presence of the same deterioration and recovery phases as predicted by DNS.  
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Indeed, both Figure 6 and Figure 7 show an excellent match of the trends of 
*h  at the wall for the four fluids, 

demonstrating that the similarity theory works almost perfectly, independently of the adopted model. This 

conclusion, to be later confirmed also by calculations with the model by Lien et al. [22] confirms as anticipated 

that the theory is mainly based on similarities in the fundamental behaviour of fluids, namely in their 

capability to expand because of heating, and that the chosen governing parameters, in the selected range of 

*h , really represent excellent choices for establishing a similarity.  

 

 

Figure 7. Values of the dimensionless specific enthalpy at the wall from the new RANS calculations  

with the AHFM model 

 

The plots in Figure 8 report the radial distributions of the dimensionless specific enthalpy and the axial 

component of fluid velocity normalised on the basis of the inlet velocity at three values of the bulk specific 

enthalpy along the pipe as a function of the classical dimensionless distance from the wall, y w y   . The 

relation of the bulk 
*h  vs x/D is highlighted in Figure 9, showing that the three selected values of 

*h  at which 

radial profiles are illustrated are roughly corresponding to x/D = 5, 15 and 25. Moreover, for the sake of a 

further check, Figure 10 shows the same trends as a function of the distance from the wall normalised on the 

basis of the pipe radius; it is clear that, though the reported information in the two figures is the same, the 

two coordinates are not completely equivalent, since y


 takes into account the different properties of the 

fluids and the shear stress at the wall. As it can be noted, both radial coordinates show an excellent matching 

of the radial distributions of these variables for the four fluids, showing that the similarity is nearly perfect, 

not only for the trends at the wall but also for those in the bulk fluid, highlighting a really successful set of 

assumptions. 

In order to complete the picture of the radial distributions, Figure 11 presents the trends of the turbulent 

kinetic energy at the same three axial position as a function of the dimensionless distance from the wall. As 

it can be noted the match is also very good, except for the last axial location at which some discrepancy 
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appears. Taking into account Figure 5b it can be argued that at that location the Reynolds number slightly 

differs for the three fluids owing to a change in properties; considering that this Reynolds number is quite 

low (for reasons related to the feasibility of the DNS calculations) discrepancies of that extent can be 

expected. In particular, in Figure 5b it can be noted that the trends of the Reynolds number for CO2 and R23 

are almost coincident, while those of water and NH3 differ from each other and from the other trends; this 

matches exactly with what observed in Figure 11c, where a quite similar behaviour is noted for the 

corresponding curves. 

 

 

a) Dimensionless bulk enthalpy = - 0.54 → x/D  5 

 

b) Dimensionless bulk enthalpy = - 0.48→ x/D  15 

 

c) Dimensionless bulk enthalpy = - 0.42 → x/D  25 

Figure 8. Values of the dimensionless specific enthalpy and of the dimensionless velocity at different values 

of the dimensionless bulk enthalpy along the pipe as a function of y

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Figure 9. Relation between the dimensionless specific enthalpy and x/D 

 

a) Dimensionless bulk enthalpy = - 0.54 → x/D  5 

 

b) Dimensionless bulk enthalpy = - 0.48→ x/D  15 

 

c) Dimensionless bulk enthalpy = - 0.42 → x/D  25 

Figure 10. Values of the dimensionless specific enthalpy and of the dimensionless velocity at different 

values of the dimensionless bulk enthalpy along the pipe as a function of y/R  
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a) Dimensionless bulk enthalpy = - 0.54 → x/D  5 

 

b) Dimensionless bulk enthalpy = - 0.48 → x/D  15 

 

c) Dimensionless bulk enthalpy = - 0.42 → x/D  25 

Figure 11. Values of the normalised dimensionless turbulence kinetic energy as a function of y/R  

 

Finally, Figure 12 reports data for 
*h  at the wall obtained with the Lien et al. [22] model. It can be noted that 

this model is known to provide a good detection of the onset of deteriorated heat transfer, but often with a 

large overestimation of the wall temperature. The trends shown in Figure 7 and those in Figure 12 are 

somewhat different showing different laminarisation/recovery behaviours predicted by these models. 

Nevertheless, the results in Figure 12 again show that the trends in the four fluids are sufficiently close to 

each other to declare that similarity is still maintained. 
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Figure 12. Values of the dimensionless specific enthalpy at the wall from the new RANS calculations  

with the Lien et al. [22] model 
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5. MERITS AND LIMITATIONS OF THE PROPOSED SIMILARITY THEORY 

Basing on the previously described results, it can be noted that the similarity theory proposed in this paper 

and already used for the DNS data by He et al. [14], considering the choices made in [8], behaves exceptionally 

well in the range of conditions to which it was applied. However, considering the not very exciting results 

proposed by Ambrosini [8] and also by Ambrosini and De Rosa [24], some explanation of this improvement 

is in order. 

With respect to the cases considered in the papers by Ambrosini [8] and Ambrosini and De Rosa [24], showing 

that deteriorated heat transfer started earlier in the simulations of a fluid with a greater molecular Prandtl 

number in the liquid-like range, two differences were introduced in the calculation cases proposed by He et 

al. [14] (and considered also in this paper): 

 a much lower subcooling at the inlet with respect to the pseudocritical temperature was used; 

 the inlet Reynolds number was preserved in all the cases. 

Indeed the second of these two differences helps a lot in preserving the degree of turbulence, especially in 

the present low Re cases, as already mentioned. However, in front of previous much less successful results, 

the first item seems to be the most important one. In particular, the four calculation cases of Ambrosini and 

De Rosa [24], whose results are shown in Figure 13, show clearly that increasing values of the Prandtl number 

in the liquid-like region significantly moves forward heat transfer deterioration. 

 

Figure 13. Trends from [24] obtained by the Lien et al. [22] model for the four fluids based on the boundary 

conditions of one of the Watts [25] water experimental data  

(adapted from [9]) 

Indeed in these calculations [24] the inlet Reynolds number was not preserved, keeping the same diameter 

in all cases. This instils a final doubt to be clarified about whether the closeness of the values of the Pr or 

imposing the same Re at the inlet is the cause of the improved behaviour observed by He et al. [14]. 

In order to clarify this issue, two of the calculations performed by Ambrosini [8], whose results were displayed 

in Figure 3, were here repeated also imposing the same Reynolds number at the pipe inlet. The two 

calculations refer to water and CO2 that, in front of the values of Pr in Figure 2, represent bounding cases, 
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since they refer to the highest and lowest values of the molecular Prandtl number. The boundary conditions 

adopted in the analyses are reported in Table 2. 

Table 2. Boundary conditions for the additional calculations on the cases considered by Ambrosini [8] 

 
Tinlet 

[°C] 
NSPC  

G 

[kg/(ms2)] 
Q’’ [kW/m2] D [mm] L [m] NTPC Reinlet  FrD, in 

H2O 300 1.38 509 390 6.28 0.6 0.515 34877 7.617 

CO2 -12.28 1.38 717.73 115.25 6.56 0.627 0.515 34877 7.617 

 

The results of this analysis, made making use of the AHFM,  are shown in Figure 14 finally clarifying that, in a 

range of dimensionless enthalpy where the molecular Prandtl numbers are considerably different, the 

similarity established by the present theory between the values of the dimensionless specific enthalpy at the 

wall is definitely lost.  

 

 

Figure 14. Results obtained for two of the cases addressed in [8] performed preserving the value of the 

Reynolds number at the inlet for water and CO2 

 

As an a posteriori consideration, it must be recognised that the value of the molecular Prandtl number is very 

much influencing heat transfer at the wall, as testified by its consideration in all the classical heat transfer 

theories and by its presence in most semi-empirical correlations. So, it can be concluded that the present 

similarity theory is very successful in the regions in which the molecular Prandtl number of the fluids is nearly 

the same, as in the cases considered by He et al. [14], while it is not as much accurate elsewhere. In view of 

Figure 2, it can be noted again that the most troublesome region is the liquid-like one, where it cannot be 

hoped to get matching values of the Prandtl number by a proper selection of the operating pressures. This 

represents a serious problem for all the trans-pseudocritical applications, as the ones concerning SCWR 

reactors, deserving a further reflection for its possible solution. 
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6. CONCLUSIONS 

The results shown in this paper demonstrated that the ideas proposed in [8]and later developed by Pucciarelli 

and Ambrosini [9] and He et al. [14] are substantially correct in suggesting to preserve the values of 

dimensionless power-to-flow ratio, 
TPCN , of the inlet subcooling, 

SPCN  and of the Froude number. In fact, 

preserving these numbers assures a similar behaviour of the dimensionless specific enthalpy in bulk and at 

the wall and, in part, of the buoyancy effects along the duct.  

However, the mentioned works by Pucciarelli and Ambrosini [9] and He et al. [14] represent key 

improvements with respect to those embryonal ideas presented in [8], carried out on the basis of two 

different philosophies: the former, trying to generalise the theory for application over a broad range of 

Prandtl numbers, resulting in greater complexity, the latter suggested by the right belief that trying to 

preserve also the Reynolds number at least at the pipe inlet may give a better physical basis to the similarity 

theory in a turbulent flow field. 

In this paper, following the rationale by He et al. [14], it was possible to show that the resulting theory is 

exceptionally accurate for relatively low values of 
*

SPC inletN h  , where the values of the Prandtl numbers 

for the four selected fluids and operating pressures show small differences, conditioned to an appropriate 

choice of the operating pressures. However, this cannot be said for applications involving larger degrees of 

pseudo-subcooling where it is hopeless to find similar values of the Prandtl number for water and other 

simulant fluids. Therefore, the theory needs to be extended, e.g., as done by Pucciarelli and Ambrosini [9] at 

the price of a greater complexity or by any other suitable rationale to be envisaged in the future. It must be 

explicitly mentioned that, though this work is mainly focused on deteriorated heat transfer conditions, it is 

believed that the similarity theory can be applied also to conditions of normal and enhanced heat transfer 

that are generally easier to predict; the assessment of such applicability is a further aspect to be considered 

in future work. 

As a further conclusion, considering that nowadays available heat transfer correlations fail in predicting heat 

transfer deterioration, it can be argued that one of the reasons for this failure is the present neglect of 

parameters like TPCN , SPCN  and of the Froude number, which indeed characterise the capability of the fluid 

to expand and generate those buoyancy forces that lead to laminarisation and eventually to deterioration.  

This observation represents a powerful incentive to combine the reasoning at the basis of the presented 

similarity theory with the existing and only partially successful semi-empirical heat transfer relationships, 

aiming to achieve a better prediction of heat transfer phenomena for the interesting class of fluids being the 

ones operated at supercritical pressures.  
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NOMENCLATURE 

Latin Letters 

pC  specific heat at constant pressure [J/(kgK)] 

D  pipe diameter [m] 

Fr  Froude number 

g  gravity [m/s2] 

G  mass flux [kg/(m2s) 

h  specific enthalpy [J/kg] 

L  pipe length [m] 

SPCN  sub-pseudocritical number 

TPCN  trans-pseudocritical number 

Nu  Nusselt number 

Pe  Peclet number 

Pr  Peclet number 

q  heat flux [W/m2] 

Q  channel power [W] 

Re  Reynolds number 

St  Stanton number 

T  temperature [K] 

ŵT  dimensionless wall temperature in He et al. (2018) notation 

w  velocity [m/s] 

w  shear velocity [m/s] 

W  channel flow rate [kg/s] 

x  pipe axial coordinate [m] 

y  distance from the wall [m] 

Greek Letters 

  isothermal expansion coefficient [1/K] 

  density [kg/m3] 

  kinematic viscosity [m2/s] 

Superscripts 

* starred variables imply dimensionless form 

+ dimensionless value according to standard notation in turbulence theory 
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- overbar quantities are averaged between bulk and wall values 

Subscripts 

in, inlet  inlet value 

pc  pseudocritical value 

0  reference value (in He et al., 2018, paper) 
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