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Abstract

An accurate understanding of the diversity and distribution of fungal symbioses in land plants is essential for mycorrhizal

research. Here we update the seminal work of Wang and Qiu (Mycorrhiza 16:299-363, 2006) with a long-overdue focus on

early-diverging land plant lineages, which were considerably under-represented in their survey, by examining the published

literature to compile data on the status of fungal symbioses in liverworts, hornworts and lycophytes. Our survey combines data

from 84 publications, including recent, post-2006, reports of Mucoromycotina associations in these lineages, to produce a list of

at least 591 species with known fungal symbiosis status, 180 of which were included in Wang and Qiu (Mycorrhiza 16:299-363,

2006). Using this up-to-date compilation, we estimate that fewer than 30% of liverwort species engage in symbiosis with fungi

belonging to all three mycorrhizal phyla, Mucoromycota, Basidiomycota and Ascomycota, with the last being the most wide-

spread (17%). Fungal symbioses in hornworts (78%) and lycophytes (up to 100%) appear to be more common but involve only

members of the two Mucoromycota subphyla Mucoromycotina and Glomeromycotina, with Glomeromycotina prevailing in

both plant groups. Our fungal symbiosis occurrence estimates are considerably more conservative than those published previ-

ously, but they too may represent overestimates due to currently unavoidable assumptions.

Keywords Arbuscular mycorrhizas . Ericoid mycorrhizas . Mucoromycota . Hornworts . Liverworts . Lycophytes

Introduction

Fungi colonize plants and interact with their living tissues in a

variety of ways; these interactions can be detrimental (parasit-

ic), neutral (symptomless) or beneficial (mutualistic) to the

host plant. More than 85% of vascular plant species are con-

sidered to form mutually beneficial symbioses in their roots,

termed mycorrhizas, with soil fungi (Brundrett and Tedersoo

2018). This percentage is only an estimate because investigat-

ing every plant species is neither practical nor currently pos-

sible given that not all species are known and ca. 2000 new

vascular plants species are described each year (Pimm and

Raven 2017). For the most part, fungal symbiosis occurrence

rate estimates are lacking for early-diverging plant lineages as

little effort has been directed towards compiling the data re-

quired to allow these estimations to be made. This also reflects

an overall paucity of data available on these groups, including

information on the type of interaction formed, i.e. whether the

interaction is mycorrhizal or mycorrhizal-like in plants such as

liverworts and hornworts that lack true roots. However, in the

last decade, there has been an increased research focus on the

diversity and distribution of fungal associations in liverworts,

hornworts and lycophytes, largely driven by the discovery of

Mucoromycotina fungi in association with these plants

(Bidartondo et al. 2011; Desirò et al. 2013; Rimington et al.

2015) and the demonstration that at least some of these asso-

ciations are mycorrhizal or mycorrhizal-like—i.e. those be-

tween lycophytes and Mucoromycotina (Hoysted et al.

2019); between liverworts and Glomeromycotina (Field
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et al. 2012), Mucoromycotina (Field et al. 2015) and

Glomeromycotina and Mucoromycotina together (Field

et al. 2016b); and between liverworts and Ascomycota

(Kowal et al. 2018). We address this lacuna by compiling

published fungal symbiosis status for these early-diverging

plant lineages with the caveat that some of the reported sym-

bioses, e.g. those in hornworts, are considered such on the

basis of morphology and/or involvement of fungi known to

be mycorrhizal with other plant lineages but are yet to be

confirmed experimentally. A comprehensive list of which

plant species enter into fungal symbioses and with which fun-

gi not only serves as a useful resource for future studies but

also provides insight into the origins and distribution of these

relationships and how they evolved across plant lineages

(Wang and Qiu 2006). This is particularly pertinent today as

recent studies are finally providing much improved resolution

on the phylogenetic relationships among the earliest-diverging

bryophytes (liverworts, mosses and hornworts) and vascular

plants, which have been contested for decades (e.g. Puttick

et al. 2018; de Sousa et al. 2019). Within bryophytes, mosses

are the only group not known to harbour symbiotic fungi in

their living cells (Pressel et al. 2010). On the other hand,

liverworts engage in remarkably diverse symbioses with

Mucoromycotina, Glomeromycotina, Ascomycota or

Basidiomycota fungi (Pressel et al. 2010; Bidartondo et al.

2011). Hornworts appear intermediate between liverworts

and mosses by forming associations with Mucoromycotina

and Glomeromycotina but not with members of the Dikarya

(Desirò et al. 2013). Both liverworts and hornworts can also

be fungus-free (non-symbiotic). Liverworts have undergone a

number of gains and losses of symbiosis during their evolu-

tion; the early-diverging groups Haplomitriopsida,

Marchantiopsida and Pelliidae are symbiotic with

Mucoromycotina and/or Glomeromycotina (Rimington et al.

2019) while more derived lineages associate with

Basidiomycota (Metzgeriidae, Jungermanniidae) and

Ascomycota (Jungermanniidae) (Pressel et al. 2010).

Ascomycota and Basidiomycota are both members of the sub-

kingdom Dikarya, the latest diverging fungal lineage (Hibbett

et al. 2007). Molecular analysis has indicated that the

Basidiomycota symbionts of liverworts are members of the

genera Serendipita (Sebacina) and Tulasnella (Bidartondo

and Duckett 2010), while Ascomycota symbioses are formed

by Hyaloscypha (Pezoloma or Rhizoscyphus) ericae (Upson

et al. 2007; Fehrer et al. 2019).

Hornworts and some liverworts also form endosymbioses

with cyanobacteria (Nostoc sp.) (Adams and Duggan 2008).

In hornworts, these associations are ubiquitous (Renzaglia

et al. 2007), while in liverworts, they occur only in two

Marchantiopsida species that lack fungal symbionts, Blasia

pusilla and Cavicularia densa (Rikkinen and Virtanen

2008). Associations with cyanobacteria have also been report-

ed in some moss species; however, these are exclusively

epiphytic or endophytic in the dead hyaline cells in

Sphagnum leaves (Kostka et al. 2016; Warshan et al. 2017).

Recently, it has been shown that lycophytes also form as-

sociations with Mucoromycotina and Glomeromycotina fungi

(Rimington et al. 2015), with emerging evidence of carbon-

for-nutrient exchanges between these early-diverging vascular

plants and their Mucoromycotina symbionts (Hoysted et al.

2019). A better understanding of fungal associations in

lycophytes is important when considering the early evolution

of land plant-fungus symbiosis. Lycophytes, which comprise

ca. 1360 species (Hassler and Schmitt 2018), are the earliest

branching lineage of vascular plants (tracheophytes) and rep-

resent the transition from non-vascular to seed plants (Kenrick

and Crane 1997). They are of particular importance because

putative transitional ‘pre-vascular’ plants, including Rhynie

Chert fossils such as Aglaophyton, are all extinct (Remy

et al. 1994). As such, extant lycophytes are considered the

best modern analogues for the first vascular plants (Kenrick

and Crane 1997).

Lists detailing the fungal symbiosis status of plants have

been published for many years; for example, the first list of

fungal symbiosis in liverworts was produced 70 years ago

(Stahl 1949). Such lists require regular updating as the number

of studies increases and so does our knowledge of the diver-

sity of symbioses within and across plant clades. Earlier com-

pilations usually focused on a local scale and only on certain,

almost invariably vascular, plant groups (Harley and Harley

1987). It was not until 2006 that a worldwide literature survey

of fungal symbioses across all land plant groups was per-

formed (Wang and Qiu 2006). This landmark publication by

Wang and Qiu (2006) captured the status of over 3000 species

(143 of which were bryophytes) and, unsurprisingly, has been

highly influential ever since. In the 13 years since its publica-

tion, this paper has been one of the most cited on mycorrhizas

(over 1500 citations as of January 2020) and has provided

important insights on the evolution of mycorrhizas; for exam-

ple, evidence that arbuscular mycorrhizas (AM) are found

throughout the land plant phylogeny has been used as a key

argument for Glomeromycotina symbiosis being an ancestral

trait of land plants (Rimington et al. 2018). However, Wang

and Qiu’s survey (Wang and Qiu 2006) is now considerably

outdated, especially with regard to early-diverging plant line-

ages. Since its publication there has been much interest in the

diverse fungal symbioses of early-diverging plants (e.g.

Ligrone et al. 2007; Duckett and Ligrone 2008; Bidartondo

and Duckett 2010; Pressel et al. 2010; Desirò et al. 2013;

Rimington et al. 2015; Rimington et al. 2018; Rimington

et al. 2019) together with the discovery by Bidartondo et al.

(2011) of symbioses involving Mucoromycotina fungi in liv-

erworts, hornworts and a fern.

Fungal symbiosis occurrence rate estimates are commonly

used to highlight the near-ubiquity of these relationships. For

instance, few publications concerning AM fail to mention that

24 Mycorrhiza (2020) 30:23–49



at least 80% of plant species form these symbioses, most com-

monly citing the reference book ‘Mycorrhizal Symbiosis’

(Smith and Read 1997, 2008). These estimates are useful for

emphasizing the importance of mycorrhizas to broad audi-

ences and to highlight the diversity of these relationships be-

tween fungi and plants. These estimates are useful starting

points for more refined estimates; recently, re-examination

has shown that 80% may be an overestimation for AM sym-

bioses, with the true value probably closer to 71% (Brundrett

and Tedersoo 2018). Fungal symbiosis occurrence estimations

for early-diverging plants have been more sporadic and highly

variable including Glomeromycotina symbioses occurring in

60% and 100% of liverwort and hornwort species, respective-

ly (Brundrett 2009) and 25% of bryophytes forming fungal

associations, the majority of which involve Glomeromycotina

(Brundrett and Tedersoo 2018). The last figure fails to take on

board the fact that mosses, the most speciose group of bryo-

phytes with ca. 12,000 species, lack fungal symbionts.

We present a new global compilation of the fungal symbi-

osis status of liverworts, hornworts and lycophytes. Our com-

pilation more than triples the number of early-diverging plant

species listed in Wang and Qiu (2006) and is the first to focus

on early-diverging plant lineages on a global scale.

Methods

Literature survey

A survey of the published literature on fungal symbioses in liv-

erworts, hornworts and lycophytes was performed. Re-

examination of Wang and Qiu’s survey (Wang and Qiu 2006)

revealed that some key references for these plants were missing

and that fungal symbiosis status was often reported only as ‘fun-

gal association’ without specifying the fungus involved; thus, a

full search was performed, including studies prior to 2006. In

trying to capture all available references, several keywords were

used as search terms inGoogle Scholar. In each search, one of the

following plant terms was used: ‘liverwort’, ‘hornwort’, ‘lyco-

pod’ and ‘lycophyte’. Each plant termwas combinedwith one of

the fo l lowing funga l t e rms : ‘ fung i ’ , ‘ fungus ’ ,

‘Glomeromycotina’, ‘Mucoromycotina’, ‘Glomeromycota’,

‘Glomus tenue’ and ‘fine endophyte’. Additionally, for liver-

worts, which are known to form more diverse fungal symbioses

than the other two lineages, the following terms were also used:

‘Ascomycota’, ‘Basidiomycota’, ‘Rhizoscyphus’, ‘Pezoloma’,

‘Sebacina’ and ‘Tulasnella’. Using these criteria, a total of 34

searcheswere performed. The titles and abstracts of all references

returned by the searches were scrutinized to identify reports of

the fungal status of any liverwort, hornwort or lycophyte species.

Where the search terms returned more than 500 hits (e.g. ‘lyco-

pod fungi’ returned 14,600 hits), only the first 500 results were

investigated. Fungal symbiosis status was recorded as

Glomeromycotina, Mucoromycotina, Ascomycota,

Basidiomycota or non-symbiotic. Additionally, the presence of

dark septate endophytes (DSE) was recorded for lycophytes. For

some liverwort and hornwort species, only the presence of a

‘fungal association’ was recorded as the fungal lineage could

not be assigned. As well as recording the fungal status, the iden-

tificationmethod (microscopy and/orDNA sequencing) was not-

ed for all species. The publications found through Google

Scholar that were deemed relevant to the investigation were read

and any literature found within those publications, but not

returned directly by Google Scholar, was also included. This

secondary search method returned exclusively microscopy stud-

ies published prior to 1990 (and dating back to 1891); thus, we

are confident that all relevant molecular studies were found with

our main search method. Additionally, information on the fungal

symbiosis status of some liverwort species was obtained either

from the liverwort flora of Paton (1999) or from our own unpub-

lished microscopy observations (25 species; see Table S2).

Plant nomenclature

Nomenclature for liverworts and hornworts follows the most

recent floras (Söderström et al. 2016; Stotler and Crandall-

Stotler 2017) and the Tropicos database (www.tropicos.org);

taxonomic rankings above genus level follow Söderström

et al. (2016). For lycophytes, nomenclature follows the

Checklist of Ferns and Lycophytes of the World by Hassler

and Schmitt (2018). When currently accepted names differ

from those in the original reports, both are given in Table 1,

with the latter appearing in parentheses.

Estimating symbiosis occurrence rates

Fungal symbiosis occurrence rates were estimated for each of

the three early diverging plant lineages: liverworts, hornworts

and lycophytes. The number of species per genus or family

and the total number of species per lineage were based on

Söderström et al. (2016) for liverworts and hornworts and on

Hassler and Schmitt (2018) for lycophytes. When making

estimates for hornworts and lycophytes, if a species within a

genus was colonized by a fungal lineage, then it was assumed

that all members of the genus have the potential to be colo-

nized by that fungal lineage. Underlining this assumption was

the finding of fungi by our own observations on fresh speci-

mens of the same genera. The total number of species poten-

tially colonized in a plant lineage was divided by the total

number of species in that lineage and multiplied by 100 to

produce an estimate for the fungal symbiosis occurrence rate.

In instances where the fungal status of a genus was unknown

or reported only as ‘fungal association’, the genus was not

included in the calculations and the total number of species

was reduced accordingly. The same method was applied to

liverworts but using the family level rather than the genus,

Mycorrhiza (2020) 30:23–49 25
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Table 1 The fungal symbionts of early-diverging plants. Mucoro -

Mucoromycotina, Glom - Glomeromycotina, Asco - Ascomycota,

Basid - Basidiomycota, FA - Fungal association with unidentified fungi,

NS - non-symbiotic, DSE - dark septate endophytes. Species labelled

‘Mucoro (FRE)’ were reported only as being colonized by fine root

endophytes (i.e. Glomus tenue). A question mark after ‘Mucoro’

signifies it was not reported in the original publication but microscopy

images are indicative of Mucoromycotina colonization. Checks indicate

whether DNA sequencing and/or microscopy were used for fungal

identification. An asterisk specifies our unpublished personal

observations. In the column labelled Fungi, a hash indicates a report

considered incorrect as a result of further studies. A cross signifies a

likely incorrect report that is discussed in the main text. Species in bold

had conflicting reports of symbiotic status.Where appropriate, the species

names used in original reports are provided in parentheses. Reference

numbers are listed below the table

Species Fungi DNA Microscopy Reference

Marchantiophyta

Haplomitriopsida
Haplomitriidae
Calobryales
Haplomitriaceae
Haplomitrium
Haplomitrium (Calobryum) blumei Mucoro ✓ 1–3
Haplomitrium chilensis Glom✕

✓ ✓ 1
Haplomitrium dentatum Mucoro ✓ ✓* 4, 5
Haplomitrium gibbsiae Mucoro ✓ ✓ 1, 2, 4–7
Haplomitrium hookeri Mucoro ✓ ✓ 1–5, 8
Haplomitrium intermedium FA ✓ 1
Haplomitrium mnioides Mucoro ✓ ✓* 4, 5
Haplomitrium ovalifolium Mucoro ✓ ✓ 1, 2, 6

Treubiidae
Treubiales
Treubiaceae
Treubia

Treubia insignis FA ✓ 3, 9, 10
Treubia lacunosa Mucoro ✓ ✓ 1, 2, 4, 5, 7, 11, 12
Treubia pygmaea Mucoro ✓ ✓ 1, 2, 4, 5, 11
Treubia tasmanica Mucoro ✓ ✓ 2, 12

Marchantiopsida
Blasiidae
Blasiales
Blasiaceae
Blasia
Blasia pusilla NS (Nostoc) ✓ ✓ 1, 3, 13–16

Cavicularia

Cavicularia densa NS (Nostoc) ✓ ✓ 13
Marchantiidae (complex thalloid)
Lunulariales
Lunulariaceae
Lunularia
Lunularia cruciata Glom, Mucoro ✓ ✓ 1, 3–5, 16–18

Marchantiales
Aytoniaceae
Asterella
Asterella australis Glom ✓ ✓ 1, 4, 5
Asterella bachmannii Glom, Mucoro ✓ ✓ 1, 4, 5
Asterella bolanderi Glom, Mucoro ✓ 4, 5
Asterella (Fimbriaria) blumeana NS ✓ 3
Asterella californica Mucoro ✓ 4, 5
Asterella drummondii NS ✓ 4, 5
Asterella grollei NS ✓ 4, 5
Asterella khasyana Glom, Mucoro ✓ 4, 5
Asterella (Fimbriaria) lindenbergiana NS ✓ ✓ 3–5
Asterella muscicola Glom, Mucoro ✓ ✓ 1, 4, 5
Asterella pringlei Mucoro ✓ 4, 5
Asterella sp. Glom, Mucoro ✓ 4, 5
Asterella (Fimbriaria) sp. FA ✓ 3
Asterella tenera Glom, Mucoro ✓ ✓ 1, 2, 4, 5
Asterella wilmsii Glom, Mucoro ✓ ✓ 1, 4, 5, 19

Cryptomitrium
Cryptomitrium himalayense NS ✓ 4, 5
Cryptomitrium oreades NS ✓ ✓ 1, 4, 5

Mannia
Mannia angrogyna (Grimaldia dichotoma) NS ✓ 1, 3
Mannia fragrans NS ✓ 1
“ Mucoro (FRE) ✓ 20
Mannia gracilis NS ✓ 4, 5
Mannia sp Glom ✓ 4, 5

Plagiochasma
Plagiochasma eximium Glom ✓ 1
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Table 1 (continued)

Species Fungi DNA Microscopy Reference

“ NS ✓ 4, 5
Plagiochasma rupestre Glom, Mucoro ✓ ✓ 1, 4, 5, 21
“ NS ✓ 3
Plagiochasma sp. Glom, Mucoro ✓ 4, 5
Plagiochasma sp. FA ✓ 3

Reboulia
Reboulia hemisphaerica Glom ✓ ✓ 1, 3–5

Cleveaceae
Athalamia
Athalamia pinguis Glom ✓ ✓ 1, 4, 5

Clevea
Clevea (Athalamia) hyalina Glom ✓ ✓ 1, 4, 5
Clevea spathysii (rousseliana) NS ✓ 3

Peltolepis
Peltolepis quadrata (grandis) NS ✓ 1, 3

Sauteria
Sauteria alpina NS ✓ ✓ 1, 3–5

Conocephalaceae
Conocephalum
Conocephalum conicum (Fegatella conica) Glom ✓ ✓ 1–5, 14, 16, 22, 23
Conocephalum japonicum Glom ✓ 4, 5
Conocephalum salebrosum Glom ✓ ✓ 1, 4, 5, 14

Corsiniaceae
Corsinia
Corsinia coriandrina (marchantioides) Glom ✓ 1
“ NS ✓ ✓ 3–5

Cronisia
Cronisia fimbriata NS ✓ 1

Cyathodiaceae
Cyathodium
Cyathodium aureonitens NS ✓ 4, 5
Cyathodium cavernarum NS ✓ ✓ 1, 4, 5
Cyathodium foetidissimum NS ✓ 1
“ FA#

✓ 3
Cyathodium sp. NS ✓ 4, 5
Cyathodium tuberosum NS ✓ 4, 5

Dumortieraceae
Dumortiera
Dumortiera hirsuta (irrigua/velutina) Glom ✓ ✓ 1, 3–5

Exormothecaceae
Aitchisoniella
Aitchisoniella himalayensis NS ✓ 1

Exormotheca
Exormotheca holstii NS ✓ 1, 3
Exormotheca pustulosa NS ✓ 1

Stephensoniella
Stephensoniella brevipedunculata NS ✓ 1

Marchantiaceae
Marchantia
Marchantia berteroana Glom ✓ ✓ 1, 4, 5
Marchantia breviloba Glom ✓ 4, 5
Marchantia chenopoda Glom ✓ 4, 5
Marchantia debilis Glom ✓ 4, 5
Marchantia foliacea Glom ✓ ✓ 1, 2, 4, 5, 24, 25
Marchantia geminata FA ✓ 3
Marchantia paleacea Glom ✓ ✓ 3–5, 26, 27
Marchantia papillata Glom ✓ 4, 5
Marchantia pappeana Glom ✓ ✓ 1, 4, 5
Marchantia pileata Glom ✓ 4, 5
Marchantia polymorpha subsp. montivagans Glom ✓ 1
Marchantia polymorpha subsp. polymorpha NS ✓ ✓ 1, 3–5
Marchantia polymorpha subsp. ruderalis NS ✓ ✓ 1, 4, 5, 14
Marchantia (Bucegia) romanica NS ✓ 1
Marchantia wallisii (grisea) FA ✓ 3

Preissia
Preissia (Marchantia) quadrata Glom ✓ ✓ 1, 3–5, 26

Monocleaceae
Monoclea
Monoclea forsteri Glom, Mucoro ✓ ✓ 1, 3–5
Monoclea gottschei NS ✓ 4, 5
“ Glom ✓ ✓ 1
Monoclea sp. FA ✓ 3

Monosoleniaceae
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Table 1 (continued)

Species Fungi DNA Microscopy Reference

Monosolenium
Monosolenium tenerum NS ✓ 1

Oxymitraceae
Oxymitra
Oxymitra cristata NS ✓ 1
Oxymitra incrassata NS ✓ ✓ 1, 4, 5

Ricciaceae
Riccia
Riccia albolimbata NS ✓ 1
Riccia beyrichiana NS ✓ 1
Riccia canaliculata NS ✓ 1
Riccia cavernosa NS ✓ 1
Riccia ciliata NS ✓ 3
Riccia crozalsii NS ✓ 1
Riccia crystallina NS ✓ 1
Riccia fluitans NS ✓ 1, 3, 14, 16
Riccia glauca NS ✓ ✓ 1, 3, 14, 28
Riccia huebeneriana NS ✓ 1
Riccia montana NS ✓ 1
Riccia nigrella NS ✓ 1
Riccia okahandjana NS ✓ 1
Riccia sorocarpa NS ✓ 1
Riccia stricta NS ✓ 1
Riccia subbifurca NS ✓ 1

Ricciocarpus
Ricciocarpos natans NS ✓ 1, 3

Targioniaceae
Targionia
Targionia hypophylla Glom, Mucoro ✓ ✓ 1, 3–5

Wiesnerellaceae
Wiesnerella
Wiesnerella denudata NS ✓ 1
“ FA ✓ 3

Neohodgsoniales
Neohodgsoniaceae
Neohodgsonia
Neohodgsonia mirabilis Glom, Mucoro ✓ ✓ 1, 2, 4, 5, 29

Sphaerocarpales
Monocarpaceae
Monocarpus

Monocarpus sphaerocarpus NS ✓ 1
Riellaceae
Riella
Riella americana NS ✓ 1
Riella helicophylla NS ✓ 1

Sphaerocarpaceae
Geothallus
Geothallus tuberosus NS ✓ 1

Sphaerocarpos
Sphaerocarpos michelii NS ✓ 1
Sphaerocarpos texanus NS ✓ 1
Sphaerocarpos sp. NS ✓ 3

Jungermanniopsida
Pelliidae (simple thalloid I)
Fossombroniales
Calyculariaceae
Calycularia
Calycularia crispula Glom, Mucoro ✓ ✓* 4, 5

Allisoniaceae
Allisonia
Allisonia cockaynei Glom, Mucoro ✓ ✓ 1, 2, 4, 5, 29

Fossombroniaceae
Fossombronia
Fossombronia angulifolia Glom, Mucoro ✓ ✓* 4, 5
Fossombronia angulosa Glom ✓ 1, 3
Fossombronia australis Glom, Mucoro ✓ ✓ 1, 2, 4, 5
Fossombronia caespitiformis Glom, Mucoro ✓ ✓ 1, 4, 5
Fossombronia echinata Glom, Mucoro ✓ ✓ 1, 4, 5
Fossombronia foveolata Glom, Mucoro ✓ ✓ 4, 5, 14
Fossombronia husnotii Glom ✓ ✓ 4, 5
Fossombronia hyalorhiza Glom, Mucoro ✓ 4, 5
Fossombronia incurva Glom, Mucoro ✓ 4, 5

Fossombronia indica Glom ✓ 4, 5
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Table 1 (continued)

Species Fungi DNA Microscopy Reference

Fossombronia kashyapii Glom, Mucoro ✓ 4, 5
Fossombronia maritima Glom ✓ ✓ 1, 4, 5
Fossombronia porphyrorhiza NS ✓ 4, 5
Fossombronia pusilla Glom, Mucoro ✓ ✓ 1, 3–5, 16
Fossombronia reticulata NS ✓ 4, 5
Fossombronia sp. Glom, Mucoro ✓ 4, 5
Fossombronia wondraczekii Glom, Mucoro ✓ ✓ 1, 3–5

Petalophyllaceae
Petalophyllum
Petalophyllum ralfsii Glom ✓ 1

Sewardiella
Sewardiella tuberifera Glom, Mucoro ✓ ✓ 4, 5

Pallaviciniales
Hymenophytaceae
Hymenophyton

Hymenophyton flabellatum Glom ✓ ✓ 1, 3–5
Moerckiaceae
Moerckia

Moerckia blyttii Glom, Mucoro ✓ ✓ 1, 3–5
Moerckia hibernica NS ✓ 1
Moerckia flotoviana NS ✓*

Pallaviciniaceae
Greeneothallus

Greeneothallus gemmiparus Glom ✓ 1
Jensenia
Jensenia connivens Glom ✓ ✓ 1, 2
Jensenia crassifrons Glom ✓ 4, 5
Jensenia wallisii Glom ✓ 1

Pallavicinia

Pallavicinia connivens Glom ✓ 1
Pallavicinia indica NS ✓ 1
Pallavicinia lyellii NS ✓ 1
Pallavicinia sp. FA ✓ 3
Pallavicinia xiphoides Glom, Mucoro ✓ ✓ 4, 5
“ NS# ✓ 1

Podomitrium
Podomitrium phyllanthus Glom ✓ ✓ 1, 2, 4, 5

Symphyogyna
Symphyogyna brasiliensis Glom ✓ ✓ 1, 4, 5
Symphyogyna brongniartii Glom ✓ ✓ 1, 4, 5
Symphyogyna hochstetteri Glom, Mucoro ✓ 4, 5
Symphyogyna hymenophyllum Glom, Mucoro ✓ ✓ 1, 2, 4, 5
“ NS# ✓ 30
Symphyogyna podophylla Glom ✓ 2
Symphyogyna prolifera Glom ✓ 2
Symphyogyna sp. NS ✓ 30
Symphyogyna sp. FA ✓ 3
Symphyogyna subsimplex Glom ✓ ✓ 1, 2
Symphyogyna (Pallavicinia) tenuinervis NS ✓ 1
Symphyogyna undulata Glom ✓ 1

Xenothallus

Xenothallus vulcanicola Glom ✓ 1, 25
Phyllothalliaceae
Phyllothallia
Phyllothallia nivicola NS ✓ ✓ 1, 4, 5, 25

Pelliales
Noterocladaceae
Noteroclada
Noteroclada (Androcryphia) confluens Glom ✓ ✓ 1, 3–5

Pelliaceae
Pellia

Pellia endiviifolia (fabbroniana) Glom ✓ ✓ 1, 4, 5, 14, 31
“ Mucoro (FRE) ✓ 23
Pellia epiphylla Glom, Mucoro ✓ ✓ 1, 3–5, 16
Pellia neesiana NS ✓ 4, 5
“ Glom ✓ 1, 3

Metzgeriidae (simple thalloid II)
Metzgeriales
Aneuraceae
Aneura
Aneura lobata Basid ✓ 1
Aneura maxima Basid ✓ ✓ 1, 3, 28
Aneura mirabilis Basid ✓ ✓ 1, 28, 31–33

Mycorrhiza (2020) 30:23–49 29



Table 1 (continued)

Species Fungi DNA Microscopy Reference

Aneura novaguineensis Basid ✓ 1, 32, 34
Aneura pellioides NS ✓ ✓ 28
Aneura pinguis Basid ✓ ✓ 1, 3, 15, 16, 28, 31,

32, 34–37
Aneura pseudopinguis Basid ✓ 1
Aneura sp. Basid ✓ 28

Lobatiriccardia

Lobatiriccardia (Aneura) alterniloba FA ✓ 34
Lobatiriccardia coronopus subsp. australis

(Aneura lobata subsp. australis)
Basid ✓ 32

Lobatiriccardia (Aneura) lobata Basid ✓ ✓ 28, 34
Lobatiriccardia sp. Basid ✓ 28

Riccardia

Riccardia aequicellularis NS ✓ 34
Riccardia aequitexta FA ✓ 34
Riccardia alba NS ✓ 34
Riccardia alcicornis NS ✓ 34
Riccardia asperulata NS ✓ 34
Riccardia australis FA ✓ 34
Riccardia bipinnatifda NS ✓ 34
Riccardia breviala FA ✓ 34
Riccardia chamedryfolia (Aneura sinuata) NS ✓ ✓ 1, 28
“ FA ✓ 3
Riccardia cochleata NS ✓ 1, 34
“ Basid ✓ 38
Riccardia colensoi NS ✓ 34
Riccardia crassa NS ✓ 34
Riccardia eriocaula NS ✓ 1, 34
Riccardia furtiva FA ✓ 34
Riccardia incurvata NS ✓ 1
Riccardia intercellula Basid ✓ 1, 34
Riccardia latifrons NS ✓ 1, 33
“ Basid ✓ ✓ 37
Riccardia lobulata NS ✓ 34
Riccardia marginata NS ✓ 34
Riccardia metzgeriiformis Basid ✓ 39
Riccardia multicorpora FA ✓ 34
Riccardia (Aneura) multifida NS ✓ ✓ 1, 30, 33
“ Basid ✓ ✓ 3, 37
Riccardia nitida NS ✓ 34
Riccardia pallidevirens FA ✓ 34
Riccardia (Aneura) palmata NS ✓ 1, 3, 33
“ Basid ✓ ✓ 37
Riccardia papulosa FA ✓ 34
Riccardia pennata Basid ✓ 1, 34, 38
Riccardia perspicua FA ✓ 34
Riccardia pseudodendroceros NS ✓ 34
Riccardia pusilla FA ✓ 34
Riccardia smaragdina Basid ✓ 35
Riccardia sp. Basid ✓ 35
Riccardia umida NS ✓ 34
Riccardia wattsiana FA ✓ 34

Verdoornia

Verdoornia succulenta Basid ✓ 1, 25, 32
Metzgeriaceae
Metzgeria

Metzgeria conjugata NS ✓ 1, 33
Metzgeria decipiens NS ✓ 1
Metzgeria furcata NS ✓ ✓ 1, 3, 30, 33
Metzgeria leptoneura NS ✓ 33
Metzgeria pubescens NS ✓ 1, 3, 33
Metzgeria temperata NS ✓ ✓ 1, 30, 33
Metzgeria violacea (fruticulosa) NS ✓ 1, 33

Pleuroziales
Pleuroziaceae
Pleurozia
Pleurozia gigantea NS ✓ 1
Pleurozia purpurea NS ✓ ✓ 1, 28

Jungermanniidae (leafy)
Jungermanniales
Acrobolbaceae
Acrobolbus

Acrobolbus cinerascens NS ✓ 30
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Acrobolbus ochrophyllus NS ✓ 25
Acrobolbus wilsonii Basid# ✓ 40

Goebelobryum
Goebelobryum unguiculatum NS ✓ 25

Lethocolea

Lethocolea pansa FA ✓ 25
Saccogynidium

Saccogynidium australe NS ✓ 25
Adelanthaceae
Adelanthus

Adelanthus bisetulus NS ✓ 30
Adelanthus falcatus FA ✓ 25
Adelanthus lindenbergianus NS ✓*

Biantheridion
Biantheridion undulifolium NS ✓ 33, 40

Pseudomarsupidium
Pseudomarsupidium (Adelanthus) decipiens NS ✓*

Syzygiella

Syzygiella autumnalis NS ✓ 40
“ FA#

✓ 33
Syzygiella (Jamesoniella) colorata NS ✓ 30
Syzygiella jacquinotii Asco ✓ 28
Syzygiella sonderi (Cryptochila grandiflora) NS ✓ 25
Syzygiella (Herzogobryum) teres NS ✓ 25

Wettsteinia
Wettsteinia schusteriana NS ✓ 30

Anastrophyllaceae
Anastrepta
Anastrepta orcadensis NS ✓ 40

Anastrophyllum
Anastrophyllum alpinum NS ✓*
Anastrophyllum donnianum NS ✓ 40
Anastrophyllum joergensenii NS ✓*
Anastrophyllum sp. NS ✓ 30

Barbilophozia
Barbilophozia barbata Basid ✓ ✓ 28, 40
“ Asco# ✓ 15
Barbilophozia hatcheri Basid ✓ ✓ 28, 40–42
“ NS# ✓ ✓ 30, 33
Barbilophozia (Lophozia) kunzeana Basid ✓ 40
“ FA ✓ 43, 44
Barbilophozia lycopodioides Basid ✓ ✓ 28, 40
Barbilophozia (Lophozia) sudetica Basid ✓ ✓ 15, 28, 40

Crossocalyx
Crossocalyx (Sphenolobus) hellerianus

(Anastrophyllum hellerianum)

NS# ✓ 33

“ Asco ✓ 28
“ Basid# ✓ 40

Gymnocolea
Gymnocolea inflata NS ✓ 40
Gymnocolea inflata subsp. acutiloba NS ✓ 40

Isopaches
Isopaches (Lophozia) alboviridis FA ✓ 44
Isopaches bicrenatus (Lophozia bicrenata) Basid ✓ ✓ 28, 40, 43, 44

Neoorthocaulis
Neoorthocaulis (Barbilophozia) attenuatus Basid ✓ ✓ 28, 40
Neoothocaulis (Barbilophozia) floerkei Basid ✓ ✓ 28, 40

Orthocaulis
Orthocaulis (Barbilophozia) atlanticus Basid ✓*

Schljakovia
Schljakovia (Barbilophozia) kunzeana Basid ✓*

Schljakovianthus
Schljakovianthus (Barbilophozia) quadrilobus

(Lophozia quadriloba)
Basid ✓ ✓ 28, 40, 44

Sphenolobopsis
Sphenolobopsis pearsonii NS ✓ 40

Sphenolobus

Sphenolobus minutus (Anastrophyllum minutum) NS ✓ 33, 40
“ Asco# ✓ 15
Sphenolobus (Anastrophyllum) saxicola NS ✓ 40

Tetralophozia
Tetralophozia setiformis NS ✓ ✓ 25, 30, 40

Antheliaceae
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Anthelia
Anthelia julacea NS ✓ 30
Anthelia juratzkana NS ✓ ✓ 25, 30

Balantiopsidaceae
Balantiopsis

Balantiopsis diplophylla NS ✓ 30
Balantiopsis rosea FA ✓ 25

Isotachis
Isotachis montana NS ✓ 30
“ FA ✓ 25
Isotachis (Eoisotachis) stephanii FA ✓ 25

Blepharostomataceae
Blepharostoma

Blepharostoma trichophyllum NS ✓ 33
Brevianthaceae
Brevianthus
Brevianthus flavus NS ✓ 30

Calypogeiaceae
Calypogeia
Calypogeia arguta FA ✓ 33
Calypogeia azurea Asco ✓ 15, 40
Calypogeia fissa Asco ✓ ✓ 16, 28, 33, 40, 45
Calypogeia integristipula Asco ✓ 15, 40
Calypogeia muelleriana Asco ✓ 15, 16, 28, 33, 40
“ NS# ✓ 30
Calypogeia neesiana (trichomanis) Asco ✓ 33, 40
Calypogeia sphagnicola Asco ✓ 25, 33

Mizutania
Mizutania riccardioides Asco ✓ 46

Cephaloziaceae
Cephalozia
Cephalozia ambigua Asco ✓*
Cephalozia bicuspidata Asco ✓ ✓ 16, 33, 45, 47, 48
Cephalozia sp. NS ✓ 30
Cephalozia sp. Asco ✓ 25

Fuscocephaloziopsis
Fuscocephaloziopsis (Pleurocladula) albescens FA ✓ 49
Fuscocephaloziopsis (Cephalozia) catenulata NS# ✓ 33
“ Asco ✓*
Fuscocephaloziopsis (Cephalozia) connivens Asco ✓ ✓ 16, 28, 31, 33, 45, 48
Fuscocephaloziopsis (Cephalozia) leucantha FA ✓ 33
Fuscocephaloziopsis (Cephalozia) loitlesbergeri Asco ✓ 16, 33
Fuscocephaloziopsis (Cephalozia) lunulifolia FA ✓ 33
Fuscocephaloziopsis (Cephalozia) macrostachya FA ✓ 33
Fuscocephaloziopsis (Schofieldia) monticola NS# ✓ 30
Fuscocephaloziopsis (Cephalozia) pleniceps FA ✓ 33

Nowellia
Nowellia curvifolia Asco ✓ 16, 33

Odontoschisma
Odontoschisma denudatum Asco ✓ 16, 45
“ NS# ✓ 33
Odontoschisma elongatum NS ✓ 33
Odontoschisma fluitans NS# ✓ 33
Odontoschisma francisci FA ✓ 33
Odontoschisma macounii FA ✓*
Odontoschisma prostratum NS# ✓ 30
Odontoschisma sp. NS# ✓ 30
Odontoschisma sphagni FA ✓ 16, 33

Cephaloziellaceae
Anastrophyllopsis
Anastrophyllopsis subcomplicata

(Anastrophyllum schismoides)
NS ✓ 25

Cephaloziella
Cephaloziella baumgartneri NS# ✓ 33
Cephaloziella divaricata Asco ✓ 16, 33
Cephaloziella exiliflora Asco ✓ 50
Cephaloziella hampeana FA ✓ 33
Cephaloziella massalongi NS# ✓ 33
Cephaloziella rubella FA ✓ 33
“ NS# ✓ 30
Cephaloziella sp. Asco ✓ 25
Cephaloziella turneri Asco ✓*
Cephaloziella (Cephalozia) varians Asco ✓ ✓ 51, 52
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Nothogymnomitrion
Nothogymnomitrion (Marsupella) erosum NS ✓ 25

Obtusifolium
Obtusifolium (Lophozia) obtusum NS ✓ 40

Oleolophozia

Oleolophozia (Lophozia) perssonii Basid ✓ 40
Protolophozia

Protolophozia (Lophozia) crispata Basid ✓ 28
Protolophozia herzogiana FA ✓ 43

Geocalycaceae
Geocalyx
Geocalyx graveolens Asco ✓ 28
“ Basid# ✓ 40
“ FA ✓ 33

Gymnomitriaceae
Gymnomitrion
Gymnomitrion (Marsupella) adustum NS ✓ 33, 40
Gymnomitrion (Marsupella) alpinum NS ✓ 33
Gymnomitrion concinnatum NS ✓ ✓ 30, 33, 40
Gymnomitrion corallioides NS ✓*
Gymnomitrion crenulatum NS ✓ 33
Gymnomitrion incompletum (cuspidatum) NS ✓ 25
Gymnomitrion obtusum NS ✓ 33, 40
Gymnomitrion sp. NS ✓ 30

Marsupella
Marsupella emarginata NS ✓ ✓ 30, 33, 40
Marsupella stableri NS ✓ 33, 40

Nardia
Nardia breidleri Basid ✓ 33, 40
Nardia compressa NS ✓ 40
Nardia geoscyphus Basid ✓ ✓ 28, 40
Nardia scalaris Basid ✓ ✓ 16, 28, 40, 45
“ NS# ✓ 30

Harpanthaceae
Harpanthus
Harpanthus flotovianus NS ✓ 33, 40
Harpanthus scutatus Basid ✓ 33, 40

Herbertaceae
Herbertus
Herbertus aduncus NS ✓ 30
Herbertus alpinus NS ✓ ✓ 25, 30
Herbertus borealis NS ✓ 33

Triandrophyllum
Triandrophyllum subtrifidum NS ✓ 25

Hygrobiellaceae
Hygrobiella
Hygrobiella laxifolia NS ✓*

Jungermanniaceae
Eremonotus
Eremonotus myriocarpus Asco ✓ ✓* 28
“ Basid# ✓ 40

Jungermannia
Jungermannia atrovirens NS ✓ 33, 40
Jungermannia borealis NS ✓ 33
Jungermannia exsertifolia NS ✓ 33
Jungermannia exsertifolia subsp. cordifolia NS ✓ 30
Jungermannia gracillima NS ✓ 16, 33, 40, 45
Jungermannia hyalina NS ✓ 40
Jungermannia obovata NS ✓ 33, 40
Jungermannia polaris NS ✓ 40
Jungermannia pumila NS ✓ 33, 40

Mesoptychia
Mesoptychia (Leiocolea) badensis NS ✓*
Mesoptychia (Leiocolea) bantriensis NS ✓ 40
Mesoptychia (Leiocolea) heterocolpos NS ✓ 40
Mesoptychia (Leiocolea) rutheana NS ✓ 40
Mesoptychia (Leiocolea) turbinata NS ✓ 33, 40

Lepicoleaceae
Lepicolea

Lepicolea attenuata NS ✓ 25
Lepicolea scolopendra NS ✓ ✓ 25, 30

Lepidoziaceae
Acromastigum
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Acromastigum colensoanum FA ✓ 25
Bazzania

Bazzania adnexa NS ✓ 30
“ FA#

✓ 25
Bazzania denudata NS ✓ 30
Bazzania flaccida NS ✓ 15
Bazzania sp. NS ✓ 30
Bazzania tayloriana NS ✓ 30
Bazzania tricrenata NS ✓ 33
Bazzania trilobata Asco# ✓ 45
“ NS ✓ ✓ 15, 30, 33

Hygrolembidium
Hygrolembidium australe Asco ✓ 25

Isolembidium
Isolembidium anomalum Asco ✓ 25

Kurzia
Kurzia pauciflora Asco ✓ 16, 33, 45
Kurzia sp. Asco ✓ 25
Kurzia sylvatica FA ✓ 33
Kurzia trichoclados FA ✓ 33

Lembidium

Lembidium (Chloranthelia) berggrenii Asco ✓ 25
Lembidium nutans Asco ✓ 25

Lepidozia
Lepidozia reptans Asco ✓ ✓ 16, 28, 33, 45
“ NS ✓ 30
Lepidozia sp. NS ✓ 30
Lepidozia sp. Asco ✓ 25

Megalembidium

Megalembidium insulanum Asco ✓ 25
Neogrollea
Neogrollea notabilis Asco ✓ 25

Pseudocephalozia
Pseudocephalozia lepidozioides Asco ✓ 25

Psiloclada
Psiloclada clandestina Asco ✓ 25

Telaranea

Telaranea europaea Asco ✓*
Telaranea nematodes Asco ✓*
“ FA ✓ 33
Telaranea sp. Asco ✓ 25

Tricholepidozia

Tricholepidozia (Telaranea) murphyae Asco ✓*
“ FA ✓ 33
Tricholepidozia (Telaranea) tetradactyla Asco ✓*

Zoopsidella
Zoopsidella caledonica Asco ✓ 25

Zoopsis

Zoopsis sp. Asco ✓ 25
Lophocoleaceae
Chiloscyphus

Chiloscyphus pallescens NS ✓ 33, 40
Chiloscyphus polyanthos NS ✓ 33, 40
Chiloscyphus sp. NS ✓ 25

Clasmatocolea
Clasmatocolea sp. NS ✓ 25

Heteroscyphus
Heteroscyphus billardierei NS ✓ 30
Heteroscyphus sp. NS ✓ 25

Leptoscyphus
Leptoscyphus cuneifolius NS ✓ 33, 40
Leptoscyphus sp. NS ✓ 25

Lophocolea
Lophocolea bidentata NS ✓ ✓ 30, 33, 40
Lophocolea bispinosa NS ✓*
Lophocolea brookwoodiana NS ✓*
Lophocolea cuspidata NS ✓ 33
Lophocolea fragrans NS ✓*
Lophocolea (Lophozia) heteromorpha FA#

✓ 44
Lophocolea heterophylla Asco# ✓ 15
“ NS ✓ 16, 33, 40
Lophocolea semiteres NS ✓*
Lophocolea sp. NS ✓ 30
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Lophoziaceae
Lophozia

Lophozia ascendens FA ✓ 44
Lophozia sp. NS# ✓ 30
Lophozia sp. Basid ✓ 25
Lophozia ventricosa Basid ✓ ✓ 16, 28, 40, 43–45
“ NS# ✓ 30
Lophozia wenzelii Basid ✓ ✓ 28, 44

Lophoziopsis
Lophoziopsis (Lophozia) excisa Basid ✓ ✓ 28, 40, 43, 44, 53
Lophoziopsis (Lophozia) latifolia FA ✓ 44
Lophoziopsis (Lophozia) longidens Basid ✓ ✓ 28, 40
Lophoziopsis (Lophozia) pellucida FA ✓ 44

Trilophozia
Trilophozia (Tritomaria) quinquedentata Basid ✓*

Tritomaria
Tritomaria (Lophozia) capitata Basid ✓*
“ NS ✓ 40
Tritomaria exsecta Basid ✓ 40
Tritomaria exsectiformis Basid ✓ ✓ 28, 40
Tritomaria quinquidentata Basid ✓ ✓ 28, 40, 43, 44

Mastigophoraceae
Dendromastigophora

Dendromastigophora flagellifera NS ✓ ✓ 25, 30
Myliaceae
Mylia

Mylia anomala Asco ✓ 33, 40
Mylia taylorii NS ✓ 40

Plagiochilaceae
Pedinophyllum
Pedinophyllum interruptum Basid ✓ 40
“ NS# ✓ 33
“ FA ✓ 43

Plagiochila

Plagiochila asplenioides NS ✓ ✓ 30, 33, 40
Plagiochila bifaria NS ✓*
Plagiochila britannica NS ✓*
Plagiochila caduciloba NS ✓ 30
Plagiochila carringtonii NS ✓ 40
Plagiochila incurvicolla NS ✓ 30
Plagiochila porelloides NS ✓ ✓ 30, 33, 40
Plagiochila punctata FA#

✓ 33
“ NS ✓*
Plagiochila ramosissima NS ✓ 30
Plagiochila sp. NS ✓ 30
Plagiochila sp. NS ✓ 25
Plagiochila spinulosa NS ✓ 33
Plagiochila virginica NS ✓ 30

Plagiochilion
Plagiochilion conjugatum NS ✓ 25

Pseudolepicoleaceae
Archeophylla
Archeophylla schusteri NS ✓ 25

Temnoma
Temnoma quadrifidum NS ✓ 25

Saccogynaceae
Saccogyna
Saccogyna viticulosa Basid ✓ ✓ 28, 33, 40

Scapaniaceae
Diplophyllum
Diplophyllum albicans Basid ✓ ✓ 15, 28, 40, 43
“ NS# ✓ ✓ 16, 30, 33
Diplophyllum apiculatum Basid ✓ ✓ 28
“ NS# ✓ 30
Diplophyllum dioicum Basid ✓ ✓ 25, 28
“ NS# ✓ 30
Diplophyllum obtusifolium Basid ✓ ✓ 28, 40, 43
“ Asco# ✓ 15
Diplophyllum obtusatum Basid ✓*
Diplophyllum taxifolium NS ✓ ✓ 28, 40

Douinia
Douinia ovata NS ✓ ✓ 28, 33, 40

Saccobasis
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Saccobasis (Tritomaria) polita Basid ✓ ✓ 28, 44
Scapania

Scapania aequiloba NS ✓ 40
Scapania aspera NS ✓ 40
Scapania bolanderi Basid ✓ 54
Scapania brevicaulis (degenii) FA ✓ 49
“ NS# ✓ 40
Scapania calcicola Basid ✓ ✓ 28, 40
“ NS# ✓ 33
Scapania compacta NS ✓ 40
Scapania curta (personnii) FA ✓ 49
Scapania cuspiduligera Basid ✓ ✓ 28, 40
“ NS# ✓ 33
Scapania glaucocephala FA ✓ 49
Scapania glaucocephala var. saxicola FA ✓ 49
Scapania gracilis NS ✓ 33, 40
Scapania gymnostomophila Basid ✓✓ 40
“ FA ✓ 49
Scapania irrigua Basid ✓ ✓ 28, 40
Scapania lingulata var. microphylla FA ✓ 49
Scapania nemorea NS ✓ ✓ 30, 40
Scapania nimbosa NS ✓ 40
Scapania obcordata FA ✓ 49
Scapania obcordata var. paradoxa FA ✓ 49
Scapania ornithopodioides NS ✓ 40
Scapania paludicola NS ✓*
Scapania scandica NS ✓ 33
Scapania sp. NS ✓ 30
Scapania subaplina NS ✓*
Scapania uliginosa NS ✓ 40
Scapania umbrosa Basid ✓ ✓ 28, 40
“ NS# ✓ 33
Scapania undulata NS ✓ ✓ 28, 30, 40
Scapania zemliae (invisa) FA ✓ 49

Schistochilopsis
Schistochilopsis (Lophozia) incisa Basid ✓ ✓ 15, 28, 40
Schistochilopsis incisa var. opacifolia

(Lophozia opacifolia)
Basid ✓ ✓ 28, 40

Schistochilopsis (Lophozia) hyperarctica FA ✓ 44
Schistochilaceae
Schistochila
Schistochila alata Asco ✓ 55
Schistochila appendiculata Asco ✓ 55
“ NS ✓ 30
Schistochila balfouriana Asco ✓ 55
“ NS ✓ 30
Schistochila childii Asco ✓ 55
Schistochila glaucescens Asco ✓ 55
Schistochila kirkiana Asco ✓ 55
Schistochila lamellata Asco ✓ 55
Schistochila laminigera Asco ✓ 55
Schistochila muricata Asco ✓ 55
Schistochila nobilis Asco ✓ 25, 55
Schistochila pinnatifolia Asco ✓ 55
Schistochila repleta Asco ✓ 55
Schistochila splachnophylla Asco ✓ ✓ 45, 55
Schistochila subimmersa Asco ✓ ✓ 45, 55
Schistochila succulenta Asco ✓ 45, 55

Solenostomataceae
Solenostoma
Solenostoma (Jungermannia) orbiculata NS ✓ 25

Southbyaceae
Gongylanthus
Gongylanthus ericetorum Basid ✓ 40
“ FA ✓ 43

Southbya
Southbya nigrella Basid ✓ ✓ 16, 28, 40, 43
Southbya tophacea Basid ✓ ✓ 28, 31, 40, 43

Trichocoleaceae
Leiomitria
Leiomitra lanata NS ✓ 30

Trichocolea

Trichocolea mollissima NS ✓ 25
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Trichocolea rigida NS ✓ 30
Trichocolea tomentella NS ✓ 30

Trichotemnomataceae
Trichotemnoma
Trichotemnoma corrugatum NS ✓ 25

Porellales
Frullaniaceae
Frullania
Frullania dilatata NS ✓ 33
Frullania eboracensis NS ✓ 30
Frullania fragilifolia NS ✓ 33
Frullania microphylla NS ✓ 33
Frullania nisquallensis NS ✓ 30
Frullania sp. NS ✓ 25
Frullania tamarisci NS ✓ 33
Frullania teneriffae NS ✓ 33

Goebeliellaceae
Goebeliella

Goebeliella cornigera NS ✓ 30
Jubulaceae
Jubula

Jubula hutchinsiae NS ✓ 33
Jubula hutchinsiae subsp. pennsylvanica NS ✓ 30

Lejeuneaceae
Cheilolejeunea
Cheilolejeunea (Leucolejeunea) clypeata NS ✓ 30
Cheilolejeunea (Leucolejeunea) sp. NS ✓ 30

Cololejeunea
Cololejeunea calcarea NS ✓ 33
Cololejeunea microscopica NS ✓ 33

Colura
Colura calyptrifolia NS ✓ 33

Drepanolejeunea
Drepanolejeunea hamatifolia NS ✓ 33

Harpalejeunea
Harpalejeunea ovata NS ✓ 33

Lejeunea

Lejeunea cavifolia NS ✓ 33
Lejeunea lamacerina NS ✓ 33
Lejeunea patens NS ✓ 33
Lejeunea ulicina NS ✓ ✓ 30, 33

Marchesinia

Marchesinia mackaii NS ✓ 33
Mastigolejeunea
Mastigolejeunea anguiformis NS ✓ 30

Myriocoleopsis
Myriocoleopsis (Cololejeunea) minutissima NS ✓ 33

Lepidolaenaceae
Gackstroemia
Gackstroemia alpina NS ✓ ✓ 25, 30

Lepidolaena

Lepidolaena sp. NS ✓ 25
Lepidolaena taylorii NS ✓ 30

Porellaceae
Lepidogyna
Lepidogyna sp. NS ✓ 25

Porella
Porella arboris-vitae NS ✓ 33
Porella cordaeana NS ✓ 33
Porella elegantula NS ✓ 30
Porella navicularis NS ✓ 30
Porella obtusata NS ✓ 33
Porella pinnata NS ✓ ✓ 30, 33
Porella platyphylla NS ✓ ✓ 30, 33
Porella sp. NS ✓ 25

Radulaceae
Radula

Radula aquilegia NS ✓ 33
Radula complanata NS ✓ 33
Radula lindenbergiana NS ✓ 33
Radula sp. NS ✓ 25

Ptilidiales
Ptilidiaceae
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Ptilidium
Ptilidium ciliare NS ✓ ✓ 25, 30
Ptilidium sp. NS ✓ 30

Anthocerotophyta

Anthocerotopsida
Anthocerotales
Anthocerotaceae
Anthoceros
Anthoceros agrestis Glom, Mucoro ✓ ✓ 14, 56
Anthoceros cristatus Mucoro ✓ ✓ 57
Anthoceros fusiformis Mucoro ✓ 56
Anthoceros lamellatus Glom, Mucoro ✓ 56
Anthoceros laminiferus Glom, Mucoro ✓ ✓ 2, 25, 56
Anthoceros punctatus Glom, Mucoro ✓ ✓ 2, 56, 58
Anthoceros sp. Glom, Mucoro ✓ ✓ 56

Folioceros
Folioceros fuciformis Glom ✓ 56

Folioceros sp. Glom, Mucoro ✓ ✓ 56
Dendrocerotales
Dendrocerotaceae
Dendroceros

Dendroceros crispus NS ✓ 56
Dendroceros granulatus NS ✓ 25
Dendroceros validus NS ✓ ✓ 25, 56

Megaceros
Megaceros flagellaris NS ✓ 56
Megaceros denticulatus NS ✓ 25
Megaceros leptohymenius Glom, Mucoro ✓ 56
Megaceros pellucidus Glom, Mucoro ✓ 56
“ NS ✓ 25
Megaceros sp. Glom, Mucoro ✓ 56

Nothoceros

Nothoceros giganteus NS ✓ ✓ 25, 56
Nothoceros vincentianus Glom, Mucoro ✓ 56

Phaeomegaceros
Phaeomegaceros coriaceus Glom, Mucoro ✓ ✓ 25, 56
Phaeomegaceros hirticalyx Mucoro ✓ ✓ 56
Phaeomegaceros sp. Glom, Mucoro ✓ 56

Phymatocerotales
Phymatocerotaceae
Phymatoceros
Phymatoceros bulbiculosus

(Anthoceros dichotomus)
FA ✓ 3

Notothyladales
Notothyladaceae
Notothylas
Notothylas javanica Glom ✓ 56
Notothylas orbicularis Glom ✓ 56

Paraphymatoceros
Paraphymatoceros coriaceus Mucoro ✓ 2
Paraphymatoceros pearsonii NS ✓ 56
Paraphymatoceros sp. Mucoro ✓ 2

Phaeoceros

Phaeoceros carolinianus Glom, Mucoro ✓ ✓ 2, 25, 56
Phaeoceros dendroceroides Glom, Mucoro ✓ 56
Phaeoceros laevis Glom, Mucoro ✓ ✓ 2, 3, 56, 59
Phaeoceros sp. Glom, Mucoro ✓ 56

Leiosporocerotopsida
Leiosporocerotales
Leiosporocerotaceae
Leiosporoceros

Leiosporoceros dussii NS ✓ 56
Lycopodiophyta

Lycopodiopsida
Lycopodiales
Lycopodiaceae
Austrolycopodium

Austrolycopodium (Lycopodium) fastigiatum Mucoro ✓ 60
Austrolycopodium (Lycopodium) magellanicum NS ✓ 60
Austrolycopodium (Lycopodium) paniculatum DSE, Glom ✓ 61

Dendrolycopodium
Dendrolycopodium dendroideum NS ✓ 60
Dendrolycopodium obscurum NS ✓ 60
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Table 1 (continued)

Species Fungi DNA Microscopy Reference

Diphasiastrum
Diphasiastrum (Lycopodium) alpinum Basid✕ ✓ ✓ 62
“ Glom ✓ ✓ 62, 63
“ NS ✓ ✓ 60, 64
Diphasiastrum complanatum NS ✓ 65
Diphasiastrum digitatum

(Lycopodium digitatum/L. flabelliforme)
Glom ✓ 66, 67

Diphasiastrum issleri Glom ✓ 63
Diphasiastrum (Lycopodium) thyoides DSE ✓ 68
Diphasiastrum (Lycopodium) tristachyum Glom ✓ 67

Huperzia
Huperzia appressa NS ✓ 60
Huperzia australiana NS ✓ 60
“ Glom ✓ 69
Huperzia lucidula NS ✓ 60
Huperzia (Lycopodium) selago NS ✓ 60
“ DSE ✓ 64
“ Glom ✓ 63, 70
Huperzia serrata NS ✓ 71
“ Glom ✓ 70
Huperzia serrata var. longipetiolata NS ✓ 65
Huperzia sp. NS ✓ 71

Lateristachys

Lateristachys (Lycopodiella) lateralis Mucoro ✓ 60
Lycopodiastrum
Lycopodiastrum casuarinoides NS ✓ 65

Lycopodiella
Lycopodiella inundata Mucoro ✓ ✓ 60, 72
“ Glom ✓ 63, 73

Lycopodium
Lycopodium clavatum NS ✓ ✓ 60, 70
“ DSE ✓ 64, 74
“ Glom ✓ ✓ 63, 75–77
“ Mucoro? ✓ 76
Lycopodium clavatum subsp. contiguum Glom ✓ 77
Lycopodium japonicum Glom ✓ 65

Palhinhaea

Palhinhaea cernua

(Lycopodiella cernua/Lycopodium cernuum)

Glom ✓ ✓ 60, 71, 78–80

“ NS ✓ 65, 74
“ Mucoro ✓ 78

Phlegmariurus

Phlegmariurus (Huperzia) affinis Glom ✓ 77
Phlegmariurus (Huperzia) crassus Glom ✓ 77
Phlegmariurus (Huperzia) hamiltonii Glom ✓ 75
Phlegmariurus henryi NS ✓ 65
Phlegmariurus hypogaeus (Huperzia hypogaea) Glom ✓ ✓ 77
Phlegmariurus phlegmaria

(Huperzia phlegmaria/Lycopodium phlegmaria)
NS ✓ 60

Phlegmariurus phyllanthus (Huperzia phyllantha) Glom ✓ 79
Phlegmariurus squarrosus (Huperzia squarrosa) Glom ✓ 74
Phlegmariurus tetragonus (Huperzia tetragona) Glom ✓ 77
Phlegmariurus urbani (Huperzia urbanii) Glom ✓ 77

Pseudodiphasium
Pseudodiphasium (Lycopodium) volubile NS ✓ 60

Spinulum

Spinulum (Lycopodium) annotinum Mucoro ✓ 60
“ Glom ✓ 63

Isoëtales
Isoëtaceae
Isoëtes

Isoëtes coromandelina Glom ✓ 81
Isoëtes echinospora DSE, Glom ✓ 82
“ NS ✓ 63
Isoëtes histrix NS ✓ 63
Isoëtes lacustris DSE, Glom ✓ 82
“ NS ✓ 63

Selaginellales
Selaginallaceae
Selaginella
Selaginella arbuscula Glom ✓ 79
Selaginella biformis Glom ✓ 65
Selaginella bryopteris Glom ✓ 75
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Table 1 (continued)

Species Fungi DNA Microscopy Reference

Selaginella cataphracta NS ✓ 74
Selaginella chrysocaulos NS ✓ 65
Selaginella davidii Glom ✓ 65, 83
Selaginella delicatula Glom ✓ 65
Selaginella doederleinii DSE, Glom ✓ 75
Selaginella finitima DSE, Glom ✓ 84
Selaginella fissidentoides DSE, Glom ✓ 74
Selaginella frondosa Glom ✓ 65
Selaginella furcillifolia Glom ✓ 71
Selaginella helferi NS ✓ 65
Selaginella intermedia Glom ✓ 71
Selaginella involvens Glom ✓ 65
Selaginella kraussiana Glom ✓ ✓ 60, 63
Selaginella mairei Glom ✓ 85
Selaginella martensii Glom ✓ 84
Selaginella minutifolia Glom ✓ 71
Selaginella moellendorffii Glom ✓ 83
Selaginella monospora NS ✓ 65
Selaginella obtusa Glom ✓ 74
Selaginella pallescens DSE, Glom ✓ 68
Selaginella pennata NS ✓ 60
Selaginella picta Glom ✓ 65
Selaginella plana Glom ✓ 71
Selaginella pulvinata Glom ✓ 65, 85
Selaginella remotifolia Glom ✓ 65
Selaginella roxburghii var. strigosa Glom ✓ 71
Selaginella sanguinolenta Glom ✓ 65
Selaginella selaginoides Glom ✓ ✓ 60, 63
Selaginella sp. DSE, Glom ✓ 75
Selaginella sp. Glom ✓ 80
Selaginella stipulata Glom ✓ 71
Selaginella wightii Glom ✓ 80
Selaginella willdenowii NS ✓ 71
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with a few exceptions where additional considerations were in-

cluded in our calculations to improve the quality of our estimates:

1) Aneuraceae—This Metzgeriidae family is the most species-

rich of the simple thalloid liverworts. Colonization by

Basidiomycota is common in the species-poor, early-

diverging genera Aneura, Lobatiriccardia and Verdoornia

(Rabeau et al. 2017) but less so in the largest, more derived

genus Riccardia (Pressel et al. 2010). To avoid a consider-

able overestimation of symbiosis by Basidiomycota in

Metzgeriidae, our calculations of fungal symbiosis occur-

rence rates in Aneuraceaewere based on the assumption that

50% of Riccardia species can be colonized by

Basidiomycota, i.e. the ratio of symbiotic vs. non-

symbiotic Riccardia species found by our survey (Table 1)

plus our own observations on freshly collected specimens of

a range of Riccardia species.

2) Plagiochilaceae—This is the most speciose family in the

Jungermanniales with 767 species in ten genera; however,

fungal symbiosis has only been reported in the four-

species genus Pedinophyllum. For calculations, we con-

sidered Pedinophyllum to be the only Plagiochilaceae ge-

nus (Feldberg et al. 2010) that can be colonized by sym-

biotic Basidiomycota and the rest were considered non-

symbiotic. Re-enforcing this assumption is that fact that

neither Schuster (1980) nor Paton (1999) mention fungi

other than in Pedinophyllum, and we have never seen

them in fresh specimens of over 50 species in the family.

3) Gymnomitriaceae—This relatively speciose family (97

species) of nine genera contains only one genus

(Nardia) for which fungal symbiosis has been reported,

and the rest are non-symbiotic; thus, for calculations, we

considered Nardia to be the only symbiotic genus in

Gymnomitriaceae. As for the Plagiochilaceae, we have

never seen fungi in freshly collected specimens other than

in Nardia. The Gymnomitriaceae predominantly grow on

bare rock, a substrate ill-suited to fungal symbioses.

4) Jungermanniaceae—Fungal symbiosis has only been re-

ported in Eremonotus, a single species genus (Bidartondo

and Duckett 2010). All the other members of this family

(37 species) that have been investigated (Paton 1999;

Pocock and Duckett 1985; Schuster 1969) do not enter

into fungal symbiosis, so only Eremonotus was consid-

ered to be symbiotic in our calculations.

Numbers of species per genus/family are given in Table S1.

Inferring fungal symbiosis status

Fungal symbiosis status was mapped onto a representative

phylogenetic diagram that contained all the plant families in-

cluded in this survey with the relative positions of the plant

families based on previously published phylogenies for the

fo l lowing p lan t g roups : Hap lomi t r i ops ida and

Marchantiopsida (Flores et al. 2017), Pelliidae and

Metzgeriidae (Masuzaki et al. 2010), Jungermanniidae

(Forrest et al. 2006; Shaw et al. 2015; Patzak et al. 2016),

hornworts (Villarreal and Renner 2013) and lycophytes

(PPG1 2016).

Results and discussion

Plant species numbers

The fungal symbiosis status of up to 648 liverwort, hornwort

and lycophyte species, belonging to 194 genera, 82 families

and 23 orders, was compiled (Table 1) by combining data

from 84 publications. The number of species for each of these

early-diverging plant groups and the fungal lineages that col-

onize them are listed in Table 2. The total value, 648 species,

includes seven subspecies and 53 samples identified only to

the genus level (sp.) that may represent duplicates (except

when they are the only entry for that genus, e.g. Lepidogyna

sp.). Thus, at least 591 species are included in our survey

(Table 2). This represents a considerable increase on the num-

ber of early-diverging plant species, 180, included in Wang

and Qiu’s survey (Wang and Qiu 2006). The hornworts and

lycophytes are well represented; our survey includes members

of every hornwort and lycophyte family and of most genera

except for one hornwort and four lycophyte genera (Table 1).

The liverworts are less well represented; this is because of

their higher diversity, comprising over twenty times the num-

ber of genera found in hornworts or lycophytes. While
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coverage for liverworts is robust at the family level and in-

cludes 72 of the 87 families (Söderström et al. 2016), this is

less so at the genus level where the fungal status of 217 of the

386 genera is currently unknown. However, early-diverging

lineages are well represented at the genus level with only one

Haplomitriopsida, one Marchantiopsida and five Pelliidae

genera not included in Table 1. The remaining 210 genera

with unknown fungal symbiosis status are members of the

Metzgeriidae and Jungermanniidae. This reflects a research

bias, as most studies have focused on species from known

symbiotic clades (e.g. 24% of Pelliidae species and 17% of

Marchantiopsida species have been investigated) while

neglecting those from clades considered to be largely

asymbiotic. Indeed, only 5% of Jungermanniidae species have

been investigated to date, reflecting that the Lejeuneaceae, the

most speciose Jungermanniidae family with ca. 2000 species,

is asymbiotic (Kowal et al. 2018).

Since the survey by Wang and Qiu was published in 2006,

the use of DNA sequencing to identify plant fungal symbionts

has increased dramatically. To date, the fungal status of 259

fully named early-diverging plant species has been analysed

by molecular methods versus only six reported in Wang and

Qiu (2006).

Our survey unveiled contradictory reports on the fungal

symbiotic status (symbiotic vs. non-symbiotic) of 51 species

(42 liverworts, one hornwort and eight lycophytes) probably

reflecting low fungal colonization levels (Rimington et al.

2015), habitat type and/or seasonal variation in colonization

(personal observations) in these species. Colonization by two

fungal lineages has been reported in 51 species (35 liverworts,

11 hornworts and 5 lycophytes). We found no report of more

than two fungal lineages colonizing the same plant species.

All dual colonisations involve either members of

Mucoromycotina and Glomeromycotina (Mucoromycota) or

Ascomycota and Basidiomycota (Dikarya), with the former

(45 species) being more common than the latter (5 species).

Estimating symbiosis occurrence rates

Our estimates of fungal symbiosis occurrence rates for the

different fungal lineages in liverworts, hornworts and

lycophytes show that fungal symbiosis appears to be the norm

in hornworts and lycophytes, but not in liverworts (Table 3).

Occurrence rates were easier to estimate for hornworts and

lycophytes than for liverworts, as these two groups contain

less species and engage in less diverse symbioses than liver-

worts. We estimated that 69% of hornwort species can be

colonized by Mucoromycotina fungi and 78% by

Glomeromycotina (Table 3). In lycophytes, colonization by

Glomeromycotina is higher than by Mucoromycotina; 99%

of lycophyte species can potentially form AM while only

4% are estimated to be symbiotic with Mucoromycotina

Table 2 The numbers of early-

diverging plant species for which

fungal symbiosis status has been

reported.M -Mucoromycotina, G

- Glomeromycotina, B -

Basidiomycota, A - Ascomycota,

FA - Fungal association. Where

reports were contradictory

(symbiotic and non-symbiotic),

the symbiotic report is included.

The number between parentheses

represents the maximum number

of different species, reflecting that

some species were identified as

‘sp.’ so could represent duplicates

of fully identified species

Total M G B A FA

Liverworts 491 (538)

Haplomitriopsida 12 9 1 0 0 2

Haplomitriidae 8 6 1 0 0 1

Treubiidae 4 3 0 0 0 1

Marchantiopsida 88 (98) 14 (16) 33 (36) 0 0 4 (7)

Blasiidae 2 0 0 0 0 0

Marchantiidae 86 (96) 14 (16) 33 (36) 0 0 4 (7)

Jungermanniopsida 391 (428) 19 (20) 40 (41) 65 (70) 59 (64) 56 (58)

Pelliidae 48 (52) 19 (20) 40 (41) 0 0 0 (2)

Metzgeriidae 52 (56) 0 0 16 (20) 0 12

Jungermanniidae 291 (320) 0 0 49 (50) 59 (64) 44

Hornworts 27 (33)

Anthocerotopsida 26 (32) 15 (21) 14 (19) 0 0 0

Anthocerotidae 7 (9) 6 (8) 5 (7) 0 0 0

Dendrocerotidae 12 (14) 5 (7) 4 (6) 0 0 1

Notothylatidae 7 (9) 4 (6) 5 (6) 0 0 0

Leiosporocerotopsida 1 0 0 0 0 0

Lycophytes 73 (77)

Lycopodiopsida 73 (77) 6 53 (55) 1 0 0

Lycopodiales 35 (37) 6 22 1 0 0

Isoëtales 4 0 3 0 0 0

Selaginellales 34 (36) 0 28 (30) 0 0 0
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(Table 3). The fungal status of each hornwort and lycophyte

genus is found in Table S1.

Our estimates of fungal symbiosis occurrence rates in liv-

erworts had to be calculated at the family, rather than genus,

level (except for four families, as explained previously) be-

cause this group contains many more genera (ca. 386) than

hornworts and lycophytes (12 and 18 genera, respectively)

and the fungal symbiosis status of less than half (169) of these

genera is currently known. However, the fungal symbiotic

status of most liverwort families has been reported, with that

of only 15 out of 87 families remaining unassigned. These 15

families all have low species numbers: less than ten species

except for one family. Thus, the fungal symbiosis status of

liverworts is well represented at the family level (Table S1).

We estimated that only 4% and 5% of liverwort species are

colonized by Mucoromycotina and Glomeromycotina, re-

spectively (Table 3). Symbioses involving Basidiomycota

(7%) and Ascomycota (17%) appear to be more common in

liverworts but an absence of fungal symbiosis is by far the

prevalent state (71%). The sum of these estimates is greater

than 100% due to several liverwort species forming dual col-

onization with both Mucoromycotina and Glomeromycotina.

Below we consider the major liverwort groups individually:

Haplomitriopsida—Up to 100% of these earliest-diverging

liverworts can be colonized by Mucoromycotina fungi. There

has been a single molecular report of Glomeromycotina sym-

biosis in Haplomitrium chilensis (Ligrone et al. 2007); how-

ever this report was published prior to the discovery of

Mucoromycotina colonization in liverworts and has since

been questioned by several molecular investigations

(Bidartondo et al. 2011; Field et al. 2015; Rimington et al.

2 0 18 ) . P r e s e n c e o f Muco r omyco t i n a and no t

Glomeromycotina in Haplomitriopsida liverworts also agrees

with the cytology of the fungus colonizing H. chilensis

(Ligrone et al. 2007), which we now know to be typical of

Mucoromycotina and not Glomeromycotina symbioses (e.g.

Field et al. 2015). We have not included in our analyses a

recent study by Yamamoto et al. (2019) reporting rare

Glomeromycotina associations in Haplomitrium mnioides

from Japan, with Mucoromycotina being dominant, because

the lack of anatomical details (i.e. sections of colonized axes

and electron microscopy) and the limited molecular analyses

presented indicate that further, more rigorous studies of this

species may be required.

Marchantiopsida—These are the earliest-diverging liver-

worts to form Glomeromycotina symbioses; however, fungal

colonization is relatively low and 22% and 38% of

Marchantiopsida liverworts are estimated to be colonized by

Mucoromycotina and Glomeromycotina, respectively. These

results are skewed by the absence of symbionts from the most

speciose Marchantiopsida family, Ricciaceae (Table S1),

where both terrestrial and aquatic taxa lack symbionts.

When Ricciaceae is excluded from calculations, the coloniza-

tion estimates increase to 43% for Mucoromycotina and 74%

for Glomeromycotina.

Pelliidae—This is the latest-diverging liverwort group to

form Mucoromycotina and Glomeromycotina symbioses,

and colonization is common at 97% and 99%, respectively.

Metzgeriidae—Basidiomycota colonization is estimated to

occur in 44% of Metzgeriidae liverworts. If no assumption of

50% colonization in Riccardia species was applied to our

calculations (see exception 1 in ‘Methods’), then this estimate

would increase to 75%.

Jungermanniidae—Ascomycota and Basidiomycota have

only been reported in the Jungermanniales and are not present

in the Porellales or Ptilidiales. Our calculations suggest that

5% of Jungermanniidae species can be colonized by

Basidiomycota while 20% can be colonized by Ascomycota.

Our occurrence rate estimations for Glomeromycotina col-

onization in early-diverging land plants disagree with those

published previously by Brundrett (2009), except for

lycophytes. For the latter, our results agree with 100% colo-

nization (Brundrett 2009) (Table 3). For hornworts, our esti-

mate of 78% is lower than the previous one of 100%

(Brundrett 2009), although it confirms that colonization by

Glomeromycotina in hornworts in common. Themost striking

discrepancy is between our finding that only 5% of liverworts

likely form arbuscular mycorrhizal-like associations and the

Table 3 Fungal symbiosis

occurrence rate estimates Mucoromycotina Glomeromycotina Basidiomycota Ascomycota

Liverworts 4% 5% 7% 17%

Haplomitriopsida 100% 0 0 0

Marchantiopsida 22% 38% 0 0

Jungermanniopsida

Pelliidae 97% 99% 0 0

Metzgeriidae 0 0 44% 0

Jungermanniidae 0 0 5% 20%

Hornworts 69% 78% 0 0

Lycophytes 4% 99% 0 0
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60% estimate by Brundrett (2009). Furthermore, our results

indicate that previous estimates for the formation of any type

of fungal symbiosis in bryophytes have also been excessive.

Wang and Qiu (2006) estimated that 46% of bryophytes enter

into symbiosis with fungi, whereas Brundrett and Tedersoo

(2018) put this value at 25%, while also stating that in bryo-

phytes the majority of these relationships involve

Glomeromycotina fungi. In our study, after accounting for

the ca. 13,000 non-symbiotic moss species, we estimate that

only 11% of bryophytes enter into a symbiosis with fungi and

that the most widespread symbiosis is with Ascomycota

(53%) rather than Glomeromycotina (33%). The large number

of species in Lepidoziaceae, within Jungermanniidae (751

species), is principally responsible for the Ascomycota occur-

rence rate estimate being higher than that of the other fungal

lineages combined. Even though our fungal symbiosis occur-

rence rates are considerably lower than previously published

ones, they too may represent overestimates since our calcula-

tions are based on the assumption that all members of a plant

genus (or family for liverworts) can be colonized by a fungal

lineage if at least one member of the genus (or family) is

colonized by that lineage. While efforts were made to prevent

overestimation in four liverwort families where an absence of

symbiosis is common (Aneuraceae, Gymnomitriaceae,

Jungermanniaceae and Plagiochilaceae), more data are needed

to determine which families are fully symbiotic and for which

symbiosis is more variable.

Another important consideration in these estimations is the

symbiotic status of the fungi colonizing plants. All lineages of

Mucoromycotina related to the Endogonales and

Glomeromycotina are considered to be mycorrhizal-like when

in association with early-diverging plants (Rimington et al.

2015; Field et al. 2016a, b). This is however not the case for

Ascomycota and Basidiomycota, which are far more diverse

than Mucoromycotina and Glomeromycotina and regularly

colonize these plants as commensals or parasites (Davis and

Shaw 2008). The structures formed by Ascomycota and

Basidiomycota while colonizing early-diverging plants are

not necessarily diagnostic of mutualisms, and thus, it is diffi-

cult to infer mutualistic, commensal or parasitic relationships

based on morphology alone (Pressel et al. 2010). Therefore,

morphological observations of Basidiomycota in

Metzgeriidae and Ascomycota and Basidiomycota in

Jungermanniidae may not necessarily reflect mycorrhizal-

like relationships. An additional complication is that, at pres-

ent,Hyaloscypha (Pezoloma, Rhizoscyphus) ericae is the only

Ascomycota species for which mutualistic nutrient exchange

with liverworts has been confirmed (Kowal et al. 2018); thus,

reports of colonization by Ascomycota that have not been

identified as H. ericae using DNA sequencing may not repre-

sent mutualisms. For Basidiomycota, so far only Tulasnella

and Serendipita (Sebacina) have been reported as genera sym-

biotic with liverworts (Bidartondo and Duckett 2010);

however, both associations await physiological tests for ex-

change between partners. It follows that colonization of liver-

worts by mycorrhizal-like Ascomycota and Basidiomycota

may have been overestimated and efforts are now required

to identify molecularly the fungal symbionts of these plants

as well as testing for nutrient exchange.

In contrast, Mucoromycotina occurrence rates are likely

underestimates, especially for lycophytes. Traditionally, the

unique structures of Glomeromycotina, in particular the

arbuscules, made them easily and accurately identifiable

through microscopy (Smith and Read 2008). However, the

recent discovery of endosymbiotic Mucoromycotina, which

cannot be distinguished from Glomeromycotina cytologically

(Desirò et al. 2013; Field et al. 2016a, b) together with a report

that arbuscule-forming fine root endophytes may be members

of the Mucoromycotina (Orchard et al. 2017), indicates that

Mucoromycotina symbionts have likely been misidentified as

Glomeromycotina on a number of occasions (Field et al.

2019). It is possible, therefore, that some of the reports of

Glomeromycotina symbioses in Table 1 are actually incorrect,

although, at present, it is not possible to determine if and how

these potential misidentifications might have influenced our

occurrence rate estimations.

These caveats aside, our estimates can still be considered

the best fungal symbiosis occurrence rates to date for early-

diverging plants. While those for early-diverging liverworts

are based on fairly comprehensive information and are unlike-

ly to change with additional data, those for later-diverging

groups are likely to improve as more data become available

for these plants.

Inferring gains and losses of symbiosis

The gains and losses of fungal symbiosis during the evolu-

tionary history of the early-diverging plant families included

in Table 1 have been inferred (Fig. 1). These are discussed

below:

Liverworts—The liverworts have had a more diverse his-

tory of losses and gains of symbiosis than the hornworts and

lycophytes. Mucoromycotina likely formed the ancestral sym-

biosis with liverworts and appear to have been maintained as

the sole symbionts in the Haplomitriopsida (Rimington et al.

2019). There have been losses of Mucoromycotina symbiosis

in Marchantiopsida liverworts during the divergence of the

Blasiales, Sphaerocarpales and Marchantiales. In the

Marchantiales, symbiosis has been regained in three families,

Monocleaceae, Aytoniaceae and Targioniaceae. In Pelliidae,

Mucoromycotina symbiosis has been maintained in all fami-

lies except four (Hymenophytaceae, Phyllothalliaceae,

Petallophyllaceaeand Noterocladaceae). Conversely,

Glomeromycotina symbiosis likely had a single origin in liv-

erworts after the divergence of the Haplomitriopsida, followed

by severa l losses in the Marchant iops ida , f rom
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Sphaerocarpales and six families of the Marchantiales, but

only one loss in the Pelliidae, from the Phyllothalliaceae.

After the divergence of the Pelliidae, there was a complete

loss of both Mucoromycotina and Glomeromycotina symbio-

ses in liverworts. Basidiomycota and Ascomycota symbioses

appear to have been gained and lost multiple times during the

evolution of the Metzgeriidae and Jungermanniidae. In the

Metzgeriidae, there was a single gain of Basidiomycota sym-

biosis within the Aneuraceae and a subsequent loss from a

large number of the later-diverging Riccardia species

(Rabeau et al. 2017). Because the fungal symbiosis status of

many Jungermanniidae families remains unresolved, it is not

yet possible to accurately estimate gains and losses of

Ascomycota and Basidiomycota symbioses in this subclass.

Based on the better-studied families (highlighted in grey in

Fig. 1), Ascomycota symbiosis appears to have evolved at

least six times, with two major losses, while Basidiomycota

symbiosis appears to have been gained on at least four occa-

sions, with at least one loss. Alternatively, it is possible that

Ascomycota and Basidiomycota symbioses had a single ori-

gin in the Jungermanniales followed by a large number of

losses. Although this seems less likely, multiple losses of

AM and rhizobia have been inferred in angiosperms, so until

the fungal symbiosis status of these liverworts is fully resolved

for all families, ancestral reconstruction will be of limited

value to further our understanding of fungal associations in

these plants.

Hornworts—Apart from some individual losses and appar-

ent regains in certain hornwort species (Desirò et al. 2013),

both Mucoromycotina and Glomeromycotina symbioses have

been maintained throughout the Anthocerotopsida. Fungal

symbiosis has never been recorded in the single species class

Leiosporocerotopsida that contains the earliest-diverging ex-

tant hornwort Leiosporoceros dussii. Leiosporoceros dussii is

notable not only for its lack of fungal symbiosis but also for its

unique cyanobacterial symbiosis (Villarreal and Renzaglia

2006). With the order of divergence of the bryophytes under

debate (Puttick et al. 2018), it is unknown whether

Mucoromycotina and Glomeromycotina are both ancestral

symbionts of a l l hornwor ts and were los t f rom

Leiosporocerotopsida or whether these symbioses were

gained in the hornworts only after Leiosporocerotopsida

branched off. It also remains to be determined whether mem-

bers of the Phymatocerotaceae are colonized by

Mucoromycotina, Glomeromycotina or both fungi since the

only record for this family is a report of ‘a fungal association’

(Stahl 1949); however, the regular colonization of the other

Anthocerotopsida families by Mucoromycotina and

Glomeromycotina suggests this family is also colonized by

both fungal lineages.

Lycophytes—Phylogenetic inference (Fig. 1) and fossil ev-

idence (Strullu-Derrien et al. 2014) both support that the an-

cestor of all vascular plants entered into symbiosis with
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Mucoromycotina and Glomeromycotina. Within the

lycophytes, there have only been losses of symbiosis and no

subsequent gains. The loss of Mucoromycotina symbiosis ap-

pears to have occurred on a larger scale than that of

Glomeromycotina symbiosis, with a major loss after the di-

vergence of the Lycopodiaceae which resulted in Isoëtaceae

and Selaginellaceae apparently being colonized only by

Glomeromycotina. It should be noted however that no fungal

molecular data have been generated from Isoëtaceae and all

microscopy reports predate the discovery of Mucoromycotina

in lycophytes; therefore a symbiosis with Mucoromycotina

cannot be ruled out. Additionally, only three of the 688

Selaginellaceae species have been analysed molecularly

(Rimington et al. 2015); therefore, this family may also enter

into symbiosis with Mucoromycotina as well as

Glomeromycotina. There have also been losses of

Mucoromycotina symbiosis within the Lycopodiaceae and

the subfamily Huperzoideae is only colonized by

Glomeromycotina. Within the subfamily Lycopodioideae

there appears to have been a complete loss of symbiosis in

the Lycopodiastrum-Pseudolycopodium-Austrolycopodium-

Dendrolycopodium-Diphasium clade (Field et al. 2016a).

The low levels of colonization of lycophytes by symbiotic

fungi and the evolution of non-symbiotic species suggest that

these plants may have a low dependence on their mycorrhizal

partners when mature (Rimington et al. 2015). On the other

hand, the gametophytes of lycophytes are often subterranean

and achlorophyllous and therefore fully dependent on their

symbiotic fungi for nutrition (Schmid and Oberwinkler 1993).

Identifying lycophyte fungal symbionts

The identity of the fungi that enter into symbiosis with

lycophytes and the extent of these symbioses remain poorly

resolved. While the available evidence indicates that only

Mucoromycotina and Glomeromycotina colonize members

of this lineage (Pressel et al. 2016), more work is needed to

confirm this and to determine which symbionts dominate in

na t u r e (Lehne r t e t a l . 2017 ) . Symb io s i s w i t h

Glomeromycotina has been reported more frequently than

with Mucoromycotina (53 species vs. 6); however, most of

these reports precede the discovery of Mucoromycotina-plant

symbiosis and also lack molecular identification. Indeed, a

recent molecular survey found a smaller difference in inci-

dence of colonization between the two fungal lineages, albeit

with Glomeromycotina also being the dominant type

(Rimington et al. 2015). There has only been one report of

colonization by Basidiomycota in lycophytes (Horn et al.

2013). However, because of a lack of electron microscopy

evidence and of molecular methods suitable for detecting

Mucoromycotina in this report, and as it contradicts all previ-

ous and subsequent reports (Table 1), its conclusion has been

called into doubt. Reassessing the published images in Horn

et al. (2013), Strullu-Derrien et al. (2014) proposed that the

colonizing fungus more likely belongs to Mucoromycotina

than Basidiomycota. Dark-septate endophytes (DSE) are

Ascomycota fungi (Pressel et al. 2016) and so far have been

recorded in ten lycophyte species from all three lycophyte

families. However, there is no evidence that DSE may form

mutualistic associations with lycophytes (Pressel et al. 2016).

Thu s , a t p r e s en t , o n l y G lome romyco t i n a and

Mucoromycotina can be considered mycorrhizal partners of

this early-divergent vascular plant lineage.

Conclusions

In concluding their seminal work, Wang and Qiu (2006)

highlighted that ‘more basal land plants should be investigat-

ed, as they occupy an especially important position in our

understanding of the origin of mycorrhizal symbiosis’. In the

subsequent 13 years considerable effort has gone into address-

ing some of these gaps in knowledge so that the fungal sym-

biosis status of more than three times the number of early-

diverging species reported in Wang and Qiu is now known.

Nevertheless, further research is still required as to date only

6% of liverwort, 13% of hornwort and 5% of lycophyte spe-

cies have been examined. Within liverworts, our survey high-

lights Jungermanniidae as the group in most need of further

investigation. Lycophytes also require further investigation; it

is likely that estimates of the occurrence of Mucoromycotina

symbiosis in this lineage will increase with additional use of

molecular methods.

Compiling this survey of fungal symbioses in early-

diverging plants has highlighted the importance of both

DNA sequencing and microscopy for determining the identity

of plant fungal symbionts. Microscopy alone is not enough to

identify fungi unless they display truly diagnostic characteris-

tics; DNA sequencing allows us to determine fungal presence,

but not whether this represents a symbiosis. Combining these

two complementary methods is essential to fully understand

the distribution and diversity of fungal symbiosis in plants,

while physiological studies of resource exchange between

partners are needed to assess whether the plant-fungus associ-

ation is functionally mycorrhizal or mycorrhizal-like.

�Fig. 1 The phylogenetic position and fungal symbiosis status of early-

diverging plant families. Branch lengths have no value and only show

how the families are currently considered to be related. Initials in the table

denote: M Mucoromycotina, G Glomeromycotina, A Ascomycota, B

Basidiomycota. A check indicates presence, a cross absence, and a

question mark indicates an unknown identity reported only as ‘fungal

association’. Checks highlighted in grey are likely accurate reports and

were used for occurrence rate estimations, whereas the mutualistic status

of un-highlighted checks remains unknown (only relevant for

Ascomycota and Basidiomycota symbioses in liverworts). An asterisk

indicates a likely incorrect report of symbiosis
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