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ƐՊ |ՊINTRODUC TION

The agricultural �green revolution� of the 1950s brought dramatic 

increases in worldwide crop productivity, driven largely by the de-

velopment and application of novel pesticides and fertilizers, cou-

pled to advances in plant breeding. Such crop improvements are 

exemplified by the long-term increase in UK wheat yields since 

the 1950s (Mackay et al., 2011). More recently, wheat yields have 

started to decline despite increasing application of nitrogen- and 

phosphorus-based fertilizers�a widespread trend observed across 

many other key crop species across the globe (Grassini, Eskridge, 

& Cassman, 2013; Ray, Ramankutty, Mueller, West, & Foley, 2012). 
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Abstract
ArbuscuѴar	 mycorrhizaѴ	 fungi	 ŐAMFő	 form	 symbioses	 with	 most	 cropsķ	 potentiaѴѴy	  
improving their nutrient assimilation and growth. The effects of cultivar and  

atmospheric CO2 concentration ([CO2œő	on	wheatŋAMF	carbonŊforŊnutrient	exchange	
remain	 criticaѴ	 knowѴedge	 gaps	 in	 the	 expѴoitation	 of	 AMF	 for	 future	 sustainabѴe	  
agricultural practices within the context of global climate change. We used stable and 

radioisotope tracers (15Nķ	33P, 14Cő	 to	quantify	AMFŊmediated	nutrient	uptake	and	
fungal acquisition of plant carbon in three wheat (Triticum aestivum	Lĺő	cuѴtivarsĺ	We	
grew plants under current ambient (440 ppm) and projected future atmospheric CO2 

concentrations (800 ppm). We found significant 15N	transfer	from	fungus	to	pѴant	in	
aѴѴ	cuѴtivarsķ	and	cuѴtivarŊspecific	differences	in	totaѴ	N	contentĺ	There	was	a	trend	for	
reduced	N	uptake	under	eѴevated	atmospheric	ŒCO2]. Similarly, 33P	uptake	via	AMF	
was affected by cultivar and atmospheric [CO2]. Total P uptake varied significantly 

among wheat cultivars and was greater at the future than current atmospheric [CO2]. 

We found limited evidence of cultivar or atmospheric [CO2] effects on plant-fixed 

carbon	transfer	to	the	mycorrhizaѴ	fungiĺ	Our	resuѴts	suggest	that	AMF	wiѴѴ	continue	
to provide a route for nutrient uptake by wheat in the future, despite predicted rises 

in atmospheric [CO2]. Consideration should therefore be paid to cultivar-specific 

AMF	receptivity	and	 function	 in	 the	deveѴopment	of	cѴimate	smart	germpѴasm	for	
the future.
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An	everŊincreasing	human	popuѴation	ŐGerѴand	et	aѴĺķ	ƑƏƐƓőķ	depѴe-

tion of natural resources such as rock phosphate (Cordell, Drangert, 

& White, 2009) and rising energy prices are making fertilizer and 

pesticide production unsustainable. In the context of global climate 

change, future food security is far from assured (Godfray et al., 

2010).

In recent years, there has been increasing agronomic interest 

in exploiting the symbiotic associations formed between crop 

pѴants	and	arbuscuѴar	mycorrhizaѴ	fungi	ŐAMFĸ	Chenķ	Aratoķ	Borghiķ	
Nouriķ	 ş	 Reinhardtķ	 ƑƏƐѶĸ	 SosaŊHernandezķ	 Leifheitķ	 Ingraffiaķ	 ş	
Rillig, 2019; Thirkell, Charters, Elliott, Sait, & Field, 2017). The 

roots of around 75% of all vascular plant species, including many 

cereals (Smith & Smith, 2011) form associations with the obligately 

biotrophic fungi of the subphyllum Glomeromycotina (Brundrett 

ş	Tedersooķ	ƑƏƐѶĸ	Spatafora	et	aѴĺķ	ƑƏƐѵĸ	van	der	Heijdenķ	Martinķ	
SeѴosseķ	ş	Sandersķ	ƑƏƐƔőĺ	Host	pѴants	may	aѴѴocate	up	to	ƑƏѷ	of	
recentѴyŊfixed	 carbon	 ŐCő	 to	 their	AMF	 symbionts	 ŐBagoķ	Pfefferķ	
ş	 ShacharŊHiѴѴķ	 ƑƏƏƏĸ	 Doudsķ	 Pfefferķ	 ş	 ShacharŊHiѴѴķ	 ƑƏƏƏĸ	
Soudzilovskaia et al., 2015). On a global scale, such transfer of car-

bohydrates	and	fatty	acids	ŐKeymer	et	aѴĺķ	ƑƏƐƕĸ	LuginbuehѴ	et	aѴĺķ	
2017) from plants to fungal partners comprises up to 5 billion tons 

of C annually (Bago et al., 2000), representing an important input 

to	soiѴ	carbon	stocksĺ	In	returnķ	AMF	may	faciѴitate	the	acquisition	
of up to 80% of plant phosphorus (P; Bucher, 2007; Sawers et al., 

2017; Smith, Smith, & Jakobsen, 2004), in addition to potentially 

making	contributions	towards	pѴant	nitrogen	ŐNĸ	Hodgeķ	CampbeѴѴķ	
ş	 Fitterķ	 ƑƏƏƐĸ	 Leighķ	 Hodgeķ	 ş	 Fitterķ	 ƑƏƏƖĸ	 ThirkeѴѴķ	 Cameronķ	
ş	Hodgeķ	ƑƏƐѵő	and	micronutrient	demand	ŐSmith	ş	Readķ	ƑƏƏѶőĺ	
Associating	with	AMF	may	confer	further	benefits	on	host	pѴants	
beyond improving access to soil nutrients, such as improving plant 

growthķ	 water	 uptake	 ŐRuizŊLozano	 et	 aѴĺķ	 ƑƏƐѵő	 and	 priming	 of	
host	pѴant	defence	responses	ŐCameronķ	NeaѴķ	Weesķ	ş	Tonķ	ƑƏƐƒőķ	
leading to increased tolerance and/or resistance to pests and dis-

eases	ŐBerdeni	et	aѴĺķ	ƑƏƐѶĸ	Jungķ	MartinezŊMedinaķ	LopezŊRaezķ	ş	
Pozo, 2012).

Taking	consideration	of	AMF	in	widescaѴe	agricuѴturaѴ	manage-

ment decisions requires changes in current practice, although it has 

been argued that sufficient data corroborating the nutritional bene-

fit	of	AMF	in	agricuѴturaѴ	crops	to	warrant	these	shifts	are	currentѴy	
Ѵacking	ŐRiѴѴig	et	aѴĺķ	ƑƏƐƖĸ	Ryan	ş	Grahamķ	ƑƏƐѶőĺ	A	prevaiѴing	asser-
tion is that cereals are generally negatively or neutrally affected by 

AMF	coѴonization	ŐRiѴѴig	et	aѴĺķ	ƑƏƐƖĸ	Smith	ş	Smithķ	ƑƏƐƐőĸ	the	fungi	
are assumed to offer little nutritional benefit to plants selectively 

bred for fine and dense root architecture optimized for nutrient- 

acquisition efficiency, especially under high-nutrient environments 

(Smith & Smith, 2011; Wen et al., 2019; Zheng et al., 2018). Despite 

two	 metaŊanaѴyses	 suggesting	 an	 overaѴѴ	 benefit	 of	 AMF	 to	 crop	
nutrient	 uptake	 and	 grain	 yieѴd	 ŐLekberg	 ş	 Koideķ	 ƑƏƏƔĸ	 Zhangķ	
Lehmannķ	Zhengķ	Youķ	ş	RiѴѴigķ	ƑƏƐƖőķ	a	scepticaѴ	view	remains	in	the	
Ѵiterature	with	 regard	 to	 the	 utiѴity	 of	AMF	 in	modern	 and	 future	
agriculture (e.g. Ryan & Graham, 2018).

The	 functionaѴ	 response	 of	 pѴants	 to	 AMF	 coѴonization	 is	
highѴy	diverse	 ŐHoeksema	et	 aѴĺķ	 ƑƏƐƏő	 in	 terms	of	both	 interŊ	 and	

intraspecificity	ŐJohnsonķ	Martinķ	Cairneyķ	ş	Andersonķ	ƑƏƐƔĸ	Jones	
& Smith, 2004; Mensah et al., 2015; Munkvold, Kjoller, Vestberg, 

Rosendahl, & Jakobsen, 2004; Watts-Williams et al., 2019) and given 

the	ubiquity	of	AMF	in	most	agricuѴturaѴ	soiѴsķ	arabѴe	crops	are	far	
more likely to be mycorrhizal than nonmycorrhizal (Smith & Smith, 

ƑƏƐƐőĺ	As	suchķ	determining	the	conditions	under	which	AMF	posi-
tively influence crop nutrient uptake must remain a research prior-

ity. Plant and fungal genotype (Klironomos, 2003; Munkvold et al., 

2004), the availability of mineral nutrients (Johnson, 2010; Johnson, 

Wilson, Wilson, Miller, & Bowker, 2015) and atmospheric conditions 

ŐFieѴd	et	aѴĺķ	ƑƏƐƑő	aѴѴ	mediate	pѴant	responses	to	AMF	coѴonizationĺ
Atmospheric	 CO2 concentrations ([CO2]) have increased rap-

idly because of anthropogenic activities since preindustrial times, 

from 280 ppm in 1750 to concentrations in excess of 400 ppm 

today (Meinshausen et al., 2011). Climate model projections suggest 

that atmospheric [CO2] will continue to rise, potentially reaching 

800 ppm atmospheric [CO2] by the end of the century (Meinshausen 

et al., 2011) if steps to curb emissions are not taken. The �carbon 

fertilisation effect� is responsible for increased rates of carbon fixa-

tion under elevated atmospheric [CO2] (hereafter eCO2), especially 

among C3	 species	 in	 temperate	 zones	 ŐAinsworth	 ş	 Longķ	 ƑƏƏƔĸ	
McGrath	ş	LobeѴѴķ	ƑƏƐƒĸ	OŝLeary	et	aѴĺķ	ƑƏƐƔő	which	incѴude	some	of	
the	worѴdŝs	most	economicaѴѴy	and	sociaѴѴy	important	pѴantsĺ	As	pho-

tosynthesis is not currently carbon-limited at ambient atmospheric 

[CO2] (hereafter aCO2; Fitzgerald et al., 2016), plants grown at eCO2 

generally show reduced photorespiratory losses and increased net 

photosynthetic rates. The extent to which increasing atmospheric 

[CO2œ	wiѴѴ	 impact	cropŋAMF	associations	 remains	uncѴear	 ŐCottonķ	
2018). Given the key role of atmospheric [CO2] in regulating pho-

tosynthetic	rate	Ővan	der	Kooiķ	Reichķ	Lowķ	Kokķ	ş	Tauszķ	ƑƏƐѵő	and	
subsequent	C	metaboѴismķ	how	AMF	might	ameѴiorate	or	accentuate	
any atmospheric [CO2]-driven changes to crop growth and nutrition 

warrants further investigation.

As	 obѴigate	 symbiontsķ	 AMF	 are	 entireѴy	 reѴiant	 on	 their	 pѴant	
hosts for carbon (C) thus high atmospheric [CO2] could directly af-

fect	 C	 aѴѴocation	 to	mycorrhizasĺ	 Increased	 C	 acquisition	 by	 AMF	
has been demonstrated in a number of plant and fungal species 

when under eCO2	ŐAѴbertonķ	Kuyperķ	ş	Gorissenķ	ƑƏƏƔĸ	Drigo	et	aѴĺķ	
2013; Field et al., 2012; Treseder, 2004). Furthermore, recent evi-

dence	even	suggests	that	AMF	carbon	acquisition	from	host	pѴants	
might directly increase rates of carbon fixation (Gavito, Jakobsen, 

Mikkelsen, & Mora, 2019), potentially by ameliorating end-product 

inhibition	 of	 photosynthesis	 ŐArpķ	 ƐƖƖƐőĺ	 Greater	 C	 acquisition	 by	
AMF	may	enabѴe	further	hyphaѴ	proѴiferation	through	soiѴ	and	thus	
increase their assimilation of mineral nutrients and subsequently in-

crease	transfer	to	host	pѴantsĺ	Howeverķ	whether	this	hypotheticaѴ	
positive	feedback	is	reaѴized	in	AMFŋpѴant	symbioses	is	not	cѴearѴy	
supported by the available data (Cotton, 2018).

The nature and extent of atmospheric [CO2œ	effects	on	AMF	are	
compѴex	 ŐCottonķ	 ƑƏƐѶőĺ	 Increased	pѴant	N	uptake	 via	AMF	under	
eCO2 has been demonstrated both in wild grasses, such as Avena 

fatua (Cheng et al., 2012) and in domesticated crop plants, including 

wheat Triticum aestivum	Lĺ	ŐZhuķ	Songķ	Liuķ	ş	Liuķ	ƑƏƐѵőĺ	In	contrastķ	
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AMFŊmediated	 P	 uptake	 in	 vascuѴar	 pѴants	 appears	 to	 be	 Ѵess	 af-
fected by changes in atmospheric [CO2]. Mycorrhizal P uptake was 

not increased by eCO2 in Pisum sativum (Gavito, Bruhn, & Jakobsen, 

2002; Gavito, Schweiger, & Jakobsen, 2003), Medicago truncatula or 

Brachypodium distachyon (Jakobsen et al., 2016). Similarly, Plantago 

lanceolata showed decreased 33P	 acquisition	 via	 AMF	 per	 unit	 of	
plant-fixed carbon allocated to the fungi in eCO2 conditions (Field 

et	aѴĺķ	ƑƏƐƑőĺ	Host	pѴant	genotype	must	aѴso	be	considered	when	in-

vestigating the effect of environmental perturbation on symbiotic 

functioning	 between	 crops	 and	 AMFĸ	 intraspecific	 diversity	 is	 an	
important driver of variation in these interactions (Johnson, Martin,  

et	aѴĺķ	ƑƏƐƔőĺ	As	a	resuѴt	of	intensive	crop	breeding	to	promote	var-
ious economically important traits, modern crop cultivars vary 

in	 their	 receptiveness	 to	 coѴonization	 by	 AMF	 ŐLehnertķ	 SerfѴingķ	
Endersķ	Friedtķ	ş	Ordonķ	ƑƏƐƕĸ	Lehnertķ	SerfѴingķ	Friedtķ	ş	Ordonķ	
2018) and therefore potentially also vary in carbon-for-nutrient ex-

change between symbiotic partners in both aCO2 and eCO2 atmo-

spheric conditions.

Here	we	address	the	criticaѴ	research	questionķ	ľHow	do	eCO2 

and plant host genotype affect carbon-for-nutrient exchange be-

tween wheat and arbuscular mycorrhizas?� Using 15Nķ	33P and 14C 

isotope tracers across three modern wheat (T. aestivum	Lĺő	cuѴtivarsķ	
we	determined	Őaő	the	extent	to	which	AMF	contribute	to	assimiѴa-
tion	of	N	and	P	from	soiѴķ	and	Őbő	the	extent	to	which	wheat	transfers	
C to extraradical mycelia of their fungal symbionts in three mod-

ern wheat (T. aestivum	 Lĺő	 cuѴtivars	 at	 aCO2 (440 ppm) and eCO2 

(800 ppm), to simulate the predicted increase in atmospheric [CO2] 

over the next 80 years (Meinshausen et al., 2011). Specifically, we 

tested	the	hypotheses	that	Őaő	AMF	wouѴd	acquire	greater	amounts	
of plant-fixed C under future climate eCO2 scenarios, and (b) in-

creased C allocation would increase transfer and assimilation of 15N	
and 33P	tracers	from	the	AMF	to	the	pѴant	across	aѴѴ	cuѴtivars	testedĺ

ƑՊ |ՊMATERIAL S AND METHODS

ƑĺƐՊ|ՊWheat pregermination and AMF inocuѴation

Seeds of bread wheat (T. aestivum	Lĺķ	cvĺ	ļAvaѴonĽķ	ļCadenzaĽķ	ļSkyfaѴѴĽĸ	
RAGT	Seedsķ	Cambridgeshireķ	UKő	were	surface	steriѴized	using	CѴ2 

gas (Method S1) and incubated on moistened filter paper for 5 days 

to	 germinateĺ	AvaѴon	 and	Cadenza	were	 seѴected	 as	 they	 are	par-
ent lines of a reference population currently used as a basis for im-

proving European wheat germplasm (Ma et al., 2015), and Skyfall 

is	 currentѴy	 among	 the	United	Kingdomŝs	most	 commonѴy	 pѴanted	
wheat	cuѴtivarsĺ	HeaѴthy	seedѴings	were	seѴected	and	transferred	to	
ƐĺƔ	L	pѴant	pots	containing	a	ƒĹƐ	mix	of	agricuѴturaѴ	top	soiѴ	ŐcoѴѴected	
on	ƕ	December	ƑƏƐѵ	 from	Leeds	University	 Farmĸ	 ƔƒŦƔƑனƒƏĺƐபNķ	
ƐŦƐƖனƐƔĺѶபWő	 and	 heatŊsteriѴized	 ŐƐƑƏ	 min	 at	 ƺƐƑƏŦCő	 soft	 sand	
(Figure S1).

To	 suppѴement	 the	 naturaѴѴy	 occurring	 AMF	 inocuѴum	 in	 the	
fieѴd	 soiѴķ	 an	 inocuѴum	 of	 the	 generaѴist	 mutuaѴistic	 AMF	 species	
Rhizophagus irregularis (Kiers et al., 2011) was also added (Method S1).  

Homogenized	inocuѴum	was	added	to	the	steriѴized	sand	immediateѴy	

prior to mixing with the soil, with each pot receiving 10 ml of the 

inoculum. Spore density was quantified at 1,300 ± 100 spores 

per ml, such that each plant was inoculated with an additional 

13,000 ± 1,000 R. irregularis spores.

ƑĺƑՊ|ՊPѴant growth conditions

Plants were maintained in controlled environment growth cabinets 

ŐSnijder	Labső	on	a	Ѵight	cycѴe	of	ƐƔ	hr	daytime	ŐƑƏŦC	and	ƕƏѷ	hu-

midityő	 and	 Ɩ	 hr	 nightŊtime	 Őat	 ƐƔŦC	 and	 ƕƏѷ	 humidityőĺ	 Daytime	
PARķ	suppѴied	by	LED	Ѵighting	was	ƑƑƔ	moѴ	mƴƑ sƴƐ at canopy level. 

CO2	 concentrations	 were	 ƓƓƏ	 and	 ѶƏƏ	 ppmĺ	 Atmospheric	 ŒCO2] 

was monitored using a Vaisala sensor system (Vaisala), maintained 

throughout the addition of gaseous CO2. Plants were transferred 

between growth cabinets every 4 weeks to mitigate any cabinet ef-

fectsĺ	After	Ɠ	weeksķ	pѴants	were	given	weekѴy	doses	of	ƓƏ	mѴ	of	a	
ѴowŊP	preparation	Őcontaining	ƑƔѷ	of	the	originaѴ	P	quantityő	of	Long	
Ashton	 soѴution	 ŐSmithķ	 Johnstonķ	 ş	 Cornforthķ	 ƐƖѶƒőķ	 prepared	
using the nitrate formulation (Table S1). Plants were watered with 

tap water, as required.

ƑĺƒՊ|ՊƒƒP and 15N isotope tracing

ArbuscuѴar	 mycorrhizaѴ	 fungiŊmediated	 N	 and	 P	 assimiѴation	 was	
quantified	 using	 an	 approach	 adapted	 from	 Johnsonķ	 Leakeķ	 and	
Read (2001) using mesh-walled cores, into which the 33P and 15N	
tracers were added. Briefly, each pot contained two mesh cores 

constructed from PVC tubing (length 80 mm, diameter 18 mm), with 

windows (approx. 50 mm × 12 mm) cut in each side (Figure S2). These 

windows	and	the	bottom	of	each	core	were	covered	in	a	ƑƏ	m	nyѴon	
mesh which prevents root access but permits hyphal growth into the 

core	contentsĺ	NyѴon	mesh	was	attached	to	PVC	cores	using	TensoѴ® 

adhesive	ŐBostik	Ltdőĺ	Two	of	the	cores	were	fiѴѴed	with	the	same	soiѴ	
and	sand	substrate	as	the	buѴk	soiѴķ	pѴus	ƒ	gņL	crushed	basaѴt	ŐparticѴe	
size	ƺƐ	mmőķ	to	act	as	a	fungaѴ	ļbaitĽ	ŐQuirk	et	aѴĺķ	ƑƏƐƑőĺ	Each	pot	aѴso	
contained a third mesh-windowed core, loosely packed with glass 

wooѴ	 ŐAcros	 Organicső	 and	 then	 the	 top	 seaѴed	 with	 a	 SubaSeaѴ® 

(Perkin Elmer). This created an airtight septum through which gas 

sampling can be conducted with a hypodermic syringe, in order to 

measure belowground respiration throughout the course of the 

experiment.

To ensure only symbiotic fungal-mediated tracer movement 

was measured, one of the mesh-windowed soil cores in each pot 

was gently rotated immediately prior to isotope tracer additions, 

10 weeks postplanting. This rotation severed the fungal connections 

between the plant and the core contents, preventing direct transfer 

of the isotope tracers to the host plants via extraradical mycorrhizal 

fungal mycelium. Core rotation was conducted every 48 hr until the 

end of the experiment. The second core in each pot remained static, 

thereby preserving the hyphal connections between the core con-

tents	and	the	host	pѴantĺ	After	ƐƏ	weeks	of	growthķ	ƐƏƏ	Ѵ	ѴabeѴѴing	
solution, containing 1 MBq 33P	Őas	H3

33PO4, specific activity = 111 

TBqņmmoѴĸ	Perkin	EѴmerő	and	ƓѵĺƑѵ	g	15N	Őas	ƻƖѶ	atomѷ	15NH4Cl; 
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Sigma	AѴdrichő	was	 introduced	 to	each	potĺ	 LabeѴѴing	 soѴution	was	
added via pierced capillary tubing running down the centre of the 

core to ensure even distribution of tracer within the core. In half of 

microcosms (n = 6 per cultivar), labelling solution was added to the 

static core, and in the remaining microcosms (n = 6 per cultivar), to 

the rotated core. Cores which did not receive tracer solution were 

given	ƐƏƏ	Ѵ	autocѴaved	distiѴѴed	H2O. By subtracting the quantity 

of isotope tracers detected in plants from pots with severed hyphal 

connections to the isotope core (rotated isotope core treatment) 

from	those	where	the	AMF	myceѴium	remained	intact	Őstatic	isotope	
core treatment), we were able to account for movement of isotopes 

caused by dissolution and diffusion and/or alternative soil microbial 

nutrient cycling processes.

ƑĺƓՊ|ՊPѴantŊtoŊfungus carbon transfer

Two weeks after 33P and 15N	tracer	additionsķ	pѴants	were	prepared	for	
14CO2 labelling, to allow movement of carbon from plant to fungus to 

be	quantifiedĺ	A	ƐƐƏ	Ѵ	soѴution	of	NaH14CO3 (Perkin Elmer) contain-

ing 1.0175 MBq 14C (specific activity = 1.621 GBq/mmol) was added 

to a cuvette in each pot. The tops of all mesh-windowed cores were 

sealed using gas-tight rubber septa (SubaSeal) to minimize diffusion of 
14CO2 into the cores. 14CO2	gas	was	Ѵiberated	from	the	NaH

14CO3 by 

addition of 10% lactic acid, generating a 1.0175 MBq pulse of 14CO2. 

Samples of 1 ml above-ground gas and 1 ml below-ground gas (via 

the glass wool-filled core) were taken 1 hr after release of 14CO2 and 

every 4 hr thereafter to monitor the drawdown, respiration and flux of 
14C	through	the	pѴantŋAMF	networkĺ	Gas	sampѴes	were	injected	into	
gas-evacuated scintillation vials containing 10 ml Carbosorb® (Perkin 

Elmer), a carbon-trapping compound. To this, 10 ml Permafluor scin-

tillation cocktail (Perkin Elmer) was added, and 14C content of each 

sample was quantified by liquid scintillation counting (Tricarb 3100TR 

scintillation counter; Perkin Elmer).

Pots were maintained under cabinet conditions until detection 

of maximum below-ground 14C flux (20�22 hr after 14CO2 liberation) 

at	which	point	ƒ	mѴ	Ƒ	M	KOH	was	added	 to	cuvettes	within	each	
microcosm to capture remaining gaseous 14CO2.

ƑĺƔՊ|ՊHarvestķ sampѴe preparation and anaѴysis

AѴѴ	pѴant	shootsķ	rootsķ	buѴk	and	core	soiѴ	sampѴes	were	separatedķ	
cleaned (roots only) and weighed before being immediately frozen 

and	 freezeŊdried	 ŐScanvac	 CooѴŊSafe	 freezeŊdryerĸ	 LaboGeneApSő	
within 24 hr. Shoot, root and soil samples were homogenized and 

subsamples of core and bulk soils were collected for quantification 

of hyphal length density. Subsections of roots were separated before 

freezing for quantification of mycorrhizal colonization using acidified 

ink (Vierheilig, Coughlan, Wyss, & Piche, 1998). Root colonization 

by	AMF	and	the	presence	of	arbuscuѴes	and	vesicѴes	was	quantified	
by light microscopy using the protocol of McGonigle, Miller, Evans, 

Fairchild, and Swan (1990).

Plant phosphorus (nonradioactive) concentration was quanti-

fied by spectrophotometer assay following sulphuric acid digest. 

Sample P concentration was then calculated from a calibration 

curve constructed using known concentration of sodium dihy-

drogen orthophosphate. Briefly, plant root and shoot samples 

of known weight (30 ± 5 mg) were heated in a dry block heater 

ŐGrant	Instrumentső	to	ƒѵƔŦC	in	Ɛ	mѴ	Ɩѵѷ	Ővņvő	suѴphuric	acid	for	
ƐƔ	minĺ	Once	sampѴes	had	cooѴed	to	ƑƔŦCķ	ƏĺƑƔ	mѴ	ƒƔѷ	Ővņvő	hy-

drogen peroxide was added, at which point the samples turned 

coѴourѴessĺ	 SampѴes	 were	 again	 Ѵeft	 to	 cooѴ	 to	 ƑƔŦCĺ	 A	 ƏĺƔ	 mѴ	
sample of this digest product was transferred to a 4 ml spectro-

photometry cuvette, together with 0.2 ml 0.1 M L-ascorbic acid 

(C6H8O6őķ	ƏĺƑ	mѴ	ƒĺƓƓ	M	NaOH	to	neutraѴize	acidity	and	ƏĺƔ	mѴ	
of a developer solution. The developer solution was prepared by 

dissoѴving	 ƓĺѶ	 g	 of	 ammonium	moѴybdate	 ŐŐNH4)6Mo7O24ĺƓH2O) 

and 0.1 g antimony potassium tartrate (C6H4O7SbK) in 250 ml 

Ƒ	M	H2SO4, which was then diluted to 500 ml with distilled water. 

The volume of sample in the cuvette was made up to 3.8 ml and 

samples were kept in the dark for 45 min, after which absorbance 

was measured at 882 nm using a Jenway 6300 spectrophotome-

ter (Cole-Palmer).

ƑĺѵՊ|ՊQuantification of carbonŊforŊnutrient 
exchange between pѴants and AMF symbionts

Shoot and root 33P content was quantified using aliquots of the di-

gest	product	described	aboveĺ	About	Ɛ	mѴ	aѴiquots	of	this	digested	
product were mixed with 10 ml Emulsifier-Safe (Perkin Elmer) and 33P 

was	quantified	by	Ѵiquid	scintiѴѴation	countingĺ	About	Ɠ	mg	ŐƼƑ	mgő	of	
shoot and root tissue from all plants was weighed for analysis for 
15N	 content	 by	 continuousŊfѴow	 mass	 spectrometry	 ŐPDZ	 Europa	
ƑƏƑƏ	Isotope	Ratio	Mass	Spectrometer	coupѴed	to	PDZ	ANCA	GSL	
preparation unit). Data were collected as atom% 15N	and	ѷN	using	
unѴabeѴѴed	pѴants	for	background	detectionĺ	Quantification	of	pѴant	
15N	was	caѴcuѴated	foѴѴowing	the	methods	of	Cameronķ	Leakeķ	and	
Read	 ŐƑƏƏѵőĺ	 About	 ƐƔ	mg	 ŐƼƑ	mgő	 of	 shoot	 and	 root	 tissueķ	 and	
(40 ± 5 mg) soil from static and rotated cores, and the bulk soil was 

subsampled for 14C quantification by liquid scintillation counting, 

following combustion using a sample oxidizer (Packard 307 Sample 

Oxidiser; Perkin-Elmer).

FoѴѴowing	 the	methods	of	Cameronķ	 Johnsonķ	Readķ	and	Leake	
(2008), total C fixed by the plant and subsequently acquired by the 

fungus was calculated as a function of total CO2 volume in the la-

belling chamber and the proportion of the 14CO2 which was fixed 

by wheat plants over the labelling period (Figure S1). Comparing 14C 

quantities in static versus rotated cores for each pot allows calcula-

tion of C acquisition by the fungi, controlling for 14C detected due to 

root exudation or respiration, or alternative microbial carbon cycling 

processes.

ƑĺƕՊ|ՊStatistics

Statistical analyses were carried out using �R� statistical software, 

version 3.4.3. (R Core Team, 2017), implemented within the RStudio 

graphical user interface (RStudio Team, 2015). Data were tested by 



ՊՍ Պ | ՊƐƕƑƖTHIRKELL ET AL.

twoŊway	ANOVAķ	where	 the	cuѴtivar	and	atmospheric	 ŒCO2] were 

used	 as	 predictor	 variabѴesĺ	Where	 ANOVA	 gave	 p	 ƺ	 ĺƏƔ	 for	 the	
main effects, Tukey post hoc tests were used to identify statistical 

differences between groups. Prior to running analyses, data were 

tested for normality using Shapiro�Wilk test and by visual inspec-

tion of residual plots. Where data did not pass assumptions of nor-

mality and homogeneity of variance, data were log10 transformed. 

FoѴѴowing	 resuѴts	 from	 Akaike	 information	 criterion	 ŐAICő	 testing	
which showed better model fit, data were log-transformed prior to 

statistical analysis.

ƒՊ |ՊRESULTS

ƒĺƐՊ|ՊEѴevated ŒCO
2
œ increases aboveŊground wheat 

growth and frequency of intraradicaѴ mycorrhizaѴ 
structures

Plants grown under eCO2 (800 ppm) had on average 14% greater 

shoot biomass than those grown in aCO2 (440 ppm; Figure 1a; 

F5,71 = 16.33, p	ƺ	 ĺƏƏƐőķ	aѴthough	among	cuѴtivars	this	response	
was only significant for Skyfall (Tukey test: p = .009). Mean cul-

tivar	shoot	biomass	ranged	from	ƐĺƐƔ	Ƽ	ƏĺƏƓ	g	in	AvaѴon	grown	
at ambient [CO2] to 1.86 ± 0.30 g in Skyfall grown at eCO2. 

Root biomass did not respond to atmospheric [CO2] or cultivar 

(Figure 1b).

AѴѴ	 pѴants	 were	 coѴonized	 by	 AMFķ	 with	 significant	 variation	
among	 cuѴtivars	 in	 terms	 of	 per	 cent	 root	 Ѵength	 coѴonized	 ŐRLCĸ	
Figure 2a; F2,74 = 5.024, p	 ƺ	 ĺƏƐőĺ	 Cadenza	 had	 significantѴy	 Ѵower	
mean	 RLC	 ŐƔѶĺƔ	 Ƽ	 ƒĺƔѷő	 than	 AvaѴon	 ŐƕƐĺƔ	 Ƽ	 ƑĺƑѷőķ	 whiѴe	 mean	
Skyfall colonization (62.5 ± 2.8%) was not significantly different 

from either of the other cultivars (Tukey test: p	ƻ	ĺƏƔőĺ	The	frequency	
of arbuscules was not affected by cultivar or atmospheric [CO2] al-

though there was a significant interaction between these factors 

(Table S3), driven by reduced arbuscule frequency at eCO2 in Skyfall 

(Tukey: p	ƺ	ĺƏƏƐĸ	Figure	Ƒbőĺ	There	is	a	trend	towards	greater	vesi-
cѴe	abundance	in	wheatŋAMF	symbioses	at	ѶƏƏ	ppm	than	ƓƓƏ	ppm	
[CO2] across cultivars (Figure 2c), although this is not statistically 

significant.

ƒĺƑՊ|ՊCuѴtivar and aCO
2
 drive differences in pѴant 

P and mycorrhizaѴŊacquired ƒƒP

There are strong effects of cultivar and atmospheric [CO2] effects 

on P content in shoots (F5,70 = 38.96, p	ƺ	ĺƏƏƐĸ	Figure	ƒaőĺ	P	con-

tent	 in	Cadenza	shoots	was	ƐƖѵѷ	greater	 than	 in	AvaѴon	shootsķ	
and 137% higher than in Skyfall shoots. Similarly, P concentra-

tion	 in	Cadenza	 shoots	was	 ƐѶѵѷ	higher	 than	 in	AvaѴon	 shootsķ	
and 153% higher than in Skyfall shoots. Cadenza plants grown at 

eCO2 had the highest shoot P content and concentration of all cul-

tivars for both atmospheric [CO2] treatments (Figure 3a,b). Root P 

content varied significantly by cultivar (F2,73 = 9.935, p	ƺ	ĺƏƏƐő	but	
not CO2 concentration (p	 ƻ	 ĺƏƔőĺ	 Combining	 data	 for	 CO2 treat-

ments, Cadenza had the highest root P content (4.58 ± 0.49 mg), 

compared	to	SkyfaѴѴ	Őƒĺƒƒ	Ƽ	ƏĺƑƓ	mgő	and	AvaѴon	ŐƑĺƒƓ	Ƽ	ƏĺƐƖ	mgőĺ	
Similarly, root P concentration was not affected by atmospheric 

[CO2], but varied by cultivar (F2,73 = 42.68, p	 ƺ	 ĺƏƏƐĸ	 TabѴe	 SƐőĺ	
AvaѴon	has	significantѴy	 Ѵower	P	concentration	ŐƑĺƏѶ	Ƽ	ƏĺƐƏ	mgņg	
DW) in the roots than Skyfall (3.04 ± 0.12 mg/g DW) or Cadenza 

(3.86 ± 0.16 mg/g DW).

Plant assimilation of fungal-acquired 33P	tracer	in	cuѴtivars	AvaѴon	
and Cadenza (content and concentration; Figure 3c,d; Table S3) was 

reduced in eCO2 treatment, but slightly increased in Skyfall, although 

these trends were not statistically significant. There was high vari-

ability in 33P tracer uptake by Skyfall, requiring log10 transformation 

of	 the	 data	 to	meet	 the	 assumptions	 of	ANOVAĺ	There	were	 cѴear	
differences between cultivars in terms of 33P acquisition via mycor-

rhizas. Combining data from eCO2 and aCO2, Skyfall acquired 570 

times more 33P	tracer	than	AvaѴon	and	ƑƑƔ	times	more	than	Cadenza	
(Figure 3c,d).

ƒĺƒՊ|ՊCuѴtivarŊspecific differences in pѴantŊacquired 
Nķ but not mycorrhizaѴŊacquired 15N tracer

Elevated atmospheric [CO2œ	significantѴy	decreased	shoot	N	content	
in Cadenza (Tukey: p	ƺ	ĺƏƏƐĸ	Figure	Ɠaĸ	TabѴe	Sƒő	but	not	in	AvaѴon	
and	 SkyfaѴѴĺ	 CuѴtivars	 aѴso	 showed	 significant	 variation	 in	 shoot	N	
content	ŐFigure	Ɠaĸ	TabѴe	Sƒőĺ	AvaѴon	shoots	contained	significantѴy	

F I G U R E  Ɛ Պ Root (a) and shoot (b) dry 

weight (g) of wheat (Triticum aestivum 

Lĺķ	cvĺ	AvaѴonķ	Cadenzaķ	SkyfaѴѴő	grown	
at ambient (440 ppm, white boxes) and 

elevated (800 ppm, grey boxes) CO2. 

Bars sharing letters are not significantly 

different, where p	ƻ	ĺƏƔ	ŐANOVAķ	
Tukey post hoc test). Data were log10 

transformed where data assumptions 

were	not	metĺ	NĺSĺDĺķ	not	significantѴy	
different
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Ѵower	N	content	than	Cadenza	ŐTukeyĹ	p	ƺ	ĺƏƏƐő	and	SkyfaѴѴ	ŐTukeyĹ	
p	 ƺ	 ĺƏƏƐőķ	 whiѴe	 Cadenza	 and	 SkyfaѴѴ	 did	 not	 significantѴy	 dif-
fer (p	 ƻ	 ĺƏƔőĺ	 eCO2 also had a significant negative effect on shoot 

N	concentration	ŐF1,74 = 11.09, p = .001; Figure 4b), driven by large 

decreases	in	shoot	N	concentration	in	Cadenza	ŐTukeyĹ	p	ƺ	ĺƏƐő	and	
Skyfall (Tukey: p	ƺ	ĺƏƐőĺ

There were no significant differences among cultivars in total my-

corrhizal-acquired 15N	tracer	or	concentration	in	shoots	ŐFigure	Ɠcķdőķ	
although there was a trend (not significant) across all three cultivars for 

greater 15N	content	in	pѴants	grown	at	aCO2 compared to those grown 

under the eCO2 treatment. 15N	content	and	concentration	of	roots	was	
not affected by atmospheric [CO2] or cultivar (Table S3).

ƒĺƒĺƐՊ|ՊCuѴtivarŊspecific carbon aѴѴocation to 
fungaѴ partners

AѴѴ	 pѴants	 in	 both	 atmospheric	 ŒCO2] treatments transferred small 

amounts of carbon to the extraradical mycelium of their fungal sym-

bionts (Figure 5a,b). The amounts were not significantly different 

between atmospheric [CO2] treatments in terms of per cent of car-

bon fixed during the labelling period allocated to the symbiotic fungi 

within the soil core (Figure 5a) or total amount of C transferred to ex-

traradicaѴ	fungaѴ	myceѴium	ŐERMő	within	the	pot	ŐFigure	Ɣbőĺ	Howeverķ	
there were trends suggestive of cultivar-specific responses to eCO2 

with per cent allocation of recent photosynthate and total amount 

of C transferred to fungal partners being greater at eCO2 than at 

aCO2	in	cvĺ	AvaѴonķ	Ѵower	in	cvĺ	Cadenza	and	unchanged	in	cvĺ	SkyfaѴѴ	
(Figure 5a,b). The hyphal length density in the bulk soil showed sig-

nificant variation between cultivars (Tables S2 and S3; F2,31 = 15.79, 

p	ƺ	ĺƏƏƐőĸ	AvaѴon	supported	significantѴy	Ѵess	extraradicaѴ	myceѴium	
than Skyfall.

ƒĺƒĺƑՊ|ՊCarbonŊforŊnutrient transfer between 
wheat and AMF

Carbon	 for	nutrient	 transfer	between	pѴants	 and	AMF	was	 tested	
using	 Spearmanŝs	 rank	 correѴation	 coefficient	 ŐFigure	 Sƒőĺ	OveraѴѴķ	
there was no correlation between fungal carbon acquisition and 

fungal transfer of 33P (rs(34) = 0.025, p = .89) or 15N	 Őrs(34) = 0.067, 

p = .070) to host plants. There was also no correlation between the 

amounts	of	N	and	P	transferred	to	host	pѴants	by	AMF	Őrs(34) = 0.18), 

p = .30). Spearman rank tests were also carried out on subset data, 

grouped by CO2 concentration, cultivar and factorial permutations 

of these. In no cases were there correlations between the nutrients 

transferred (data not shown).

F I G U R E  Ƒ Պ Root colonization (a), arbuscule frequency (b) and 

vesicle frequency (c) in roots of wheat (Triticum aestivum	Lĺķ	cvĺ	
AvaѴonķ	Cadenzaķ	SkyfaѴѴő	coѴѴected	at	harvestĺ	PѴants	were	grown	
at ambient (440 ppm, white boxes) and elevated (800 ppm, grey 

boxes) CO2. Bars sharing letters are not significantly different, 

where p	ƻ	ĺƏƔ	ŐANOVAķ	Tukey	post	hoc	testőĺ	Data	were	Ѵog10 

transformed where data assumptions were not met
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F I G U R E  ƒ Պ Shoot phosphorus (P) 

content (a) and concentration (b) of wheat 

(Triticum aestivum	Lĺķ	cvĺ	AvaѴonķ	Cadenzaķ	
Skyfall) grown at ambient (440 ppm, white 

boxes) and elevated (800 ppm, grey boxes) 

CO2. Shoot content (c) and concentration 

(d) of fungal-acquired 33P. Plants were 

grown at ambient (440 ppm, white boxes) 

and elevated (800 ppm, grey boxes) CO2. 

Bars sharing letters are not significantly 

different, where p	ƻ	ĺƏƔ	ŐANOVAķ	
Tukey post hoc test). Data were log10 

transformed where data assumptions 

were not met

F I G U R E  Ɠ ՊShoot	nitrogen	ŐNő	content	
(a) and concentration (b) of wheat 

(Triticum aestivum	Lĺķ	cvĺ	AvaѴonķ	Cadenzaķ	
Skyfall) grown at ambient (white boxes) 

and elevated CO2 (black boxes). Shoot 

content (c) and concentration (d) of 

fungal-acquired 15Nĺ	PѴants	were	grown	
at ambient (440 ppm, white boxes) and 

elevated (800 ppm, grey boxes) CO2. 

Bars sharing letters are not significantly 

different, where p	ƻ	ĺƏƔ	ŐANOVAķ	
Tukey post hoc test). Data were log10 

transformed where data assumptions 

were	not	metĺ	NĺSĺDĺķ	not	significantѴy	
different
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ƓՊ |ՊDISCUSSION

Global atmospheric [CO2] is predicted to increase through the 

21st century, and the effects of this change on crops remains un-

certain. Maximizing the physiological benefits eCO2 may bring, 

such	as	increased	photosynthetic	rates	ŐAinsworth	ş	Longķ	ƑƏƏƔőķ	
while minimizing deleterious effects such as reduced plant tissue 

nutrient	concentrationķ	presents	a	significant	chaѴѴengeĺ	How	far	
AMF	may	be	usefuѴ	 in	tackѴing	this	chaѴѴengeķ	and	their	utiѴity	 in	
wider agriculture generally, remains unclear (Cotton, 2018; Rillig 

et al., 2019; Ryan & Graham, 2018; Ryan, Graham, Morton, & 

Kirkegaard, 2019).

Significant variation in growth responses to colonization by 

AMF	has	previousѴy	been	identified	across	cereaѴ	varieties	ŐHetrickķ	
WiѴsonķ	 ş	 Coxķ	 ƐƖƖƑĸ	 Lehnert	 et	 aѴĺķ	 ƑƏƐѶĸ	WattsŊWiѴѴiams	 et	 aѴĺķ	
ƑƏƐƖőĺ	 Such	 genotypic	 differences	 in	 growth	 resuѴting	 from	 AMF	
symbioses are likely to be linked not only to the receptivity to fun-

gaѴ	coѴonizationķ	but	aѴso	to	the	physioѴogicaѴ	function	of	the	AMF	
associations, particularly the degree to which the fungal symbionts 

represent a carbon sink (Walder et al., 2012) and nutrient source 

(Watts-Williams et al., 2019) for their host plants. The stoichiome-

try of the bidirectional exchange of plant carbon for fungal-acquired 

nutrients	characteristic	of	AM	symbioses	between	cereaѴs	and	AMF	
has, until now, remained unquantified.

ƓĺƐՊ|ՊCarbon outѴay by wheat to AMF is unaffected 
by atmospheric ŒCO

2
]

In our experiments, plant biomass increased in eCO2 (Figure 1b). 

Howeverķ	the	C	transferred	to	the	extraradicaѴ	myceѴiumķ	in	terms	
of both total amounts, and per cent of recently fixed photosyn-

thate, was not affected (Figure 5). This suggests that transfer of 

plant C to fungal symbionts in our experiments was not limited 

by	avaiѴabiѴity	of	pѴantŊfixed	C	and	that	aѴѴocation	of	C	to	AMF	by	
wheat is independent of its own C demand for growth. Plant pho-

tosynthates	are	used	by	AMF	symbionts	to	buiѴd	fungaѴ	structures	
both inside and outside their host plant cells. ERM is formed using 

carbon resources throughout the growth of both plant and fun-

gal symbionts, and so the extent of fungal mycelium may be used 

to indicate the relative C allocation to fungal symbionts across a 

longer time period than the isotope tracing alone. We found no 

differences in ERM density between atmospheric [CO2] treatments 

(Tables S2 and S3) which supports our finding that atmospheric 

[CO2] does not affect wheat C allocation to fungal mycelium and 

that	this	is	true	across	cuѴtivarsĺ	Howeverķ	there	are	strong	effects	
of cultivar (Table S3) with greater C allocation to mycorrhizal fungi 

by	AvaѴon	compared	to	Cadenza	or	SkyfaѴѴ	pѴants	over	the	course	
of the experiment.

Intracellular plant�fungal interfaces are formed, and degenerate, 

throughout	 the	 Ѵifetime	of	 the	 symbiosisĺ	As	 suchķ	 the	 abundance	
of these structures, particularly those believed to serve fungal stor-

age organs, may be used to infer relative plant carbon investment 

ŐMুѴѴerķ	Ngweneķ	 Peiterķ	 ş	Georgeķ	 ƑƏƐƕő	 over	 a	 Ѵonger	 period	 of	
time than the instantaneous measurements made through the iso-

tope tracing approach used here. The frequency of vesicles, as fun-

gaѴ	Ѵipid	storesķ	may	be	indicative	of	AMF	carbon	acquisition	ŐSmithķ	
Grace, & Smith, 2009). In our experiments, vesicle frequency did not 

differ between atmospheric [CO2] treatments (Figure 2c). Thus, it 

appears that there was no �carbon fertilisation effect� of eCO2 for 

wheatŊassociated	 AMF	 ŐAѴberton	 et	 aѴĺķ	 ƑƏƏƔőĺ	 The	 Ѵack	 of	 atmo-

spheric [CO2œ	 response	 in	terms	of	AMF	C	acquisition	observed	 in	
our experiments runs counter to the trends observed in meta-anal-

yses	ŐAѴberton	et	aѴĺķ	ƑƏƏƔĸ	Tresederķ	ƑƏƏƓő	and	other	experimentaѴ	
studies (Field et al., 2012). Intensive modern breeding programmes 

which have given rise to elite wheat cultivars such as those used 

in our experiments may be responsible for the lack of atmospheric 

F I G U R E  Ɣ Պ Total carbon transferred from wheat (Triticum aestivum	Lĺķ	cvĺ	AvaѴonķ	Cadenzaķ	SkyfaѴѴő	to	fungaѴ	myceѴium	during	the	course	
of 14C labelling experiment (a), and per cent of carbon fixed during the labelling period which was recovered in the static core at harvest 

(%) (b). Plants were grown at ambient (440 ppm, white boxes) and elevated (800 ppm, grey boxes). Bars sharing letters are not significantly 

different, where p	ƻ	ĺƏƔ	ŐANOVAķ	Tukey	post	hoc	testőĺ	Data	were	Ѵog10	transformed	where	data	assumptions	were	not	metĺ	NĺSĺDĺķ	not	
significantly different
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[CO2œ	 effect	 on	 AMF	 C	 acquisitionĺ	 To	 maximize	 nutrient	 uptake	
efficiency in systems where fertilizer nutrients are applied in read-

ily available forms (Good & Beatty, 2011), modern elite cereals are 

bred to have reduced root-to-shoot ratios compared to older culti-

vars (Siddique, Belford, & Tennant, 1990). Those cultivars with large 

root systems where nutrients are easily acquired could be viewed 

by breeders as C-inefficient, as C allocated to below-ground growth 

could be retained above-ground. To this end, the allocation of C to 

mycorrhizas and ERM may have been inadvertently selected against 

in	 the	 breeding	 of	 modern	 cereaѴ	 cuѴtivarsĺ	 AѴternativeѴyķ	 the	 ap-

parent lack of atmospheric [CO2] response observed here may be 

partѴy	due	to	pѴant	and	fungaѴ	C	aѴѴocation	to	AMF	spores	not	being	
quantified in the present investigation; it is possible that under 

eCO2	 the	AMF	produced	 greater	 number	of	 spores	 than	 in	 aCO2. 

This would not have been quantified in our experiment given the 

relatively short 14CO2 labelling period, and might also account for a 

significant	fraction	of	fungaѴ	Cĺ	In	additionķ	AMF	hyphaѴ	turnover	is	
thought to be rapid (Staddon, Ramsey, Ostle, Ineson, & Fitter, 2003) 

and may represent a significant source of C input to soils (Godbold 

et al., 2006). Respiratory losses of hyphal-derived C would not be 

quantifiabѴe	in	our	experimentaѴ	approachĺ	How	atmospheric	ŒCO2] 

affects	hyphaѴ	turnover	in	AMF	associated	with	crop	pѴants	remains	
to be determined.

The	 amounts	 of	 C	 aѴѴocated	 to	 AMF	 by	 the	 wheat	 cuѴtivars	
in these experiments are similar to those recorded in compara-

ble experiments with noncrop vascular plants (Field et al., 2012). 

Howeverķ	onѴy	a	smaѴѴ	fraction	of	the	totaѴ	C	fixed	during	the	exper-
imental period by the various wheat cultivars here was allocated 

to their fungal mycelium (Figure 5b), regardless of the availability 

of	C	in	the	atmosphereĺ	Adding	14CO2 to an enclosed system, such 

as the labelling chamber in our experiments, inevitably leads to an 

increased CO2 concentration which would impact plant physiology. 

Howeverķ	the	addition	of	ƐĺƐ	MBq	of	14CO2 to our labelling cham-

bers increased the concentration of atmospheric [CO2] within the 

chambers by 1.24% in aCO2 and 0.36% in eCO2 treatments. This 

slight increase in atmospheric [CO2] is unlikely to have elicited a 

substantial physiological response in the plants used in our exper-

iment. Given that our plants were only able to fix and assimilate 
14CO2 for one photoperiod, it is likely that the amount of C mea-

sured by the isotope tracing was not reflective of total plant carbon 

allocation to symbiotic fungi across the life cycle of the plant; this 

warrants further investigation. Despite this, our experiment pro-

vides valuable insights into the allocation of recently fixed C to fun-

gal symbionts of wheat during a period of rapid plant growth and 

high nutrient demand.

ƓĺƑՊ|ՊCuѴtivarŊspecific wheat nutrient gains via 
mycorrhizas

AѴѴ	 cuѴtivars	 assimiѴated	 15N	 and	 33P via their mycorrhizal symbi-

onts, with the amounts of each tracer varying according to the cul-

tivar. Skyfall assimilated the most mycorrhizal-acquired 33P tracer 

compared	to	cvĺ	AvaѴon	and	Cadenza	ŐFigure	Ɠcķdőĺ	This	pattern	of	

nutrient	gain	 from	AMF	 is	not	 refѴected	 in	 the	totaѴ	nutrient	con-

tent or concentration of plant tissues across cultivars (Figure 4a,b). 

Cadenza contains the most P, both fungal- and plant-acquired, in 

its above-ground tissues (Figure 4a,b) but it is cv. Skyfall that ac-

quires the most 33P	 tracer	 via	 AMF	 symbiontsĺ	 This	 pattern	may	
be reflective of variation in nutrient acquisition strategies across 

the cultivars tested. Cadenza has the greatest P concentration of 

aboveŊground	tissues	ŐFigure	Ɠbőķ	but	Ѵower	AMFŊassimiѴated	tracer	
content (Figure 4c) and concentration (Figure 4d) than other culti-

vars and thus appears to operate a more effective plant P assimila-

tion pathway than cv. Skyfall, which appears to rely more heavily on 

the mycorrhizal pathway for nutrient acquisition (Smith, Smith, & 

Jakobsenķ	ƑƏƏƒĸ	Smith	et	aѴĺķ	ƑƏƏƓőĺ	With	the	highest	ѴeveѴs	of	AMF	
colonization (Figure 2a) and extraradical mycelial density (Table S2), 

but	 the	 Ѵowest	AMF	 contribution	 to	 33P uptake (Figure 3c,d) and 

Ѵowest	aboveŊground	dry	mass	 ŐFigure	Ɛaőķ	 it	appears	 that	AvaѴon	
forms	a	Ѵess	nutritionaѴѴy	mutuaѴistic	interaction	with	AMF	than	the	
other two culitvars tested, potentially resulting in suppression of 

growthĺ	This	observation	 is	unѴikeѴy	 a	 resuѴt	of	 the	AMF	exerting	
an	excessive	carbon	ľdrainĿ	given	that	cvĺ	AvaѴon	does	not	aѴѴocate	
more	C	 to	 its	AMF	than	 the	other	cuѴtivars	 tested	 ŐFigure	Ɣőķ	and	
that	 the	percentage	of	C	aѴѴocated	 to	AMF	by	wheat	 is	 Ѵow	com-

pared to other plants (e.g. Field et al., 2012). Instead, it is possi-

ble that downregulation of plant phosphate transporters following 

AMF	coѴonization	may	be	partѴy	responsibѴeķ	and	as	a	resuѴtķ	pѴant	
P	uptake	is	reduced	reѴative	to	the	nonmycorrhizaѴ	counterpart	ŐLiķ	
Smithķ	Dicksonķ	HoѴѴowayķ	ş	Smithķ	ƑƏƏѶőĺ	As	we	do	not	have	non-

mycorrhizal treatments to compare nutrient acquisition and growth 

in these cultivars against, it is not possible to determine whether 

AMF	suppress	growth	of	cvĺ	AvaѴon	but	this	certainѴy	warrants	fur-
ther research.

Mycorrhiza-mediated uptake of 33P and 15N	tracers	was	not	sig-
nificantly influenced by atmospheric [CO2] in any of the cultivars 

tested (Figures 3c,d and 4c,d). This finding is counter to some mod-

elling predictions (Bever, 2015) and some experimental data (Field  

et al., 2012) but is broadly in agreement with experiments conducted 

in Pisum (Gavito et al., 2002, 2003), Brachypodium and Medicago 

(Jakobsen et al., 2016) which also showed little effect of atmospheric 

[CO2œ	on	AMFŊacquired	pѴant	nutrient	assimiѴationĺ	Increased	totaѴ	P	
content (i.e. plant- and mycorrhizal-acquired) at eCO2 compared to 

aCO2 treatment in shoots of cvs. Skyfall and Cadenza is counter to 

the	generaѴ	observation	that	Pķ	Ѵike	Nķ	is	usuaѴѴy	reѴativeѴy	diѴuted	in	
plant tissues at eCO2 owing to increased plant biomass (Jakobsen 

et al., 2016). Increased P uptake at eCO2 is not unprecedented, 

however (Campbell & Sage, 2002), it may be due to changes in root 

morphoѴogy	ŐNieķ	Luķ	BeѴѴķ	Rautķ	ş	PendaѴѴķ	ƑƏƐƒőĺ	Our	33P labelling 

suggests	that	the	AMF	were	not	responsibѴe	for	this	increased	P	up-

take (Figure 4c,d).

PѴant	tissue	N	content	and	concentration	may	be	reduced	when	
plants are grown in eCO2 conditions, as a result of increasing plant 

biomass	ŐCotrufoķ	Inesonķ	ş	Scottķ	ƐƖƖѶĸ	Hogy	ş	Fangmeierķ	ƑƏƏѶĸ	
Taubķ	MiѴѴerķ	ş	AѴѴenķ	ƑƏƏѶőĺ	This	trend	 is	apparent	 in	cvĺ	Cadenza	
and	 SkyfaѴѴ	 pѴants	 in	 our	 experimentsķ	 aѴthough	 not	 in	 AvaѴon	
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ŐFigure	 ƒaķbőĺ	 The	 phenomenon	 of	 reduced	 N	 content	 of	 arabѴe	
crops has potentially serious implications for the nutritional qual-

ity of grain and grain-based food products (Pleijel & Uddling, 2012). 

Here	we	show	that	symbiotic	fungaѴ	contributions	to	pѴant	N	assimi-
lation are similar across atmospheric [CO2] treatments and cultivars, 

suggesting	that	AMFŊacquired	N	 in	wheat	may	not	 increase	as	at-
mospheric [CO2œ	increases	in	the	futureĺ	AѴarmingѴyķ	a	recent	study	
suggests	that	aѴthough	increased	N	fertiѴizer	appѴication	is	capabѴe	
of increasing yields in elevated [CO2] atmospheres, it is incapable of 

maintaining	N	concentrations	of	pѴant	tissues	comparabѴe	to	those	
achieved at aCO2	ŐPѴeijeѴķ	Brobergķ	Hogyķ	ş	UddѴingķ	ƑƏƐƖőĺ

Our data support plant/cultivar identity as an important 

driver of mycorrhizal benefit to plant hosts (Field & Pressel, 2018; 

KѴironomosķ	ƑƏƏƒĸ	WaѴder	ş	van	der	Heijdenķ	ƑƏƐƔőĺ	Howeverķ	our	
data do not support the notion that carbon for nutrient exchange 

between	wheat	and	AMF	are	governed	by	a	 Ѵinearķ	 ļreciprocaѴ	re-

wards� model of mutualism (Bever, 2015; Fellbaum et al., 2012; 

Kiers et al., 2011) as previously shown using Petri dish-based mi-

crocosm	systems	Őeĺgĺ	Kiers	et	aѴĺķ	ƑƏƐƐő	or	singѴe	AMF	species	in-

oculation (e.g. Fellbaum et al., 2012). In our systems, where plants 

were grown in a nonsterile soil-based substrate, inoculation with 

R. irregularis from root organ cultures is likely to have resulted in a 

mixed	 intraradicaѴ	AMF	 community	 of	muѴtipѴe	 speciesķ	 probabѴy	
dominated by R. irregularis.	As	suchķ	our	experimentaѴ	strategy	does	
not permit us to comment on the influence of fungal identity on 

wheatŋAMF	function	beyond	there	being	a	mixed	AMF	community	
present here.

There was no correlation between assimilation of fungal- 

acquired nutrients in wheat in our experimental microcosms and C 

transfer to fungal partners across all cultivars tested, regardless of 

the availability of CO2 for photosynthesis. The exchange of wheat 

carbon for fungal-acquired nutrients observed here may be better 

explained by differences in plant�fungal receptiveness and compati-

biѴity	ŐWaѴder	ş	van	der	Heijdenķ	ƑƏƐƔőĺ	Given	that	our	experiments	
were conducted using a nonsterilised agricultural soil, there were 

likely additional interactions and feedbacks with soil microbes and 

fungi that may have influenced carbon-for-nutrient exchange dy-

namics with factors such as soil microbial community composition 

playing an influential role.

Inter- and intraspecific genetic variation in plants and their 

AMF	symbionts	has	been	identified	as	sources	of	functionaѴ	di-
versity in arbuscular mycorrhizal symbiosis (Johnson, Martin,  

et al., 2015; Watts-Williams et al., 2019). In complex systems such 

as these, disentangling the causes of variation in plant�fungal 

environment interactions can prove challenging. For instance, 

Watts-Williams et al. (2019) demonstrated that the expression 

of a suite of assorted genes in Sorghum bicolor was dependent 

not	 onѴy	 upon	 AM	 fungaѴ	 identity	 but	 aѴso	 S. bicolor cultivar 

identity. Furthermore, these effects were not seen exclusively 

in genes involved directly in symbiosis; there was altered ex-

pression in genes linked to defence response, stress response 

and maturation onset (Watts-Williams et al., 2019). Further crop 

traits which are variable among cultivars, such as phosphorus 

use	 efficiencyķ	 may	 aѴso	 determine	 the	 extent	 to	 which	 AMF	
are beneficial for host plants (Smith & Smith, 2011). Perhaps 

surprisingly, root architecture traits may have limited effects 

on	a	pѴantŝs	nutritionaѴ	and	growth	response	to	mycorrhization	
(Maherali, 2014). Inter- and intraspecific functional diversity 

is	 aѴso	present	 in	AMF	species	 ŐJones	ş	Smithķ	ƑƏƏƓĸ	Mensah	 
et al., 2015; Munkvold et al., 2004; Watts-Williams et al., 2019). 

By using unsterilized soil in our experiment, our experimental 

plants are likely to have been colonized by a mixed community 

of	AMFķ	where	the	reѴative	contributions	of	individuaѴ	species	or	
isoѴates	cannot	be	ascertainedĺ	As	AMF	community	structure	is	
understood to impact symbiotic function (Frew, 2019; Smith et 

aѴĺķ	ƑƏƏƓĸ	van	der	Heijden	et	aѴĺķ	ƐƖƖѶőķ	this	is	of	great	potentiaѴ	
agronomic interest. Understanding the role of genetic variabil-

ity in plant�fungal interactions to the point where it can begin 

to help informing agriculture will likely prove to be a substantial, 

but ultimately worthwhile, undertaking (Johnson, Martin, et al., 

2015). Metagenomic techniques should identify species and in-

traspecific	diversity	of	the	AMF	present	within	fieѴdŊcrop	pѴant	
roots, combined with functional studies to determine the role 

these fungi play in crop nutrient uptake or other non-nutritional 

beneficiaѴ	roѴesĺ	As	iѴѴustrated	by	the	present	investigationķ	fur-
ther factors to consider include the effects of abiotic factors on 

AMF	community	structure	and	diversityĺ	Recent	fieѴdŊscaѴe	at-
mospheric [CO2] manipulation has shown how CO2 enrichment 

can	affect	AMF	community	composition	ŐCottonķ	Fitterķ	MiѴѴerķ	
DumbreѴѴķ	 ş	 HeѴgasonķ	 ƑƏƐƔĸ	Maࣂek	 et	 aѴĺķ	 ƑƏƐƖőĺ	 How	 these	
atmospheric [CO2]-driven community changes might influence 

the stoichiometry of carbon-for-nutrient exchange between 

symbionts in the field remains to be determined (Cotton, 2018).

ƓĺƒՊ|ՊFuture perspectives

Our results, and those of other studies investigating mycorrhizal 

responses to eCO2, must be contextualized with the likelihood that 

climate change will encompass shifts in multiple abiotic variables. 

Factors	 such	 as	N	 depositionķ	warming	 and	 drought	 are	 at	 Ѵeast	
as	 important	 an	 infѴuence	 on	AMF	 as	 atmospheric	 ŒCO2] (Kivlin, 

Emeryķ	 ş	 Rudgersķ	 ƑƏƐƒőĺ	 Our	 data	 demonstrate	 that	 AMF	 wiѴѴ	
continue	to	provide	N	and	P	nutrition	to	 their	pѴant	hosts	under	
eCO2 and that there is no evidence for significant C drain from the 

fungi. Whether these trends are seen following simultaneous per-

turbations	of	temperatureķ	water	avaiѴabiѴity	and	N	deposition	 in	
crop plants is not clear, as experimental testing of such scenarios 

is lacking.

WhiѴe	AMF	may	 not	 prove	 to	 be	 the	 siѴver	 buѴѴetķ	 ļsustainabѴe	
saviours� for agricultural intensification (Thirkell et al., 2017), our 

experiments	have	demonstrated	that	AMF	do	have	the	potentiaѴ	to	
contribute	to	cereaѴ	nutrient	assimiѴationĺ	As	suchķ	AMF	couѴd	have	
an	important	roѴe	to	pѴay	in	reducing	appѴication	of	NŊ	and	PŊbased	
fertilizers as part of a wider strategy for sustainable soil manage-

ment. We echo calls for further field scale experimentation of the 

function	of	AMF	in	crop	pѴants	to	determine	what	roѴeķ	nutritionaѴ	
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or	otherwiseķ	AMF	might	be	pѴaying	in	crop	growth	in	situ	ŐLekberg	
ş	HeѴgasonķ	ƑƏƐѶĸ	RiѴѴig	et	aѴĺķ	ƑƏƐƖőĺ	To	dateķ	very	 ѴittѴe	work	has	
been carried out on crop breeding to optimize mycorrhizal benefit. 

Given	the	potentiaѴ	infѴuence	of	AMF	on	pѴant	nutrient	uptake	and	
growth (Klironomos, 2003) and their ubiquity in farm systems (Oehl, 

Laczkoķ	OberhoѴzerķ	Jansaķ	ş	EgѴiķ	ƑƏƐƕĸ	SaѴe	et	aѴĺķ	ƑƏƐƔő	it	appears	
remiss	that	AMF	shouѴd	not	be	considered	in	breeding	programmesĺ	
Recent steps have been taken to investigate the genetic basis for 

mycorrhizaѴ	coѴonization	ŐLehnert	et	aѴĺķ	ƑƏƐƕő	as	weѴѴ	as	mycorrhizaѴ	
ľbenefitĿ	and	drought	response	in	wheat	ŐLehnert	et	aѴĺķ	ƑƏƐѶőķ	whiѴe	
similar efforts in other crop species have been in progress for several 

years (De Vita et al., 2018; Galvan et al., 2011; Kaeppler et al., 2000). 

Better understanding of the mechanisms underlying plant�microbial 

interactions remains important in the future-proofing and sustain-

able intensification of agriculture.
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