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ARTICLE

Entanglement-enhanced testing of multiple
quantum hypotheses
Quntao Zhuang 1,2✉ & Stefano Pirandola 3,4✉

Quantum hypothesis testing has been greatly advanced for the binary discrimination of two

states, or two channels. In this setting, we already know that quantum entanglement can be

used to enhance the discrimination of two bosonic channels. Here, we remove the restriction

of binary hypotheses and show that entangled photons can remarkably boost the dis-

crimination of multiple bosonic channels. More precisely, we formulate a general problem of

channel-position finding where the goal is to determine the position of a target channel

among many background channels. We prove that, using entangled photons at the input and

a generalized form of conditional nulling receiver at the output, we may outperform any

classical strategy. Our results can be applied to enhance a range of technological tasks,

including the optical readout of sparse classical data, the spectroscopic analysis of a fre-

quency spectrum, and the determination of the direction of a target at fixed range.
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Q
uantum sensing1 exploits quantum resources and mea-
surements to improve the performance of parameter
estimation and hypothesis testing, with respect to the best

possible classical strategies. One of the fundamental settings of
quantum hypothesis testing2–5 is quantum channel discrimina-
tion6–10, where the aim is to discriminate between different
physical processes, modeled as quantum channels, arbitrarily
chosen from some known ensemble. Finding the best strategy for
quantum channel discrimination is a non-trivial double optimi-
zation problem which involves the optimization of both input
states and output measurements. Furthermore, the optimization
is generally performed assuming a certain number of probings
and it becomes an energy-constrained problem in the dis-
crimination of bosonic channels, where the available input states
have a finite mean number of photons11.

For the discrimination of bosonic channels, the so-called
‘classical strategies’ are based on preparing the input signal modes
in (mixtures of) coherent states and then measuring the channel
outputs by means of suitable receivers, e.g., a homodyne detector.
By fixing the input energy to a suitably low number of mean
photons per probing, the classical strategies are often beaten by
truly quantum sources such as two-mode squeezed vacuum
states, where each signal mode (probing the channel) is entangled
with a corresponding idler mode directly sent to the output
measurement. This quantum advantage was specifically proven
for the readout of data from an optical memory, known as
quantum reading12, and the yes/no detection of a remote target,
known as quantum illumination13–16.

While quantum advantage with entangled-assisted protocols
has been proven in problems of binary quantum channel dis-
crimination with bosonic channels, the potential advantage of
quantum entanglement over the best classical strategies still needs
to be explored and fully quantified in the more general setting of
discrimination between multiple quantum channels. As a matter
of fact, this problem is very relevant because real physical
applications often involves multiple hypotheses, and their treat-
ment lead to non-trivial mathematical complications. In fact,
naively decomposing a multi-hypothesis quantum channel dis-
crimination into multiple rounds of binary cases does not
necessarily preserve the quantum advantages from the
binary case.

In this work, we formulate a basic problem of multiple channel
discrimination that we call “channel-position finding”. Here the
goal is to determine the position of a target channel among many
copies of a background channel. We prove that, using entangled
photons at the input and a generalized form of conditional nul-
ling receiver at the output, we may outperform any classical
strategy in finding the position of the target channel, with a clear
advantage in terms of mean error probability and its error
exponent. In particular, our receiver design only relies on state-
of-the-art technology in quantum optics, i.e., direct photo-
detection (not requiring number-resolution), two-mode squeez-
ing (which can be realized by standard optical parametric
amplifiers) and feed-forward control (which has been demon-
strated17). Our results can be applied to various applications,
including position-based quantum reading, spectroscopy and
target finding.

Results
General setting and main findings. We study the discrimination
of multiple quantum channels by introducing and studying the
problem of channel-position finding (CPF). This is a basic model
of pattern recognition involving quantum channels, which has
relations with the notion of pulse-position modulation19–22. In
CPF, a pattern is represented by a multi-mode quantum channel

E composed of m sub-channels Φ, each acting on a different
subsystem Sk (for k = 1, …, m) and chosen from a binary
alphabet {Φ(B), Φ(T)}. Only one of the sub-channels can be the
target channel Φ(T), while all the others are copies of a back-
ground channel Φ(B). A quantum pattern is therefore represented
by a global channel En (for n = 1, ⋯ , m) where the target
channel is only applied to subsystem Sn while all the other sub-
systems undergo background channels (see Fig. 1a for a simple
example with m = 3).

In this scenario, we design entanglement-enhanced protocols,
based on a two-mode squeezed vacuum source and a generalized
entangled version of the conditional-nulling (CN) receiver17,23–25,
that are able to greatly outperform any classical strategy based
on coherent states (see Fig. 1b for a schematic). This quantum
advantage is quantified in terms of much lower mean error
probability and improved error exponent for its asymptotic
behavior.

Quantum-enhanced CPF has wide applications (see Fig. 1c). In
quantum reading of classical data, this corresponds to a novel
formulation that we call ‘position-based quantum reading’. Here
the information is encoded in the position of a target memory cell
with reflectivity rT which is randomly located among background
memory cells with reflectivity rB. This is a particularly suitable
model for information readout from sparse memory blocks.
Changing from spatial to frequency modes, it can be mapped into
a quantum-enhanced model of photometer or scanner, where the
goal is to find an absorbance line within a band of frequencies.
The advantage can therefore be interpreted as a quantum-
enhanced tool for non-invasive spectroscopy.

Another potential application of CPF is quantum target
finding, where we simultaneously probe multiple space cells that
are now represented by sectors of a sphere with some fixed radius.
Only a single sector has a target with reflectivity η while all the
other sectors are empty. Moreover, each sector is characterized by
bright noise so that NB mean thermal photons per bosonic mode
are irradiated back to the receiver. Of course the problem is not
limited to a spherical geometry. For instance, it can be seen in the
context of defected device detection. Suppose there is an assembly
line for producing a device that implements a channel, and with
low probability, the assembly line produces a defective device that
implements a different channel. Similarly, the problem can
equivalently be mapped from spatial to frequency modes, so as to
realize a quantum-enhanced scanner now working in very noisy
conditions.

Besides these potential applications, we expect that our results
will have other implications beyond the model of CPF. For
instance, as a by-product, we also found that our generalized CN
receiver beats the best known receiver for the original binary
problem of quantum reading12 (see Methods for more details).

Generalized conditional nulling receiver. From a mathematical
point of view, the model of CPF exploits a relevant symmetry
property that enables us to perform analytical calculations. For-
mally, we consider the discrimination of m possible global
channels fEngmn¼1, each with equal prior probability and expres-
sed by

En ¼ �k≠nΦ
ðBÞ
Sk

� �

�Φ
ðTÞ
Sn

; ð1Þ

where Φ
ðB=TÞ
Sk

is the background/target channel acting on sub-

system Sk. In general, each subsystem may represent a collection
of M bosonic modes.

It is easy to see that the ensemble of global channels fEngmn¼1

has the geometric uniform symmetry (GUS)22 En ¼ Sn�1E1S
yn�1,

where the unitary S is a cyclic permutation and Sm = I, with I
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being the identity operator. Because the channels are highly
symmetric, it is natural to input a product state with GUS
�m

k¼1ϕSk , in which case the output state becomes

ρn ¼ �k≠nσ
ðBÞ
Sk

� �

� σ
ðTÞ
Sn

; ð2Þ

where σ(T/B): = Φ(T/B)(ϕ). It is clear that this ensemble of output
states also has GUS, i.e., ρn = Sn−1ρ1S†n−1, and it is analogous to
the states considered in a pulse-position modulation19,21,22.

It is known22,26 that the optimal positive-valued operator
measure (POVM) {Πk} minimizing the error probability for
discriminating an ensemble of GUS states has the same type of
symmetry, i.e., Πn= Sn−1Π1S†n−1. This POVM has minimum
error probability (Helstrom limit) PH= 1 − tr(ρ1Π1). For the
specific cases where the output states are pure

σT=B ¼ ψðT=BÞ�

�

�

ψðT=BÞ�
�

�, with overlap ζ ¼ ψðTÞjψðBÞ� �
�

�

�

�

2
, we have

the following expression of the Helstrom limit

PHðm; ζÞ ¼ m� 1

m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðm� 1Þζ
p

�
ffiffiffiffiffiffiffiffiffiffiffi

1� ζ
p

h i2

; ð3Þ

which is achievable by the ‘pretty good’ measurement27–29. In
particular, note that for mζ ≪ 1 we have the asymptotic
expansion

PH ¼ 1

4
ðm� 1Þζ2 þ Oðm2ζ3Þ: ð4Þ

In general, when Eq. (2) represents an ensemble of mixed
states, we do not know how to compute the ultimate Helstrom
limit. However, we can resort to a sub-optimal detection strategy
by generalizing the CN receiver23. In fact, consider the m-ary CPF
problem of Eq. (1) with target/background channel Φ(T/B).

Assume that the pattern is probed by a GUS state so that the
output ensemble is given by a generally mixed state as in Eq. (2)
with target/background state σ(T/B). Then, we show the following
(see Methods for a proof).

Theorem 1.
(Generalized CN receiver) Denote by hn the hypothesis that the
target channel Φ(T) is encoded in sub-system Sn, so that the global
channel is En. Suppose that there are two partially unambiguous

POVMs, that we call t-POVM fΠðTÞ
t ;Π

ðBÞ
t g and b-POVM

fΠðTÞ
b ;Π

ðBÞ
b g, such that

tr½ΠðTÞ
t σðTÞ� ¼ tr½ΠðBÞ

b σðBÞ� ¼ 1: ð5Þ

Then, we design the following receiver. Start with n= 1:
1. Check the current hypothesis hn by measuring subsystem Sn with
the t-POVM fΠðTÞ

t ;Π
ðBÞ
t g.

2. If the outcome from Sn is ‘T’, measure all the remaining sub-
systems fSkgmk¼nþ1 in the b-POVM fΠðTÞ

b ;Π
ðBÞ
b g. If we get out-

come ‘T’ for some Sk then select the hypothesis hk. Otherwise,
select hn.

3. If the outcome from Sn is ‘B’, then discard hn and repeat from
point 1 with the replacement n → n+ 1. If n+ 1=m, then select
hypothesis hm.
The error probability of this CN receiver is

PCN
m ðζ1; ζ2Þ ¼

1

m

ζ2
ζ1

mζ1 þ 1� ζ1ð Þm � 1ð Þ; ð6Þ

where ζ1 ¼ trðσðBÞΠðTÞ
t Þ and ζ2 ¼ trðσðTÞΠðBÞ

b Þ are the two types of
error probabilities.

Fig. 1 Channel-position finding (CPF) schematics. CPF represents a fundamental model of pattern recognition with quantum channels. a Example for

m = 3 subsystems. Global channels E1; E2; E3 consist of sub-channels Φ on subsystems S1, S2, S3. Each sub-channel can be chosen to be a background

channelΦ(B) or a target channelΦ(T). Channel En (for n = 1,⋯ , m) means that the target channel is applied to subsystem Sn while all the other subsystems

undergo background channels. b The classical strategy sends coherent-state signals (red, Sk), while the entangled strategy sends signals (red, Sk) entangled

with locally stored idlers (blue, Ik). c Bosonic applications to quantum reading of position-based data and quantum-enhanced direction finding of a remote

target. Entangled pairs of signal (red) and idler (blue) are used. In position-based quantum reading, each sub-channel corresponds to a memory cell with

reflectivity rB (background) or rT (target); in quantum target finding, each sub-channel corresponds to a sector on a fixed-radius sphere where a target with

reflectivity η can be present or absent. If the target is absent, the returning signal is replaced by environmental noise with NB mean thermal photons

per mode.
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Note that, when mζ1 ≪ 1, we have the asymptotic expansion

PCN
m ’ 1

2
ðm� 1Þζ1ζ2: ð7Þ

Also note that the above receiver is a CN receiver because it
exploits partially unambiguous POVMs and a feed-forward
mechanism, similar to the classical CN receiver23. However, it
is a generalized CN receiver because it also involves entanglement
with ancillas and may also be applied to mixed-state inputs, while
the original CN receiver23 only applies to pure states with no
entanglement. Finally, our receiver only relies on local operations
and classical communication among the different subsystems, an
important feature that makes it practical.

For pure GUS states, one can always devise partially
unambiguous POVMs and find symmetric error probabilities
ζ1= ζ2= ζ, in which case the CN receiver asymptotically achieves
twice the Helstrom limit in Eq. (4). However, for mixed GUS
states, it is generally difficult to design such POVMs, and we will
have to give non-trivial constructions in this paper. Also note that
feed-forward is crucial for achieving good performance.

In fact, suppose that we choose a simple strategy without feed-
forward, e.g., measuring all subsystems in the b-POVM

fΠðTÞ
b ;Π

ðBÞ
b g. In this case, no error occurs when measuring

background states σ(B). The error only occurs when this POVM is
applied to the target state σ(T) and gives the erroneous outcome
‘B’, which happens with probability ζ2. When this happens, we
need to randomly guess (just because all outcomes would be equal
to ‘B’). This gives a conditional error probability m� 1ð Þ=m,
since only one among the m subsystems is correct. The
corresponding error probability for this design is given by

Pt
mðζ2Þ ¼

X

m

k¼1

1

m
´ ζ2 ´

m� 1

m
¼ ðm� 1Þζ2=m; ð8Þ

where the first 1/m factor is the equal prior. We find that
Pt
mðζ2Þ≥PCN

m ðζ1; ζ2Þ, i.e., the CN strategy is always better than the
non-feed-forward strategy and the advantage is particularly large
when ζ1 is small.

Classical versus entangled strategy. Given a CPF problem
expressed by Eq. (1), we aim to minimize the mean error prob-
ability affecting the discrimination of the corresponding m
hypotheses fhngmn¼1. The solution of this problem is derived
assuming that the signal modes irradiated over the subsystems are
energetically constrained. More precisely, let us discuss below the
details on how we compare classical strategies (or ‘benchmarks’)
with quantum strategies.

In a classical strategy (see Fig. 1b), we consider an input source
which is described by a state with positive P-representation, so
that it emits a statistical mixtures of multi-mode coherent states.
First assume that this classical source has the GUS structure
�m

k¼1ϕSk , so that M modes and MNS mean photons are irradiated

over each subsystem. In this case, we can directly map Eq. (1) into
Eq. (2) and write the following lower bound based on ref. 30 (see
Methods for more details)

PH;LB ¼ m� 1

2m
F4 σðTÞ; σðBÞ
� �

; ð9Þ

where F is the quantum fidelity.
For the problem of CPF with arbitrary single-mode phase-

insensitive bosonic Gaussian channels11,31 (see Methods for a
detailed definition), we prove a general classical benchmark.
Suppose the target and background channels have transmissivity/
gain μT, μB and output noises ET, EB. Given the most general
classical source at the input, i.e., a multimode mixture of coherent
states not necessarily with GUS structure, and assuming it

irradiates a total of mM modes and mMNS mean photons over
the entire pattern of channels, we show the following lower bound
(LB) to the mean error probability (see Methods and Supple-
mentary Note 2 for proof)

PH;LB ¼ m� 1

2m
c2MEB;ET

exp �
2MNS

ffiffiffiffiffi

μB
p � ffiffiffiffiffi

μT
p� 	2

1þ EB þ ET

" #

; ð10Þ

with cEB;ET
� ½1þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EBð1þ ETÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ETð1þ EBÞ
p

Þ2�
�1
.

First note that we can also obtain this bound from Eq. (9) by
considering a source that irradiates a single-mode coherent state

ffiffiffiffiffiffi

NS

pj i for each of the M modes probing subsystem Sk. Then,
consider no passive signature EB= ET, which means that
successful discrimination requires signal irradiation, i.e., it cannot
be based on the passive detection of different levels of background
noise. In this latter case, we find that an energetic single-mode
coherent state MNSj i on each subsystem is able to produce Eq.
(10) from Eq. (9). For this reason, in our next comparisons, we
will also consider the performance of such a coherent-state
source. In some cases, the corresponding output ensemble will
turn out to be pure, so that we can exactly quantify its
performance via Eq. (3).

In order to obtain an enhancement by means of entanglement,
we need to introduce ancillary ‘idler’ systems Ik, for 1 ≤ k ≤m,
which are directly sent to the measurement apparatus (see
Fig. 1b). This means that the generic global channel takes the
form

En � I ¼ �k≠nðΦ
ðBÞ
Sk

� I Ik
Þ

h i

� ðΦðTÞ
Sn

� I In
Þ: ð11Þ

For the quantum source, we use the tensor product ϕ�mM
ME , where

ϕME :¼ P1
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nk
S=ðNS þ 1Þkþ1

q

k; kj i is a two-mode squeezed

vacuum state that maximally entangles a signal mode with a
corresponding idler mode, given the mean number of photons NS

constraining both signal and idler energies. Each subsystem Sk is
probed by the signal part of ϕ�M

ME with a total of MNS photons on
average irradiated over Sk. Therefore, the overall GUS ensemble of
output states takes the form

ρn ¼ ðEn � IÞϕ�mM
ME ¼ �k≠nΞ

ðBÞ
SkIk

� �

� Ξ
ðTÞ
SnIn

; ð12Þ

where ΞðT=BÞ ¼ ðΦðT=BÞ � IÞðϕ�M
ME Þ. For generally mixed states, it

is difficult to calculate the Helstrom limit. One alternative is to
use the upper bound (UB)30

PH;UB ¼ ðm� 1ÞF2
Ξ
ðTÞ;ΞðBÞ

� �

: ð13Þ

However, far better results can be found by employing the
generalized CN receiver of Theorem 1. Note that the formulation
and proof of this theorem automatically applies to the extended
channel En ! En � I and the corresponding target/background
state σ(T/B) → Ξ(T/B).

In the following we explicitly compare classical and quantum
performance for the paradigmatic cases mentioned in our
introduction, i.e., position-based quantum reading and quantum
target finding, including their frequency-based spectroscopic
formulations. In all cases we exactly quantify the quantum
advantage that is achievable by the use of entanglement.

Position-based quantum reading and frequency scanner. As
depicted in Fig. 1, a possible specification of the problem is for the
quantum readout of classical data from optical memories. In
quantum reading12, the bosonic channels are used to model the
reflection of light from the surfaces of an optical cell with dif-
ferent reflectivities, whose two possible values rT and rB are used
to encode a classical bit. In the absence of other noise, the readout
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process is therefore equivalent to discriminating the value
r ∈ {rT, rB} of the loss parameter of a pure-loss bosonic channel
Lr . In our position-based formulation of the protocol, the clas-
sical information is encoded in the position of a target cell (with
reflectivity μT= rT) within a pattern of m cells, where all the
remaining are background cells (with reflectivity μB= rB). In
general, we probe each cell with M bosonic modes, so that we

have target channel Φ
ðTÞ ¼ L�M

rT
and background channel

Φ
ðBÞ ¼ L�M

rB
. In the following, we develop our theory of position-

based quantum and classical reading in this pure-loss setting,
where EB= ET= 0. Our analysis can be extended to the presence
of extra noise (thermal-loss channels) as discussed in Methods.

As previously mentioned, we can map the model from spatial
to frequency modes. This means that the problem may be
translated into a spectroscopic one where the goal is to find a faint
absorbance line rT < 1 within a range W of transparent
frequencies (rB ~ 1). This can be resolved into a discrete
ensemble of m=W/δW modes, where δW is the bandwidth of
the detector. The corresponding quantum-advantage can then be
directly re-stated in terms of better identifying an absorbance line
in a frequency spectrum, where we are constrained to use a white
power spectral density over W for a certain time duration, so that
the total irradiated energy is equal to mMNS. This model can be
considered both in transmission (e.g., in a spectro-photometer
setup) and in reflection (e.g., in a scanner-like setup).

Position-based reading with classical light. We can easily specify
the lower bound in Eq. (10) to the reading problem, so that we get
the following lower bound for position-based classical reading of
a block of m cells irradiated by mMNs mean photons

PCR
H;LB ¼ m� 1

2m
e�2MNS

ffiffiffi

rB
p � ffiffiffiffi

rT
pð Þ2 ; ð14Þ

where ‘CR’ stands for classical reading. As discussed before, we
can also obtain this bound from Eq. (9) by irradiating energetic
single-mode coherent states on each subsystem, i.e., �m

k¼1 αj iSk
with α ¼ ffiffiffiffiffiffiffiffiffiffi

MNS

p
.

Assuming the input source �m
k¼1 αj iSk , the output states

fρng
m
n¼1 are pure, expressed by Eq. (2) with σð‘Þ ¼ ffiffiffiffi

r‘
p

α
�

�

�

for ℓ

= T, B. Thus we can use Eq. (3) to calculate the Helstrom limit at
the output

PCR
H ðrB; rT ;M;NSÞ ¼ PHðm; ζCRÞ; ð15Þ

where ζCR ¼ j ffiffiffiffiffi

rB
p

αj ffiffiffiffiffi

rT
p

α
� �

j2 ¼ e�MNS
ffiffiffi

rB
p � ffiffiffiffi

rT
pð Þ2 . In the limit of

small overlap ζ ≪ 1, we have

PCR
H ’ 1

4
ðm� 1Þe�2MNS

ffiffiffi

rB
p � ffiffiffiffi

rT
pð Þ2 ; ð16Þ

which is only m/2 times larger than the lower bound in Eq. (14).
This also means that the lower bound is tight in the error
exponent. Although it is extremely difficult to minimize the
Helstrom limit by varying the input among general non-
symmetric classical states, we can show that mixtures of the type
R

d2αPðαÞ�m
k¼1 αj iSk αh j or increasing the modes in each sub-

system do not improve the value of PCR
H (see details in Methods).

Position-based reading with entangled light. To get a quantum
advantage in terms of a lower error probability and, therefore, a
higher rate of data retrieval from the pattern, we interrogate each
cell with the signal-part of anM-pair two-mode squeezed vacuum

state ϕ�M
ME . At the output of each cell, we get the state Ξ

ð‘Þ ¼

ðLr‘
� IÞϕME

h i�M

for ℓ= B, T. We can upper-bound the error

probability using the formula in Eq. (13), where the fidelity term

F2
Ξ
ðTÞ;ΞðBÞ� 	

¼ F2M ðLrT
� IÞϕME; ðLrB

� IÞϕME

h i

can be

exactly calculated (see Supplementary Note 1 for details). The

exact expression of the bound PQR
H;UB is too long to display, but

will be used in our numerical comparisons (here ‘QR’ stands for
quantum reading).

For NS ≪ 1 and M ≫ 1 at fixed MNS per cell, we have the
simple asymptotic expansion

PQR
H;UB ’ ðm� 1Þe�2MNSð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1�rBÞð1�rT Þ
p

� ffiffiffiffiffiffiffi

rBrT
p Þ: ð17Þ

Comparing Eqs. (16) and (17), we can already see that, for rT+
rB≥ 1, the error exponent of the quantum case is better than the
exact error exponent of the classical case. In particular, this
advantage becomes large when both rT and rB are close to unity.

We can improve this result and show a greater quantum
advantage by employing the generalized CN receiver of Theorem
1. An important preliminary observation is that the output state
ðLr � IÞϕME, from each probing of a generic cell, can be
transformed into a tensor product form, where the signal mode is
in the vacuum state and the idler mode is in a thermal state with
mean photon number (1 − r)NS. This is possible by applying a
two-mode squeezing operation S2[s(r, NS)], with strength

sðr;NSÞ ¼
1

2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NS þ 1
p � ffiffiffiffiffiffiffiffi

rNS

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NS þ 1
p þ ffiffiffiffiffiffiffiffi

rNS

p

 �

: ð18Þ

This allows us to design a CN receiver for the cell output state
Ξ(ℓ), which consists of two-mode squeezing operations followed
by photon counting on the signal modes. By applying S2[s(rB, NS)]
to each pair of the 2M signal-idler modes, we have that Ξ(B) is

transformed into a state ~Ξ
ðBÞ

with vacuum signal modes; while

Ξ(T) becomes a state ~Ξ
ðTÞ

where the signal modes are in a product
of M thermal states, each with mean photon number

nðNS; rB; rTÞ ¼
NSðNS þ 1Þð ffiffiffiffiffi

rB
p � ffiffiffiffiffi

rT
p Þ2

1þ NSð1� rBÞ
: ð19Þ

Let us now measure the number of photons on the M signal
modes. The outcomes are interpreted as follows: If we count any
photon then return ‘T’, otherwise return ‘B’. Assuming this rule,

the background state ~Ξ
ðBÞ

does not lead to any photon count and,
therefore, to any error. An error occurs only if, in the presence of

a target state ~Ξ
ðTÞ

, we get zero count on allM signal modes, which
happens with probability

ζQR1 ¼ ½1þ nðNS; rB; rTÞ��M : ð20Þ

This measurement implements the b-POVM of our CN receiver
(unambiguous over background cells).

Let us now realize the t-POVM, which is unambiguous on
target cells. In this case, we apply the operator S2[s(rT, NS)] with

different squeezing, so that ~Ξ
ðTÞ

has vacuum signal modes, while

~Ξ
ðBÞ

has thermal signal modes, each with mean photon number
n(NS, rT, rB). By performing photon counting on the signal modes
and using the same rule above, we have that an error occurs only

if a background state ~Ξ
ðBÞ

gets zero counts on all M modes, which
happens with probability

ζQR2 ¼ 1þ nðNS; rT ; rBÞ½ ��M : ð21Þ

We can now study the performance of the CN receiver from
Theorem 1, where we use the formula of Eq. (6) computed over

the two types of error probabilities ζQR1 and ζQR2 . For position-
based quantum reading of a block of m cells, we find the
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achievable error probability

PQR
CN ¼ PCN

m ðζQR1 ; ζQR2 Þ: ð22Þ
At low photon numbers NS ≪ 1 while keeping the total
irradiated energy MNS as a finite value, we have that

PQR
CN ’ 2PCR

H ðrB; rT ;M;NSÞ, i.e., a factor of two worse than the
classical performance in Eq. (16). However, for larger values of NS

and assuming the condition NSð
ffiffiffiffiffi

rB
p � ffiffiffiffiffi

rT
p Þ2 � 1, we find that

PQR
CN ’ m� 1

2
e
�MðNSþ1Þ ffiffiffi

rB
p � ffiffiffiffi

rT
pð Þ2 1

1�rT
þ 1

1�rB

� �

; ð23Þ

which has a large advantage in the error exponent when rB and rT
are close to 1, as also evident from Fig. 2.

Further quantum enhancement. Let us consider an ideal sce-
nario for position-based quantum reading, where the target cell
with rT < 1 has to be found among many background cells with
perfect reflectivity rB= 1. This configuration allows us to show an
even higher quantum advantage. In fact, for ideal background
(rB= 1), the application of S2[s(rB, NS)] generates a background

state ~Ξ
ðBÞ

which is vacuum in all signal and idler modes, and a

target state ~Ξ
ðTÞ

which is non-vacuum on all these modes. We can
therefore apply the b-POVM of the CN receiver to the entire set
of 2M signal and idler modes.

The type-I error probability is obtained by calculating the

fidelity between ~Ξ
ðTÞ

and the vacuum state (see Supplementary
Note 1 for details). This leads to

ζQR1� ¼ 1þ NSð1�
ffiffiffiffiffi

rT
p Þ

� 
�2M ¼ ζQR1
1þ NSð1� rTÞ½ �M

; ð24Þ

with a clear improvement with respect to the previous case ζQR1 .
Consider now the t-POVM. The application of the other

squeezing operator S2[s(rT, NS)] generates a target state ~Ξ
ðTÞ

with
vacuum signals but non-vacuum idlers, so that we must again
restrict photon counting to the signal modes, implying that we
achieve the same type-II error probability as before, i.e.,

ζQR2� ¼ ζQR2 .
Using Eq. (6), we derive the overall error probability

PQR
CN� ¼ PCN

m ðζQR1� ; ζQR2� Þ. At low photon numbers NS ≪ 1 while
keeping the total energy MNS as finite, we find

PQR
CN� ’ PCR

H ð1; rT ;M;NSÞ ´ 2e�MNSð1�rT Þ; ð25Þ

which shows a large advantage in the error exponent with respect
to the classical strategy of Eq. (16). In Fig. 3 we show the quantum
advantage both in terms of error exponent and actual values of
the error probabilities. This further quantum enhancement is
particularly relevant to spectroscopy, where the background is
indeed highly transparent with rB very close to unity.

Finally, let us note that the other case of rT= 1 and rB < 1 can
be improved in the same way, leading to an improved type-II
error probability

ζQR2� ¼ 1þ NSð1�
ffiffiffiffiffi

rB
p Þ

� 
�2M ¼ ζQR2
1þ NSð1� rBÞ½ �M

; ð26Þ

and the overall error probability

PQR
CN� ’ PCR

H ðrB; 1;M;NSÞ ´ 2e�MNSð1�rBÞ: ð27Þ

Quantum target finding. In general, target detection involves a
search in multiple space-time-frequency bins. Time bins are
associated with ranging, frequency bins can be used for speed
detection via Doppler effect, while space bins are associated with
direction finding. Let us study the latter problem here, i.e., dis-
covering the position of a single target in terms of polar and
azimuthal angles, while we assume it is at some fixed range R and
does not create large Doppler shifts. Let us divide the R-radius
horizon sphere into m non-overlapping sectors, one of which
contains the reflective target. For large m, each sector Sk is
approximately subtended by a corresponding small solid angle
(see Fig. 1).

We simultaneously probe all m sectors, while using M bosonic
modes for each of them (e.g., a train of temporal pulses or a single
broadband pulse). Each signal mode will shine NS mean number

of photons. Let us denote by LN
μ a thermal-loss channel with loss

parameter μ and mean number of thermal photons N, so that its
output noise is E = (1 − μ)N. When the target is present in a
sector, the M signal modes go through the target channel

Φ
ðTÞ ¼ LNB=ð1�ηÞ

η

� ��M

, so that each mode is affected by loss

parameter μT= η and output noise ET=NB. By contrast, if the
target is absent in a sector, then the M signal modes are lost and
replaced by environmental modes, each having NB mean thermal
photons. For target absent, we therefore have the background

channel ΦðBÞ ¼ LNB
0

� ��M

, with μB= 0 and EB=NB (no passive

signature).

Fig. 2 Position-based quantum reading. Quantum advantage shown for a block of m= 100 cells and NS= 5 mean photons per mode. a We consider the

log ratio of the error probabilities (log 10½PQRCN=PCRH �), between quantum reading with conditional-nulling receiver PQRCN and classical reading in the Helstrom

limit PCR
H
. This ratio is plotted as a function of the background and target reflectivities, rB and rT, for M= 10 modes per cell. Note that since Eq. (6) is not

symmetric in rB and rT, we observe asymmetric patterns. b Error probabilities P
QR
CN (black solid) and P

CR
H

(black dashed) versus number of modes M, for

reflectivities rB= 0.95 and rT= 0.9. We also include the ultimate classical benchmark given by the lower bound for classical reading P
CR
H;LB (gray dashed).

c As in b but with rB= 1 and rT= 0.4.
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We consider the region of quantum illumination13, where
bright thermal noise NB≫ 1 is present in the environment, as it
would be the case at the microwave wavelengths15. We then
consider low energy signals (NS ≪ 1) so that the probing is non-
revealing and/or non-destructive for the target. In these
conditions, the considered quantum channels are clearly
entanglement-breaking. Before we present the corresponding
results, let us note that the model for target finding can also be
mapped to a model of quantum-enhanced frequency scanner,
now in the presence of bright environmental noise. See Methods
for more details on this mapping and also for a discussion on
target ranging.

Target finding with classical light. The general lower bound in
Eq. (10) can be specified to classical target finding, by setting
ET= EB=NB and μT= η, μB= 0, so that we have

PCTF
H;LB ¼ m� 1

2m
exp � 2MηNS

2NB þ 1

� �

; ð28Þ

where ‘CTF’ stands for classical target finding. This expression
bounds the best performance achievable by classical sources of
light that globally irradiate mMNS mean photons over the entire
sphere. In particular, we can also obtain this bound from Eq. (9)
by considering m single-mode coherent states �m

k¼1

ffiffiffiffiffiffiffiffiffiffi

MNS

pj iSk ,
each shining MNS mean photons on a sector.

Let us compute the classical performance with a specific
receiver. When we use the uniform coherent source
�m

k¼1

ffiffiffiffiffiffiffiffiffiffi

MNS

pj iSk at the input, the ensemble of output states of

Eq. (2) is defined on the following background and target states

σðBÞ ¼ LNB
0

ffiffiffiffiffiffiffiffiffiffi

MNS

p�

�

� ffiffiffiffiffiffiffiffiffiffi

MNS

p�
�

�

� 	

; ð29Þ

σðTÞ ¼ LNB=ð1�ηÞ
η

ffiffiffiffiffiffiffiffiffiffi

MNS

p�

�

� ffiffiffiffiffiffiffiffiffiffi

MNS

p�
�

�

� 	

: ð30Þ

This is identical to classical pulse-position modulation decoding
with signal

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ηMNS

p
and thermal noise NB

22. We can therefore
consider the direct detection (DD) scheme based on photon
counting (see refs. 2,22), giving the error probability

PCTF
DD ¼ 1

m

X

m

k¼2

ð�1ÞkCk
m ´ exp �ð1� vÞð1� vk�1ÞηMNS

1� vk

� �

;

ð31Þ

where v=NB/(NB+ 1) and Ck
m is the binomial coefficient

(number of combinations of k items out of m).
In the high-noise NB ≫ 1 and large number of modes M ≫ 1

limit, this error probability is dominated by the smallest error
exponent in the sum, and it becomes

PCTF
DD ’ m� 1

2m
exp �MηNS=2NBð Þ: ð32Þ

This is only a factor 2 worse than the bound in Eq. (28). In these
limits, we expect that classical target finding via a DD scheme is
close to the optimum.

Target finding with entangled light. Let us now assume a tensor
product of two-mode squeezed vacuum states ϕ�mM

ME at the input.
In each M-mode probing of a sector, the ensemble of possible
output states takes the form of Eq. (12) with the following
background and target states

Ξ
ðBÞ ¼ ðLNB

0 � IÞϕME

h i�M

; ð33Þ

Ξ
ðTÞ ¼ ðLNB=ð1�ηÞ

η � IÞϕME

h i�M

: ð34Þ

Let us compute an upper bound based on Eq. (13). Its exact
expression is too long to display, even though it is used in our
numerical evaluation. In the limits of NS ≪ 1 and M ≫ 1 while
keeping the total energy per sector MNS as fixed, we find the
following asymptotic bound for quantum target finding

PQTF
H;UBðη;NB;M;NSÞ ’ ðm� 1Þ exp � MηNS

1þ NB


 �

; ð35Þ

where ‘QTF’ stands for quantum target finding. This has no
advantage with respect to Eq. (28), but both bounds are likely to
be non-tight. It has instead a factor of 2 advantange in the error
exponent with respect to the DD result in Eq. (32) for large noise.
To better evaluate the performance of the entangled case, we need
to analyze an explicit receiver design.

We adapt the quantum illumination receiver based on sum-
frequency-generation (SFG) process32 to the CN approach in
Theorem 1. Consider the problem of binary hypothesis testing
between the states Ξ(B) and Ξ(T). An SFG receiver converts the
signal-idler cross correlations into photon number counts,
through the combination of multiple cycles of SFG process and
interference. In the limit of NS ≪ 1 and NB ≫ 1 with feed-forward

Fig. 3 Position-based quantum reading with ideal background. Quantum advantage for ideal background reflectivity (rB= 1) and considering m= 100

cells. a We consider the log ratio of the error probabilities (log 10½PQRCN�=PCRH �), between quantum reading with improved conditional-nulling receiver PQRCN�
and classical reading in the Helstrom limit PCR

H
. This ratio is plotted as a function of the target reflectivity rT and mean photon number per mode NS for fixed

MNS= 12, whereM is the number of modes. bWe show the various error probabilities, i.e., quantum reading with the improved conditional nulling receiver

P
QR
CN� (including measurements of the idlers, gray solid), quantum reading with the conditional nulling receiver PQRCN (based on the measurement of the

signals only, black solid), the classical performance PCR
H

(black dashed), and the ultimate classical benchmark PCR
H;LB (gray dashed). These are plotted versus

the number of modes M, for rT= 0.95 and NS= 5. c As in b but choosing parameters rT= 0.4 and NS= 5.
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disabled, the photon counting statistics of Ξ(T) is equivalent to a
coherent state with mean photon number MηNS(NS+ 1)/NB, and
Ξ(B) is equivalent to a vacuum state. After this conversion,
suppose we perform the photon-counting stage of the SFG
measurement on the background state Ξ(B), then there is always
zero count and therefore no ambiguity. For Ξ(T), there is instead

some type-II probability ζQTF2 ¼ e�MηNSðNSþ1Þ=NB of getting zero
count and therefore selecting the wrong hypothesis ‘B’. This
corresponds to the b-POVM of the generalized CN receiver. On
the other hand, for the t-POVM, suppose we apply a two-mode
squeezer S2(rQTF) before performing the previous SFG measure-
ment, where

rQTF ¼ � 1

2
arctan

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηNSðNS þ 1Þ
p

1þ NS þ NB

" #

ð36Þ

is chosen such that S2ðrQTFÞΞðTÞSy2ðrQTFÞ has zero cross correla-
tions. Then we decide ‘T’ when no photon is counted, making no
error. However, when the input is Ξ(B), the squeezer will create

phase sensitive cross correlations ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηNSðNS þ 1Þ
p

. When no
counts are registered, we select the wrong hypothesis ‘T’, with

type-I error probability ζQTF1 ¼ ζQTF2 .
According to Theorem 1, the performance of the generalized

CN receiver (here applied to signals and idlers) corresponds to
the following mean error probability

PQTF
CN ¼ PCN

m ðζQTF1 ; ζQTF2 Þ ’ 1

2
ðm� 1Þe�2MηNS=NB : ð37Þ

Comparing with Eq. (28), we see that the achievable performance
of quantum target finding clearly outperforms the bound on
classical target finding. In particular, we see that the error
exponent is increased by a factor 2. We explicitly compare these
results in Fig. 4.

Discussion
In this work we showed that the use of quantum entanglement
can remarkably enhance the discrimination of multiple quantum
hypotheses, represented by different quantum channels. More
precisely, we considered a basic problem of quantum pattern
recognition that we called CPF. This model can also be regarded
as a quantum channel formulation of the classical notion of pulse

position modulation18, so that it clearly departs from other
approaches that exploit pulse position modulation for state-based
encoding (e.g.33). In this scenario, we showed that the use of an
entangled source and a suitably constructed conditional-nulling
receiver can outperform any classical strategy in finding the
unknown position of the channel. This quantum advantage,
which is quantified in terms of improved error probability and
error exponent, has been demonstrated for paradigmatic exam-
ples of position-based quantum reading and quantum target
finding, besides their spectroscopic formulations as quantum-
enhanced frequency scanners. As further theoretical directions, it
would be interesting to exactly establish the optimal performance
for discriminating quantum channels with geometrical uniform
symmetry. Finally, although our analysis relies on symmetry, we
expect that a similar quantum advantage exists in problems with
completely arbitrary channel patterns.

Methods
Phase-insensitive bosonic Gaussian channels. The action of a single-mode

(covariant) phase-insensitive Gaussian channel over input quadratures x̂ ¼ ðq̂; p̂ÞT
can be represented by the transformation x̂ ! ffiffiffi

μ
p

x̂ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j1� μj
p

x̂E þ ξ, where μ is

a transmissivity (0 ≤ μ ≤ 1) or a gain (μ ≥ 1), x̂E are the quadratures of an envir-
onmental mode in a thermal state with noise variance ω= 2N+ 1 with N being the
mean number of photons, and ξ is additive classical noise, i.e., a random 2D
Gaussian distributed vector with covariance matrix waddI. Here we assume vacuum
shot noise equal to 1.

Note that, for a coherent state at the input, the output state of the channel is
generally thermal with covariance matrix V= (μ+ ∣1− μ∣ω+ ωadd)I. Setting ω=
(1+ 2E− ωadd− μ)/∣1− μ∣, this matrix simply becomes (2E+ 1)I. Therefore,
conditionally on a coherent state input, the channel can be described by the two
parameters μ and E. In particular, for a thermal-loss channel, we have 1 ≤ μ ≤ 1,
and E= (ω− 1)(1− μ)/2= (1− μ)N; for a noisy amplifier, we have μ ≥ 1, and E=
(ω+ 1)(μ− 1)/2= (μ− 1)(N+ 1); and finally, for an additive Gaussian noise
channel, we have μ= 1 and E= ωadd/2.

Optimal receiver design for standard quantum reading. The novel CN receiver
design also provides a new insight into the original quantum reading model, related to
the binary discrimination between the two lossy channels LrT

and LrB
. With no loss

of generality, let us assume rB > rT. When the two-mode squeezed vacuum state is
used at the input, the corresponding outputs for the two channels are Ξ(T) and Ξ(B).
Therefore, the t-POVM and b-POVM can be directly used to perform their dis-

crimination, leading to the error probability ζQR1 =2 for equal prior probabilities, where

ζQR1 is given in Eq. (20) (see orange line in Fig. 5). In the ideal case of rB= 1, the
further improved detection, given by the application of the CN receiver to both signals

and idlers, leads to the error probability ζQR1� =2, where ζ
QR
1� is defined in Eq. (24) (see

red dotted line in Fig. 5). We see that the improved performance ζQR1� =2 saturates the

quantum Chernoff bound34,35, while the general applicable performance ζQR1 =2 is able
to beat the best known Bell-measurement receiver12, when M is sufficiently large
(Fig. 5a) or NS is large (Fig. 5b).

Quantum-enhanced frequency scanner in noisy conditions. The previous result
on quantum-enhanced target finding can be mapped into the model of quantum-
enhanced frequency scanner, now in the presence of bright environmental noise.
Here we assume a target at some fixed linear distance which only reflects radiation
at a narrow bandwidth δν around some carrier frequency. The target is assumed to
be still (or slowly moving) and it completely diffracts the other frequencies. This
limited reflection could also be the effect of meta-materials employed in a cloak.
The previous m sectors now become m different non-overlapping frequency
windows with bandwidth δν, each of them probed by pulses with the same
bandwidth.

One choice is to use a single δν-pulse per window containingM ≃ δν−1 effective
frequencies, each with NS mean number of photons. Alternatively, we may use
Mδν-pulses per window which are irradiated as a train of independent temporal
modes, each with NS mean photons. In our basic model, reflection occurs in only
one of these frequency windows, while background thermal noise is detected for all
the other windows. The previous results (see Fig. 4) automatically imply that the
use of an entangled source outperforms any classical strategies in the regime of few
photon numbers per mode.

About target ranging. In quantum target finding, if we consider time bins instead
of spatial bins, we can map the problem of direction finding into that of ranging.
However, at fixed direction but unknown distance, there is a crucial problem which
makes the entangled strategy problematic. We must in fact ensure that the
returning signal (if any) is combined with the corresponding idler. Since we do not

Fig. 4 Target direction finding with classical and entangled light. We plot

the error probabilities in terms of number of modes M, considering m=

50 sectors, NS= 10−3 photons per mode, NB= 20 thermal photons per

environmental mode, and η= 0.1 round-trip loss. We consider the

performance of classical target finding via direct detection from Eq. (31)

(CTF-DD, solid black line) and assuming the lower bound of Eq. (28) (CTF-

LB, black dashed line). We then consider the performance of quantum

target finding assuming the upper bound of Eq. (35) (QTF-UB, red dashed

line) and via the generalized CN receiver from Eq. (37) (QTF-CN, solid

red line).
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know, a priori, the round-trip time from the target, we cannot synchronize signal
and idler in a joint detection. A potential way around this issue is to generate a
train of m signal-idler pulses with well-separated carrier frequencies (e.g., with a
bandwidth larger than the maximum Doppler shift from the target). Signal-idler
pulses with different carrier frequencies are then jointly detected at the different m
time bins. In principle this procedure can make the quantum measurement work
but it opens another issue. The best classical strategy does not need to employ this
time slicing approach. In fact, one could just send a single coherent pulse and wait
for its potential return. From an energetic point of view, the classical source would
only irradiateMNS photons (assumingMmodes per pulse) while the quantum case
needs to irradiate mMNS photons on the target. Taking into account of this dif-
ference, we cannot directly apply our previous findings and derive a conclusive
result for target ranging.

Optimality of pure states. Here we state two lemmas to summarize the results
(See Supplementary Note 2 for their proofs).

Lemma 2.
Consider the discrimination of N channels fEng with prior probabilities {pn}.
Inputting pure states minimizes the mean error probability.

Note that if there is a constraint on the Hilbert space (e.g., an energy constraint
for an infinite-dimensional space), then the previous lemma might not hold.
However, this result may still hold in the presence of convexity properties, as in the
proof of the following lemma.

Lemma 3.
Consider position-based quantum reading, with a constraint of MNS mean photon
numbers per cell. Any statistical mixture of GUS coherent states can be reduced to
�m

k¼1 αj iSk with amplitude α ¼ ffiffiffiffiffiffiffiffiffiffi

MNS

p
. The minimum error probability is

PCR
H ðrB; rT ;M;NSÞ ¼ PHðm; ζCRÞ; ð38Þ

where ζCR ¼ jh ffiffiffiffiffi

rB
p

αj ffiffiffiffiffi

rT
p

αij2 ¼ e�MNSð
ffiffiffiffi

rB
p � ffiffiffiffi

rT
p Þ2 and the function PH is given in Eq.

(3) of the main text.

Generalized CN Receiver (proof of theorem 1). Let us describe the measurement
process starting from n= 1, i.e., by checking the hypothesis h1 that the target state
σ(T) is in subsystem S1. If h1 is true, then the receiver will not make any error, due

to trðΠðTÞ
t σðTÞÞ ¼ 1 on the first subsystem S1 and trðΠðBÞ

t σðBÞÞ ¼ 1 on all the other
subsystems fSkgmk¼2 . There is an error only if the true hypothesis is one of fhkgmk¼2 .

In this case, S1 would be in the background state σ(B) and the t-POVM fΠðTÞ
t ;Π

ðBÞ
t g

would return the incorrect outcome ‘T’ with probability ζ1 and correct outcome ‘B’
with probability 1 − ζ1.

Suppose that we get ‘T’ (with type-I false-positive probability ζ1) while the

correct hypothesis is h~k for some ~k > 1. In measuring the remaining subsystems

fSkgmk¼2 in the b-POVM fΠðTÞ
b ;Π

ðBÞ
b g, the outcomes will be certainly equal to ‘B’ for

all systems with k≠ ~k since they will all be in a background state σ(B). However, the
application of b-POVM over the target state σ(T) of subsystem S~k could give the
wrong outcome ‘B’ with type-II (false-negative) probability ζ2. If this happens the
receiver would select the false hypothesis h1. In this case, the overall (conditional)
probability of error is given by the product of the two incorrect outcomes ζ1ζ2 times
the probability that h1 is false, i.e., (m − 1)m−1. Therefore, we get

PT
6h1 ¼ ðm� 1Þm�1ζ1ζ2 .

Suppose that, from the first measurement, we instead get the correct outcome
‘B’ (with probability 1 − ζ1). Then, the receiver would correctly discard the false
hypothesis h1 and would check the next one h2. Denote by Pm−1 the total error
probability of the receiver in distinguishing the remaining m − 1 hypotheses. Then,
the overall (conditional) probability of error is given by the product of Pm−1, and
the joint probability of outcome ‘B’ for h1 being false. Therefore, we have
PB
6h1 ¼ ðm� 1Þm�1ð1� ζ1ÞPm�1 . If m= 2, then in this case there is only one

hypothesis left, and we have the initial condition P1= 0.

Overall, the error probability of the receiver Pm � PCN
m ðζ1; ζ2Þ will be equal to

the sum of PT
6h1 and PB

6h1 , so that we have the recursive formula

Pm ¼ m� 1

m
ð1� ζ1ÞPm�1 þ ζ1ζ2½ �: ð39Þ

The initial conditions of the recursion is that P1= 0 and P2= ζ1ζ2/2. To solve the
recursion, let us set Pm=− gm/m so that we have (1− ζ1)gm−1− gm= (m− 1)ζ1ζ2
with initial conditions g1= 0 and g2=− ζ1ζ2. We find the solution

gm ¼ �ζ1ζ2
X

m�2

n¼1

ðm� nÞ 1� ζ1ð Þn�1 ¼ �ζ1ζ2ðmζ1 þ 1� ζ1ð Þm � 1Þ=ζ21; ð40Þ

which leads to

Pm ¼ 1

m

ζ2
ζ1

mζ1 þ ð1� ζ1Þm � 1½ �; ð41Þ

completing the proof. Note that, when the receiver outcomes are all ‘B’, this
automatically means that the true hypothesis is the last one hm, which is compatible
with the initial condition P1= 0.

General bounds. Here we present various general bounds that apply to m-ary state
discrimination (in the setting of symmetric hypothesis testing)30,36–38. These
bounds apply to the mean error probability and can be computed from the
quantum fidelity (which has a closed formula for arbitrary multimode Gaussian
states39). In particular, for any ensemble of m mixed states fpk; ρkg

m
k¼1 , where pk’s

are the prior probabilities and ρk’s are the states, we may write the following upper
bound30 on the minimum error probability or Helstrom limit PH

PH ≤ PH;UB � 2
X

k0>k

ffiffiffiffiffiffiffiffiffiffi

pk0pk
p

Fðρk0 ; ρkÞ; ð42Þ

where F is the Bures’ fidelity

Fðρ; σÞ :¼ ffiffiffi

ρ
p ffiffiffi

σ
p�

�

�

�

1
¼ tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

ρ
p

σ
ffiffiffi

ρ
pq

: ð43Þ

The result of Eq. (42) is a bound on the performance of a ‘pretty good’ mea-
surement27–29 and is tight up to constan t factors in the exponent. A fidelity-based
lower bound is instead given by ref. 40,

PH ≥PH;LB �
X

k0>k

pk0pkF
2ðρk0 ; ρkÞ: ð44Þ

Assume equi-probable hypotheses, so that pk=m−1 for any k, and the
symmetry Fðρk; ρk0 Þ ¼ F; 8k≠ k0 . We then have the simplified bounds

PH;UB � ðm� 1ÞF; ð45Þ

PH;LB � m� 1

2m
F2: ð46Þ

These bounds appear in our main text with the following expressions for the

Fig. 5 Error probability versus number of modes M for binary quantum reading. Background and target reflectivities are respectively rB= 1 and rT= 0.4.

Comparisons are done for a number of photons per mode NS= 0.1 in a and NS= 10 in b. We plot the performance of the original Bell receiver12 (solid black

line), the asymptotically tight quantum Chernoff bound (QCB, solid blue line), the generalized conditional nulling receiver with performance ζQR1 =2 (CN,

solid orange line), and the generalized conditional nulling receiver with improved performance ζQR1� =2 (CN*, red dashed line).
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fidelity

Fðρn; ρn0≠nÞ ¼ F2
Ξ
ðTÞ;ΞðBÞ

� �

; ð47Þ

for the entangled case and

Fðρn; ρn0≠nÞ ¼ F2 σðTÞ; σðBÞ
� �

ð48Þ

for the classical case.

Classical benchmarks. Let us now introduce a general bound to the ultimate
performances achievable by classical states in CPF, with direct application to the
problems of position-based reading and target finding. Recall that the general
problem of CPF consists of discriminating an ensemble of GUS bosonic channels
fEng with equal priors. These are expressed by

En ¼ �k≠nΦ
ðBÞ
Sk

� �

�Φ
ðTÞ
Sn

; ð49Þ

where Φ
ðB=TÞ
Sk

is the background/target channel acting on subsystem Sk (e.g., a cell

or a sector). Each of these channels is generally meant to be a multi-mode channel.
In the bosonic setting, single-mode phase-insensitive Gaussian channels model

various physical processes. This channel Gμ;E can be parameterized by a

transmissivity/gain parameter μ > 0 and a noise parameter E > 011,31. In particular,
E accounts for the thermal photons at the output of the channel, when the input
state is a vacuum or coherent state. Besides the single-mode phase-insensitive
(covariant) bosonic Gaussian channels discussed above, we can also include the
contravariant conjugate thermal-amplifier channel, whose action on an input
annihilation operator is described by

â ! ffiffiffi

μ
p

ây þ
ffiffiffiffiffiffiffiffiffiffiffi

μþ 1
p

ê; ð50Þ
where μ > 0 and ê is in a thermal state with mean photon number (E− μ)/(μ+ 1).
All these channels Gμ;E map a coherent state αj i to a displaced thermal state with

amplitude
ffiffiffi

μ
p

α (
ffiffiffi

μ
p

α? for the conjugate thermal-amplifier channel) and

covariance matrix (2E+ 1)I.
Therefore, let us consider the problem of CPF where target and background

channels are tensor products of a phase-insensitive bosonic Gaussian channel Gμ;E .

Denote the transmissivity/gain and noise of the target channel as μT and ET, while
those of the background channel as μB and EB. For the entangled case, we assume
that each subsystem is exactly probed by M signal modes, each irradiating NS mean
photons, for a total of mMNS mean photons. For the classical case, we can relax this
structure and include the more general case of different energies irradiated by the
M modes over each subsystem Sk. More generally, for the classical case with no
passive signature (EB= ET), we can also allow for arbitrary number of modes Mk

per subsystem Sk so that Φ
ðlÞ
Sk

¼ G�Mk

μl ;El
. In other words, for classical CPF with no

passive signature, the only surviving constraint is the mMNS mean photons globally
irradiated. More precisely, we can state the following result (See Supplementary
Note 2 for proof).

Lemma 4.
Consider the problem of CPF where target and background channels are tensor
products of a single-mode phase-insensitive bosonic Gaussian channel with para-
meters μT, ET (for target) and μB, EB (for background). Assume a global energetic
constraint of mMNS mean photons with M modes irradiated over each of the m
subsystems Sk. The optimal classical state (with positive P-representation) mini-
mizing the lower bound PH,LB of Eq. (44) is any tensor product of coherent states

αj i ¼ �m
k¼1 �M

k0¼1 eiθ
ðk0 Þ
k

ffiffiffiffiffiffiffiffiffiffi

N
ðk0Þ
Sk

q

�

�

�

�

�
 �

Sk

; ð51Þ

where the phases θ
ðk0Þ
k are arbitrary and

PM
k0¼1 N

ðk0Þ
Sk

¼ MNS for any k, so that each
subsystem is irradiated by the same mean number of photons. The corresponding
minimum lower bound is given by

PH;LB � m� 1

2m
c2MEB ;ET

´ exp �
2MNSð

ffiffiffiffiffi

μB
p � ffiffiffiffiffiffi

μT
p Þ2

1þ EB þ ET

" #

; ð52Þ

with cEB ;ET
¼ ½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EBð1þ ET Þ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ET ð1þ EBÞ
p� 	2�

�1
. In particular, for no pas-

sive signature (ET= EB≡ E), we have the simplification

PH;LB � m� 1

2m
exp �

2MNSð
ffiffiffiffiffi

μB
p � ffiffiffiffiffiffi

μT
p Þ2

1þ 2E

" #

; ð53Þ

and bound holds under the general energetic constraint of mMNS mean photons,
with no restriction on the number of modes irradiated per subsystem. In this case, an
optimal state is the tensor-product �m

k¼1

ffiffiffiffiffiffiffiffiffiffi

MNS

pj iSk .

Position-based quantum reading with thermal noise. Let us now generalize the
study of position-based quantum reading to the case where thermal noise is present
in the environment. This means that the environmental input of each cell Sk is not
the vacuum but a thermal state with NB mean photons. Each cell has reflectivity rB

or rT in such a way that the block of m cells has GUS. The block is probed by
bosonic modes for a total of mMNS mean photons irradiated. In the classical case,
we compute a lower bound to the performance of all possible classical states
(globally irradiating mMNS mean photons over the m block of cells), while for the
quantum case, we consider a tensor-product of two-mode squeezed vacuum states,
so that M signal modes probe each cell, with each mode irradiating NS mean
photons.

As before, this problem is mapped into the discrimination of an ensemble of
GUS bosonic channels fEng with equal priors, which are expressed by

En ¼ �k≠nΦ
ðBÞ
Sk

� �

�Φ
ðTÞ
Sn

; ð54Þ

with Φ
ðB=TÞ
Sk

acting on cell Sk. For M-mode probing of the cell, we have the target

channel ΦðTÞ ¼ LNB
rT

� ��M

and the background channel ΦðBÞ ¼ LNB
rB

� ��M

, where

LNB
r is a single-mode thermal-loss channel with reflectivity r and thermal noise NB.
In general, the protocol of position-based quantum reading can be formulated

with two generic thermal-loss channels as discussed above. In such a case, the
classical benchmark can be easily derived from Eq. (52). Then, we may introduce a
finer classification of the protocol in two types: one with active and the other with
passive signature. In the first type of protocol, the parameters of the channels are
such that the noise variance at the output of the two channels is different assuming
the vacuum state at the input. In other words, their statistical discrimination is
possible without sending a probing signal. In the second type, the parameters are
such that there are no different levels of noise at the output. Here we analyze this
second type, so that the channels have reflectivity rl and mean number of thermal
photons NB/(1− rl) for l= B, T. The corresponding classical benchmark can be
computed from Eq. (53) and takes the form

PCR;N
H;LB ðrB; rT ;M;NSÞ ¼

m� 1

2m
exp

�2Mð ffiffiffiffiffi

rB
p � ffiffiffiffiffi

rT
p Þ2NS

2NB þ 1

" #

: ð55Þ

Similarly, for the quantum case, we can easily repeat the calculations to find the

corresponding noisy expression PQR;N
H;UB of the upper bound PQR

H;UB . For NS ≪ 1 and

M≫ 1 at fixedMNS, we may generalize Eq. (17) of our main text into the following
form

PQR;N
H;UBðrB; rT ;M;NSÞ ’ ðm� 1Þ exp

�2MNSð1þ NB �
ffiffiffiffi

H
p

� ffiffiffiffiffiffiffiffiffi

rBrT
p Þ

1þ NB

" #

; ð56Þ

where H= (1+NB− rB)(1+NB− rT).
Denote the error exponent in Eq. (55) as ϵCR and the error exponent in Eq. (56)

as ϵQR. We find that the quantum case is always better than the classical case, i.e.,
ϵQR > ϵCR. For rT and rB close to 1, we have ϵQR/ϵCR≃ 1+ 1/2NB. In this regime, we
see that the advantage becomes huge when NB ≪ 1, which agrees with our
observation in Eqs. (16) and (17). However, when NB ≫ 1, the advantage decays, in
agreement with the observation related to Eqs. (28) and (35). Note that this
conclusion is based on a quantum lower bound and a classical upper bound, and
we expect them to be not tight when noise NB is large.
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