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OFF-eNET: An Optimally Fused Fully End-to-End

Network for Automatic Dense Volumetric 3D

Intracranial Blood Vessels Segmentation
Anam Nazir, Muhammad Nadeem Cheema, Bin Sheng, Huating Li, Ping Li, Member, IEEE, Po Yang,

Younhyun Jung, Jing Qin, Jinman Kim, and David Dagan Feng, Fellow, IEEE

Abstract—Intracranial blood vessels segmentation from com-
puted tomography angiography (CTA) volumes is a promising
biomarker for diagnosis and therapeutic treatment in cerebrovas-
cular diseases. These segmentation outputs are a fundamental
requirement in the development of automated decision support
systems for preoperative assessment or intraoperative guidance in
neuropathology. The state-of-the-art in medical image segmenta-
tion methods are reliant on deep learning architectures based on
convolutional neural networks. However, despite their popularity,
there is a research gap in the current deep learning architectures
optimized to address the technical challenges in blood vessel seg-
mentation. These challenges include: (i) the extraction of concrete
brain vessels close to the skull; and (ii) the precise marking
of the vessel locations. We propose an Optimally Fused Fully
end-to-end Network (OFF-eNET) for automatic segmentation of
the volumetric 3D intracranial vascular structures. OFF-eNET
comprises of three modules. In the first module, we exploit the
up-skip connections to enhance information flow, and dilated
convolution for detailed preservation of spatial feature map that
are designed for thin blood vessels. In the second module, we
employ residual mapping along with inception module for speedy
network convergence and richer visual representation. For the
third module, we make use of the transferred knowledge in the
form of cascaded training strategy to gradually optimize the
three segmentation stages (basic, complete, and enhanced) to
segment thin vessels located close to the skull. All these modules
are designed to be computationally efficient. Our OFF-eNET,
evaluated using 70 CTA image volumes, resulted in 90.75%
performance in the segmentation of intracranial blood vessels
and outperformed the state-of-the-art counterparts.

Index Terms—Convolution neural network, computed tomog-
raphy angiography, dilated convolution, inception module, up-
skip connection, intracranial vessels segmentation.
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I. INTRODUCTION

INTRACRANIAL segmentation of blood vessels from com-

puted tomography angiography (CTA) in neuropathology

is of significant importance in diagnostic and clinical applica-

tions such as, stroke prevention and treatment, embolization of

cerebral aneurysms, and arteriovenous malformations (AVM-

s) [1]. For example, to carry out improved embolization of

the AVM, the structural and geometric information of blood

vessels from 3D images is of supreme importance. Likewise,

detailed information about arterial vessel status play a crucial

role for both the prevention and the improvement of stroke

therapy. For this reason, the in-depth segmentation of cerebral

blood vessels [2] is required for guiding physicians in planning

better pre-operative strategies, monitoring intraoperative surgi-

cal progression, and predicting postoperative patient outcome

in neurosurgical analysis.

Considering the crucial importance of brain vessel status

in a routine procedure, vessel information could be easily

integrated in the clinical workflow, if in-depth segmenta-

tion methods are available and practically applicable [3],

[4]. Possibly an ideal segmentation results can be obtained

through manual delineation by a medical expert; however

this is tiresome, impractical in larger studies, and subject to

inter-observer inconsistencies. Despite technology advances in

image segmentation [5], existing methods still suffer from

low accuracy for in-depth vessel segmentation particularly to

deliver segmentation of vessels close to skull. An analytic and

diagnostic medical data often comprises 3D images, volumet-

ric segmentation of such large volumes using slice-by-slice

approach is very cumbersome. Additionally, aiming to learn

3D complex visual patterns with a low computational burden

from volumetric images is an ongoing research challenge.

Therefore, designing efficient and automatic 3D technique

for learning visual representations for segmentation of fine

structures in volumetric images is of significant interest.

Consequently, various methods have been proposed such

as rule-based, which are implemented using vessel intensity

distributions, geometric models to extract vessels for develop-

ing more robust and accurate automatic vessel segmentation

methods [6], [7]. However, these approaches are based on

manually engineered hand-crafted features and may prove

to be inadequately validated. Convolutional neural networks

(CNN) has shown to be promising tools for learning visual rep-

resentations for image classification and segmentation tasks in
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Fig. 1: Workflow of our proposed OFF-eNET for automatic intracranial blood vessels segmentation. First step is to collect

brain CTA volumes and apply various preprocessing techniques such as normalization and re-sampling the dataset with spatial

window using spatially balanced sampling. Secondly, end-to-end cascade training of CNN with a 22-layered architecture is

carried out. Thirdly, our proposed CNN automatically segment and label brain vessels using inference. Finally, 3D slicer is used

for generating and enhancing 3D representation of segmented blood vessels with respect to multiple 3D views with respect to

sagittal (S), coronal (C), and transverse (T) planes.

various fields [8]–[11], and particularly in neuroimaging [12].

The distinguishing ability of CNN to learn hierarchical fea-

ture representation [13] without relying on manually detected

features makes them suitable for automatic delineation of

volumetric images. Multiple CNN implementations have been

proposed, Zikic et al. [14] presented a pioneer work based on

2D CNN for segmentation of neural membranes. Further stud-

ies on CNN for automatic segmentation of brain images were

introduced by [15]–[17]. Although these studies contributed

reasonably in tailoring CNN to analyze volumetric images, the

majority of the existing work studies image representations in

2D. Here, to carry out brain segmentation task from 3D CT,

each 2D slice has to be independently processed, which is

perhaps an impractical utilization of the volumetric represen-

tations [18]. Phellan et al. [19] showed promising preliminary

results while exploring the small sample size with shallow net

lead to limited performance. One of the most promising deep

learning frameworks is the U-Net [20] specifically designed

for segmentation tasks and has shown high performance for

biomedical images [21]–[23]. Livne et al. [24] presented a

revised U-Net for high-performance brain vessels segmenta-

tion [25]. In [26], Vesal et al. presented global context through

the use of dilated convolutions in fully 3D CNN which helps

in domain adaptation, and the overall segmentation accuracy

for Left atrial segmentation in 3D gadolinium enhanced-MRI.

Another paradigm of fully 3D CNN architecture follows

a pathway of convolution and deconvolution combination

to accomplish high-resolution segmentation [27], [28]. S-

abokrou et al. [29] proposed a two-stage cascade strategy

for anomaly detection and localization in video data showing

crowded scenes. A semi-supervised method for brain vessels

segmentation using hierarchical CNN was proposed in [30]

which showed better performance than classical rule-based

segmentation models. In another study [31], DeepVesselNet

was introduced that optimized for segmenting and analyzing

vessels (centerline prediction, and bifurcation detection) us-

ing angiographic volumes. A voxel wise analysis for brain

vascular segmentation using time-of-flight magnetic resonance

angiography (TOF MRA) images based on trained CNN [19]

was proposed for bi-dimensional manually annotated image

patches. Another recent method [32] have utilized variability

of blood flow signals to segment brain vessel from TOF MRA

Images.

A 3D FCNN for subcortical segmentation of brain MRI [33]

and for segmenting infant brain MRI [34] have proved remark-

able performance. It uses small kernels and intermediates lay-

ers for local and global contextual information with efficient

processing. It involves post processing to achieve concrete

segmentation. A deep voxel wise residual network [35] is

proposed for volumetric brain segmentation with greater effi-

ciency. Despite the popularity of 3D CNN architectures, their

computational cost and memory requirements during inference

to deliver in-depth and robust segmentation is still an open

challenge. To date, no 3D architecture is presented that is

specifically designed for intracranial vascular segmentation to

clearly separate blood vessels in areas closely adjacent to the

skull. In this study, we have proposed an Optimally Fused

Fully end-to-end network (OFF-eNET) for automatic dense

volumetric 3D intracranial vascular segmentation from CTA

volumes in areas closely adjacent to the skull. Fig. 1 depicts

workflow of the proposed method. The main contributions of

this study are summarized as three modules:

• For the segmentation of intracranial vessels near the

skull, we propose a dilated convolution with cross-layer

architecture as the up-skip connections. This combination

enhances network connectivity between the convolution

and dilated convolution path to facilitate the model’s

capacity to learn multilevel features as well as detailed

preservation of spatial resolution feature map.

• To increase the network’s capacity for learning richer

representations, in addition to accelerate network con-

vergence, we introduce an extension to the residual
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Fig. 2: The schematic representation of our proposed architecture. It consists of 22 layers with 10 residual connection blocks.

Each block with an inception module is composed of two 3×3×3 paired convolution layers followed by batch normalization

layer and element-wise rectified linear unit (ReLU) layer with up-skip connections. The first three blocks with 32×32 feature

map shows the normal convolution layer designed to extract low-level volume features such as corners and edges, the three

blocks in the middle with feature map of 64×64 convoluted layers have dilation factor of 2, and the last 4 blocks consist of

128×128 feature map comprising dilation factor of 4. The inputs are 128×128×128 voxel slices and fully connected (FC) last

layer gives classification results for each respective input voxel.

connection by adopting inception modules fusion of

residual connection which enabled the proposed method

to capture advanced visual information under controlled

computational complexity.

• An optimized way of employing cascade training strategy

is employed for using transferred knowledge to achieve

concrete segmentation into three sub-stages (basic, com-

plete, and enhanced).

Related to our problem scenario, the scene image seg-

mentation approaches such as CCL [36], SVCNet [37], and

BFP [38] tailored skip connections, dilated convolution and

dilated FCN for contextual and sematic segmentation where

to be detected objects are specified determined objects. OFF-

eNET mainly deals with medical image segmentation where

the to be segmented objects i.e. intracranial vessels are not

clear and specified. Our problem scenario is significantly

different from CCL [36], SVCNet [37], and BFP [38] in the

way that we have personalized the use of skip connection and

dilated convolution by introducing a fusing strategy to preserve

very low level details from the image to segment vessels

close to skull which are very thin and need segmentation of

detailed features. In this context our central contribution is an

improved and compact fully 3D end-to-end CNN architecture

for automatic intracranial vascular segmentation from CTA

volumes in areas closely adjacent to the skull. To achieve better

performance, we have used small kernels which exploit the

capability of dilated convolution for preserving fine structural

details along with up-skip connections to accelerate informa-

tion flow to ensure more low-level features. We further extend

our architecture by an innovative fusion of residual mapping

with inception modules to increase the network’s capacity for

learning richer representations in addition to accelerate net-

work convergence under controlled computational complexity.

The motivation of modifying residual connection and dilated

convolution is that they both show good result in natural 2D

image segmentation such as DeepLab [39], so we try them for

3D volume segmentation.

II. APPROACH

Fig. 1 shows our workflow, at first, we collect the brain

CTA volumes, apply various preprocessing techniques such

as normalization and re-sampling. The input volumes are

sampled by a [128 × 128 × 128] spatial window from the

CTA volumes. After a cascaded training strategy of network,

we have obtained intracranial labeled blood vessels in three

sub-stages (basic, complete, and enhanced) through inference

and verified the automatic segmentation results by comparing

them with manually labeled gold standard CTA volumes

as well as using quantitative metrics analysis. We enhance

the visualization of labeled blood vessels using 3D slicer

version 4.7.0 [40], which reconstruct the vessels from different

viewpoints. Further explanation for each component of the

proposed network is given below.

A. Network Architecture for Fully 3D End-to-End CNN

Fig. 2 shows architectural design of our network. It consists

of 22 layers with 10 residual connection blocks having an

inception module associated to all 10 blocks. Each block

is composed of two 3×3×3 paired 3D convolution layer-

s [41] followed by batch normalization layer and elementwise

rectified linear unit (ReLU) layer. The first three blocks

are normal convolution layers designed to extract low-level

volume features such as corners and edges, the three blocks

in the middle are convoluted layers with dilation factor of 2,

and the last 4 blocks consist of convolution layers comprising
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dilation factor of 4. The inner layers with larger dilated factors

along with cross layer up-skip connections to learn multi

and high level features abstraction from input volumes. The

network is designed to train end-to-end in a cascade way

to exploit transferred knowledge learning and corresponding

convolutional layers along with rectified element and residual

blocks are arranged in a pre-activation manner to maintain

symmetry [42]. We have considered single class at output

(fore-ground) and employed dice loss to measure the overlap

between foreground prediction (i.e., segmented vessels) and

foreground ground truth.

B. Dilated Convolution with Up-Skip Connections

Generally, to recover feature spatial details, deconvolution

layers are usually integrated in the network design. In order to

efficiently produce dense feature maps, instead of using down-

sampling layer, we have employed dilated convolution with

up-skip connections [43]. The core idea behind employing

dilated convolution with up-skip connection is that, it enhances

information flow between the encoding portion and decod-

ing portion to ensure more low level features are used for

optimizing the segmentation results. The up-skip connection

provides a new pathway between the convolution layers and

dilated convolution during the forward propagation process,

which allows the dilated convolution layers to extract more

low-level features and thus helps recover spatial information.

This concept up-sample the filters in successive convolutional

layers resulting in feature maps of enhanced spatial resolution

computed at a higher sampling rate with increased network

connectivity [41]. This policy offers a straightforward yet

prevailing substitute of deconvolutional layers for detailed

segmentation maps along delineated object boundaries to learn

multilevel features [41], [44]. Moreover, deconvolution layers

also introduce additional computational costs thus dilated

convolution is a way to reduce network computational cost

efficiently. Inspired by the work of [42], we have incorporated

dilated convolution for volumetric segmentation task. We have

up-sampled 3D convolution kernels with a dilation factor k.

Considering an input feature map of size X with N channels,

the output feature map Z is generated for our experimental

setup as:

Zi,j,l =
N=1∑

n=0

2∑

a=0

2∑

b=0

2∑

c=0

Ra,b,c,nX(i+ak),(j+bk),(l+ck),n (1)

where, the variables (i, j, l) go through every spatial position

in the input volumes. Hence, we can set receptive field up

to a (2kl + 1)3 voxel with kernels R. For minimal use of

parameters, we have selected the kernel size of 3×3×3 for

3D convolution layer which can cover 3D features relative to

a central voxel [42] in all directions.

C. Residual Mapping with Inception Module

The depth of fully 3D CNN plays a fundamental role in

achieving finer performance [45]. However, with an increase in

network depth, the notorious problem of network degradation

enhances due to the gradient diffusion which makes network

Fig. 3: The segmentation result of our approach. Visualized

using volume rendering of the blood vessels, together with

the trans-axial multi-planar views.

training process difficult. Hence, CNN generates unsatisfying

segmentation results. To address this issue, He et al. [46]

proposed and refined residual connections for effective training

and optimization. In our setup, instead of direct mapping

between input and output, we have added a residual block

after two layers with an inception module for deep analysis.

To advance the richer representation capacity of the seg-

mentation network for blood vessels close to skull and to

optimize the segmentation performance, we have adopted an

inception block within convolution layers, which has been

experimentally verified to boost the capturing of advanced

visual information under controlled computational complexity.

The inception module implemented in our end-to-end FCN

is redesigned, where a 3×3 convolution layer to enlarge the

receptive field and the max pooling layer is replaced by a short

path to directly incorporate input filters. The output filters

generated from the 1×1 and 3×3 convolutional layers are

concatenated with input feature map to achieve feature fusion.

According to our 3D CNN design, x represents the input

and F (x) denotes the original function of the network. By

adding a direct bypass from the input layer to the output

layer, we reshape the mapping function F to newer version

O : O(x) = F (X) + X to make information propagation

smooth via network and for speedy training. The network is set

to be trained to estimate a residual function based on new mod-

ification O(x)−x, which is cost effective and does not required

new parameters during training. Moreover, residual mapping

along with the inception module improves the gradient flow

in the backward propagation and helps to avoid the gradient

vanishing during training, offering additional guidance for the

learning of earlier layers.

D. Optimization by Maximizing Mean Dice Coefficient

CNN can suffer from biased classification towards majority

class problem when the training data is severely unbalanced
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Fig. 4: Our segmentation results with respect to multiple views

on three sub-stages of basic, complete, and enhanced. The

first row shows an original CTA volume, and the second row

shows the segmentation results. The columns represent the

axial (left), sagittal (middle), and coronal (right) views. The

third row illustrates the corresponding 3D visualizations of the

segmentation results.

for medical image segmentation task. To mitigate the effects

of biases and resultant misclassification, one optimal solution

is to maximize the mean dice coefficient directly, a solution

proposed by [47]. End-to-end trained fully 3D CNN reduce

the entropy of total error function L by utilizing K voxel of

volume {ak}
K
k=1 and the training data of S class segmentation

map{bk}
K
k=1, bk1, ....S as:

L(ak, bk) = −
1

K

K∑

k=1

S∑

k=1

λ(bk = S) logES(ak) (2)

where λ shows Dirac delta function, ES(ak) is the final

score of ak over the sth class. To overcome the problem

of imbalance training data we have maximized the mean

dice coefficient by employing the following, where C is dice

coefficient.

C(ak, bk) =
1

S

S∑

s=1

2
∑K

k=1 λ(bk = S)Es(ak)∑
[λ(bk = S)2 +

∑k

k=1[Es(ak)]2
(3)

E. Cascaded Training Strategy

Inspired by the success of knowledge transfer in boosting

performance [29], this research employed a three-stage cas-

caded training approach for concrete segmentation of brain

vessels close to skull (basic, complete, and enhanced sub-

stages) sequentially. During cascade training of the FCN, the

knowledge learned from the basic segmentation sub-stage is

transferred to the complete segmentation sub-stage, and the

TABLE I: Quantitative analysis of integrating variations of

activation function with a different combination of architec-

tural designs using 20 and 22 layers of our proposed network

(i.e., ReLU, elastic ReLU, and parametric ReLU). The second

section in the table demonstrates the proposed method variants

with incremental usage of different architectural modules.

Layers: Metrics DSC (%) PPV (%) AVD (%) Hausdorff (mm)

20L:ReLUs 89.56 90.47 89.28 5.32±1.10
20L:ELUs 88.32 89.17 87.93 5.71±1.52
20L:PReLUs 88.85 89.45 87.78 5.57±1.34

22L:ReLUs 90.75 91.56 89.86 5.01±1.05
22L:ELUs 89.23 90.23 88.95 5.42±1.22
22L:PReLUs 89.89 90.79 89.25 5.35±1.08

information learned from the complete segmentation sub-stage

is shared with the enhanced segmentation sub-stage. Cascaded

training approach gradually optimizes the segmentation results

for blood vessels near to skull considering the inclusion asso-

ciations of topologies between basic, complete and enhanced

sub-stages. To summarize the whole concept, the well trained

basic sub-stage is utilized as pre-trained model to initialize the

complete segmentation training sub-stage, and the enhanced

sub-stage is fine-tuned via well-trained complete segmentation

stage at both image and sub-volume level.

F. Data Pre-Processing

The CTA volumes from our original dataset have size up to

300×256×328, which increases computation cost (mainly the

GPU memory). We have incorporated a concept of sliding win-

dows to split the whole volume into slices with a fixed size of

128×128×128. Additionally, we have employed re-sampling

method with bilinear interpolation to make the image spacing

of all the CTA volumes as (1mm, 1mm, 1mm) and divide

the dataset according to the width of the window. To augment

the dataset for avoiding over-fitting segmentation results, we

have applied augmented operation such as rotating (10 degrees

left, 10 degrees-right), scaling by (1.2 times), reducing (up

to 0.8 times) and symmetrical transformation (upper, lower,

left, and right). We have utilized method described in [42] to

initialize the hyper-parameters for training, such as Adam as

training optimizer, the learning rate is 0.00005 coefficient of

weight decay regularization is 0.000006, the batch size is 4, the

regularization type is L2, and dice similarity coefficient (DSC)

as the loss function. It costs around 15 hours to complete the

training procedure on a Nvidia Telsa V100 GPU.

III. EXPERIMENTAL RESULTS

This section discusses the dataset preparation, implementa-

tion details, experimental setup, qualitative and quantitative

evaluation of results along with a comparison of proposed

method with state-of-the-art methods.

A. Dataset Preparation and Implementation Details

This study has been evaluated on clinical dataset of 70

CTA volumes and their corresponding labeled ground truth

collected from the cooperative Shanghai hospital, China. The
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(a) Internal carotid arteries (b) Vertebral arteries (c) Basilar artery (d) Posterior arteries

(e) Medial arteries (f) Anterior artery (g) Paracentral artery (h) Precuneal artery

(i) Lateral orbitfrontal artery (j) Angular artery (k) Central artery (l) Superior cerebellar artery

Fig. 5: Qualitative results of our method for the blood vessels located close to the skull. From (a)-(l) yellow, green, and blue

boxes show the labeled vessels. From (a)-(l), 12 major blood vessels are internal carotid vertebral, vertebral, basilar, posterior,

medial, anterior, paracentral, precuneal, lateral orbitfrontal, angular, central, and superior cerebellar arteries.

TABLE II: Quantitative results of our proposed approach with respect to different batch sizes and learning rates for three

sub-stages of segmentation process using DSC metric.

DSC w.r.t Batch Size DSC w.r.t Learning Rate

Batch Size @8 @16 @32 @64 Learning Rate @0.00002 @0.00003 @0.00004 @0.00005

Basic 75.86 78.45 80.25 82.15 Basic 77.44 78.56 79.38 80.99

Complete 83.15 85.75 87.66 88.12 Complete 81.75 84.63 86.53 87.67

Enhanced 85.75 81.35 89.11 90.75 Enhanced 87.83 88.11 89.09 90.70

manual labeling of the dataset for validation purposes is done

by an expert medical physician, for 20 CTA it cost around one

month to complete manual labeling, five to six hours for each

CTA. The implementation was conducted on P3xlarge server

instance provided by AWS (Amazon Web Service). It is set

to a Tesla V100 GPU, 16GB GPU memory, 8 virtual CPUs.

The operating system was 64-bit version of the 16.04LTS,

the deep learning library was TensorFlow 1.3.0 version with

cuda9.0 and cuDNN7.1 of the NVIDIA. For 3D visualization

of results, we have used 3D slicer version 4.7.0 [40] which

reconstruct blood vessels of the brain in 3D with multiple

viewpoints (sagittal, horizontal, and frontal plane) using iso-

surface extraction. 3D slicer axis with respect to the segmented

brain vessels is shown in Fig. 3.

B. Quantitative Evaluation

For quantitative assessment of this research, we have used

four types of metrics named as spatial overlap, distance based,

accuracy measure, and volumetric metric. The training process

of proposed OFF-eNET is based on backpropagation. The dice

coefficient quantifies extent of spatial overlapping between two

binary images [48]. A dice value varies from 0 to 1 (0 means
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no overlap and 1 means perfect agreement). Additionally, we

have reported three other metrics for showing the quantitative

evaluation of this study, i.e., Hausdorff distance (HD), positive

predictive value (PPV), and absolute volumetric difference

(AVD) [48]. The Hausdorff distance Hxy , across two sets of

points x and y is the maximum value of the distance for all

volume voxels defined as H = max (hxy, hvx). The PPV or

precision measure is the relation between true positives output

divided by all elements classified as positives. For our experi-

mental setup, it is defined as the percentage of how many truly

segmented vessels are actually taking part in measuring the

accuracy of segmentation result. AVD represents percentage

ratio of the absolute difference between input volume and the

segmented output volume, to the input volume.

TABLE III: Ablation study of the proposed method. Here, 22L

is used for base net (22 Layers), D is for dilated convolutions,

I for inception modules, U for up-skip connections, and C for

cascaded training strategy.

Layers:
Metrics

DSC
(%)

PPV
(%)

AVD
(%)

Hausdorff
(mm)

Training Time
(sec)

22L:D 86.75 91.56 89.86 5.01±1.05 35-40
22L:U 89.23 90.23 88.95 5.42±1.22 30-35
22L:D+U 89.89 90.79 89.25 5.35±1.08 25-30
22L:I+U+C 90.75 89.56 87.86 5.01±1.05 15-20

C. Segmentation Results with Respect to Different Combina-

tion of Proposed Method Architectural Variants

Table I implies that integrating residual connections along

with a different variation of activation function with a various

combination of architectural designs (i.e. ReLU, elastic ReLU,

and parametric ReLU) improved the segmentation results. We

have achieved best results in terms of DSC which are 90.75%

for deploying 22 layers + ReLU combination. Moreover, it

is inferred from the Table I that PPV and AVD values are

increased and Hausdorff distance got decreased with layer set-

ting of 22 Layers + ReLUs comparing with other combination

of layers. Additionally, We present an ablation experiment

of the gated sum in Table III. we have demonstrated the

incremental performance gained from various combination of

modules like dilated convolution, inception module, up-skip

connections, and cascade training. Where the last row in Table

III shows that the novel fusion strategy improves the perfor-

mance visibly. Comparing the following two combinations i.e.

(base net (22 layers) + dilated), (base net (22 layers) + up-

skip), (base net (22 layers) + dilated, up-skip), and (base net(22

layers) + inception, up-skip, cascade training), we can see that

the best results are achieved by utilizing the advantages of all

the above-mentioned extensions in the proposed network. We

have carried out another set of experiments for the proposed

method to validate the results with various batch sizes and

learning rates to investigate the impact of dice loss with

respect to three sub-stages of segmentation, see Table II.

The comparison results indicate that with a larger batch size

(i.e., 64) and higher segmentation sub-stage leads to better

segmentation performance. Similarly, with a higher learning

rate up to 0.00005 our method achieves the best performance

for enhanced segmentation stage.

Fig. 6: This figure compares the results of our proposed OFF-

eNET with manually labeled CTA volumes by medical experts.

The second and fourth rows are amplified areas of the first and

third rows respectively for the marked critical arteries close to

skull, i.e. anterior, posterior, and medial brain arteries.

D. Analysis of Segmentation Results for Three Sub-Stages

Using Cross Entropy Loss and Dice Loss

For this study, we have calculated two losses, i.e. dice

loss and cross entropy loss (CEL), to compare and reveal

the effectiveness of dice loss over CEL for mitigating class

imbalance problem. CEL is calculated as the log loss, summed

over all possible class values to get final score for all pixels

and then averaged. Considering equal learning to each pixel

in the input image, CEL evaluates the class predictions for

each pixel vector individually which may can cause a problem

when output classes have unbalanced representation in the

image. Hence dice loss as an optimum choice to overcome the

class imbalance problem. Table IV demonstrates the results of

proposed method with CEL and dice loss functions for three

segmentation sub-stages.

TABLE IV: Quantitative analysis of segmentation results for

three sub-stages by comparing dice loss and cross entropy loss.

Segmentations Stages Dice Loss Cross Entropy Loss

Basic 78.37 73.34

Complete 85.43 76.34

Enhanced 90.03 80.45
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TABLE V: Comparison of our approach with five state-of-the-art methods in terms of mean DSC, PPV, and AVD.

Method DSC (%) PPV (%) AVD (%) Hausdorff Distance (mm)

Noori et al. [49] 83.44±0.79 82.23±0.64 81.75±0.98∗ 6.24±1.78∗

Shi et al. [50] 87.99±0.34∗ 85.32±0.73∗ 83.45±0.67 6.89±1.57∗

Li et al. [42] 84.03±0.75 87.11±0.77∗ 86.49±0.16∗ 6.25±1.96∗

Chen et al. [35] 86.99±0.41∗ 86.91±0.25 85.43±0.54∗ 6.01±1.25
Livne et al. [24] 87.44±0.32 86.99±0.94∗ 86.11±0.44∗ 6.51±1.05
Our Method 90.75±0.30 89.56±0.20 87.86±0.10 5.01±1.05

P < 0.05, * derived for a paired t-test shows statistically significance difference.

E. Qualitative Evaluation

In this subsection qualitative results of proposed method

have been demonstrated by vessel segmentation outputs and

their visualizations are provided. Fig. 4 shows the output of

three stages of our segmentation process (i.e. basic, complete,

and enhanced) with respect to the sagittal, horizontal, and

frontal plane in a 3D slicer. The top layer is the representation

of raw data with anterior, superior and right 3D viewpoints of

the brain. The second layer is automatic segmentation results

of respective 3D views and last layer is 3D visualization of

labeled and segmented blood vessels with clear boundaries.

Fig. 5 demonstrates the detailed analysis of achieved results

especially for the blood vessels close to skull, each part

in the illustration from (a-l) is showing a labeled vessel

marked with colored boxes. We have marked and identified

12 major intracranial blood vessels (i.e., internal carotid verte-

bral, vertebral, basilar, posterior, medial, anterior, paracentral,

precuneal, lateral orbitfrontal, angular, central, and uperior

cerebellar arteries) for brain in areas close to skull [51].

The results were verified by medical physician with satisfied

performance. Fig. 6 compares the results of automatic blood

vessel segmentation with that of manually labeled CTA’s by

medical experts. It is shown from the illustration that the

proposed method delivered comparable segmentation results

with the ground truth, where the major blood vessels close to

skull can be clearly seen with an enlarged view on automatic

segmented results. More qualitative results are represented in

Fig. 7.

Fig. 7: Qualitative results of another patient.

F. Comparison with State-of-the-Art

We have carried out comparisons with five recent state-of-

the-art volumetric segmentation techniques including Noori et

TABLE VI: Cross validation.

Validation DSC (%) PPV (%) AVD (%) Hausdorff (mm)

Fold1 90.45 86.34 86.11 6.0

Fold2 89.95 88.46 87.49 5.4

Fold3 88.36 87.56 88.56 5.0

Fold4 87.49 86.23 89.67 4.5

Fold5 90.75 89.11 86.89 4.8

Foldavg 89.46 87.8 87.2 5.04

Fig. 8: Comparison of proposed method with five state-of-the-

art Noori et al. [49], Shi et al. [50], Li et al. [42], Chen et

al. [35], and Livne et al. [24] methods.

al. [49], Shi et al. [50], Li et al. [42], Chen et al. [35], and

Livne et al. [24]. We have utilized mean DSC, AVD, PPV, and

Hausdorff distance (mm) as the performance metrics for the

comparisons. For testing the significance of the differences

between the results of comparison methods, we computed

the p-value using the paired t-test (two-sample t-test) with

significance level of p at 0.05. Table V and Fig. 8 demonstrate

the comparison results. With reasonably fewer parameters

than Noori et al. [49] and Shi et al. [50], the proposed

method outperforms the competing method in terms of mean

DSC of 90.75%, PPV up to 89.56%, AVD value increases

up to 87.86% and Hausdorff distance (mm) decreased to

5.01±1.05mm. These results show that we have achieved

significantly higher results, i.e., approximately 3-4% accuracy

compared to Livne et al. [24] and Chen et al. [35] in terms of

DSC and PPV.

The obtained dice coefficient with error value of approxi-

mately 10% shows that the OFF-eNET is an accurate solution

to optimally detect thin vessels, and outperforming the existing

models such as Livne et al. [24], and Li et al. [42]. Qualitative-

ly, we can see that the OFF-eNET resulted in slightly greater

amount of depiction of the thick blood vessels when compared

to the manual labelling counterpart. We assessed our model’s

performance using four different measures: First, the dice
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coefficient which is a well-known for quantitative measure of

segmentation accuracy [24]; Second and third are the distance-

based measures, the HD and the AVG, respectively; Fourth one

is the accuracy measure, i.e., PPV. These differences suggest

that the use of hybrid combination of dilation factor wit up

skip connection and inception module with cascade training

strategy can actually improve the performance of segmentation

networks especially for thin intracranial blood vessels.

Currently, our technique takes approximately 120 seconds

to complete the segmentation process on an image volume of

size 128×128×128 voxel on Nvidia GTX 1060. The time is

reduced to 15-20 seconds when using Tesla V100. We have

used 70 CTA volumes out of which we have used 50 for

training and 20 for testing. We divided the image volume in to

128×128×128 size sub-volumes, thereby dividing the testing

set of 20 CTA volumes approximately 5 million sub-volumes.

We have conducted 5-fold cross validation to estimate how

accurately our automatic segmentation results will perform

in clinical practice. We divided the 70 volumes dataset into

five equal folds, with each of the first four folds used exactly

once as the validation data. The 5th fold was solely used for

validation to test the dataset. Table VI shows the results for

five folds with averaged results in terms of four metrics.

In summary, this study provides a starting point to develop

a brain vessels segmentation solution which can be applicable

in the neuropathology settings. For qualitative evaluation, two

experienced medical experts visually assessed the superiority

of our segmentation. We found an excellent performance for

thick, as well as thin blood vessels close to the skull area

which showed higher performance of OFF-eNET as compared

to state-of-the-art segmentation methods.

IV. CONCLUSION

We presented an efficient OFF-eNET architecture for auto-

matic intracranial vascular segmentation from CTA volumes.

We focused on enhancing our work compared to the existing

methods by segmenting thin blood vessels near the skull for

improving the accuracy of dense volumetric segmentation. We

have applied various preprocessing techniques to resample

3D volumes for effective training. To handle network con-

vergence, this research mainly employed residual mapping

along with inception module. To deliver richer representation

for preserving spatial feature map, we have employed dilated

convolution along with innovative use of up-skip connections.

The proposed method is evaluated by verifying the automatic

segmentation result against manually labeled gold standard

CTA volumes. This type of segmentation has remained ignored

in previous state-of-the-art due to requirement of preserving

concrete details. Our proposed architecture proved to be a

promising contribution having clinical importance both during

diagnosis, where the volume of brain CTA needs to be ana-

lyzed, and during treatment planning when the estimation of

the anatomical structure of blood vessels needs to be accurate.
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[41] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberg-
er, “3D U-Net: Learning dense volumetric segmentation from sparse
annotation,” in MICCAI, 2016, pp. 424–432.

[42] W. Li, G. Wang, L. Fidon, S. Ourselin, M. J. Cardoso, and T. Ver-
cauteren, “On the compactness, efficiency, and representation of 3D
convolutional networks: Brain parcellation as a pretext task,” in Interna-

tional Conference on Information Processing in Medical Imaging, 2017,
pp. 348–360.

[43] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European Conference on Computer Vision, 2014,
pp. 818–833.

[44] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in IEEE Conference on Computer Vision

and Pattern Recognition, 2015, pp. 3431–3440.
[45] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,

M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and
C. I. Sánchez, “A survey on deep learning in medical image analysis,”
Medical Image Analysis, vol. 42, pp. 60–88, 2017.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European Conference on Computer Vision, 2016, pp. 630–
645.

[47] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully convolutional
neural networks for volumetric medical image segmentation,” in Inter-

national Conference on 3D Vision, 2016, pp. 565–571.
[48] K. O. Babalola, B. Patenaude, P. Aljabar, J. Schnabel, D. Kennedy,

W. Crum, S. Smith, T. F. Cootes, M. Jenkinson, and D. Rueckert,
“Comparison and evaluation of segmentation techniques for subcortical
structures in brain MRI,” in MICCAI, 2008, pp. 409–416.

[49] M. Noori, A. Bahri, and K. Mohammadi, “Attention-guided version
of 2D UNet for automatic brain tumor segmentation,” in International

Conference on Computer and Knowledge Engineering, 2019, pp. 269–
275.

[50] F. Shi, Q. Yang, X. Guo, T. A. Qureshi, Z. Tian, H. Miao, D. Dey,
D. Li, and Z. Fan, “Intracranial vessel wall segmentation using convolu-
tional neural networks,” IEEE Transactions on Biomedical Engineering,
vol. 66, no. 10, pp. 2840–2847, 2019.

[51] L. D. J. Fiederer, J. Vorwerk, F. Lucka, M. Dannhauer, S. Yang,
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