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Abstract

In previous work exploring how to automatically generate typ-
icality measures for spatial prepositions in grounded settings,
we considered a semantic model based on Prototype Theory
and introduced a method for learning its parameters from data.
However, though there is much to suggest that spatial prepo-
sitions exhibit polysemy, each term was treated as exhibiting
a single sense. The ability for terms to represent distinct but
related meanings is unexplored in the work on grounded se-
mantics and referring expressions, where even homonymy is
rarely considered. In this paper we address this problem by
analysing the issue of reference using spatial language and
examining how the polysemy exhibited by spatial prepositions
can be incorporated into semantic models for situated dialogue.
We support our approach on theoretical developments of Pro-
totype Theory, which suggest that polysemy may be analysed
in terms of radial categories, characterised by having several
prototypicality centres. After providing a brief overview of
polysemy in spatial language and a review of the related work,
we define the Baseline Model and discuss how polysemy may
be incorporated to improve it. We introduce a method of identi-
fying polysemes based on ‘ideal meanings’ and a modification
of the ‘principled polysemy’ framework. In order to compare
polysemes and aid typicality judgements we then introduce
a notion of ‘polyseme hierarchy’. Subsequently, we test the
performance of the extended Polysemy Model by comparing
it to the Baseline Model as well as a data-driven model of
polysemy which we derive with a clustering algorithm. We
conclude that our method for incorporating polysemy into the
Baseline Model provides significant improvement. Finally, we
analyse the properties and behaviour of the generated Poly-
semy Model, providing some insight into the improvement in
performance, as well as justification for the given methods.

1 Introduction

In previous work (Richard-Bollans, Bennett, and Cohn 2020)
exploring how to automatically generate typicality measures
for spatial prepositions in grounded settings, we considered
a semantic model based on Prototype Theory (Rosch 1978)
and introduced a method for learning its parameters from
data. However, though there is much to suggest that spa-
tial prepositions exhibit polysemy, each term was treated as
exhibiting a single sense.

The ability for terms to represent distinct but related mean-
ings is unexplored in the work on grounded semantics and

referring expressions, where even homonymy' is rarely con-
sidered, as noted in (Siddharthan and Copestake 2004).

In this paper we address this problem by analysing the
issue of reference using spatial language and examining how
the polysemy exhibited by spatial prepositions can be incorpo-
rated into semantic models for situated dialogue. We support
our approach on theoretical developments of Prototype The-
ory, which suggest that polysemy may be analysed in terms of
radial categories (Lakoff 1999, Lewandowska-Tomaszczyk
2007), characterised by having several prototypicality cen-
tres.

After providing a brief overview of polysemy in spatial
language and a review of the related work, we define the
Baseline Model (based on (Richard-Bollans, Bennett, and
Cohn 2020)) and discuss how polysemy may be incorporated
to improve it. We introduce a method of identifying pol-
ysemes based on ‘ideal meanings’ (Herskovits 1987) and a
modification of the ‘principled polysemy’ framework (Tyler
and Evans 2001). In order to compare polysemes and aid typ-
icality judgements we then introduce a notion of ‘polyseme
hierarchy’. Subsequently, we test the performance of the
extended Polysemy Model by comparing it to the Baseline
Model as well as a data-driven model of polysemy which
we derive with a clustering algorithm. We conclude that our
method for incorporating polysemy into the Baseline Model
provides significant improvement. Finally, we analyse the
properties and behaviour of the generated Polysemy Model,
providing some insight into the improvement in performance,
as well as justification for the given methods.

In this paper we consider those spatial prepositions which
appear to both have an ‘ideal meaning’ and to exhibit pol-
ysemy at the kind of room-scales we are considering. We
consider these to be ‘in’ (Rodrigues et al. 2020), ‘under’
(Zlatev 1992), ‘over’ (Tyler and Evans 2001, Zlatev 1992)
and ‘on’ (Bowerman and Choi 2001).

"Homonymy denotes the capacity of a sign to convey two or
more unrelated meanings

2Though not explicitly studying polysemy, Bowerman & Choi
provide various examples of object configurations which are labelled
simply with ‘on’ in English but are distinguished with multiple
prepositions in other languages



2 Background

With regards to terminology, in the following we use figure
(also known as: target, trajector, referent) to denote the entity
whose location is important e.g. ‘the bike next to the house’
and ground (also known as: reference, landmark, relatum) to
denote the entity used as a reference point in order to locate
the figure e.g. ‘the bike next to the house’.

2.1 Spatial Language & Polysemy

As opposed to homonymy where senses are semantically
distinct, we say that a term exhibits polysemy if it denotes
multiple related senses and we call these distinct senses pol-
ysemes. For instance, a figure may be ‘on’ a ground if it is
(1) resting on top of it e.g. ‘a book on a table’ (2) attached
to the side of it e.g. ‘a clock on a wall’ (3) simply in contact
with it e.g. ‘a balloon on the ceiling’. This phenomenon is
well known in linguistics and it is pervasive in natural lan-
guage (Vicente et al. 2017). As the senses of polysemous
terms are so closely intertwined, the theoretical and compu-
tational treatment of polysemy presents a difficult challenge
for semantic models.

The polysemy of spatial prepositions is well recognised in
the literature (Herskovits 1987, Van der Gucht, Willems, and
De Cuypere 2007) which includes both detailed analysis of
the semantic variation of spatial prepositions, e.g. (Tyler and
Evans 2001), and attempts to provide a formal treatment of
them, such as (Rodrigues et al. 2020). However, polysemy
is rarely, if ever, accounted for in computational models for
situated dialogue. We discuss these issues further in Section
3.

2.2 Referring Expressions

A particular aspect of situated dialogue which we explore
is the processing of referring expressions — noun phrases
which serve to identify entities e.g. ‘the book under the
table’. Referring Expression Generation and Comprehension
(REG/C) situations provide useful scenarios for analysing the
semantics of lexical items and how they are used to achieve
communicative success. A lot of work has been done in
creating computational models for REG/C, see (van Deemter
2016) for an overview. However, most of this work avoids
expressions involving vague language where the extensions
of lexical items (sets of entities the term may refer to) are
uncertain.

In situations involving vague descriptions, binary classifi-
cations of possible referents are problematic as the problem
becomes over-simplified and semantic information is lost. In
place of categorisation, typicality becomes a central notion
i.e. how well a potential referent fits the description (van
Deemter 2016). Note that here we use typicality to denote
similarity to some ideal prototypical notion of a concept,
rather than simply frequency of occurrence.

When vagueness is explored in REG/C, it is usually with
respect to gradable properties whose parameters are clearly
defined e.g. (Gatt et al. 2018, van Deemter 2006). We ex-
plore the issue of reference using spatial language, where the
semantics are not so clear and terms may be used to denote
various distinct senses. Continuing the example of ‘on’ given

in Section 2.1, imagine a scene where a book is resting on top
of a table (Sense 1), a sheet of paper is attached to the side of
the table (Sense 2) and a box is on the floor but touching the
table (Sense 3). Each of these objects represents a particular
sense in which ‘on’ may be used to described the relationship
between the object and the table. A semantic model must be
able to recognise that each of these configurations fit the term
‘on’ to some degree and also be able to discern which is the
best instance of ‘on’ in this scenario.

3 Related Work

The possibility for a lexical item to represent multiple distinct
meanings is rarely treated in the work on REG/C. This is
in part because of the nature of polysemy and homonymy.
For example, when collecting data an annotator may label
something as ‘on’, but it is difficult to isolate automatically
which polyseme is being intended. Moreover, in the case of
spatial language, the kind of detailed semantic distinctions
encountered when dealing with polysemy requires a rich
dataset where the meanings of the terms are contextualised.

In studies related to situated dialogue generally, the do-
mains of discourse are often restricted to avoid the kind
of ambiguity that may arise from homonymy. Moreover,
when homonymy does arise one may draw on the plethora
of techniques and resources from the field of Word Sense
Disambiguation (WSD) to deal with the ambiguity, as is the
case in (Siddharthan and Copestake 2004). The case of poly-
semy, however, is less clear as (1) the set of polysemes for
a given term is not clearly defined (2) it is not clear how the
semantics of distinct polysemes differ or how they should
be treated pragmatically (3) given a polysemous term in a
referring expression context, multiple polysemes of the term
may be simultaneously acceptable.

In an attempt to provide a logical framework for handling
polysemy Rodrigues et al. (2020) give an in depth study of
the semantics of ‘in’ and explore the polysemy that it ex-
hibits. In their framework possible interpretations of ‘in’ are
formally defined based on abstract concepts and qualitative
spatial relations. Each interpretation is formed of a range of
components; for example one interpretation may be that the
figure is contained in a container where the figure is a solid
object and the figure is partly or fully geometrically contained
in the ground. An algorithm is then presented which maps in-
put sentences to a set of plausible interpretations. This work
highlights how object roles and types may affect preposition
usage and also the variety of senses that ‘in’ may represent.
However, as is the case with many such text-based tasks,
due to the lack of ground truth it is not clear exactly when
the algorithm is correct and there is a tendency to generate
over-committed interpretations of the language, as discussed
in (Bateman et al. 2010). Herskovits (1987) provides the
example of ‘the nail in the box’ which clearly displays the
ability for a phrase with no physical context to have an am-
biguous geometric representation — the nail may be ‘in’ the
box following the usual role of nails being in things or the
usual role of boxes in containing things. Moreover, for the
current purposes it is not clear how the framework could be
exploited to aid in referring expression tasks.



4 Data

In order to train and test typicality measures of spatial lan-
guage, we collected data on spatial prepositions using 3D vir-
tual environments, which we described in (Richard-Bollans,
Bennett, and Cohn 2020). Collected data and details of the
framework® along with more recent code and figures used in
the current analysis* can both be found in the Leeds research
data repository. The latest version of the data collection envi-
ronment and code for analysis can be found on the GitHub
repository’.

Two tasks were used in the data collection process — a
Preposition Selection Task and a Comparative Task. In the
Preposition Selection Task participants are shown a figure-
ground pair (highlighted and with text description) and asked
to select all prepositions in a list which fit the configuration.
In the Comparative Task a description is given with a single
preposition and ground object where the figure is left am-
biguous and participants are asked to select an object in the
scene which best fits the description. The former task allows
for the collection of categorical data and provides a dataset
of object configurations along with a ratio, which we call
the ‘selection ratio’, measuring the likelihood a participant
would label the configuration with a given preposition. The
models are trained on this selection data and the Comparative
Task provides typicality judgements on which the models are
tested.

4.1 Features

The use of virtual 3D environments allows for the extraction
of a wide range of features that would not be immediately
available in real-world or image-based studies. In this section
we describe the extracted features which comprise the feature
space used by the semantic models. Motivation for inclusion
of each of the features and further detail is given in (Richard-
Bollans, Bennett, and Cohn 2020).

Geometric Features Geometric features (distance be-
tween objects, bounding box overlap etc..) are in general
simple to extract. We made use of eight geometric features:

e shortest_ distance: the smallest distance between figure
and ground

e contact: the proportion of the figure which is touching the
ground

e above_ proportion: the proportion of the figure which is
above the ground

e below_ proportion: the proportion of the figure which is
below the ground

e containment: the proportion of the bounding box of the fig-
ure which is contained in the bounding box of the ground

e horizontal_ distance: the horizontal distance between the
centre of mass of each object

3https://doi.org/10.5518/764

*https://doi.org/10.5518/825

Shttps://github.com/alrichardbollans/
spatial-preposition-annotation-tool-unity3d

e f_covers_ g: this feature takes the area of the figure and
ground in the horizontal plane and measures the proportion
of the area of the ground which overlaps with the area of
the figure (with some adjustments made with respect to
vertical separation)

e g_covers_f: As above, with figure and ground reversed

Functional Features There are two particular functional
notions that appear repeatedly in the literature on spatial
language: support and location control. We take support to
express that the ground impedes motion of the figure due
to gravity, while location control expresses that moving the
ground moves the figure. Rather than attempting to formally
define these notions, as in (Hedblom et al. 2017, Kalita and
Badler 1991), we quantified these notions via simulation
using Unity3D’s built-in physics engine.

5 Baseline Model

The underlying model follows from previous work described
in (Richard-Bollans, Bennett, and Cohn 2020). Given a
preposition and a configuration (figure-ground pair) in a
scene, the model assigns a value of typicality for how well
the configuration fits the preposition. Following (Eyre and
Lawry 2014, Gérdenfors 2004, Mast, Falomir, and Wolter
2016, Spranger and Pauw 2012), typicality in our model is
calculated by considering the semantic distance to a proto-
type.

The model is defined by a prototype and set of feature
weights for each preposition:

1. P=(x1,...,x,) the prototype in the feature space
2. W = (wy, ..., wy,) the weights assigned to each feature

Typicality of a configuration, c, is then calculated as the
semantic similarity to the prototype:

nypicality(c) = e~ 9w () (1
where dy (z,y) is a weighted Euclidean metric using
weights W.

This model currently represents prepositions as a single
sense and we use this as the baseline. In this work we aim to
extend the model such that a preposition is associated with a
set of prototypes and weights.

6 Identifying Polysemes

The first challenge is to identify the different polysemes that
may be expressed by a preposition and in this section we
explore how this may be achieved.

For each preposition the goal is to construct a meaningful
set of polysemes where, given a configuration in a scene,
there is a method for determining which polysemes the con-
figuration could represent. Once this has been achieved
the model can be trained treating each polyseme separately,
which we describe in a later section.

6.1 Clustering

In order to potentially distinguish polysemes, support the
polysemes we choose and suggest distinguishing features,
we attempt to cluster preposition instances. We cluster the



data from the Preposition Selection Task using off-the-shelf
clustering algorithms provided by scikit-learn (Pedregosa et
al. 2011). In the remainder of this paper, where the k-means
algorithm is used we use all configurations, which are then
weighted by their selection ratio for the given preposition.
Where we use Hierarchical Agglomerative Clustering (HAC)
we only consider ‘good’ instances of the preposition (where
the selection ratio is greater than or equal to 0.5). Though
features which do not directly influence typicality of a prepo-
sition may help to distinguish polysemes, e.g. whether or
not the ground is a container, we currently only consider the
relational features given in Section 4.1.

Due to the vagueness they exhibit, spatial prepositions are
difficult to cluster and it may not be clear when meaningful
clusters have been established. For example, when generating
clusters using the k-Means algorithm, where the number of
clusters k£ must be specified in advance, one may employ the
‘Elbow’ Method to determine how many clusters should be
generated. This involves running the algorithm with varying
values for k£ and plotting the inertia (within-cluster sum-of-
squares) of each of the generated models against k. A distinct
kink in the plot signifies the optimal value of k. When we
apply this to our data no such kink is discernible, possibly
with the exception of ‘under’, see Figure 3 for the case of
‘on’. It may be that, though to humans there are meaning-
ful distinctions between polysemes, the clusters representing
polysemes significantly overlap and finding well-defined sig-
nificant clusters is a computational challenge.

In order to get a better understanding of the data, we cluster
the data using HAC with the Nearest Point Algorithm, and
use the provided dendrograms for analysis.

In Figure 1 we see the clusters generated by the HAC al-
gorithm for ‘on’. We can see a large grouping (in red) which
appears to represent the ideal/canonical meaning of ‘on” —
instances in the group have a high degree of support, above_
proportion and contact. These are most sharply distinguished
from the group in green (24,35,38) where support and contact
are high but above_ proportion is 0. In the turquoise group
support and contact are generally apparent but above_ pro-
portion is low. Finally the clade (43) represents an instance
where above_ proportion and support are 0 and there is some
contact. These generated clusters appear to represent and
support the distinctions given for ‘on’ in Section 2.1: (Sense
1: Red & Turquoise), (Sense 2: Green) and (Sense 3: Blue).

In general, the clustering appears to show that for each
preposition there is a cluster representing canonical examples
of the preposition and that other clusters may be distinguished
by their lack of a particular salient feature. We explore rep-
resentations of these canonical meanings in the following
sections.

6.2 Ideal Meanings

Herskovits (1987) argues that the meanings of spatial prepo-
sitions should be understood as ideal meanings from which
other uses of the prepositions are derived. Clearly the ideal
meaning of a preposition represents a polyseme that should
be represented in our model and so we begin by defining
these. We draw on intuition and the literature to assign repre-
sentations of the ideal meaning to each preposition below.
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Figure 1: Dendrogram from HCA for ‘on’

For the prepositions ‘in” and ‘on’ we follow (Garrod, Fer-
rier, and Campbell 1999) and assume that the underlying
representations comprise both geometric and functional com-
ponents.

In Following (Garrod, Ferrier, and Campbell 1999), ‘in’
expresses geometric containment as well as the functional
notion of location control. We define the ideal meaning of ‘in’
by a high value of two features: containment and location_
control.

On In (Garrod, Ferrier, and Campbell 1999) various ac-
counts and definitions of ‘on’ are listed and the recurring
features are contiguity and support. We also believe that the
canonical representation of support supposes that an object
is supported from below, as in the support image schema
provided in (Mandler 1992). We therefore define the ideal no-
tion of ‘on’ as having a high value of three features: support,
above_ proportion and contact.

Under Herskovits (1987) gives the ideal meaning of ‘under’
as ‘partial inclusion of a geometrical construct in the lower
space defined by some surface, line or point’. We therefore
define the ideal meaning of ‘under’ by a high value of two
features: below_ proportion and g_ covers_f.

Over Work on the semantics of ‘over’ often considers mov-
ing objects and the path taken by the figure. When we only
consider static objects, ‘over’ appears to have two central
notions — that the figure is above the ground and that the
figure covers the ground (Mori 2019, Tyler and Evans 2001).
We therefore define the ideal meaning of ‘over’ by a high
value of: above_ proportion and f_ covers_ g.

Meaning Shifts Once the ideal meanings are understood,
the derived uses of a spatial preposition are then achieved
via what Herskovits calls ‘sense’ and ‘tolerance’ shifts. In
tolerance shifts the ideal meaning may be deviated from in a
continuous manner — e.g. ‘in’ may be used to express part
containment rather than full containment. Sense shifts appear
in a discontinuous manner where the relations expressed by



the ideal meaning are substituted for conceptually similar
relations — Herskovits gives the instructive example of ‘the
muscles in his leg” where the relation being expressed by ‘in’
is no longer containment but parthood.

How sense shifts and their associated language conventions
may arise relies on the complex interactions of commonsense
reasoning and the evolution of language. We do not attempt
to fully characterise how these processes occur. However,
in the case of both sense and tolerance shifts, the meaning
expressed by a preposition generally violates a condition of
the ideal meaning but is still closely related to it.

This relates to the ‘principled polysemy’ approach set out
in (Tyler and Evans 2001) which aims to provide a more
objective footing for determining when preposition instances
represent genuinely distinct senses. The principled polysemy
framework assumes a ‘primary sense’, similar to the notion
of ‘ideal meaning’ and comprises two criteria for a sense to
count as distinct:

1. The sense must include a non-spatial component which
distinguishes it from other senses and/or where the spatial
configuration is meaningfully different from other senses

2. There must be instances of the sense where its meaning
cannot simply be derived from the context along with
knowledge of the other senses

With regards to the first criterion, we do not distinguish spa-
tial and functional features. The second criterion is rather
subjective and would rely on an advanced model of com-
monsense in order to automate. We condense the criteria
to:

Criterion 1. A sense may be considered distinct if the sense
meaningfully differs from other senses with regards to some
spatial or functional features

We suppose that whether a sense satisfies or violates one of
the conditions of the ideal meaning constitutes a meaningful
distinction. Following this, the ideal meaning of a preposition
can be considered to be a distinct polyseme and every other
polyseme is represented by some non-ideal meaning.

The various ways that the conditions of the ideal mean-
ing may be violated provide a method of grouping non-ideal
meanings and we take these groupings to represent distinct
polysemes. For example, in the case of ‘on’ each non-ideal
sense is generated by negating at least one of the three condi-
tions, giving eight potential senses for ‘on’. So, for example,
there is a sense of ‘on’ where the figure is supported by and
in contact with the ground but not above it and this sense is
distinguished from the sense where the figure is above, in
contact with and supported by the ground.

Clearly, it may be the case that a non-ideal meaning con-
structed in this way encompasses more than one genuine
polyseme, however the distinctions would then become very
fine-grained and a larger dataset would be required for train-
ing. This is a potential avenue for further work.

For each preposition we now have a set of polysemes each
with a set of conditions that a configuration must satisfy in
order to be a potential polyseme instance.

7 Determining Typicality

Given that we have outlined how polysemes may be distin-
guished, how do we translate this into a semantic model?
Firstly, we construct models for each polyseme such that,
given a particular configuration, we can assign a value repre-
senting how typical the configuration is for the polyseme.

In order to construct such models we treat each polyseme
as if it were a distinct term and employ the same method
and underlying model used in the Baseline Model. To train
each polyseme separately and ensure that the polyseme is
only trained on polyseme instances, the training datasets are
modified. This is achieved simply by removing potential
preposition instances that are not examples of the given pol-
yseme. For example, for the ideal sense of ‘on’ we would use
the ‘on’ dataset and remove instances of ‘on’ where one of
the ideal conditions does not hold. In this way, the model is
trained on instances of a particular polyseme and so the gen-
erated prototype and weights reflect properties of the distinct
polyseme rather than the preposition in general. In Equation
2, the typicality, typicality,(c), assigned by a polyseme, p,
to a configuration, c, is specified by these prototypes and
weights.

7.1 Sharing Prototypes

In order to explore the nature of polysemy and how it may
impact semantic representations we initially consider two
separate polysemy models, which we call the Distinct Pro-
totype Model and Shared Prototype Model. The models are
the same except that in the former each polyseme learns its
own prototype while in the latter each polyseme uses the
same prototype which is assigned using the prototype from
the Baseline Model.

By comparing these two models we may test whether
polysemes should share a prototype or be organised into
multiple prototypicality centres. For example, Senses 1, 2
and 3 for ‘on’ from Section 2.1 may assign varying salience
to support, contact and aboveness but within each sense
more support, contact or aboveness may increase typicality
i.e. if the prototype for each sense is the canonical one and is
shared.

8 Polyseme Hierarchy

Given that we have a model which assigns a typicality score
to any given configuration for a given polyseme, how can
we exploit this to answer the kind of referring expressions
which appear in the Comparative Task e.g. ‘the object on the
board’?

In some cases, given a preposition and ground, only one
polyseme of the preposition may be applicable to all potential
figure-ground pairs in the scene. In this case we can just com-
pare the typicality for each figure-ground pair, with respect
to that polyseme, and the most typical is the one selected.

However, in many cases there will be multiple possible
figures each potentially fitting a different polyseme. For
example, there may be a scene with a book on a table —
Sense 1 from Section 2.1 — as well as a box on the floor but
touching the table — Sense 3 from Section 2.1. It may be
the case that the typicality Sense 1 assigns to (book, table) is



slightly less than Sense 3 assigns to (box, table). If we are
to simply select objects based on raw typicality, ‘the object
on the table’ may be interpreted as ‘box’. This would clearly
be a mistake as Sense 3 is a weaker sense of ‘on’. We must
therefore somehow account for this apparent hierarchy of
senses.

The notion of sense hierarchies is not in itself new, however
hierarchies are usually based on inheritance and generality
e.g. the hierarchies in WordNet (Miller 1995) capture knowl-
edge such as ‘a car is a vehicle’. In the case of prepositions,
(Schneider et al. 2015) create a hierarchical taxonomy of
preposition ‘supersenses’ which may be used to annotate text.
These ‘supersenses’ group together ‘fine-grained’ preposition
senses which are then ordered into an inheritance hierarchy.
However, the apparent hierarchy of the polysemes we are
considering is less related to inheritance and more related
to a perceived applicability of the polyseme — in the above
example Sense 1 is a better sense of ‘on’ than Sense 3. Fur-
thermore, we aim to somehow quantify the hierarchy so that
polysemes may be compared.

In order to account for this apparent hierarchy, the typ-
icality scores are adjusted based on the likelihood that a
participant uses the given preposition to denote the given
polyseme. To determine how the scores should be adjusted,
using data from the Preposition Selection Task we generate
a rank for each polyseme. The rank for a polyseme is calcu-
lated by taking the average value of the selection ratio for all
configurations that fit the conditions of the polyseme.

For a given preposition, the polysemy models calculate
the typicality of a configuration, ¢, using Equation 2. P is
the set of polysemes of the preposition which may apply to ¢,
typicality,,(c) is the typicality of ¢ with respect to a polyseme
p and ry, 1s the rank of polyseme p.

typicality(c) = max(typicality,(c) x 1) (2)
peP

By adjusting the typicality assigned by polysemes by their
rank, configurations fitting weaker senses, e.g. Sense 3,
should only be selected if there are no good examples present
of stronger senses, e.g. Sense 1.

Our polysemy models are then defined, for each preposi-
tion, as a set of polysemes where each polyseme is in turn
defined by:

e A set of conditions under which the polyseme may be
applicable

o A set of feature weights and a prototype allowing for typi-
cality measurement

e A rank which represents the preference for the polyseme

It is possible that when the data is split into train/test sets,
there will be cases where a polyseme is not given any positive
instances to train on. In this case, the polyseme is assigned
prototype and weights equal to those assigned by the Base-
line Model for the associated preposition. The rank for the
polyseme, instead of being 0 is then taken as the average
value of the selection ratio for all training configurations.

9 k-Means Model

The polysemy models we have so far described rely on the
intuition of the authors and evidence from the literature to
generate ideal meanings. In order to provide a more thorough
analysis and explore other methods for handling polysemy,
we also generate a model which requires no such expert
knowledge and relies on a clustering algorithm to find pol-
ysemes. We call this model the k-Means Model and in this
section we describe how it is generated and how it assigns
typicality to configurations.

9.1 Typicality
The parameters defining the k-Means Model are:

e A set of feature weights for measuring semantic distance
and similarity

e A set of clusters each defined by a cluster centre
e A rank associated with each cluster

Given these parameters, the k-Means Model assigns typi-
cality to a given configuration, z, by first finding the cluster,
C, which is semantically most similar to z. Semantic similar-
ity of x to a cluster is calculated using Equation 1 where the
centre of the cluster acts as the prototype P. The typicality of
x is then given as the semantic similarity of 2 to C' multiplied
by the rank assigned to C'.

9.2 Generation

Here we describe how, for a given preposition, the parameters
of the k-Means Model are assigned when given training data.

Firstly, the feature weights for the k-Means Model are
trained in the same way as the Baseline Model, giving a
measure of feature salience for the preposition in general.
Semantic similarity can then be calculated using a weighted
Euclidean metric, as in Equation 1.

In order to find an appropriate set of clusters for the model
we begin with a fixed number of clusters, k, to be generated.
We set k to be the number of polysemes generated by the pol-
ysemy models — ‘on’:8, ‘in’:4, ‘under’:4, ‘over’:4. We then
cluster the configurations in the training data using k-Means
clustering to generate k clusters defined by the centre of the
cluster. For the algorithm the configurations are weighted by
their associated selection ratio for the preposition.

Finally we must determine a rank for each cluster. This is
calculated by finding the average selection ratio of configura-
tions in each cluster. Before this is calculated, each cluster is
first modified to account for feature salience so that the given
clusters are more internally coherent with respect to semantic
similarity. Where previously each configuration is assigned
to the cluster with the closest centre, now each configuration
is assigned to the cluster with the centre that it is semantically
most similar to. Finally, the rank of a given cluster is then
calculated by taking the mean value of the selection ratio for
configurations in the cluster.

10 Model Performance

While the Preposition Selection Task provides categorical
data from each participant, the Comparative Task provides



Distinct Shared Baseline | K-Means
Prototype | Prototype | Model Model
in 0.864 0.864 0.814 0.814
on 0.951 0.951 0.945 0.957
under 0.908 0.752 0.809 0.894
over 0.824 0.765 0.800 0.812
Average 0.887 0.833 0.842 0.869
Overall 0.902 0.842 0.857 0.891

Table 1: Initial Results: Training & testing on all scenes. Scores
represent agreement with participants in the Comparative Task

qualitative judgements regarding which configurations of
objects better fit a given description. The testing scenario
is restricted in such a way that the involved pragmatics is
simple and ideally the only judgement occurring is related
to typicality. We suppose that the configuration which best
fits a given description should be more typical, for the given
preposition, than other potential configurations in the scene.
We therefore use these judgements to test models of typicality
— a model agrees with a participant if the model assigns a
higher typicality score to the configuration selected by the
participant than other possible configurations.

As there is some disagreement between annotators (see
(Richard-Bollans, Bennett, and Cohn 2020)) it is not possible
to make a model which agrees perfectly with participants.
We therefore create a metric which represents agreement with
participants in general. Taking the aggregate of participant
judgements for a particular preposition-ground pair in the
Comparative Task, we can order possible figures in the scene
by how often they were chosen. This creates a ranking of
configurations within a scene from most to least typical. We
turn the collection of obtained rankings into inequalities,
or constraints, which the models should satisfy. Weights
are assigned to each constraint representing the evidence
supporting the constraint. This set of weighted constraints
provides a metric for testing the models and is described in
more detail in (Richard-Bollans, Bennett, and Cohn 2020).

In Tables 1 & 2, the scores given to each preposition are
the sum of weights of the satisfied constraints involving the
preposition divided by the total weight of constraints involv-
ing the preposition. The average score is simply the average
score for each preposition and the overall score is the sum of
weights of all satisfied constraints divided by the total weight
of all constraints. Higher scores imply better agreement with
participants in general.

10.1 Initial Results

To provide an initial insight into model performance and
how well the models translate categorical data into typical-
ity judgements, we compare the models when training and
testing using all the data from both tasks. Results for each
preposition are given in Table 1.

The Distinct Prototype Model outperforms the Shared Pro-
totype Model with ‘under’ and ‘over’ and the models draw
with ‘in” and ‘on’. This suggests that learning a distinct pro-
totype for each polyseme is advantageous and supports the
notion that these terms ought to be represented by several

Polysemy | Baseline | K-Means
Model Model Model
in 0.801 0.813 0.790
on 0.94 0.924 0.952
under 0.898 0.764 0.882
over 0.814 0.800 0.685
Average 0.863 0.825 0.827
Overall 0.893 0.845 0.869

Table 2: K-Fold Test Results (K=10, N=10). Scores are averaged
results of the cross-validation

distinct prototypicality centres®. From here on we discard the
Shared Prototype Model and refer to the Distinct Prototype
Model as the Polysemy Model.

10.2 K-Fold Testing

In order to test and compare robustness of the models, we
split the data into training and testing scenes using k-fold
cross-validation with £ = 10. We then generate the models
based on data from the training scenes given in the Prepo-
sition Selection Task and test the models using constraints
generated from the testing scenes in the Comparative Task.
We repeated this process 10 times and averaged the results,
shown in Table 2.

We use £ = 10 here as opposed to in (Richard-Bollans,
Bennett, and Cohn 2020) where k = 2 is used as the Poly-
semy Model requires a larger dataset for training.

Results The Polysemy Model has significantly improved
on the Baseline Model for the prepositions ‘on’, ‘under’ and
‘over’. In the case of ‘in’, the Baseline Model outperforms the
Polysemy Model. We believe that this is partly because the
Polysemy Model will in general require more data for training
and ‘in’ is a particularly difficult preposition to collect large
amounts of data for — there are only eight ‘good’ instances
of ‘in’ in the data from the Preposition Selection Task.

Both the models which have accounted in some way for
polysemy have in general improved on the Baseline Model
and, though the k-Means Model has under-performed for
‘in” and ‘over’, it may provide a useful method for handling
the polysemy of terms which do not have such clear ideal
meanings.

Significance In order to assess whether the improvement
shown by the Polysemy Model over the baseline is significant,
we assume a null hypothesis that both the models are equally
likely to perform better than the other (with respect to the
overall score) for a given random fold. The Polysemy Model
performs better on 64 out of 100 repetitions. Assuming the
null hypothesis, the probability of one model outperforming
the other on at least 64 of the repetitions is very small: (P(>

64) = Ziiom 100 0.519° = (0.0033. We may therefore

conclude that the Polysemy Model has offered significant
improvement over the baseline.

SWe also test the Shared Prototype Model in the following,
where it performs significantly worse than the Distinct Prototype
Model, but omit its results for readability and brevity



Figure 2: Example polyseme instances for ‘on’

Polysemy .
Model Baseline

(typicality x rank) Model
0.779x0.811 = 0.632 0.626
0.615x0.776 = 0.477 0.204
0.477x0.088 = 0.042 0.219

Configuration

(book, board)
(clock, board)
(jar, board)

Table 3: Assigned typicality scores for ‘on’

The improvement shown by the k-Means Model over the
baseline, however, does not appear to be significant. Also,
though the Polysemy Model improves on the k-Means Model
it is not a clearly significant improvement.

11 Generated Model

Here we consider the Polysemy Model when it is trained on
all the available data and analyse its properties and behaviour.

11.1 Typicality Values

Firstly, to illustrate how the model assigns typicality to con-
figurations and how this compares to the baseline we consider
an example. In Figure 2 we can see configurations of objects
that appeared in the test scenes. The typicality scores of some
of the configurations given by the models for ‘on’ are shown
in Table 3.

The (book, board) configuration is an instance of ‘on’ with
a high value of above_ proportion and support, but as it is
precariously balanced on top contact is low. The (clock,
board) configuration is an instance of ‘on’ with a high value
of contact and support but not above_ proportion. The (jar,
board) configuration was not labelled with ‘on’ by any par-
ticipants and has low values of contact, support and above_
proportion.

Clearly, (book, board) is closer to the canonical meaning of
‘on’ than (clock, board) and this appears to be represented in
the values assigned by the Baseline Model as well as the ranks

from the Polysemy Model. However, (clock, board) and
(book, board) are both good examples of the respective senses
of ‘on’” which they represent and we should expect (clock,
board) to be assigned a reasonable typicality value. Moreover,
(jar, board) is a mediocre example of its respective polyseme
and this polyseme is far from the canonical notion of ‘on’,
so we ought to expect this configuration to be assigned a low
typicality value.

We expect (clock, board) and (book, board) to have similar
typicality values and for these values to be higher than for (jar,
board). This is roughly coherent with the collected testing
data — when selecting the object described as ‘the object
on the board’ participants are more likely to select the clock
than either the book or jar and are more likely to select the
book than the jar.

The Polysemy Model appears to deal with this better than
the Baseline Model. Though it does assign a higher value
to (book, board) than (clock, board) these values are similar,
compared to the Baseline Model which assigns a very low
value to (clock, board). The Baseline Model, in fact, assigns
a higher value to (jar, board) than (clock, board) and therefore
does not agree very well with participants in this scenario.

11.2 Generated Polysemes

Ranks & Ideal Meanings Each preposition has been as-
signed an ideal meaning, defined by a set of conditions, and
a collection of non-ideal meanings where at least one of the
ideal conditions is negated. For each polyseme, we have
then assigned a rank from the data which should represent
semantically how close the polyseme is to the ideal meaning
and a sense of typicality among senses. We therefore expect,
for each preposition, the rank assigned to the ideal meaning
to be the highest and that as more of the ideal conditions are
negated the rank should decrease. With one small exception’,
this is exactly what we observe. This result suggests that we
have appropriately assigned ideal meanings to the preposi-
tions and that the semantics of the terms are indeed centred
around such ideal meanings.

Clustering To test how well the Polysemy Model partitions
the data into polysemes, we estimate how well the polysemes
cluster the data. In the following we take polyseme instances
to be any configuration that has been labelled with the prepo-
sition and which fits the polysemes conditions.

In order to cluster the data with the generated polysemes,
for a given preposition, we first calculate the mean feature
values of the instances of each polyseme. We then take this
set of means to act as cluster centres and measure the inertia
given by this clustering (a point is assigned to the cluster
with the nearest cluster centre®). We compare this to inertia
values given by a k-means clustering algorithm, see Figure
3 for the case of ‘on’. The lower the value of the inertia
the more internally coherent the clusters are. As we can

"For “in’ the rank of the polyseme where both ideal conditions
are negated is 0.0206 and the rank of the polyseme defined by high
containment and low location_ control is 0.02

8Note that here to be consistent with the inertia measure given
by the k-means algorithm we use regular Euclidean distance rather
than the weighted Euclidean metric used in Section 9.2
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Figure 3: Inertia from k-means clustering vs. Polyseme clustering

see, the clustering using the polysemes performs quite well,
equivalent to using the algorithm with k£ = 5. This result is
similar for the other prepositions we consider, see the data
archive® for the respective plots.

12 Discussion

In this paper we have explored how semantic models may
be improved to account for polysemy when processing refer-
ring expressions involving spatial prepositions. Primarily, we
have provided methods which distinguish meaningful clusters
within categorical data on spatial prepositions. By simpli-
fying the ‘principled polysemy’ criteria (Tyler and Evans
2001) for distinguishing polysemes, we have developed an
approach which we hope can be incorporated in semantic
models more generally. While we have relied somewhat on
intuition to generate ideal meanings, it may be possible to
generalise our approach to concepts whose ideal meaning is
not so clear e.g. by analysing which features are most salient.

We have also introduced a notion of ‘polyseme hierarchy’
— a value which corresponds to how strongly a particular
polyseme is associated with the given preposition — as well
as methods for determining its value. In combining this with
the generated polysemes, we have provided a semantic model
which significantly improves on the baseline when interpret-
ing a particular class of referring expressions. Moreover, the
model we have generated is transparent, with parameters that
are clearly interpretable.

As well as a polysemy model based around Criterion 1
and the authors’ intuition, we also created a model based on
a k-Means clustering algorithm. Though we cannot judge
the k-Means Model to be significantly better than the base-
line, that it performs reasonably in our tests suggests that
with further refinement it may provide another method for ac-
counting for polysemy in semantic models. Furthermore, the
reasonable performance of the k-Means Model as well as the
significantly improved performance of the Polysemy Model
provides further evidence that the selected prepositions do ex-
hibit polysemy and, moreover, that accounting for polysemy

is important when processing referring expressions.

13 Future Work

In this paper we have been considering the role of polysemy
in typicality judgements related to spatial language where
the ground object is fixed and relational features are used to
determine how well a figure object fits the given preposition-
ground pair. However, in many pragmatic strategies for
REG/C, e.g. (Frank and Goodman 2012), it is considered
important to be able to assess how appropriate or acceptable a
preposition is for a given figure-ground pair. Though related,
this is a different challenge and provides extra information
on the possible utterances that a speaker could make. Unlike
what we have considered so far, this is often reliant on par-
ticular properties of ground objects (e.g. for ‘in” whether or
not the ground is a type of container (Richard-Bollans et al.
2019)). We intend to extend the work we have done so far
and explore how polysemy may be accounted for in these
types of acceptability judgements.

We have based our study on those prepositions which,
based on existing literature, appear to exhibit polysemy at
room/table-top scales. However, in order to extend and test
the models on other terms it would be ideal to have some well-
defined criteria and a procedure for assessing when a term
is polysemous. This does not appear to have been addressed
in the existing work and is something we would like to work
towards.
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