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Entanglement-enhanced testing of multiple
quantum hypotheses

Quntao Zhuang® 2® & Stefano Pirandola® 34

Quantum hypothesis testing has been greatly advanced for the binary discrimination of two
states, or two channels. In this setting, we already know that quantum entanglement can be
used to enhance the discrimination of two bosonic channels. Here, we remove the restriction
of binary hypotheses and show that entangled photons can remarkably boost the dis-
crimination of multiple bosonic channels. More precisely, we formulate a general problem of
channel-position finding where the goal is to determine the position of a target channel
among many background channels. We prove that, using entangled photons at the input and
a generalized form of conditional nulling receiver at the output, we may outperform any
classical strategy. Our results can be applied to enhance a range of technological tasks,
including the optical readout of sparse classical data, the spectroscopic analysis of a fre-
qguency spectrum, and the determination of the direction of a target at fixed range.
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uantum sensing1 exploits quantum resources and mea-

surements to improve the performance of parameter

estimation and hypothesis testing, with respect to the best
possible classical strategies. One of the fundamental settings of
quantum hypothesis testing2=> is quantum channel discrimina-
tion®19, where the aim is to discriminate between different
physical processes, modeled as quantum channels, arbitrarily
chosen from some known ensemble. Finding the best strategy for
quantum channel discrimination is a non-trivial double optimi-
zation problem which involves the optimization of both input
states and output measurements. Furthermore, the optimization
is generally performed assuming a certain number of probings
and it becomes an energy-constrained problem in the dis-
crimination of bosonic channels, where the available input states
have a finite mean number of photons!!.

For the discrimination of bosonic channels, the so-called
‘classical strategies’ are based on preparing the input signal modes
in (mixtures of) coherent states and then measuring the channel
outputs by means of suitable receivers, e.g., a homodyne detector.
By fixing the input energy to a suitably low number of mean
photons per probing, the classical strategies are often beaten by
truly quantum sources such as two-mode squeezed vacuum
states, where each signal mode (probing the channel) is entangled
with a corresponding idler mode directly sent to the output
measurement. This quantum advantage was specifically proven
for the readout of data from an optical memory, known as
quantum reading!?, and the yes/no detection of a remote target,
known as quantum illumination!3-16,

While quantum advantage with entangled-assisted protocols
has been proven in problems of binary quantum channel dis-
crimination with bosonic channels, the potential advantage of
quantum entanglement over the best classical strategies still needs
to be explored and fully quantified in the more general setting of
discrimination between multiple quantum channels. As a matter
of fact, this problem is very relevant because real physical
applications often involves multiple hypotheses, and their treat-
ment lead to non-trivial mathematical complications. In fact,
naively decomposing a multi-hypothesis quantum channel dis-
crimination into multiple rounds of binary cases does not
necessarily preserve the quantum advantages from the
binary case.

In this work, we formulate a basic problem of multiple channel
discrimination that we call “channel-position finding”. Here the
goal is to determine the position of a target channel among many
copies of a background channel. We prove that, using entangled
photons at the input and a generalized form of conditional nul-
ling receiver at the output, we may outperform any classical
strategy in finding the position of the target channel, with a clear
advantage in terms of mean error probability and its error
exponent. In particular, our receiver design only relies on state-
of-the-art technology in quantum optics, ie., direct photo-
detection (not requiring number-resolution), two-mode squeez-
ing (which can be realized by standard optical parametric
amplifiers) and feed-forward control (which has been demon-
strated!”). Our results can be applied to various applications,
including position-based quantum reading, spectroscopy and
target finding.

Results

General setting and main findings. We study the discrimination
of multiple quantum channels by introducing and studying the
problem of channel-position finding (CPF). This is a basic model
of pattern recognition involving quantum channels, which has
relations with the notion of pulse-position modulation!®-?2. In
CPF, a pattern is represented by a multi-mode quantum channel

& composed of m sub-channels @, each acting on a different
subsystem Sy (for k = 1, ..., m) and chosen from a binary
alphabet {®B) (D)}, Only one of the sub-channels can be the
target channel ®(T), while all the others are copies of a back-
ground channel ®®B). A quantum pattern is therefore represented
by a global channel £, (for n = 1, :-- , m) where the target
channel is only applied to subsystem S, while all the other sub-
systems undergo background channels (see Fig. 1a for a simple
example with m = 3).

In this scenario, we design entanglement-enhanced protocols,
based on a two-mode squeezed vacuum source and a generalized
entangled version of the conditional-nulling (CN) receiver!7-23-25,
that are able to greatly outperform any classical strategy based
on coherent states (see Fig. 1b for a schematic). This quantum
advantage is quantified in terms of much lower mean error
probability and improved error exponent for its asymptotic
behavior.

Quantum-enhanced CPF has wide applications (see Fig. 1c). In
quantum reading of classical data, this corresponds to a novel
formulation that we call ‘position-based quantum reading’. Here
the information is encoded in the position of a target memory cell
with reflectivity 7 which is randomly located among background
memory cells with reflectivity rp. This is a particularly suitable
model for information readout from sparse memory blocks.
Changing from spatial to frequency modes, it can be mapped into
a quantum-enhanced model of photometer or scanner, where the
goal is to find an absorbance line within a band of frequencies.
The advantage can therefore be interpreted as a quantum-
enhanced tool for non-invasive spectroscopy.

Another potential application of CPF is quantum target
finding, where we simultaneously probe multiple space cells that
are now represented by sectors of a sphere with some fixed radius.
Only a single sector has a target with reflectivity # while all the
other sectors are empty. Moreover, each sector is characterized by
bright noise so that Nz mean thermal photons per bosonic mode
are irradiated back to the receiver. Of course the problem is not
limited to a spherical geometry. For instance, it can be seen in the
context of defected device detection. Suppose there is an assembly
line for producing a device that implements a channel, and with
low probability, the assembly line produces a defective device that
implements a different channel. Similarly, the problem can
equivalently be mapped from spatial to frequency modes, so as to
realize a quantum-enhanced scanner now working in very noisy
conditions.

Besides these potential applications, we expect that our results
will have other implications beyond the model of CPF. For
instance, as a by-product, we also found that our generalized CN
receiver beats the best known receiver for the original binary
problem of quantum reading!? (see Methods for more details).

Generalized conditional nulling receiver. From a mathematical
point of view, the model of CPF exploits a relevant symmetry
property that enables us to perform analytical calculations. For-
mally, we consider the discrimination of m possible global
channels {€,}"_,, each with equal prior probability and expres-
sed by

B T
&= (®k¢n®.<9k)) ® (Dén)> (1)

where d)gf/ ") is the background/target channel acting on sub-
system Si. In general, each subsystem may represent a collection
of M bosonic modes.

It is easy to see that the ensemble of global channels {&,}/,
has the geometric uniform symmetry (GUS)22 £, = §"~1&, 811,
where the unitary S is a cyclic permutation and §™ = I, with I
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Fig. 1 Channel-position finding (CPF) schematics. CPF represents a fundamental model of pattern recognition with quantum channels. a Example for
m = 3 subsystems. Global channels &;,&,, &5 consist of sub-channels ® on subsystems Sy, Sy, S3. Each sub-channel can be chosen to be a background

channel ®® or a target channel @M. Channel &, (forn=1, -

, m) means that the target channel is applied to subsystem S,, while all the other subsystems

undergo background channels. b The classical strategy sends coherent-state signals (red, Si), while the entangled strategy sends signals (red, S;) entangled
with locally stored idlers (blue, /). € Bosonic applications to quantum reading of position-based data and quantum-enhanced direction finding of a remote
target. Entangled pairs of signal (red) and idler (blue) are used. In position-based quantum reading, each sub-channel corresponds to a memory cell with
reflectivity rg (background) or ry (target); in quantum target finding, each sub-channel corresponds to a sector on a fixed-radius sphere where a target with
reflectivity # can be present or absent. If the target is absent, the returning signal is replaced by environmental noise with Nz mean thermal photons

per mode.

being the identity operator. Because the channels are highly
symmetric, it is natural to input a product state with GUS
@41 ¢s,» in which case the output state becomes

pu = (Dn0l)) @ 0l (2)

Sy ) ® oy,
where o{7/B): = ®(T/B)(¢). It is clear that this ensemble of output
states also has GUS, i.e., p, = $"1p;S™~1, and it is analogous to
the states considered in a pulse-position modulation!?-21:22,

It is known?226 that the optimal positive-valued operator
measure (POVM) {II;} minimizing the error probability for
discriminating an ensemble of GUS states has the same type of
symmetry, ie., IT,=8""!1,S"~1. This POVM has minimum

b

error probability (Helstrom limit) Py=1 — tr(p,II;). For the
specific  cases where the output states are pure
ol/B = ‘1// T/B)) (y!T/8) ’ with overlap { = ’<1// )| y!B >’2,we have

the following expressmn of the Helstrom limit

Pa(m ) =" 2 [T =D - VI=q, )

which is achievable by the ‘pretty good’ measurement?’-2%. In
particular, note that for m{ < 1 we have the asymptotic
expansion

1

L 0m =1 + 0. (4)
In general, when Eq. (2) represents an ensemble of mixed

states, we do not know how to compute the ultimate Helstrom

limit. However, we can resort to a sub-optimal detection strategy

by generalizing the CN receiver?3. In fact, consider the m-ary CPF

problem of Eq. (1) with target/background channel ®(T/B),

Py
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Assume that the pattern is probed by a GUS state so that the
output ensemble is given by a generally mixed state as in Eq. (2)
with target/background state OFT/ B), Then, we show the following
(see Methods for a proof).

Theorem 1.

(Generalized CN receiver) Denote by h,, the hypothesis that the
target channel ®(T) is encoded in sub-system S,, so that the global
channel is £,. Suppose that there are two partially unambiguous

POVMs, that we call t-POVM {T1\") T1¥} and b-POVM
{HE}T) HE)B>}, such that

tr[HED om] (B) 5(B)

: 1.

= tr[I1 |= (5)

Then, we design the following receiver. Start with n=1:

1. Check the current hypotheszs h,, by measuring subsystem S,, with
the t-POVM {1117 111V},

2. If the outcome from S is T", measure all the remaining sub-
systems {S;}_,.., in the b-POVM {Hg ) )} If we get out-
come ‘T for some Sy then select the hypotheszs h. Otherwise,
select h,,.

3. If the outcome from S,, is ‘B’, then discard h,, and repeat from
point 1 with the replacement n > n+ 1. If n + 1 = m, then select
hypothesis h,,.

The error probability of this CN receiver is

PN = 22 (il 4 (10" — 1),

(B)

Dy and {, = tr(oD1I;

(6)

where {, = tr(oPTI,
error probabilities.

) are the two types of
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Note that, when m(; < 1, we have the asymptotic expansion
1
PrCnN 25(1717 1)¢, 0. (7)

Also note that the above receiver is a CN receiver because it
exploits partially unambiguous POVMs and a feed-forward
mechanism, similar to the classical CN receiver?3. However, it
is a generalized CN receiver because it also involves entanglement
with ancillas and may also be applied to mixed-state inputs, while
the original CN receiver?? only applies to pure states with no
entanglement. Finally, our receiver only relies on local operations
and classical communication among the different subsystems, an
important feature that makes it practical.

For pure GUS states, one can always devise partially
unambiguous POVMs and find symmetric error probabilities
{y = &, = {, in which case the CN receiver asymptotically achieves
twice the Helstrom limit in Eq. (4). However, for mixed GUS
states, it is generally difficult to design such POVMs, and we will
have to give non-trivial constructions in this paper. Also note that
feed-forward is crucial for achieving good performance.

In fact, suppose that we choose a simple strategy without feed-
forward, e.g., measuring all subsystems in the b-POVM

{HZT), HéB)}. In this case, no error occurs when measuring
background states o{B). The error only occurs when this POVM is
applied to the target state o{T) and gives the erroneous outcome
‘B’, which happens with probability {,. When this happens, we
need to randomly guess (just because all outcomes would be equal
to ‘B’). This gives a conditional error probability (m — 1)/m,
since only one among the m subsystems is correct. The
corresponding error probability for this design is given by
SN m—1
P;n((z):Z%X(zx m = (m—1){,/m, (8)

k=1

where the first 1/m factor is the equal prior. We find that
P ({,)=PN((,,(,), ie., the CN strategy is always better than the
non-feed-forward strategy and the advantage is particularly large
when (] is small.

Classical versus entangled strategy. Given a CPF problem
expressed by Eq. (1), we aim to minimize the mean error prob-
ability affecting the discrimination of the corresponding m
hypotheses {h,}"_ . The solution of this problem is derived
assuming that the signal modes irradiated over the subsystems are
energetically constrained. More precisely, let us discuss below the
details on how we compare classical strategies (or ‘benchmarks’)
with quantum strategies.

In a classical strategy (see Fig. 1b), we consider an input source
which is described by a state with positive P-representation, so
that it emits a statistical mixtures of multi-mode coherent states.
First assume that this classical source has the GUS structure
@41 ¢s,» so that M modes and MNs mean photons are irradiated

over each subsystem. In this case, we can directly map Eq. (1) into
Eq. (2) and write the following lower bound based on ref. 30 (see
Methods for more details)

m—1
Py 1n :WF‘}(U(T)JT(B))’ (9)
where F is the quantum fidelity.

For the problem of CPF with arbitrary single-mode phase-
insensitive bosonic Gaussian channels!!:3! (see Methods for a
detailed definition), we prove a general classical benchmark.
Suppose the target and background channels have transmissivity/
gain yp, yp and output noises Ep, Ep. Given the most general
classical source at the input, i.e., a multimode mixture of coherent
states not necessarily with GUS structure, and assuming it

irradiates a total of mM modes and mMNg mean photons over
the entire pattern of channels, we show the following lower bound
(LB) to the mean error probability (see Methods and Supple-
mentary Note 2 for proof)

2
-1 2MN (/g — +/

Pyip =z CIZEME exp | — S( fe ‘uT) ) (10)
2m vk 1+ E, + E;

2.—1
with cg p = [1+ (\/Ep(1 +Er) — /Ep(1+Ep))] .

First note that we can also obtain this bound from Eq. (9) by
considering a source that irradiates a single-mode coherent state
|v/Ng) for each of the M modes probing subsystem S;. Then,
consider no passive signature Ep=E;, which means that
successful discrimination requires signal irradiation, i.e., it cannot
be based on the passive detection of different levels of background
noise. In this latter case, we find that an energetic single-mode
coherent state [MN,) on each subsystem is able to produce Eq.
(10) from Eq. (9). For this reason, in our next comparisons, we
will also consider the performance of such a coherent-state
source. In some cases, the corresponding output ensemble will
turn out to be pure, so that we can exactly quantify its
performance via Eq. (3).

In order to obtain an enhancement by means of entanglement,
we need to introduce ancillary ‘idler’ systems I, for 1 <k<m,
which are directly sent to the measurement apparatus (see
Fig. 1b). This means that the generic global channel takes the
form

(11)

, where

£,0T = 8,0 ©1;)| ® (@ ©1,).

k

For the quantum source, we use the tensor product ¢y

buip = Sono \/NE/(Ng + 1)F |k, k) is a two-mode squeezed
vacuum state that maximally entangles a signal mode with a
corresponding idler mode, given the mean number of photons N
constraining both signal and idler energies. Each subsystem Sy is
probed by the signal part of ¢5 with a total of MNj photons on
average irradiated over Sy. Therefore, the overall GUS ensemble of
output states takes the form

Qm —(B —(T
po= (€, @D = (90,20, ) 080, (12)

where E(T/8) = (0T/5) & T)(¢SM). For generally mixed states, it
is difficult to calculate the Helstrom limit. One alternative is to
use the upper bound (UB)30

Pyun = (m = DF?(20,5®). (13)
However, far better results can be found by employing the
generalized CN receiver of Theorem 1. Note that the formulation
and proof of this theorem automatically applies to the extended
channel £, — £, ® T and the corresponding target/background
state o(T/BSl — EZT/ B),

In the following we explicitly compare classical and quantum
performance for the paradigmatic cases mentioned in our
introduction, i.e., position-based quantum reading and quantum
target finding, including their frequency-based spectroscopic
formulations. In all cases we exactly quantify the quantum
advantage that is achievable by the use of entanglement.

Position-based quantum reading and frequency scanner. As
depicted in Fig. 1, a possible specification of the problem is for the
quantum readout of classical data from optical memories. In
quantum reading!?, the bosonic channels are used to model the
reflection of light from the surfaces of an optical cell with dif-
ferent reflectivities, whose two possible values ry and rp are used
to encode a classical bit. In the absence of other noise, the readout
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process is therefore equivalent to discriminating the value
r € {ry, rp} of the loss parameter of a pure-loss bosonic channel
L,. In our position-based formulation of the protocol, the clas-
sical information is encoded in the position of a target cell (with
reflectivity yr=rr) within a pattern of m cells, where all the
remaining are background cells (with reflectivity yz=rz). In
general, we probe each cell with M bosonic modes, so that we
have target channel ®7) = E?TM and background channel
OB = Ei‘M . In the following, we develop our theory of position-
based quantum and classical reading in this pure-loss setting,
where Eg = Er= 0. Our analysis can be extended to the presence
of extra noise (thermal-loss channels) as discussed in Methods.

As previously mentioned, we can map the model from spatial
to frequency modes. This means that the problem may be
translated into a spectroscopic one where the goal is to find a faint
absorbance line rr<1 within a range W of transparent
frequencies (rg ~ 1). This can be resolved into a discrete
ensemble of m = W/SW modes, where §W is the bandwidth of
the detector. The corresponding quantum-advantage can then be
directly re-stated in terms of better identifying an absorbance line
in a frequency spectrum, where we are constrained to use a white
power spectral density over W for a certain time duration, so that
the total irradiated energy is equal to mMNs. This model can be
considered both in transmission (e.g., in a spectro-photometer
setup) and in reflection (e.g., in a scanner-like setup).

Position-based reading with classical light. We can easily specify
the lower bound in Eq. (10) to the reading problem, so that we get
the following lower bound for position-based classical reading of
a block of m cells irradiated by mMN; mean photons

CR m—1 _,un )
Pr1s = om ¢ (V=) )

(14)
where ‘CR’ stands for classical reading. As discussed before, we
can also obtain this bound from Eq. (9) by irradiating energetic
single-mode coherent states on each subsystem, ie., ®JL,|a)s
with & = \/MNj.

Assuming the input source ®j.,|a)s, the output states
{p,}_, are pure, expressed by Eq. (2) with ¢\ = |, /r,a) for €
=T, B. Thus we can use Eq. (3) to calculate the Helstrom limit at
the output

PI(EIR(rB7rT7M7NS) :PH(m7(CR)7 (15)
2

where (} = |<\/G¢x|\/ﬁ¢x>\2 = ¢ MN(VVT) I the limit of

small overlap { < 1, we have

1 — rg—+/T :

PRt~ (m—1)e 2MNs(VF5— V) (16)

which is only m/2 times larger than the lower bound in Eq. (14).

This also means that the lower bound is tight in the error

exponent. Although it is extremely difficult to minimize the

Helstrom limit by varying the input among general non-

symmetric classical states, we can show that mixtures of the type

[d*aP(a)@f" |a) s (a] or increasing the modes in each sub-

system do not improve the value of P&} (see details in Methods).

Position-based reading with entangled light. To get a quantum
advantage in terms of a lower error probability and, therefore, a
higher rate of data retrieval from the pattern, we interrogate each
cell with the signal-part of an M-pair two-mode squeezed vacuum

state ¢y, At the output of each cell, we get the state g =

@M
(L, @ L)y for £=B, T. We can upper-bound the error

probability using the formula in Eq. (13), where the fidelity term
F(EM,EW) = FM (£, ® Ty, (£, © Dby
exactly calculated (see Supplementary Note 1 for details). The

exact expression of the bound Pgﬁm is too long to display, but
will be used in our numerical comparisons (here ‘QR’ stands for
quantum reading).

For Ny <« 1 and M > 1 at fixed MNg per cell, we have the
simple asymptotic expansion

PI(?II,{UB ~ (m _ l)e*ZMNs(I*\/ (I*TB)(I*M‘)*\/TB"T).

can be

(17)

Comparing Eqgs. (16) and (17), we can already see that, for rr+
rg= 1, the error exponent of the quantum case is better than the
exact error exponent of the classical case. In particular, this
advantage becomes large when both r and rp are close to unity.
We can improve this result and show a greater quantum
advantage by employing the generalized CN receiver of Theorem
1. An important preliminary observation is that the output state
(L, ® )¢y from each probing of a generic cell, can be
transformed into a tensor product form, where the signal mode is
in the vacuum state and the idler mode is in a thermal state with
mean photon number (1 — r)Ng. This is possible by applying a
two-mode squeezing operation S,[s(r, Ns)], with strength

v Ly (VNS FI— Vg
039 =3 (V)

This allows us to design a CN receiver for the cell output state
E(®), which consists of two-mode squeezing operations followed
by photon counting on the signal modes. By applying S,[s(r, Ns)]
to each pair of the 2M signal-idler modes, we have that E(B) is
transformed into a state E(B)
E(D becomes a state £ where the signal modes are in a product
of M thermal states, each with mean photon number

~ Ng(Ng+1)(/15 — \/ﬁ)z

N =
I’l( S’rB?rT) 1 +NS(1 . rB)

(18)

with vacuum signal modes; while

(19)

Let us now measure the number of photons on the M signal
modes. The outcomes are interpreted as follows: If we count any
photon then return “T’, otherwise return ‘B’. Assuming this rule,

= (B
the background state £" does not lead to any photon count and,
therefore, to any error. An error occurs only if, in the presence of

a target state Em, we get zero count on all M signal modes, which
happens with probability

G = L+ n(Ng,rrp)] ™ (20)

This measurement implements the b-POVM of our CN receiver
(unambiguous over background cells).

Let us now realize the +-POVM, which is unambiguous on
target cells. In this case, we apply the operator S,[s(r7, Ng)] with

different squeezing, so that &" has vacuum signal modes, while
£ has thermal signal modes, each with mean photon number
n(Ng, r1, rg). By performing photon counting on the signal modes

and using the same rule above, we have that an error occurs only

if a background state g¥? gets zero counts on all M modes, which
happens with probability

(?R = [1 + ”(NS> rr, rB)}iM (21)

We can now study the performance of the CN receiver from
Theorem 1, where we use the formula of Eq. (6) computed over
the two types of error probabilities C?R and CSR. For position-
based quantum reading of a block of m cells, we find the
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Fig. 2 Position-based quantum reading. Quantum advantage shown for a block of m =100 cells and Ns =5 mean photons per mode. a We consider the
log ratio of the error probabilities (log 1, [PS%/PSR]), between quantum reading with conditional-nulling receiver P3% and classical reading in the Helstrom
limit PﬁR. This ratio is plotted as a function of the background and target reflectivities, rg and ry, for M =10 modes per cell. Note that since Eq. (6) is not
symmetric in rg and ry, we observe asymmetric patterns. b Error probabilities P8§ (black solid) and PSR (black dashed) versus number of modes M, for
reflectivities rg = 0.95 and rr = 0.9. We also include the ultimate classical benchmark given by the lower bound for classical reading Pﬁf‘w (gray dashed).

c As in b but with rg=1and ry=0.4.

achievable error probability
R R »QR

PSN = PSnN((? 7(8 )
At low photon numbers Ng <« 1 while keeping the total
irradiated energy MNs as a finite value, we have that
PR ~ 2PR(rp, 1, M, Ng), ie., a factor of two worse than the
classical performance in Eq. (16). However, for larger values of Ny
and assuming the condition N(,/rz — 7r)° < 1, we find that

(22)

paR M~ lefM(N5+l)(ﬁfﬁ)z<rﬂT+ﬁ) (23)
2 )

CN —

which has a large advantage in the error exponent when rp and rr
are close to 1, as also evident from Fig. 2.

Further quantum enhancement. Let us consider an ideal sce-
nario for position-based quantum reading, where the target cell
with r7<1 has to be found among many background cells with
perfect reflectivity rz = 1. This configuration allows us to show an
even higher quantum advantage. In fact, for ideal background
(rp=1), the application of S,[s(rp, Ng)] generates a background

=(B) .. . . . .
state £ which is vacuum in all signal and idler modes, and a

target state &™) which is non-vacuum on all these modes. We can
therefore apply the b-POVM of the CN receiver to the entire set
of 2M signal and idler modes.

The type-1 error probability is obtained by calculating the

fidelity between &™) and the vacuum state (see Supplementary
Note 1 for details). This leads to

@

NG =)™

with a clear improvement with respect to the previous case (2"
Consider now the t-POVM. The application of the other

. =(T) _ .
squeezing operator S,[s(rr, Ns)] generates a target state ::,( ) with
vacuum signals but non-vacuum idlers, so that we must again
restrict photon counting to the signal modes, implying that we
achieve the same type-II error probability as before, ie.,

QR _ »QR
G =050

Using Eq. (6), we derive the overall error probability
PE = PON((® (Q®). At low photon numbers Ng < 1 while

keeping the total energy MNj as finite, we find

P%lf]* ~ PIC_IR(I7 rr, M, Ng)x 2e‘MN5(1_’T),

(¥ = [1+Ns(1 - /7p)] (24)

(25)

which shows a large advantage in the error exponent with respect
to the classical strategy of Eq. (16). In Fig. 3 we show the quantum
advantage both in terms of error exponent and actual values of
the error probabilities. This further quantum enhancement is
particularly relevant to spectroscopy, where the background is
indeed highly transparent with rp very close to unity.

Finally, let us note that the other case of rr=1 and r5< 1 can
be improved in the same way, leading to an improved type-II
error probability

- o
(R =14 Ng(1 — /7p) Mo 2 (26)
i T
and the overall error probability
PR, ~ PR (rg, 1, M, Ng) x 2¢ Ns(1=mn), (27)

Quantum target finding. In general, target detection involves a
search in multiple space-time-frequency bins. Time bins are
associated with ranging, frequency bins can be used for speed
detection via Doppler effect, while space bins are associated with
direction finding. Let us study the latter problem here, i.e., dis-
covering the position of a single target in terms of polar and
azimuthal angles, while we assume it is at some fixed range R and
does not create large Doppler shifts. Let us divide the R-radius
horizon sphere into m non-overlapping sectors, one of which
contains the reflective target. For large m, each sector Sj is
approximately subtended by a corresponding small solid angle
(see Fig. 1).

We simultaneously probe all m sectors, while using M bosonic
modes for each of them (e.g., a train of temporal pulses or a single
broadband pulse). Each signal mode will shine Ng mean number
of photons. Let us denote by £ a thermal-loss channel with loss

parameter ¢ and mean number of thermal photons N, so that its
output noise is E = (1 — y)N. When the target is present in a
sector, the M signal modes go through the target channel

®M
oM = (11273/ (1””) , so that each mode is affected by loss

parameter yr=# and output noise Er= Np. By contrast, if the
target is absent in a sector, then the M signal modes are lost and
replaced by environmental modes, each having Ny mean thermal
photons. For target absent, we therefore have the background

B N oM . .
channel ®® = (£03> , with yp =0 and Eg = N (no passive

signature).
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Fig. 3 Position-based quantum reading with ideal background. Quantum advantage for ideal background reflectivity (rg=1) and considering m =100

PN

cells. a We consider the log ratio of the error probabilities (log,,[PSX. /PSR]), between quantum reading with improved conditional-nulling receiver P35S,
and classical reading in the Helstrom limit PER. This ratio is plotted as a function of the target reflectivity rr and mean photon number per mode N for fixed
MNs =12, where M is the number of modes. b We show the various error probabilities, i.e., quantum reading with the improved conditional nulling receiver
Pgﬁ* (including measurements of the idlers, gray solid), quantum reading with the conditional nulling receiver Pg‘fI (based on the measurement of the
signals only, black solid), the classical performance PSR (black dashed), and the ultimate classical benchmark Pgi}; (gray dashed). These are plotted versus
the number of modes M, for rr=0.95 and Ns=5. ¢ As in b but choosing parameters rr= 0.4 and Ns=>5.

We consider the region of quantum illumination!3, where
bright thermal noise N5>> 1 is present in the environment, as it
would be the case at the microwave wavelengths!>. We then
consider low energy signals (N5 < 1) so that the probing is non-
revealing and/or non-destructive for the target. In these
conditions, the considered quantum channels are clearly
entanglement-breaking. Before we present the corresponding
results, let us note that the model for target finding can also be
mapped to a model of quantum-enhanced frequency scanner,
now in the presence of bright environmental noise. See Methods
for more details on this mapping and also for a discussion on
target ranging.

Target finding with classical light. The general lower bound in
Eq. (10) can be specified to classical target finding, by setting
Er=Ep=Npand yr=1#, uyp =0, so that we have

m—1 2MnN
pCIE _ _ s
HiB = 7, P TN )

(28)

where ‘CTF stands for classical target finding. This expression
bounds the best performance achievable by classical sources of
light that globally irradiate mMNg mean photons over the entire
sphere. In particular, we can also obtain this bound from Eq. (9)
by considering m single-mode coherent states ®}*,|\/MNy) 50
each shining MNg mean photons on a sector.

Let us compute the classical performance with a specific
receiver. When we wuse the uniform coherent source
®,[v/MNg)g at the input, the ensemble of output states of

Eq. (2) is defined on the following background and target states

o = £30 (| /BN /) 9
o) = P (| NG (AN (30)

This is identical to classical pulse-position modulation decoding
with signal /#MNj and thermal noise Nz?2. We can therefore
consider the direct detection (DD) scheme based on photon
counting (see refs. 222), giving the error probability

1 & (1 —v)(1 —vFHnMN
CTF __ k k AGAN
PDD _E;(_l) me exp[— I—Vk )

(31)

where v= Np/(Ng+ 1) and len is the binomial coefficient
(number of combinations of k items out of m).

In the high-noise N >> 1 and large number of modes M > 1
limit, this error probability is dominated by the smallest error
exponent in the sum, and it becomes

m—
pETF

oD (32)

1
exp(—MnNg/2Ny).

This is only a factor 2 worse than the bound in Eq. (28). In these
limits, we expect that classical target finding via a DD scheme is
close to the optimum.

Target finding with entangled light. Let us now assume a tensor
product of two-mode squeezed vacuum states ¢5n™ at the input.
In each M-mode probing of a sector, the ensemble of possible
output states takes the form of Eq. (12) with the following
background and target states

g® = [(ﬁé\jﬂ ®I)¢ME} ®M’ (33)

oM
g1 — [(E{YVB/(I—W ®I)¢ME} “ (34)
Let us compute an upper bound based on Eq. (13). Its exact
expression is too long to display, even though it is used in our
numerical evaluation. In the limits of Ng << 1 and M > 1 while
keeping the total energy per sector MNjs as fixed, we find the
following asymptotic bound for quantum target finding

MnNg
1+ N/’

where ‘QTF stands for quantum target finding. This has no
advantage with respect to Eq. (28), but both bounds are likely to
be non-tight. It has instead a factor of 2 advantange in the error
exponent with respect to the DD result in Eq. (32) for large noise.
To better evaluate the performance of the entangled case, we need
to analyze an explicit receiver design.

We adapt the quantum illumination receiver based on sum-
frequency-generation (SFG) process®2 to the CN approach in
Theorem 1. Consider the problem of binary hypothesis testing
between the states 2) and E(1). An SFG receiver converts the
signal-idler cross correlations into photon number counts,
through the combination of multiple cycles of SFG process and
interference. In the limit of Ny <« 1 and N> 1 with feed-forward

PETE (1, Ny M. Ng) = (m — 1) exp (f (35)
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disabled, the photon counting statistics of £(T) is equivalent to a
coherent state with mean photon number M#yNg(Ng + 1)/Np, and
E®B is equivalent to a vacuum state. After this conversion,
suppose we perform the photon-counting stage of the SFG
measurement on the background state £(B), then there is always
zero count and therefore no ambiguity. For E(7), there is instead
some type-1I probability (?TF = e MNsINst)/Ns of getting zero
count and therefore selecting the wrong hypothesis ‘B’. This
corresponds to the b-POVM of the generalized CN receiver. On
the other hand, for the +-POVM, suppose we apply a two-mode
squeezer S,(rQTF) before performing the previous SFG measure-
ment, where

—24/nNg(Ng +1)
1+ N+ N,

QTF

1
ri = —arctan (36)

is chosen such that S, (rQ"F)E(T)S! (FTF) has zero cross correla-
tions. Then we decide “T” when no photon is counted, making no
error. However, when the input is E(B), the squeezer will create
phase sensitive cross correlations ~/#N4(Ng+ 1). When no
counts are registered, we select the wrong hypothesis “I°, with
type-I error probability (™" = (F,

According to Theorem 1, the performance of the generalized
CN receiver (here applied to signals and idlers) corresponds to
the following mean error probability

PRI = POV, (8T o 2 (m
Comparing with Eq. (28), we see that the achievable performance
of quantum target finding clearly outperforms the bound on
classical target finding. In particular, we see that the error
exponent is increased by a factor 2. We explicitly compare these
results in Fig. 4.

1)e 2MnNs/Ny (37)

Discussion

In this work we showed that the use of quantum entanglement
can remarkably enhance the discrimination of multiple quantum
hypotheses, represented by different quantum channels. More
precisely, we considered a basic problem of quantum pattern
recognition that we called CPF. This model can also be regarded
as a quantum channel formulation of the classical notion of pulse

1

: —4
@ 10

- -8
§ 10

= 10-12

10%10(M)

Fig. 4 Target direction finding with classical and entangled light. We plot
the error probabilities in terms of number of modes M, considering m=
50 sectors, Ns =10~3 photons per mode, Nz =20 thermal photons per
environmental mode, and = 0.1 round-trip loss. We consider the
performance of classical target finding via direct detection from Eq. (31)
(CTF-DD, solid black line) and assuming the lower bound of Eq. (28) (CTF-
LB, black dashed line). We then consider the performance of quantum
target finding assuming the upper bound of Eq. (35) (QTF-UB, red dashed
line) and via the generalized CN receiver from Eqg. (37) (QTF-CN, solid
red line).

position modulation!8, so that it clearly departs from other
approaches that exploit pulse position modulation for state-based
encoding (e.g.33). In this scenario, we showed that the use of an
entangled source and a suitably constructed conditional-nulling
receiver can outperform any classical strategy in finding the
unknown position of the channel. This quantum advantage,
which is quantified in terms of improved error probability and
error exponent, has been demonstrated for paradigmatic exam-
ples of position-based quantum reading and quantum target
finding, besides their spectroscopic formulations as quantum-
enhanced frequency scanners. As further theoretical directions, it
would be interesting to exactly establish the optimal performance
for discriminating quantum channels with geometrical uniform
symmetry. Finally, although our analysis relies on symmetry, we
expect that a similar quantum advantage exists in problems with
completely arbitrary channel patterns.

Methods

Phase-insensitive bosonic Gaussian channels. The action of a single-mode
(covariant) phase-insensitive Gaussian channel over input quadratures X = (g, p)T
can be represented by the transformation ¥ — /iX + /|1 — u|x; + & where y is
a transmissivity (0 <p <1) or a gain (4 > 1), X5 are the quadratures of an envir-
onmental mode in a thermal state with noise variance w = 2N + 1 with N being the
mean number of photons, and ¢ is additive classical noise, i.e., a random 2D
Gaussian distributed vector with covariance matrix w,qql. Here we assume vacuum
shot noise equal to 1.

Note that, for a coherent state at the input, the output state of the channel is
generally thermal with covariance matrix V = (4 + |1 — p|w + w,q4)I. Setting w =
(14 2E — wudqa — #)/|1 — p, this matrix simply becomes (2E + 1)I. Therefore,
conditionally on a coherent state input, the channel can be described by the two
parameters y and E. In particular, for a thermal-loss channel, we have 1 <p<1,
and E = (w — 1)(1 — u)/2 = (1 — w)N; for a noisy amplifier, we have y > 1, and E =
(w+1)(u—1)/2 = (u — 1)(N + 1); and finally, for an additive Gaussian noise
channel, we have y =1 and E = w,qg4/2.

Optimal receiver design for standard quantum reading. The novel CN receiver
design also provides a new insight into the original quantum reading model, related to
the binary discrimination between the two lossy channels £, and £, . With no loss
of generality, let us assume 75> r. When the two-mode squeezed vacuum state is
used at the input, the corresponding outputs for the two channels are £(1) and 2(5).
Therefore, the t-POVM and b-POVM can be directly used to perform their dis-
crimination, leading to the error probability ¢ ?R /2 for equal prior probabilities, where
(?R is given in Eq. (20) (see orange line in Fig. 5). In the ideal case of rz =1, the
further improved detection, given by the application of the CN receiver to both signals
and idlers, leads to the error probability { ?} /2, where IQ*R is defined in Eq. (24) (see
red dotted line in Fig. 5). We see that the improved performance ﬁR /2 saturates the
quantum Chernoff bound3435, while the general applicable performance {2 /2 is able
to beat the best known Bell-measurement receiver'?, when M is sufficiently large
(Fig. 5a) or Ng is large (Fig. 5b).

Quantum-enhanced frequency scanner in noisy conditions. The previous result
on quantum-enhanced target finding can be mapped into the model of quantum-
enhanced frequency scanner, now in the presence of bright environmental noise.
Here we assume a target at some fixed linear distance which only reflects radiation
at a narrow bandwidth dv around some carrier frequency. The target is assumed to
be still (or slowly moving) and it completely diffracts the other frequencies. This
limited reflection could also be the effect of meta-materials employed in a cloak.
The previous m sectors now become m different non-overlapping frequency
windows with bandwidth dv, each of them probed by pulses with the same
bandwidth.

One choice is to use a single dv-pulse per window containing M ~ §v~! effective
frequencies, each with Ny mean number of photons. Alternatively, we may use
MOv-pulses per window which are irradiated as a train of independent temporal
modes, each with Ny mean photons. In our basic model, reflection occurs in only
one of these frequency windows, while background thermal noise is detected for all
the other windows. The previous results (see Fig. 4) automatically imply that the
use of an entangled source outperforms any classical strategies in the regime of few
photon numbers per mode.

About target ranging. In quantum target finding, if we consider time bins instead
of spatial bins, we can map the problem of direction finding into that of ranging.
However, at fixed direction but unknown distance, there is a crucial problem which
makes the entangled strategy problematic. We must in fact ensure that the

returning signal (if any) is combined with the corresponding idler. Since we do not
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Fig. 5 Error probability versus number of modes M for binary quantum reading. Background and target reflectivities are respectively rs =1and rr = 0.4.
Comparisons are done for a number of photons per mode Ns = 0.1in a and Ns =10 in b. We plot the performance of the original Bell receiver'2 (solid black
line), the asymptotically tight quantum Chernoff bound (QCB, solid blue line), the generalized conditional nulling receiver with performance C?R/Z (CN,
solid orange line), and the generalized conditional nulling receiver with improved performance (%R/Z (CN*, red dashed line).

know, a priori, the round-trip time from the target, we cannot synchronize signal
and idler in a joint detection. A potential way around this issue is to generate a
train of m signal-idler pulses with well-separated carrier frequencies (e.g., with a
bandwidth larger than the maximum Doppler shift from the target). Signal-idler
pulses with different carrier frequencies are then jointly detected at the different m
time bins. In principle this procedure can make the quantum measurement work
but it opens another issue. The best classical strategy does not need to employ this
time slicing approach. In fact, one could just send a single coherent pulse and wait
for its potential return. From an energetic point of view, the classical source would
only irradiate MNg photons (assuming M modes per pulse) while the quantum case
needs to irradiate mMN;g photons on the target. Taking into account of this dif-
ference, we cannot directly apply our previous findings and derive a conclusive
result for target ranging.

Optimality of pure states. Here we state two lemmas to summarize the results
(See Supplementary Note 2 for their proofs).

Lemma 2.
Consider the discrimination of N channels {£,} with prior probabilities {p,}.
Inputting pure states minimizes the mean error probability.

Note that if there is a constraint on the Hilbert space (e.g., an energy constraint
for an infinite-dimensional space), then the previous lemma might not hold.
However, this result may still hold in the presence of convexity properties, as in the
proof of the following lemma.

Lemma 3.

Consider position-based quantum reading, with a constraint of MNg mean photon

numbers per cell. Any statistical mixture of GUS coherent states can be reduced to

L, \oc)sA with amplitude « = \/MNg. The minimum error probability is
PEIR(rBarTsM7NS) :PH(m:(CR)a (38)

where (* = |(/Fzal\/Fra)| = e™MNsGFa=V)" and the function Py is given in Eq.

(3) of the main text.

Generalized CN Receiver (proof of theorem 1). Let us describe the measurement
process starting from n = 1, i.e,, by checking the hypothesis h; that the target state
o(D) is in subsystem S;. If h; is true, then the receiver will not make any error, due
to tr(HET)am) =1 on the first subsystem S, and tr(HEB) o)) = 1 on all the other
subsystems {S; }_,. There is an error only if the true hypothesis is one of {h;};_,.

In this case, S, would be in the background state ¢‘B) and the t-POVM {HET), HEB)}
would return the incorrect outcome “I” with probability {; and correct outcome ‘B’
with probability 1 — ().

Suppose that we get “T” (with type-I false-positive probability ;) while the
correct hypothesis is hj for some k> 1. In measuring the remaining subsystems
{8 }i, in the b-POVM {HI(OT), HE;B)}, the outcomes will be certainly equal to ‘B’ for
all systems with k # k since they will all be in a background state o(®. However, the
application of b-POVM over the target state o{T) of subsystem S; could give the
wrong outcome ‘B” with type-II (false-negative) probability (5. If this happens the
receiver would select the false hypothesis ;. In this case, the overall (conditional)
probability of error is given by the product of the two incorrect outcomes (;(, times
the probability that h, is false, i.e, (m — 1)m~L Therefore, we get
Pj = (m— 1m0,

Suppose that, from the first measurement, we instead get the correct outcome
‘B* (with probability 1 — {;). Then, the receiver would correctly discard the false
hypothesis /; and would check the next one h,. Denote by P,,_; the total error
probability of the receiver in distinguishing the remaining m — 1 hypotheses. Then,
the overall (conditional) probability of error is given by the product of P,,_;, and
the joint probability of outcome ‘B> for h; being false. Therefore, we have
Pﬁl =(m—1)m (1 —{,)P,_,. If m=2, then in this case there is only one
hypothesis left, and we have the initial condition P, =0.

Overall, the error probability of the receiver P,, = PSN({,{,) will be equal to
the sum of P}/; and Pgl, so that we have the recursive formula

m—1

Pm:T[(lfcl)PmA*‘Q(z]- (39)
The initial conditions of the recursion is that P; = 0 and P, = {;(,/2. To solve the
recursion, let us set P,, = — g,,/m so that we have (1 — {})g,,_1 — gn = (m — 1)},
with initial conditions g; =0 and g, = — {1{,. We find the solution
m—2
8 =00 Y (m=m1 =) = =(GmE +(1-4)" = 1/EF, (40)
n=1
which leads to
= —2[m, + (1 — -1, 41
G (=0 ] (41)

completing the proof. Note that, when the receiver outcomes are all ‘B’, this
automatically means that the true hypothesis is the last one h,,, which is compatible
with the initial condition P; = 0.

General bounds. Here we present various general bounds that apply to m-ary state
discrimination (in the setting of symmetric hypothesis testing)3%-30-38, These
bounds apply to the mean error probability and can be computed from the
quantum fidelity (which has a closed formula for arbitrary multimode Gaussian
states®®). In particular, for any ensemble of m mixed states {p;, p; }-,, where p;’s
are the prior probabilities and py’s are the states, we may write the following upper
bound?? on the minimum error probability or Helstrom limit Py,

Py <Pyyp =2 Z VPP F (P, pi),

42
K>k ( )

where F is the Bures’ fidelity

F(p.0) = [ Bvall, = try/ VAoV

The result of Eq. (42) is a bound on the performance of a ‘pretty good’ mea-
surement?’-2% and is tight up to constan t factors in the exponent. A fidelity-based
lower bound is instead given by ref. 40,

Py2Pyp = ZPk’Psz@k’-,Pk)-

(43)

(44)
K>k
Assume equi-probable hypotheses, so that p,=m~! for any k, and the
symmetry F(p,,py) = F,Vk#k'. We then have the simplified bounds
Pyup = (m — 1)F, (45)
m—1
Pyip=——F. 46
H,LB m (46)

These bounds appear in our main text with the following expressions for the
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fidelity

F(pyspyn) = F(E1,E®), (47)

for the entangled case and

F(psPren) = (07, 0) (48)

for the classical case.

Classical benchmarks. Let us now introduce a general bound to the ultimate
performances achievable by classical states in CPF, with direct application to the
problems of position-based reading and target finding. Recall that the general
problem of CPF consists of discriminating an ensemble of GUS bosonic channels
{&,} with equal priors. These are expressed by

B T
gn = (®k¢n®ék)) ® ®§n)7 (49)

where (Dgl:/ ") is the background/target channel acting on subsystem S (e.g., a cell
or a sector). Each of these channels is generally meant to be a multi-mode channel.

In the bosonic setting, single-mode phase-insensitive Gaussian channels model
various physical processes. This channel G, ; can be parameterized by a
transmissivity/gain parameter u >0 and a noise parameter E > 0131, In particular,
E accounts for the thermal photons at the output of the channel, when the input
state is a vacuum or coherent state. Besides the single-mode phase-insensitive
(covariant) bosonic Gaussian channels discussed above, we can also include the
contravariant conjugate thermal-amplifier channel, whose action on an input
annihilation operator is described by

a— Jual -+ \Jur1e, (50)

where >0 and é is in a thermal state with mean photon number (E — u)/(u + 1).
All these channels G, ; map a coherent state |a) to a displaced thermal state with
amplitude /ser (/s for the conjugate thermal-amplifier channel) and
covariance matrix (2E + 1)L

Therefore, let us consider the problem of CPF where target and background
channels are tensor products of a phase-insensitive bosonic Gaussian channel G, .
Denote the transmissivity/gain and noise of the target channel as g and Er, while
those of the background channel as y5 and Eg. For the entangled case, we assume
that each subsystem is exactly probed by M signal modes, each irradiating Ny mean
photons, for a total of mMNg mean photons. For the classical case, we can relax this
structure and include the more general case of different energies irradiated by the
M modes over each subsystem S;. More generally, for the classical case with no
passive signature (Ez = E7), we can also allow for arbitrary number of modes M
M,
!‘1~Elk
passive signature, the only surviving constraint is the mMNg mean photons globally
irradiated. More precisely, we can state the following result (See Supplementary
Note 2 for proof).

per subsystem S so that d)gi) = . In other words, for classical CPF with no

Lemma 4.

Consider the problem of CPF where target and background channels are tensor
products of a single-mode phase-insensitive bosonic Gaussian channel with para-
meters ur, Er (for target) and ug, Eg (for background). Assume a global energetic
constraint of mMNg mean photons with M modes irradiated over each of the m
subsystems Sy. The optimal classical state (with positive P-representation) mini-
mizing the lower bound Py g of Eq. (44) is any tensor product of coherent states

(k) 7
la) = @, (@M e Né’:)>) : (51)
Sk

where the phases 9,((](’) are arbitrary and Zkle Né’:/) = MNj for any k, so that each
subsystem is irradiated by the same mean number of photons. The corresponding

minimum lower bound is given by

- 2MN, - ?
m 1%7”4{7 s(Vip WT)}’

P, =— 52
LB = om 1+ Ep +Ep (52)

-1
with ¢p p = [1+ (VEs(1+E7) — /E;(1 +EB))2] . In particular, for no pas-
sive signature (Er = Ep = E), we have the simplification

met [_ 2MN (/i — m)z}

2m 1+2E

(53)

PH.LB

and bound holds under the general energetic constraint of mMNg mean photons,
with no restriction on the number of modes irradiated per subsystem. In this case, an
optimal state is the tensor-product @' | \\/MNS>Sk.

Position-based quantum reading with thermal noise. Let us now generalize the
study of position-based quantum reading to the case where thermal noise is present
in the environment. This means that the environmental input of each cell Sy is not
the vacuum but a thermal state with Nz mean photons. Each cell has reflectivity rg

or rr in such a way that the block of m cells has GUS. The block is probed by
bosonic modes for a total of mMNg mean photons irradiated. In the classical case,
we compute a lower bound to the performance of all possible classical states
(globally irradiating mMNs mean photons over the m block of cells), while for the
quantum case, we consider a tensor-product of two-mode squeezed vacuum states,
so that M signal modes probe each cell, with each mode irradiating Ng mean
photons.

As before, this problem is mapped into the discrimination of an ensemble of
GUS bosonic channels {£,} with equal priors, which are expressed by

&, = (®k¢n®g‘f)) ® q)g:-)v (54)
with (Dgl:/ 2 acting on cell S. For M-mode probing of the cell, we have the target
oM @M

channel ®T) = ([Zf?‘) and the background channel ®®) = (Lf;") , where
L is a single-mode thermal-loss channel with reflectivity r and thermal noise Nj.

In general, the protocol of position-based quantum reading can be formulated
with two generic thermal-loss channels as discussed above. In such a case, the
classical benchmark can be easily derived from Eq. (52). Then, we may introduce a
finer classification of the protocol in two types: one with active and the other with
passive signature. In the first type of protocol, the parameters of the channels are
such that the noise variance at the output of the two channels is different assuming
the vacuum state at the input. In other words, their statistical discrimination is
possible without sending a probing signal. In the second type, the parameters are
such that there are no different levels of noise at the output. Here we analyze this
second type, so that the channels have reflectivity r; and mean number of thermal
photons Ng/(1 —r;) for [=B, T. The corresponding classical benchmark can be
computed from Eq. (53) and takes the form

2
CR.N m—1 —2M(\/r5 — /7r) Ns
PH,B(rBﬂrTﬂMvNS): m exp|: 2NB+1 . (55>
Similarly, for the quantum case, we can easily repeat the calculations to find the
corresponding noisy expression PS4 of the upper bound PSR .. For Ng < 1 and

M > 1 at fixed MN;, we may generalize Eq. (17) of our main text into the following
form

—2MN4(1 + Ny — VH — /r5r7)
1+ N,

Pgﬁlng(errTvaNS) = (m7 l)exp[ :|7 (56)
where H= (1 + Ng —rg)(1 + N — rp).

Denote the error exponent in Eq. (55) as ecg and the error exponent in Eq. (56)
as eqr. We find that the quantum case is always better than the classical case, i.e.,
€qr > €cr- For rand rg close to 1, we have eqr/ecr = 1 4 1/2Np. In this regime, we
see that the advantage becomes huge when Np < 1, which agrees with our
observation in Egs. (16) and (17). However, when Ng >> 1, the advantage decays, in
agreement with the observation related to Eqs. (28) and (35). Note that this
conclusion is based on a quantum lower bound and a classical upper bound, and
we expect them to be not tight when noise Ny is large.

Data availability
The data supporting the findings of this study are available as Supplementary Data, more
details can be obtained from the first author upon reasonable request.

Code availability
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and derivations presented therein. Additional code is available from the first author upon
reasonable request.
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