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Biotic interactions are central to both ecological and evolutionary

dynamics. In the vast majority of empirical studies, the strength

of intraspecific interactions is estimated by using simple mea-

sures of population size. Biologists have long known that these

are crude metrics, with experiments and theory suggesting that

interactions between individuals should depend on traits, such

as body size. Despite this, it has been difficult to estimate the

impact of traits on competitive ability from ecological field data,

and this explains why the strength of biotic interactions has

empirically been treated in a simplistic manner. Using long-term

observational data from four different populations, we show that

large Trinidadian guppies impose a significantly larger compet-

itive pressure on conspecifics than individuals that are smaller;

in other words, competition is asymmetric. When we incorporate

this asymmetry into integral projection models, the predicted size

structure is much closer to what we see in the field compared with

models where competition is independent of body size. This dif-

ference in size structure translates into a twofold difference in

reproductive output. This demonstrates how the nature of ecolog-

ical interactions drives the size structure, which, in turn, will have

important implications for both the ecological and evolutionary

dynamics.

size structure | asymmetric competition | Trinidadian guppies

Interactions between the individuals in a population, such as
competition, cooperation, and cannibalism, have been shown

to play a central role in governing both ecological and evolution-
ary dynamics. Over the past 150 years, the strength and impacts
of these biotic interactions have often been assessed by deter-
mining how an individual’s performance relates to the density
of competitors (1–3). This density dependence is a fundamen-
tal principle in ecology and determines the struggle for existence
that drives evolution (4). However, simple metrics, such as popu-
lation density, entirely ignore differences between individuals in
traits such as body size, weight, and condition, although numer-
ous experimental studies and theory clearly indicate that the
strength of interaction between individuals should depend on
their traits (5–8).

Individual traits often influence physiology and behavior. Body
size, in particular, frequently influences feeding rates and the
ability to preempt access to territories, mates, or resources (9,
10). This size-dependent ability to acquire resources leads to the
expectation that competition will be size-asymmetric (11), with
interference competition leading to a competitive advantage for
larger individuals. In contrast, for resource competition, compet-
itive ability depends on the scaling of energy and maintenance
costs, which, in fish, can lead to smaller individuals being dom-
inant (5). This means that competitive ability should depend
not only on an individual’s absolute size, but also on the rel-
ative size of its competitors. In contrast, the simplistic metrics
underpinning our classical understanding of intraspecific biotic
interactions assume that all individuals acquire resources at an
equal rate. This implies that competition is symmetric, and so
differently sized individuals are competitively equivalent.

Demonstrating asymmetric competition in natural systems is
difficult, as the effect of large individuals on small ones has to
be measured, and vice versa. Very few studies do this, and in
those that do, the results are often difficult to interpret. For
example, ref. 12 found that removal of large or small individuals
had no effect on growth of intermediate-sized fish. In contrast,
adding large fish resulted in slower growth of intermediate-sized
ones, whereas adding small fish had no effect, suggesting that
asymmetric competition only occurs at artificially high densities.
Experimental manipulations usually treat body size as discrete
rather than continuous, where interactions occur over the com-
plete size range. These difficulties argue for the development
of a new approach that can estimate size-specific competitive
effects across the complete size spectrum at natural population
densities.

As a consequence of these difficulties, little is known about
where, in nature, the asymmetry of competition lies on the con-
tinuum between the extreme competitive dominance of either
large or small individuals and competitive equivalence (13). This
is problematic, as a large body of theory has demonstrated
the importance of asymmetric competition for life-history evo-
lution (14–16) and population and community dynamics (13,
17–19). We provide a quantification of the degree of size-
asymmetric competition in wild animal populations. Using
detailed individual-based life history data from four long-term
field-study populations of the Trinidadian guppy (Poecilia retic-
ulata), we quantify how the strength of competition influencing
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growth and survival rates depends on the size structure of com-
petitors relative to the size of the focal individual. We then
examine how quantifying trait-dependent competitive interac-
tions alters our ability to project the size-structured dynamics in
these populations.

Methods

The study populations are located in four independent predator-free tribu-

taries of montane streams in the Northern Range of Trinidad (SI Appendix,

section S1a) (20). Monitoring of individual body weight and location was

conducted under a University of California, Riverside Institutional Animal

Care and Use Committee approved Animal Use Protocol (A20170006). Habi-

tat quality varies along and among the four streams (21). Two streams

(Upper Lalaja [UL] and Taylor [TY]) have received experimentally enhanced

primary productivity, attained via canopy thinning. The remaining two

streams (Lower Lalaja [LL] and Caigual [CA]) are neighboring control streams

with intact canopies. Although flooding events sometimes restructure the

detailed stream topologies, certain sections of the streams consistently

harbored much higher numbers of individuals (Fig. 1A). Each stream’s

population was partitioned into between three and six discrete spatial sub-

populations (reaches), by using a clustering algorithm (Fig. 1A, colored

regions) (SI Appendix, section S1c). Individual observations were classified

as occurring within a specific reach of the stream with a high degree of cer-

tainty (average classification certainty > 95%). Individuals rarely moved to

a different reach between sampling occasions (Fig. 1B), indicating that the

reaches represent spatially distinct habitat patches within which individuals

compete.

We determined the degree of size-asymmetric competition influencing

monthly growth and survival by fitting hierarchical, nonlinear additive mod-

els to the life-history datasets for each stream (SI Appendix, section S1d).

Demographic rates are known to depend on an individual’s weight and sex,

independent of the impacts of biotic interactions (22). Individuals inhabit

a variable environment, and stochastic perturbations, especially flooding

events, drive density-independent variation in survival and growth over

time and space (23). Similarly, the seasonal Trinidadian climate drives vari-

ability in resource availability (24), altering the intensity of competition.

Month-specific deviations in mean demographic rates and the intensity

of competition were included to account for these processes. Individual-

specific effects were also added to describe interindividual differences in

quality. The resulting growth and survival models shared the same structure:

g(E[Y]) = β
(0)
sex[i] + β

(1)
sex[i]Zirt + β

(2)
sex[i]Z

2
irt + u

(1)
i + u

(2)
rt +

(γr + u(3)
rt )

Lr

N(Xirt , ~Xrt),

[1]

where E[Y] is either the expected size at the next sampling occasion or the

probability of survival over the transition, and g is the identity or logit link

function, respectively. X and Z refer to body weight on the original and log-

transformed scales, respectively. Terms could vary by individual (i), reach (r),

or sampling occasion (t), as defined in Eq. 1. We drop the r and t subscripts

in the following summary of the model to simplify its presentation (a more

complete description is given in SI Appendix, section S1d). Differences in

growth and survival between the sexes were incorporated by including sex-

specific intercepts and linear-size and quadratic-size slopes (the β terms).

The intercepts were allowed to vary among individuals and between sam-

pling occasions by including normally distributed random-effect terms, u(1)

and u(2), respectively.

To model asymmetric competition, the density of competing individu-

als of different sizes (~X) must be translated into an “equivalent density”

of individuals with body weight equal to that of the focal individual

(Xi), denoted by N(Xi , ~X). The impact of this equivalent density was then

scaled by a fixed effect (γ), a time-varying random-effect term (u(3)), and

the length of a reach (L). The equivalent density of competitors was

calculated as:

N(Xi , ~X) =

n∑

j=1

α(Xi , Xj), [2]

where the strength of interaction between two individuals, α(Xi , Xj),

depended on the body weight (natural scale) of the focal individual (Xi)

relative to the competitor’s weight (Xj). This trait dependence was captured

by using the functional form α(Xi , Xj) = (Xj/Xi)
φ. The degree of competi-

tive asymmetry between differently sized individuals is determined by the

value of the parameter φ. When φ= 0, competition is symmetric, and the

model reverts to classical density dependence based on total population

size. Nonzero values of φ indicate size-asymmetric competition. Positive

values signify the competitive dominance of large individuals, while neg-

ative values indicate that smaller individuals are competitively superior.

The total impact of competition on an individual’s growth or survival was
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Fig. 1. Identification of discrete reaches of the four Trinidadian streams (panels of each subplot). (A) The frequency of individual observations at different

distances along the streams (bar height). Reaches are spatial subpopulations, identified by applying a clustering algorithm to the locations of observations.

Individual observations were categorized into a specific reach (bar color). (B) The frequency at which individuals transition between reaches in the time

between sampling occasions. The diagonal elements of this transition matrix represent individuals remaining in the same reach. Dark coloration indicates a

high transition probability.
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Fig. 2. Observed and predicted growth (A) and survival (B) rates for females and males in the four stream populations. Demographic rates are plotted as

a function of individual body weight (log-transformed). Observations are shown as points, and model expectations are indicated by lines. A growth rate of

zero is indicated by a horizontal dashed line to identify the weight on the x axis at which no further increases are expected.

calculated by summing the interaction strengths, α(Xi , Xj), of all individuals

in the reach. Consequently, under size-asymmetric competition (φ 6=0), the

total interaction strength will vary depending on the focal individual’s size

and the size distribution of its competitors. In the growth analysis, we ana-

lyzed body weight (log-transformed) rather than length, as individuals at

their asymptotic length can lose or gain weight in response to competition

and the environment. Individual-recapture and size-measurement rates are

very high in this study system (over 90%). On occasions when individuals

were not recaptured, body size was imputed based on weight at prior and

subsequent times (SI Appendix, section S1b).

Results and Discussion

Observed patterns of growth and survival rates in both males
and females were accurately described by the fitted demographic
models, including size-asymmetric competition (Fig. 2). The sex
and size dependence of both demographic rates were highly con-

sistent between stream populations. The growth rate of both
sexes decreased nonlinearly with body weight. Males and females
had similar growth rates at small sizes, but the growth rate of
males decreased more rapidly. This caused males to reach a max-
imum weight of around half the maximum for females. Survival
probability also varied with both sex and body weight. Female
survival increased with weight initially; however, survival prob-
ability declined again in the largest individuals. Small males
had a comparable survival to females; however, survival rates
decreased with weight. As a result, males had a lower survival
probability than females.

Growth rates were influenced by size-asymmetric competitive
interactions, with larger individuals being competitively domi-
nant and disproportionately suppressing the growth of smaller
individuals (φGrowth > 0; Fig. 3A). The degree of size-asymmetric
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Fig. 4. The estimated equivalent density of competitors experienced by

female (Left) and male (Right) individuals in the four stream populations.

Equivalent density measures the effective density an individual experiences

(
∑

α(Xi , Xj)). On average, across years, the expected relationship between

an individual’s body weight and the equivalent density of competitors it

experiences is shown by the solid line. The variation in this relationship

over time is shown by the shaded regions in each panel. These signify

the 25th to 75th quantiles (dark shaded area) and the 5th to 95th per-

centiles (light shaded region) of the competition experienced by individuals.

Horizontal lines show the overall mean (black dotted) and sex-specific

average (colored dashed) equivalent density of competitors experienced in

each stream.

competition influencing growth (φGrowth) was between 0.55 and
1. This is a substantial asymmetry, implying that, despite con-
siderable fluctuations in the environment, the largest individuals
frequently experienced almost no effect of competition from
their smallest competitors (Fig. 4). Conversely, the small gup-
pies experienced a disproportionately large competitive effect
from the large ones, and the intensity of competition was more
variable over time. This competitive asymmetry is not a conse-
quence of the response of large individuals being constrained
because they are close to their asymptotic size, as Fig. 2A clearly

shows that large individuals have highly variable growth rates and
can often lose up to 40% of their body weight in a month. This
degree of asymmetric competition is consistent with dynamic
energy budget theories, where resource consumption scales with
an individual’s surface area–volume ratio, leading to the assump-
tion that resource preemption should follow a 2/3 power scaling
with weight (10).

Survival probability was also influenced by size-asymmetric
competition in the streams with experimentally increased pro-
ductivity (UL and TY; Fig. 3). Larger competitively dominant
individuals disproportionately reduced the survival probability
of smaller individuals (φSurvival > 0; Fig. 3B). In the two lower-
productivity streams, the effects of competitive interactions on
survival were approximately symmetric (φSurvival ≃ 0). That is,
the size composition of competitors did not greatly influence
individual survival. The frequent environmental perturbations,
especially flooding events (23, 24), may overwhelm or mask the
impacts of asymmetric interactions in these streams, as popula-
tion densities are lower. In contrast, in high-productivity streams,
competitor densities reached considerably higher peak levels
(21), and so survival rates remained coupled with population size
structure. The occurrence of size-asymmetric impacts of com-
petition on growth, but not survival, suggests that growth rates
are more sensitive to competition. This heightened sensitivity is
expected if resources are redirected away from growth toward
buffering survival (25).

Finally, we explored how asymmetric competitive interactions
alter our ability to project population-size distributions through
time. Integral projection models (IPMs) (26) were used to link
the processes of individual growth and survival and project body-
weight distributions from one sampling occasion to the next (SI
Appendix, section S1e). First, a set of simplified demographic
models were fitted, in which competition was constrained to
be symmetric (φ=0). By constructing IPMs using demographic
models containing either symmetric or size-asymmetric compe-
tition, we obtained two distributions of predicted body weights,
which were compared with observed body-weight distributions.

The IPM incorporating size-asymmetric competition greatly
outperformed the model with simple symmetric competition.
Accurate prediction of body-weight distributions could be made
for both males and females across the streams (Fig. 5A). This
was despite the spatial variation in habitat quality along streams
and the frequent and largely random impacts of environmen-
tal perturbations, such as flooding events. In contrast, when
competition was assumed to be symmetric, predicted body-
weight distributions were highly inaccurate, with the projected
mean and variance of body weights often being much smaller
than observed. Examination of the separate survival and growth
components revealed that the growth process was poorly cap-
tured when competition was assumed to be symmetric. When
population density was high, simple density-dependent models
predicted that all but the smallest individuals would lose a bio-
logically unrealistic proportion of body weight. The asymmetry
of competition means that large individuals do not lose much
weight under these conditions, which increases their survival
and shifts the body-weight distributions toward higher values.
We cannot quantify reproduction in the natural populations,
but in mesocosms, larger females have a higher probability of
reproducing, and reproductive output does not scale isometri-
cally with body weight, so shifts in size structure change the
total reproductive output of the population. Using the mesocosm
data, we found that the predicted reproductive output was over
two times larger when we compared asymmetric with symmetric
competition (SI Appendix, section S1e).

Guppies also exhibit size-dependent microhabitat use (27)
and a degree of ontogenetic niche differentiation (28). These
behaviors will reduce the degree of competition between individ-
uals of different sizes (29). Despite this, we have demonstrated
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that guppy demography is strongly influenced by size-asymmetric
competition. Competition is likely to be even more asymmet-
ric in species exhibiting size-based competitive hierarchies, such
as rutting ungulates, marine mammals, territorial birds, and a
wide array of fish species. Size-asymmetric competition is also
expected to influence reproductive demography, affecting both
the number and quality of offspring produced. In terms of selec-
tion when the genetic influences on an individual’s phenotype
arise from both its genotype and the genotypes of its competi-
tors, there are indirect genetic effects (30), which have important
implications for trait evolution (31, 32). As an individual’s body
weight determines competitive ability and this, in turn, is influ-
enced by many other traits, this suggests that indirect genetic
effects may be widespread. From an evolutionary perspective,
these results imply that fitness will be frequency-dependent,
resulting in potentially complex evolutionary dynamics (14–16).

The size-structured models of competition developed here can
be used to assess the role of asymmetric competition on all com-
ponents of a life history. This will allow an understanding of

how phenotypic variability drives both population dynamics and
evolution. Biotic interactions undoubtedly play a central role in
ecological and evolutionary dynamics. Our findings underline the
importance of determining the trait dependence of these inter-
actions and the need to move away from crude metrics of density
dependence. The classical approach, involving simple metrics
of density, is insufficient to capture the strength of interactions
between individuals, and, hence, a reevaluation of the role of
biotic interactions in both ecological and evolutionary processes
may now be required.

Data Availability. Demographic data have been deposited in the
publicly accessible Dryad Digital Repository (20).
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