

This is a repository copy of *The distribution and evolution of fungal symbioses in ancient lineages of land plants*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/161463/

Version: Published Version

Article:

Rimington, W.R., Duckett, J.G., Field, K.J. orcid.org/0000-0002-5196-2360 et al. (2 more authors) (2020) The distribution and evolution of fungal symbioses in ancient lineages of land plants. Mycorrhiza, 30 (1). pp. 23-49. ISSN 0940-6360

https://doi.org/10.1007/s00572-020-00938-y

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

REVIEW

The distribution and evolution of fungal symbioses in ancient lineages of land plants

William R. Rimington^{1,2,3} · Jeffrey G. Duckett² · Katie J. Field⁴ · Martin I. Bidartondo^{1,3} · Silvia Pressel²

Received: 15 November 2019 / Accepted: 5 February 2020 / Published online: 4 March 2020 \odot The Author(s) 2020

Abstract

An accurate understanding of the diversity and distribution of fungal symbioses in land plants is essential for mycorrhizal research. Here we update the seminal work of Wang and Qiu (Mycorrhiza 16:299-363, 2006) with a long-overdue focus on early-diverging land plant lineages, which were considerably under-represented in their survey, by examining the published literature to compile data on the status of fungal symbioses in liverworts, hornworts and lycophytes. Our survey combines data from 84 publications, including recent, post-2006, reports of Mucoromycotina associations in these lineages, to produce a list of at least 591 species with known fungal symbiosis status, 180 of which were included in Wang and Qiu (Mycorrhiza 16:299-363, 2006). Using this up-to-date compilation, we estimate that fewer than 30% of liverwort species engage in symbiosis with fungi belonging to all three mycorrhizal phyla, Mucoromycota, Basidiomycota and Ascomycota, with the last being the most wide-spread (17%). Fungal symbioses in hornworts (78%) and lycophytes (up to 100%) appear to be more common but involve only members of the two Mucoromycota subphyla Mucoromycotina and Glomeromycotina, with Glomeromycotina prevailing in both plant groups. Our fungal symbiosis occurrence estimates are considerably more conservative than those published previously, but they too may represent overestimates due to currently unavoidable assumptions.

Keywords Arbuscular mycorrhizas · Ericoid mycorrhizas · Mucoromycota · Hornworts · Liverworts · Lycophytes

Introduction

Fungi colonize plants and interact with their living tissues in a variety of ways; these interactions can be detrimental (parasitic), neutral (symptomless) or beneficial (mutualistic) to the host plant. More than 85% of vascular plant species are considered to form mutually beneficial symbioses in their roots,

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00572-020-00938-y) contains supplementary material, which is available to authorized users.

Silvia Pressel s.pressel@nhm.ac.uk

- ¹ Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- ² Department of Life Sciences, Algae, Fungi and Plants Division, Natural History Museum, London, London SW7 5BD, UK
- ³ Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
- ⁴ Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

termed mycorrhizas, with soil fungi (Brundrett and Tedersoo 2018). This percentage is only an estimate because investigating every plant species is neither practical nor currently possible given that not all species are known and ca. 2000 new vascular plants species are described each year (Pimm and Raven 2017). For the most part, fungal symbiosis occurrence rate estimates are lacking for early-diverging plant lineages as little effort has been directed towards compiling the data required to allow these estimations to be made. This also reflects an overall paucity of data available on these groups, including information on the type of interaction formed, i.e. whether the interaction is mycorrhizal or mycorrhizal-like in plants such as liverworts and hornworts that lack true roots. However, in the last decade, there has been an increased research focus on the diversity and distribution of fungal associations in liverworts, hornworts and lycophytes, largely driven by the discovery of Mucoromycotina fungi in association with these plants (Bidartondo et al. 2011; Desirò et al. 2013; Rimington et al. 2015) and the demonstration that at least some of these associations are mycorrhizal or mycorrhizal-like-i.e. those between lycophytes and Mucoromycotina (Hoysted et al. 2019); between liverworts and Glomeromycotina (Field et al. 2012), Mucoromycotina (Field et al. 2015) and Glomeromycotina and Mucoromycotina together (Field et al. 2016b); and between liverworts and Ascomycota (Kowal et al. 2018). We address this lacuna by compiling published fungal symbiosis status for these early-diverging plant lineages with the caveat that some of the reported symbioses, e.g. those in hornworts, are considered such on the basis of morphology and/or involvement of fungi known to be mycorrhizal with other plant lineages but are yet to be confirmed experimentally. A comprehensive list of which plant species enter into fungal symbioses and with which fungi not only serves as a useful resource for future studies but also provides insight into the origins and distribution of these relationships and how they evolved across plant lineages (Wang and Qiu 2006). This is particularly pertinent today as recent studies are finally providing much improved resolution on the phylogenetic relationships among the earliest-diverging bryophytes (liverworts, mosses and hornworts) and vascular plants, which have been contested for decades (e.g. Puttick et al. 2018; de Sousa et al. 2019). Within bryophytes, mosses are the only group not known to harbour symbiotic fungi in their living cells (Pressel et al. 2010). On the other hand, liverworts engage in remarkably diverse symbioses with Mucoromycotina, Glomeromycotina, Ascomycota or Basidiomycota fungi (Pressel et al. 2010; Bidartondo et al. 2011). Hornworts appear intermediate between liverworts and mosses by forming associations with Mucoromycotina and Glomeromycotina but not with members of the Dikarya (Desirò et al. 2013). Both liverworts and hornworts can also be fungus-free (non-symbiotic). Liverworts have undergone a number of gains and losses of symbiosis during their evolution; the early-diverging groups Haplomitriopsida, Marchantiopsida and Pelliidae are symbiotic with Mucoromycotina and/or Glomeromycotina (Rimington et al. 2019) while more derived lineages associate with Basidiomycota (Metzgeriidae, Jungermanniidae) and Ascomycota (Jungermanniidae) (Pressel et al. 2010). Ascomycota and Basidiomycota are both members of the subkingdom Dikarya, the latest diverging fungal lineage (Hibbett et al. 2007). Molecular analysis has indicated that the Basidiomycota symbionts of liverworts are members of the genera Serendipita (Sebacina) and Tulasnella (Bidartondo and Duckett 2010), while Ascomycota symbioses are formed by Hyaloscypha (Pezoloma or Rhizoscyphus) ericae (Upson et al. 2007; Fehrer et al. 2019).

Hornworts and some liverworts also form endosymbioses with cyanobacteria (*Nostoc* sp.) (Adams and Duggan 2008). In hornworts, these associations are ubiquitous (Renzaglia et al. 2007), while in liverworts, they occur only in two Marchantiopsida species that lack fungal symbionts, *Blasia pusilla* and *Cavicularia densa* (Rikkinen and Virtanen 2008). Associations with cyanobacteria have also been reported in some moss species; however, these are exclusively epiphytic or endophytic in the dead hyaline cells in *Sphagnum* leaves (Kostka et al. 2016; Warshan et al. 2017).

Recently, it has been shown that lycophytes also form associations with Mucoromycotina and Glomeromycotina fungi (Rimington et al. 2015), with emerging evidence of carbonfor-nutrient exchanges between these early-diverging vascular plants and their Mucoromycotina symbionts (Hoysted et al. 2019). A better understanding of fungal associations in lycophytes is important when considering the early evolution of land plant-fungus symbiosis. Lycophytes, which comprise ca. 1360 species (Hassler and Schmitt 2018), are the earliest branching lineage of vascular plants (tracheophytes) and represent the transition from non-vascular to seed plants (Kenrick and Crane 1997). They are of particular importance because putative transitional 'pre-vascular' plants, including Rhynie Chert fossils such as Aglaophyton, are all extinct (Remy et al. 1994). As such, extant lycophytes are considered the best modern analogues for the first vascular plants (Kenrick and Crane 1997).

Lists detailing the fungal symbiosis status of plants have been published for many years; for example, the first list of fungal symbiosis in liverworts was produced 70 years ago (Stahl 1949). Such lists require regular updating as the number of studies increases and so does our knowledge of the diversity of symbioses within and across plant clades. Earlier compilations usually focused on a local scale and only on certain, almost invariably vascular, plant groups (Harley and Harley 1987). It was not until 2006 that a worldwide literature survey of fungal symbioses across all land plant groups was performed (Wang and Qiu 2006). This landmark publication by Wang and Qiu (2006) captured the status of over 3000 species (143 of which were bryophytes) and, unsurprisingly, has been highly influential ever since. In the 13 years since its publication, this paper has been one of the most cited on mycorrhizas (over 1500 citations as of January 2020) and has provided important insights on the evolution of mycorrhizas; for example, evidence that arbuscular mycorrhizas (AM) are found throughout the land plant phylogeny has been used as a key argument for Glomeromycotina symbiosis being an ancestral trait of land plants (Rimington et al. 2018). However, Wang and Qiu's survey (Wang and Qiu 2006) is now considerably outdated, especially with regard to early-diverging plant lineages. Since its publication there has been much interest in the diverse fungal symbioses of early-diverging plants (e.g. Ligrone et al. 2007; Duckett and Ligrone 2008; Bidartondo and Duckett 2010; Pressel et al. 2010; Desirò et al. 2013; Rimington et al. 2015; Rimington et al. 2018; Rimington et al. 2019) together with the discovery by Bidartondo et al. (2011) of symbioses involving Mucoromycotina fungi in liverworts, hornworts and a fern.

Fungal symbiosis occurrence rate estimates are commonly used to highlight the near-ubiquity of these relationships. For instance, few publications concerning AM fail to mention that at least 80% of plant species form these symbioses, most commonly citing the reference book 'Mycorrhizal Symbiosis' (Smith and Read 1997, 2008). These estimates are useful for emphasizing the importance of mycorrhizas to broad audiences and to highlight the diversity of these relationships between fungi and plants. These estimates are useful starting points for more refined estimates; recently, re-examination has shown that 80% may be an overestimation for AM symbioses, with the true value probably closer to 71% (Brundrett and Tedersoo 2018). Fungal symbiosis occurrence estimations for early-diverging plants have been more sporadic and highly variable including Glomeromycotina symbioses occurring in 60% and 100% of liverwort and hornwort species, respectively (Brundrett 2009) and 25% of bryophytes forming fungal associations, the majority of which involve Glomeromycotina (Brundrett and Tedersoo 2018). The last figure fails to take on board the fact that mosses, the most speciose group of bryophytes with ca. 12,000 species, lack fungal symbionts.

We present a new global compilation of the fungal symbiosis status of liverworts, hornworts and lycophytes. Our compilation more than triples the number of early-diverging plant species listed in Wang and Qiu (2006) and is the first to focus on early-diverging plant lineages on a global scale.

Methods

Literature survey

A survey of the published literature on fungal symbioses in liverworts, hornworts and lycophytes was performed. Reexamination of Wang and Qiu's survey (Wang and Qiu 2006) revealed that some key references for these plants were missing and that fungal symbiosis status was often reported only as 'fungal association' without specifying the fungus involved; thus, a full search was performed, including studies prior to 2006. In trying to capture all available references, several keywords were used as search terms in Google Scholar. In each search, one of the following plant terms was used: 'liverwort', 'hornwort', 'lycopod' and 'lycophyte'. Each plant term was combined with one of the following fungal terms: 'fungi', 'fungus', 'Glomeromycotina', 'Mucoromycotina', 'Glomeromycota', 'Glomus tenue' and 'fine endophyte'. Additionally, for liverworts, which are known to form more diverse fungal symbioses than the other two lineages, the following terms were also used: 'Ascomycota', 'Basidiomycota', 'Rhizoscyphus', 'Pezoloma', 'Sebacina' and 'Tulasnella'. Using these criteria, a total of 34 searches were performed. The titles and abstracts of all references returned by the searches were scrutinized to identify reports of the fungal status of any liverwort, hornwort or lycophyte species. Where the search terms returned more than 500 hits (e.g. 'lycopod fungi' returned 14,600 hits), only the first 500 results were investigated. Fungal symbiosis status was recorded as

Glomeromycotina, Mucoromycotina, Ascomycota, Basidiomycota or non-symbiotic. Additionally, the presence of dark septate endophytes (DSE) was recorded for lycophytes. For some liverwort and hornwort species, only the presence of a 'fungal association' was recorded as the fungal lineage could not be assigned. As well as recording the fungal status, the identification method (microscopy and/or DNA sequencing) was noted for all species. The publications found through Google Scholar that were deemed relevant to the investigation were read and any literature found within those publications, but not returned directly by Google Scholar, was also included. This secondary search method returned exclusively microscopy studies published prior to 1990 (and dating back to 1891); thus, we are confident that all relevant molecular studies were found with our main search method. Additionally, information on the fungal symbiosis status of some liverwort species was obtained either from the liverwort flora of Paton (1999) or from our own unpublished microscopy observations (25 species; see Table S2).

Plant nomenclature

Nomenclature for liverworts and hornworts follows the most recent floras (Söderström et al. 2016; Stotler and Crandall-Stotler 2017) and the Tropicos database (www.tropicos.org); taxonomic rankings above genus level follow Söderström et al. (2016). For lycophytes, nomenclature follows the Checklist of Ferns and Lycophytes of the World by Hassler and Schmitt (2018). When currently accepted names differ from those in the original reports, both are given in Table 1, with the latter appearing in parentheses.

Estimating symbiosis occurrence rates

Fungal symbiosis occurrence rates were estimated for each of the three early diverging plant lineages: liverworts, hornworts and lycophytes. The number of species per genus or family and the total number of species per lineage were based on Söderström et al. (2016) for liverworts and hornworts and on Hassler and Schmitt (2018) for lycophytes. When making estimates for hornworts and lycophytes, if a species within a genus was colonized by a fungal lineage, then it was assumed that all members of the genus have the potential to be colonized by that fungal lineage. Underlining this assumption was the finding of fungi by our own observations on fresh specimens of the same genera. The total number of species potentially colonized in a plant lineage was divided by the total number of species in that lineage and multiplied by 100 to produce an estimate for the fungal symbiosis occurrence rate. In instances where the fungal status of a genus was unknown or reported only as 'fungal association', the genus was not included in the calculations and the total number of species was reduced accordingly. The same method was applied to liverworts but using the family level rather than the genus,

Table 1The fungal symbionts of early-diverging plants. MucoroMucoromycotina, Glom - Glomeromycotina, Asco - Ascomycota,Basid - Basidiomycota, FA - Fungal association with unidentified fungi,NS - non-symbiotic, DSE - dark septate endophytes. Species labelled'Mucoro (FRE)' were reported only as being colonized by fine rootendophytes (i.e. *Glomus tenue*). A question mark after 'Mucoro'signifies it was not reported in the original publication but microscopyimages are indicative of Mucoromycotina colonization. Checks indicate

whether DNA sequencing and/or microscopy were used for fungal identification. An asterisk specifies our unpublished personal observations. In the column labelled Fungi, a hash indicates a report considered incorrect as a result of further studies. A cross signifies a likely incorrect report that is discussed in the main text. Species in bold had conflicting reports of symbiotic status. Where appropriate, the species names used in original reports are provided in parentheses. Reference numbers are listed below the table

Species	Fungi	DNA	Microscopy	Reference
Marchantiophyta				
Haplomitriopsida				
Haplomitriidae				
Calobryales				
Haplomitriaceae				
Haplomitrium	Manager		/	1.2
Haplomitrium (Calobryum) biumei	Clam×	/	v (1-3
Haplomitrium dantatum	Giom	~	√ ∕*	1
Haplomitrium aibhsiae	Mucoro			4, 5
Haplomitrium hookeri	Mucoro	.(./	1, 2, 4-7
Haplomitrium intermedium	FA	v	1	1 1
Haplomitrium mnioides	Mucoro	1	×	4.5
Haplomitrium ovalifolium	Mucoro	1	1	1, 2, 6
Treubiidae				
Treubiales				
Treubiaceae				
Treubia				
Treubia insignis	FA		\checkmark	3, 9, 10
Treubia lacunosa	Mucoro	1	\checkmark	1, 2, 4, 5, 7, 11, 12
Treubia pygmaea	Mucoro	1	1	1, 2, 4, 5, 11
Treubia tasmanica	Mucoro	\checkmark	\checkmark	2, 12
Marchantiopsida				
Blasildae				
Blasiaceae				
Blasia				
Blasia pusilla	NS (Nostoc)	1	1	1 3 13-16
Cavicularia	105 (11051000)	•	·	1, 5, 15 16
Cavicularia densa	NS (Nostoc)	1	1	13
Marchantiidae (complex thalloid)				
Lunulariales				
Lunulariaceae				
Lunularia				
Lunularia cruciata	Glom, Mucoro	\checkmark	\checkmark	1, 3–5, 16–18
Marchantiales				
Aytoniaceae				
Asterella	C1	,	,	1.4.5
Asterella australis	Glom	1	V (1, 4, 5
Asterella balandari	Glom, Mucoro	~	V	1, 4, 5
Asterella (Eimbriaria) hlumoana	NS	v	1	4, 5
Asterella californica	Mucoro	./	v	4 5
Asterella drummondii	NS	1		4,5
Asterella grollei	NS	1		4.5
Asterella khasvana	Glom, Mucoro	1		4, 5
Asterella (Fimbriaria) lindenbergiana	NS	\checkmark	\checkmark	3-5
Asterella muscicola	Glom, Mucoro	\checkmark	\checkmark	1, 4, 5
Asterella pringlei	Mucoro	\checkmark		4, 5
Asterella sp.	Glom, Mucoro	\checkmark		4, 5
Asterella (Fimbriaria) sp.	FA		\checkmark	3
Asterella tenera	Glom, Mucoro	\checkmark	\checkmark	1, 2, 4, 5
Asterella wilmsii	Glom, Mucoro	\checkmark	\checkmark	1, 4, 5, 19
Cryptomitrium	NG	,		4.5
Cryptomitrium himalayense	NS	~	,	4, 5
Cryptomitrium oreades	NS	\checkmark	\checkmark	1, 4, 5
Mannia Mannia angrogena (Crimaldia dishotoma)	NC		/	1.2
Mannia angrogyna (Grimaiaia aichoioma) Mannia fragrans	NS			1, 5
«	Mucoro (FRE)		1	20
Mannia gracilis	NS	1	•	4.5
Mannia sp	Glom	✓		4, 5
Plagiochasma				, -
Plagiochasma eximium	Glom		\checkmark	1

Plagiochasma rupestre

Table 1 (continued)

Species "

Fungi	DNA	Microscopy	Reference
NS	1		4, 5
Glom, Mucoro	1	\checkmark	1, 4, 5, 21
NS		\checkmark	3
Glom, Mucoro	\checkmark	1	4, 5
FA		\checkmark	3
Glom	1	1	1.3-5
			,
Class	/	1	1 4 5
Giom	V	\checkmark	1, 4, 5
Glom	\checkmark	\checkmark	1, 4, 5
NS		\checkmark	3
		,	
NS		\checkmark	1, 3
NS	1	1	1.3-5
	-		-,
Cl	,	,	1 5 14 16 22 2
Glom		\checkmark	1-5, 14, 16, 22, 2
Glom	√ √	1	1, 4, 5, 14
	-	-	-, ., -,
Class		/	1
NS	1	√ √	1 3_5
110	•	÷	5.5

~	_
•)	1
~	,

Plagiochasma sp.	Glom, Mucoro	\checkmark		4, 5
Plagiochasma sp.	FA		\checkmark	3
Reboulia				
Reboulia hemisphaerica	Glom	\checkmark	\checkmark	1, 3–5
Cleveaceae				,
Athalamia				
Athalamia ninguis	Glom	1	1	1 4 5
Clevea	Gloin	•	·	1, 1, 5
Clavea (Athalamia) hyalina	Glom	1	1	1 4 5
Clevea snathusii (rousseliana)	NS	v	v /	2
Delte level spainysa (rousseaana)	143		v	3
Petiolepis	NG		/	1.2
Petiolepis quaarata (granais)	INS		✓	1, 3
Sauteria		,	,	
Sauteria alpina	NS	\checkmark	\checkmark	1, 3–5
Conocephalaceae				
Conocephalum				
Conocephalum conicum (Fegatella conica)	Glom	\checkmark	\checkmark	1–5, 14, 16, 22, 23
Conocephalum japonicum	Glom	\checkmark		4, 5
Conocephalum salebrosum	Glom	\checkmark	\checkmark	1, 4, 5, 14
Corsiniaceae				
Corsinia				
Corsinia coriandrina (marchantioides)	Glom		./	1
"	NS	1		3_5
Cuonigia	143	v	v	3-3
Cronisia	NG		,	
Cronisia fimbriata	NS		\checkmark	1
Cyathodiaceae				
Cyathodium				
Cyathodium aureonitens	NS	\checkmark		4, 5
Cyathodium cavernarum	NS	\checkmark	\checkmark	1, 4, 5
Cyathodium foetidissimum	NS		\checkmark	1
"	$FA^{\#}$		\checkmark	3
Cvathodium sp.	NS	\checkmark		4, 5
Cvathodium tuberosum	NS	\checkmark		4, 5
Dumortieraceae				y -
Dumortiera				
Dumortiara hirsuta (irrigua/valutina)	Glom	1	1	1 3 5
Evermetheeneese	Giolii	v	v	1, 5–5
	NG		/	,
Aitchisoniella himalayensis	NS		\checkmark	1
Exormotheca				
Exormotheca holstii	NS		\checkmark	1, 3
Exormotheca pustulosa	NS		\checkmark	1
Stephensoniella				
Stephensoniella brevipedunculata	NS		\checkmark	1
Marchantiaceae				
Marchantia				
Marchantia berteroana	Glom	\checkmark	\checkmark	1, 4, 5
Marchantia breviloba	Glom	1		4 5
Marchantia chenonoda	Glom	./		4 5
Marchantia dobilis	Glom	· /		4,5
Marchantia debuis Marchantia foliacoa	Glam	· /	/	-7, 5 1 2 4 5 24 25
Marchania Jouacea	Gioin	v	v (1, 2, 4, 3, 24, 23
Marchanila geminala	FA	,	V	3
Marchantia paleacea	Glom	V	\checkmark	3-5, 26, 27
Marchantia papillata	Glom	√		4, 5
Marchantia pappeana	Glom	\checkmark	\checkmark	1, 4, 5
Marchantia pileata	Glom	\checkmark		4, 5
Marchantia polymorpha subsp. montivagans	Glom		\checkmark	1
Marchantia polymorpha subsp. polymorpha	NS	\checkmark	\checkmark	1, 3–5
Marchantia polymorpha subsp. ruderalis	NS	\checkmark	\checkmark	1, 4, 5, 14
Marchantia (Bucegia) romanica	NS		1	1
Marchantia wallisii (grisea)	FA		1	3
Projesia	111		•	5
Proissia (Marchantia) ana duata	Clam	/	/	1 2 5 26
Monoclascasa	Ololil	v	v	1, 5–5, 20
Maria - 1				
Monoclea		,	/	1.2.5
Monoclea forsteri	Glom, Mucoro	~	√	1, 3–5
Monoclea gottschei	NS	√		4, 5
	Glom	\checkmark	\checkmark	1
Monoclea sp.	FA		\checkmark	3
Monosoleniaceae				

Species	Fungi	DNA	Microscopy	Reference
Monosolenium				
Monosolenium tenerum	NS		\checkmark	1
Oxymitraceae				
Oxymitra				
Oxymitra cristata	NS		\checkmark	1
Oxymitra incrassata	NS	\checkmark	\checkmark	1, 4, 5
Ricciaceae				
Riccia				
Riccia albolimbata	NS			1
Riccia beyrichiana	NS		1	1
Riccia canaliculata	NS		1	1
Riccia cavernosa	NS		1	1
Riccia ciliata	NS		~	3
Riccia crozalsii	NS		~	l
Riccia crystallina	NS		~	
Riccia fluitans	NS	/	~	1, 3, 14, 16
Riccia glauca	NS	\checkmark	~	1, 3, 14, 28
Riccia nuebeneriana Dia sia su sustana	INS NC			1
Riccia montana	INS NG		~	1
Riccia nigreila Dissis shall an dissus	INS NC			1
Riccia okananajana	INS NC			1
Riccia sorocarpa Dia sin atriata	INS NC			1
Riccia stricia Dia zia zul liferenz	INS NC			1
Riccia subbijurca	INS INS		~	1
Ricciocarpus Biogiocorpus	NC		/	1.2
Tarrianiagana	18		v	1, 5
Targionia Targionia humonhulla	Clam Musara	/	/	1 2 5
Wissnerallassas	Giolii, Mucolo	V	v	1, 5–5
Wissmannlla				
Wiesnerella denudata	NS		/	1
wiesnereuu aenuaaia "	INS EA		v /	1
Nachodosonialas	FA		v	3
Nechodosoniacea				
Neohodasonia				
Neohodasonia mirahilis	Glom Mucoro	1		1 2 4 5 29
Sphaerocamales	Giolii, Mideolo	v	v	1, 2, 4, 5, 29
Monocamaceae				
Monocarpus				
Monocarpus sphaerocarpus	NS		1	1
Riellaceae	115		·	1
Riella				
Riella americana	NS		1	1
Riella helicophylla	NS		1	1
Sphaerocarpaceae			-	-
Geothallus				
Geothallus tuberosus	NS		1	1
Sphaerocarpos				
Sphaerocarpos michelii	NS		1	1
Sphaerocarpos texanus	NS		1	1
Sphaerocarpos sp.	NS		1	3
Jungermanniopsida				
Pelliidae (simple thalloid I)				
Fossombroniales				
Calyculariaceae				
Calycularia				
Calycularia crispula	Glom, Mucoro	\checkmark	√*	4, 5
Allisoniaceae				
Allisonia				
Allisonia cockaynei	Glom, Mucoro	\checkmark	1	1, 2, 4, 5, 29
Fossombroniaceae				
Fossombronia				
Fossombronia angulifolia	Glom, Mucoro	\checkmark	√*	4, 5
Fossombronia angulosa	Glom		\checkmark	1, 3
Fossombronia australis	Glom, Mucoro	\checkmark	1	1, 2, 4, 5
Fossombronia caespitiformis	Glom, Mucoro	\checkmark	\checkmark	1, 4, 5
Fossombronia echinata	Glom, Mucoro	\checkmark	\checkmark	1, 4, 5
Fossombronia foveolata	Glom, Mucoro	\checkmark	\checkmark	4, 5, 14
Fossombronia husnotii	Glom	\checkmark	\checkmark	4, 5
Fossombronia hyalorhiza	Glom, Mucoro	\checkmark		4, 5
Fossombronia incurva	Glom, Mucoro	\checkmark		4, 5
Fossombronia indica	Glom	\checkmark		4, 5

29

Species	Fungi	DNA	Microscopy	Reference
Fossombronia kashyapii	Glom, Mucoro	1		4, 5
Fossombronia maritima	Glom	1	\checkmark	1, 4, 5
Fossombronia porphyrorhiza	NS	1	,	4, 5
Fossombronia pusilla Fossombronia poticulata	Glom, Mucoro	1	\checkmark	1, 3–5, 16
Fossombronia sp	Glom Mucoro			4, 5
Fossombronia wondraczekii	Glom Mucoro	v	1	4, 5
Petalophyllaceae	Giolii, Mideolo	•	•	1,5 5
Petalophyllum				
Petalophyllum ralfsii	Glom		\checkmark	1
Sewardiella				
Sewardiella tuberifera	Glom, Mucoro	\checkmark	\checkmark	4, 5
Pallaviciniales				
Hymenophytaceae				
Hymenophyton	Class	/	/	1 2 5
Hymenophyton flabellatum Moerakingene	Glom	\checkmark	\checkmark	1, 3–3
Moerchia				
Moerchia hlvttii	Glom Mucoro	1	1	1 3-5
Moerckia hibernica	NS	•	1	1
Moerckia flotoviana	NS		√*	
Pallaviciniaceae				
Greeneothallus				
Greeneothallus gemmiparus	Glom		\checkmark	1
Jensenia				
Jensenia connivens	Glom	1	\checkmark	1, 2
Jensenia crassifrons	Glom	\checkmark	,	4, 5
Jensenia wallisii Dallari zini z	Glom		\checkmark	1
Pallavicinia Dellavicinia compisence	Clam		/	1
Pallavicinia connivens Pallavicinia indica	NS			1
Pallavicinia lvellii	NS		1	1
Pallavicinia sp.	FA		1	3
Pallavicinia xiphoides	Glom, Mucoro	\checkmark	1	4, 5
"	NS [#]		\checkmark	1
Podomitrium				
Podomitrium phyllanthus	Glom	\checkmark	\checkmark	1, 2, 4, 5
Symphyogyna	~			
Symphyogyna brasiliensis	Glom	<i>.</i>	1	1, 4, 5
Symphyogyna brongniartii Symphyogyna bookatattarii	Glom Glom Musere	v	\checkmark	1, 4, 5
Symphyogyna hoenstelleri Symphyogyna homenophyllum	Glom Mucoro	v ./	1	4, 5
"	NS#	5	v	30
Symphyogyna podophylla	Glom	1		2
Symphyogyna prolifera	Glom	\checkmark		2
Symphyogyna sp.	NS	\checkmark		30
Symphyogyna sp.	FA		\checkmark	3
Symphyogyna subsimplex	Glom	\checkmark	\checkmark	1, 2
Symphyogyna (Pallavicinia) tenuinervis	NS			1
Symphyogyna undulata	Glom		\checkmark	1
Xenothallus	Class		/	1 35
Phyllothalliaceae	Giolii		V	1, 23
Phyllothallia				
Phyllothallia nivicola	NS	\checkmark	\checkmark	1, 4, 5, 25
Pelliales				
Noterocladaceae				
Noteroclada				
Noteroclada (Androcryphia) confluens	Glom	\checkmark	\checkmark	1, 3–5
Pelliaceae				
Pellia	Class	/	/	1 4 5 14 21
Pellia enalviljolia (jabbroniana) "	Glom Magazza (EBE)	\checkmark	V (1, 4, 5, 14, 31
Pollia aninhulla	Glom Musoro	/	v /	25
Pellia neesiana	NS	v ./	v	4 5
	Glom	•	1	1, 3
Metzgeriidae (simple thalloid II)			-	-, -
Metzgeriales				
Aneuraceae				
Aneura				
Aneura lobata	Basid		\checkmark	1
Aneura maxima	Basid	1	1	1, 3, 28
Aneura mirabilis	Basid	\checkmark	\checkmark	1, 28, 31–33

Species	Fungi	DNA	Microscopy	Reference
Aneura novaguineensis	Basid		1	1, 32, 34
Aneura pellioides	NS	\checkmark	1	28
Aneura pinguis	Basid	\checkmark	\checkmark	1, 3, 15, 16, 28, 31, 32, 34–37
Aneura pseudopinguis	Basid		\checkmark	1
Aneura sp.	Basid	\checkmark		28
Lobatiriccardia				
Lobatiriccardia (Aneura) alterniloba	FA		1	34
Lobatiriccardia coronopus subsp. australis	Basid		1	32
(Aneura lobata subsp. australis)				
Lobatiriccardia (Aneura) lobata	Basid	\checkmark	1	28.34
Lobatiriccardia sp.	Basid	1		28
Riccardia				
Riccardia aeauicellularis	NS		1	34
Riccardia aequitexta	FA		1	34
Riccardia alba	NS		1	34
Riccardia alcicornis	NS		1	34
Riccardia asperulata	NS			34
Riccardia australis	FA			34
Riccardia hinimatifda	NC		~	24
Riccarata Dipinnutifua	IND EA		v (34
Riccarata breviata	FA	,		34
Riccardia chamedryfolia (Aneura sinuata)	NS	\checkmark	~	1, 28
"	FA		\checkmark	3
Riccardia cochleata	NS		\checkmark	1, 34
"	Basid		\checkmark	38
Riccardia colensoi	NS		\checkmark	34
Riccardia crassa	NS		\checkmark	34
Riccardia eriocaula	NS		1	1, 34
Riccardia furtiva	FA		1	34
Riccardia incurvata	NS		1	1
Riccardia intercellula	Basid		1	1.34
Riccardia latifrons	NS		./	1 33
"	Basid	1		37
Pieceardia lobulata	NS	v	·	24
Riccardia manzinata	INS NC		~	24
Riccaraia marginaia	INS Darid	/	V	34
Riccaraia metzgeriijormis	Basid	✓	<i>,</i>	39
Riccardia multicorpora	FA		1	34
Riccardia (Aneura) multifida	NS	\checkmark	\checkmark	1, 30, 33
"	Basid	\checkmark	\checkmark	3, 37
Riccardia nitida	NS		\checkmark	34
Riccardia pallidevirens	FA		\checkmark	34
Riccardia (Aneura) palmata	NS		\checkmark	1, 3, 33
"	Basid	\checkmark	\checkmark	37
Riccardia papulosa	FA		1	34
Riccardia pennata	Basid		1	1, 34, 38
Riccardia perspicua	FA		1	34
Riccardia nseudodendroceros	NS		1	34
Riccardia pusilla	FA		1	34
Riccardia smaraadina	Basid	1	•	35
Riccardia smaragaina Diogardia sp	Dasid	v /		25
Diogandia umida	NC	v	/	24
Riccardia unida	INS EA			24
Kiccaraia walisiana Vanda ami'n	FA		V	34
veraoornia	D 11		,	1 05 00
Verdoornia succulenta	Basid		\checkmark	1, 25, 32
Metzgenaceae				
Metzgeria				
Metzgeria conjugata	NS		\checkmark	1, 33
Metzgeria decipiens	NS		\checkmark	1
Metzgeria furcata	NS	\checkmark	\checkmark	1, 3, 30, 33
Metzgeria leptoneura	NS		\checkmark	33
Metzgeria pubescens	NS		1	1, 3, 33
Metzgeria temperata	NS	\checkmark	1	1, 30, 33
Metzgeria violacea (fruticulosa)	NS	-	1	1. 33
Pleuroziales			•	1,00
Pleuroziaceae				
Diamogia				
r leurozia	NO		/	1
Pieurozia gigantea	IND	,	V	1
Pleurozia purpurea	NS	\checkmark	\checkmark	1,28
Jungermanniidae (leafy)				
Jungermanniales				
Acrobolbaceae				
Acrobolbus				
Acrobolbus cinerascens	NS	\checkmark		30

Species	Fungi	DNA	Microscopy	Reference
Acrobalbus achrophyllus	NS		1	25
Acrobolbus wilsonii	Basid [#]		1	40
Goebelobryum	Duolu		•	10
Goebelobryum unguiculatum	NS		1	25
Lethocolea	110		·	20
Lethocolea pansa	FA		1	25
Saccogynidium	111		·	20
Saccogyniaium australe	NS		1	25
Adelanthaceae	110		·	20
Adelanthus				
Adelanthus hisetulus	NS	1		30
Adelanthus falcatus	FA	·	1	25
Adelanthus lindenbergianus	NS		./*	23
Biantheridion	110		·	
Rightheridion undulifolium	NS		1	33 40
Pseudomarsunidium	110		•	55, 10
Pseudomarsunidium (Adelanthus) deciniens	NS		./*	
Svzvajella	110		·	
Syzygiena Syzygiena	NS		1	40
	FA [#]			33
Survoialla (Jamosonialla) polovata	NS	/	v	20
Syzygiella (Jamesomena) Colorala	Asco	v l		28
Syzygiella sondori (Cryptochila grandiflora)	NS	v	/	28
Syzygiella (Harzogohmum) taras	NS		~	25
Wattatainia	IND I		v	23
Weitsteinia sohustoriana	NS	/		20
A nastronhyllogogo	IND I	v		30
Anastrophynaceae				
Anasirepia	NC		/	40
Anasirepia orcadensis	INS		V	40
Anastrophyllum	NC		/*	
	INS NG		V **	40
Anasirophylium aonnianum	INS NG		√	40
Anastrophyllum Joergensenii	NS NG	,	√ *	30
Anastrophyllum sp.	NS	\checkmark		30
Barbilophozia	D. 11	,	,	28 40
Barbuopnozia barbata	Basid	\checkmark	~	28, 40
	Asco	,	~	15
Barbilophozia hatcheri	Basid	V	~	28, 40–42
	NS D 11	\checkmark	~	30, 33
Barbilophozia (Lophozia) kunzeana	Basid		~	40
	FA	,	~	43, 44
Barbilophozia lycopodioides	Basid	V	~	28,40
Barbuopnozia (Lopnozia) suaetica	Basid	\checkmark	~	15, 28, 40
Crossocalyx	10#		,	22
Crossocalyx (Sphenolobus) hellerianus	NS"		~	33
(Anastrophyllum neuerianum)		,		20
	Asco	\checkmark	,	28
	Basid		\checkmark	40
Gymnocolea	210			10
Gymnocolea inflata	NS		~	40
<i>Gymnocolea inflata</i> subsp. <i>acutiloba</i>	NS		\checkmark	40
Isopaches				
Isopaches (Lophozia) alboviridis	FA	,	~	44
Isopaches bicrenatus (Lophozia bicrenata)	Basid	\checkmark	\checkmark	28, 40, 43, 44
Neoorthocaulis		,		
Neoorthocaulis (Barbilophozia) attenuatus	Basid	\checkmark	~	28, 40
Neoothocaulis (Barbilophozia) floerkei	Basid	\checkmark	\checkmark	28, 40
Orthocaulis				
Orthocaulis (Barbilophozia) atlanticus	Basid		✓*	
Schljakovia				
Schljakovia (Barbilophozia) kunzeana	Basid		√*	
Schljakovianthus				
Schljakovianthus (Barbilophozia) quadrilobus	Basid	\checkmark	\checkmark	28, 40, 44
(Lophozia quadriloba)				
Sphenolobopsis				
Sphenolobopsis pearsonii	NS		\checkmark	40
Sphenolobus				
Sphenolobus minutus (Anastrophyllum minutum)	NS "		\checkmark	33, 40
"	Asco#		\checkmark	15
Sphenolobus (Anastrophyllum) saxicola	NS		\checkmark	40
Tetralophozia				
Tetralophozia setiformis	NS	\checkmark	\checkmark	25, 30, 40
Antheliaceae				

Species	Fungi	DNA	Microscopy	Reference
Anthelia				
Anthelia julacea	NS	\checkmark		30
Anthelia juratzkana	NS	\checkmark	\checkmark	25, 30
Balantiopsidaceae				
Balantiopsis				
Balantiopsis diplophylla	NS	\checkmark		30
Balantiopsis rosea	FA		\checkmark	25
Isotachis				
Isotachis montana	NS	\checkmark		30
"	FA		1	25
Isotachis (Eoisotachis) stephanii	FA		1	25
Blepharostomataceae				
Blepharostoma				
Blepharostoma trichophyllum	NS		\checkmark	33
Brevianthaceae				
Brevianthus	NC	,		20
Brevianthus flavus	NS	\checkmark		30
Calypogeiaceae				
Calypogeia	EA		/	22
Calypogeta arguta	FA			33
Calypogeta azurea	Asco	/		16,28,22,40,45
Calypogeta Jissa	Asco	V		16, 28, 33, 40, 43
Calypogeta integristipula	Asco		v	15,40
Calypogela muelleriana "	ASCO NS#	/	V	15, 10, 28, 55, 40
Calmogaia nagsiana (trighomanis)	INS Asco	V	/	32 40
Calypogeia neesiana (irichomanis)	Asco		v /	25 22
Catypogeta sphagnicola Minutania	ASCO		v	23, 33
Mizutania Mizutania viacardioidas	1 500		/	16
Conhaloziaceae	ASCO		v	40
Cenhalozia				
Cephalozia ambigua	Asco		./*	
Cephalozia hicuspidata	Asco	1		16 33 45 47 48
Cephalozia sp	NS	./	v	30
Cephalozia sp.	Asco	v	1	25
Euscocenhalozionsis	ASCO		v	25
Fuscocenhalozionsis (Pleurocladula) albescens	FΔ		1	49
Fuscocephaloziopsis (Lenhalozia) catenulata	NS#		-	33
"	Asco		/ *	55
Euscocenhalozionsis (Cenhalozia) connivens	Asco	1	1	16 28 31 33 45 48
Fuscocephaloziopsis (Cephalozia) leucantha	FA		1	33
Fuscocephaloziopsis (Cephalozia) loitlesbergeri	Asco		1	16.33
Fuscocephaloziopsis (Cephalozia) lunulifolia	FA		1	33
Fuscocephaloziopsis (Cephalozia) macrostachva	FA		\checkmark	33
Fuscocephaloziopsis (Schofieldia) monticola	NS [#]	\checkmark		30
Fuscocephaloziopsis (Cephalozia) pleniceps	FA		1	33
Nowellia				
Nowellia curvifolia	Asco		1	16, 33
Odontoschisma				
Odontoschisma denudatum	Asco		1	16, 45
"	NS [#]		\checkmark	33
Odontoschisma elongatum	NS		1	33
Odontoschisma fluitans	NS [#]		\checkmark	33
Odontoschisma francisci	FA		\checkmark	33
Odontoschisma macounii	FA		√*	
Odontoschisma prostratum	NS [#]	\checkmark		30
Odontoschisma sp.	NS [#]	\checkmark		30
Odontoschisma sphagni	FA		\checkmark	16, 33
Cephaloziellaceae				
Anastrophyllopsis				
Anastrophyllopsis subcomplicata	NS		\checkmark	25
(Anastrophyllum schismoides)				
Cephaloziella	щ			
Cephaloziella baumgartneri	NS"		1	33
Cephaloziella divaricata	Asco		1	16, 33
Cephaloziella exiliflora	Asco	\checkmark	,	50
Cephaloziella hampeana	FA		√	33
Cephaloziella massalongi	NS"		\checkmark	33
Cephaloziella rubella	FA		\checkmark	33
··	NS"	\checkmark	,	30
<i>Cephaloziella</i> sp.	Asco		\checkmark	25
Cephaloziella turneri	Asco		√ *	<i></i>
Cephaloziella (Cephalozia) varians	Asco	\checkmark	\checkmark	51, 52

cies	Fungi	DNA	Microscopy	Reference
Nothogymnomitrion				
Nothogymnomitrion (Marsupella) erosum	NS		\checkmark	25
Obtusifolium				
Obtusifolium (Lophozia) obtusum	NS		\checkmark	40
Oleolophozia				
Oleolophozia (Lophozia) perssonii	Basid		\checkmark	40
Protolophozia				
Protolophozia (Lophozia) crispata	Basid	\checkmark		28
Protolophozia herzogiana	FA		\checkmark	43
Geocalycaceae				
Geocalyx				
Geocalyx graveolens	Asco	\checkmark		28
"	Basid [#]		1	40
"	FA		1	33
Gymnomitriaceae				
Gymnomitrion				
Gymnomitrion (Marsupella) adustum	NS		1	33, 40
Gymnomitrion (Marsupella) alpinum	NS		1	33
Gymnomitrion concinnatum	NS	\checkmark	1	30, 33, 40
Gymnomitrion corallioides	NS		√*	
Gymnomitrion crenulatum	NS		\checkmark	33
Gymnomitrion incompletum (cuspidatum)	NS		\checkmark	25
Gymnomitrion obtusum	NS		\checkmark	33, 40
Gymnomitrion sp.	NS	\checkmark		30
Marsupella				
Marsupella emarginata	NS	\checkmark	1	30, 33, 40
Marsupella stableri	NS		\checkmark	33, 40
Nardia				
Nardia breidleri	Basid		1	33, 40
Nardia compressa	NS		1	40
Nardia geoscyphus	Basid	\checkmark	1	28, 40
Nardia scalaris	Basid	\checkmark	\checkmark	16, 28, 40, 45
"	NS [#]	\checkmark		30
Harpanthaceae				
Harpanthus				
Harpanthus flotovianus	NS		1	33, 40
Harpanthus scutatus	Basid		1	33, 40
Herbertaceae				
Herbertus				
Herbertus aduncus	NS	\checkmark		30
Herbertus alpinus	NS	\checkmark	\checkmark	25, 30
Herbertus borealis	NS		\checkmark	33
Triandrophyllum				
Triandrophyllum subtrifidum	NS		\checkmark	25
Hygrobiellaceae				
Hygrobiella				
Hygrobiella laxifolia	NS		√*	
Jungermanniaceae				
Eremonotus				
Eremonotus myriocarpus	Asco "	\checkmark	√ *	28
	Basid [#]		\checkmark	40
Jungermannia				
Jungermannia atrovirens	NS		\checkmark	33, 40
Jungermannia borealis	NS		1	33
Jungermannia exsertifolia	NS		1	33
Jungermannia exsertifolia subsp. cordifolia	NS	\checkmark		30
Jungermannia gracillima	NS		\checkmark	16, 33, 40, 45
Jungermannia hyalina	NS		\checkmark	40
Jungermannia obovata	NS		\checkmark	33, 40
Jungermannia polaris	NS		\checkmark	40
Jungermannia pumila	NS		\checkmark	33, 40
Mesoptychia				
Mesoptychia (Leiocolea) badensis	NS		√*	
Mesoptychia (Leiocolea) bantriensis	NS		\checkmark	40
Mesoptychia (Leiocolea) heterocolpos	NS		\checkmark	40
Mesoptychia (Leiocolea) rutheana	NS		\checkmark	40
Mesoptychia (Leiocolea) turbinata	NS		\checkmark	33, 40
Lepicoleaceae				
Lepicolea				
Lepicolea attenuata	NS		\checkmark	25
Lepicolea scolopendra	NS	\checkmark	\checkmark	25, 30
Lepidoziaceae				
Åcromastigum				

vies	Fungi	DNA	Microscopy	Reference
Acromastigum colensoanum	FA		√	25
Bazzania				
Bazzania adnexa	NS	\checkmark		30
"	FA [#]		\checkmark	25
Bazzania denudata	NS	\checkmark		30
Bazzania flaccida	NS		\checkmark	15
<i>Bazzania</i> sp.	NS	\checkmark		30
Bazzania tayloriana	NS	\checkmark		30
Bazzania tricrenata	NS		\checkmark	33
Bazzania trilobata	Asco [#]		\checkmark	45
"	NS	\checkmark	\checkmark	15, 30, 33
Hygrolembidium				
Hygrolembidium australe	Asco		\checkmark	25
Isolembidium				
Isolembidium anomalum	Asco		\checkmark	25
Kurzia				
Kurzia pauciflora	Asco		1	16, 33, 45
Kurzia sp.	Asco		1	25
Kurzia sylvatica	FA		1	33
Kurzia trichoclados	FA		\checkmark	33
Lembidium			-	
Lembidium (Chloranthelia) heroorenii	Asco		1	25
Lembidium nutans	Asco			25
Lenidozia	1300		·	25
Lephozia rentans	Asco	1	1	16 28 33 45
Lephuozia repians "	NS	v ./	v	30
Lanidoria an	NS	v /		30
Lepidozia sp.	INS A	v	/	30
Lepidozia sp.	Asco		V	25
Megalemblaium	A		,	25
Megalembidium insulanum	Asco		\checkmark	25
Neogrollea			<i>,</i>	
Neogrollea notabilis	Asco		\checkmark	25
Pseudocephalozia				
Pseudocephalozia lepidozioides	Asco		\checkmark	25
Psiloclada				
Psiloclada clandestina	Asco		\checkmark	25
Telaranea				
Telaranea europaea	Asco		√*	
Telaranea nematodes	Asco		√*	
"	FA		\checkmark	33
<i>Telaranea</i> sp.	Asco		\checkmark	25
Tricholepidozia				
Tricholepidozia (Telaranea) murphyae	Asco		√*	
"	FA		1	33
Tricholenidozia (Telaranea) tetradactyla	Asco		√ *	
Zoonsidella			-	
Zoopsidella caledonica	Asco		1	25
Zoopsis	1500		•	20
Zoopsis Zoopsis sp	Asco		1	25
Lophocolescese	1300		·	25
Chiloscuphus				
Chilosovphus nallosoms	NS		/	22 40
Chiloscyphus paluescens	NS		~	33,40
Chiloscyphus polyaninos	IND		v (55,40
Chuoscyphus sp.	IND		v	23
Clasmatocolea	NIC		(25
Ciasmatocolea sp.	IN5		\checkmark	25
Heteroscyphus				20
Heteroscyphus billardierei	NS	\checkmark	,	30
Heteroscyphus sp.	NS		\checkmark	25
Leptoscyphus				
Leptoscyphus cuneifolius	NS		\checkmark	33, 40
Leptoscyphus sp.	NS		\checkmark	25
Lophocolea				
	NS	\checkmark	\checkmark	30, 33, 40
Lophocolea bidentata	NS		√*	
Lophocolea bidentata Lophocolea bispinosa	140		√*	
Lophocolea bidentata Lophocolea bispinosa Lophocolea brookwoodiana	NS			
Lophocolea bidentata Lophocolea bispinosa Lophocolea brookwoodiana Lophocolea cuspidata	NS NS		1	33
Lophocolea bidentata Lophocolea bispinosa Lophocolea brookwoodiana Lophocolea cuspidata Lophocolea fragrans	NS NS NS		√ √*	33
Lophocolea bidentata Lophocolea bispinosa Lophocolea brookwoodiana Lophocolea cuspidata Lophocolea fragrans Lophocolea (Lophozia) heteromorpha	NS NS NS FA [#]		√ √* √	33 44
Lophocolea bidentata Lophocolea bispinosa Lophocolea brookwoodiana Lophocolea cuspidata Lophocolea fragrans Lophocolea (Lophozia) heteromorpha Lophocolea heteronbulta	NS NS NS FA [#]			33 44
Lophocolea bidentata Lophocolea bispinosa Lophocolea brookwoodiana Lophocolea cuspidata Lophocolea fragrans Lophocolea (Lophozia) heteromorpha Lophocolea heterophylla "	NS NS NS FA [#] Asco [#]		√ √* √ √	33 44 15
Lophocolea bidentata Lophocolea bispinosa Lophocolea brookwoodiana Lophocolea cuspidata Lophocolea fragrans Lophocolea (Lophozia) heteromorpha Lophocolea heterophylla	NS NS NS FA [#] Asco [#] NS			33 44 15 16, 33, 40

ecies	Fungi	DNA	Microscopy	Reference
Lophoziaceae				
Lophozia				
Lophozia ascendens	FA		1	44
Lophozia sp.	NS [#]	\checkmark		30
Lophozia sp.	Basid		1	25
Lophozia ventricosa	Basid	\checkmark	\checkmark	16, 28, 40, 43-45
"	$NS^{\#}$	1		30
Lophozia wenzelii	Basid	1	1	28.44
Lophozionsis				,
Lophoziopsis (Lophozia) excisa	Basid	1	1	28 40 43 44 53
Lophoziopsis (Lophozia) latifolia	FA	•		44
Lophoziopsis (Lophozia) longidens	Basid	1	1	28 40
Lophoziopsis (Lophozia) reflucida	FA	•		44
Trilophozia	14		v	
Trilophozia (Tritomaria) avinavedentata	Basid		/*	
Tritomaria	Dasid		v	
Tritomaria (Lonkoria) capitata	Decid		/*	
Ггиотаги (Lopnozia) сариана "	Dasiu			10
Tritano anto	INS Danid			40
Tritomaria exsecta	Basid	,	~	40
Tritomaria exsectiformis	Basid	V	~	28,40
Tritomaria quinquidentata	Basid	\checkmark	\checkmark	28, 40, 43, 44
Mastigophoraceae				
Dendromastigophora				
Dendromastigophora flagellifera	NS	\checkmark	\checkmark	25, 30
Myliaceae				
Mylia				
Mylia anomala	Asco		\checkmark	33, 40
Mylia taylorii	NS		1	40
Plagiochilaceae				
Pedinonhyllum				
Pedinophyllum interruptum	Basid		1	40
"	NS [#]		1	33
"	FA			13
Plagiochila	111		·	-15
Plagiochila asplanioidas	NS	1		30 33 40
Plagiochila hifaria	NS	v	v /*	50, 55, 40
Planie skila bijaria	IND		V · /*	
Plagiocnila britannica	NS	,	√ *	20
Plagiochila caduciloba	NS	\checkmark	<i>,</i>	30
Plagiochila carringtonii	NS		\checkmark	40
Plagiochila incurvicolla	NS	\checkmark		30
Plagiochila porelloides	NS	\checkmark	\checkmark	30, 33, 40
Plagiochila punctata	FA [#]		\checkmark	33
"	NS		√*	
Plagiochila ramosissima	NS	\checkmark		30
Plagiochila sp.	NS	\checkmark		30
Plagiochila sp.	NS		1	25
Plagiochila spinulosa	NS		1	33
Plagiochila virginica	NS	1	•	30
Plagiochilion	115	v		50
Plagiochilion conjugatum	NS			25
Provide lanice leases	185		v	23
Archeophylia				25
Archeophylla schusteri	NS		\checkmark	25
Temnoma				
Temnoma quadrifidum	NS		1	25
Saccogynaceae				
Saccogyna				
Saccogyna viticulosa	Basid	\checkmark	1	28, 33, 40
Scapaniaceae				
Diplophyllum				
Diplophyllum albicans	Basid	\checkmark	\checkmark	15, 28, 40, 43
· · · · · · · · · · · · · · · · · · ·	NS [#]		√	16, 30, 33
Dinlophyllum aniculatum	Basid			28
хүюрпунит ирссишит «	NS#	./	v	30
Dinlonhyllum dioicum	Basid	×	1	25 28
ырюрпунит июнсит "	DdSlU NC [#]	v	v	23, 20
	INS"	v	/	30
Diplophyllum obtusifolium	Basid	\checkmark	V	28, 40, 43
	Asco"			15
Diplophyllum obtusatum	Basid		√ *	
Diplophyllum taxifolium	NS	\checkmark	\checkmark	28, 40
Douinia				
Douinia ovata	NS	\checkmark	\checkmark	28, 33, 40
Saccobasis				

pecies	Fungi	DNA	Microscopy	Reference
Saecobasis (Tritomaria) polita	Basid	1	/	28 14
Saccobasis (Truomaria) pouta Segnania	Basiu	v	v	28, 44
Scapania acquileba	NS		/	40
Scapania aspara	NS		~	40
Scapania bolandari	INS Basid	/	v	40 54
Scapania boanaeri	EA	v	/	40
"	ГА NS [#]			49
Communication In	INS Decid	/	*	40
scapania cuicicola	Basia	✓	~	28,40
C	INS NC		~	33
Scapania compacia	INS		~	40
Scapania curta (personnii)	FA	/	~	49
Scapania cuspiaungera	Basid	\checkmark	~	28,40
	NS		~	33
Scapania glaucocephala	FA		~	49
Scapania glaucocephala var. saxicola	FA		~	49
Scapania gracilis	NS		1	33, 40
Scapania gymnostomophila	Basid		~~	40
	FA			49
Scapania irrigua	Basid	\checkmark	~	28, 40
Scapania lingulata var. microphylla	FA		1	49
Scapania nemorea	NS	\checkmark	~	30, 40
Scapania nimbosa	NS		\checkmark	40
Scapania obcordata	FA		\checkmark	49
Scapania obcordata var. paradoxa	FA		\checkmark	49
Scapania ornithopodioides	NS		\checkmark	40
Scapania paludicola	NS		√*	
Scapania scandica	NS		\checkmark	33
Scapania sp.	NS	\checkmark		30
Scapania subaplina	NS		√*	
Scapania uliginosa	NS		\checkmark	40
Scapania umbrosa	Basid	\checkmark	\checkmark	28, 40
1	NS [#]		1	33
Scapania undulata	NS	\checkmark	1	28, 30, 40
Scapania zemliae (invisa)	FA		1	49
Schistochilopsis				
Schistochilopsis (Lophozia) incisa	Basid	1	1	15, 28, 40
Schistochilopsis incisa var. opacifolia	Basid	1	1	28, 40
(Lophozia opacifolia)				-, -
Schistochilopsis (Lophozia) hyperarctica	FA		1	44
Schistochilaceae				
Schistochila				
Schistochila alata	Asco		1	55
Schistochila appendiculata	Asco		1	55
"	NS	1	•	30
Schistochila balfouriana	Asco	•	1	55
«	NS	./	·	30
Schistochila childii	Asco	v		55
Schistochila glaucascans	Asco			55
Schistochila kirkiana	A 500		·	55
Schistochila kirkland Schistochila lamollata	Asco		*	55
Schistochila laminiagua	Asco		*	55
Schistochila taminigera	Asco		v	55
Schistochila muricata	Asco		~	55 25 55
Schistochila nobilis	Asco		~	25, 55
Schistochila pinnatifolia	Asco		~	22
Schistochila repleta	Asco		~	55
Schistochila splachnophylla	Asco	~	~	45, 55
Schistochila subimmersa	Asco	\checkmark	1	45, 55
Schistochila succulenta	Asco		\checkmark	45, 55
Solenostomataceae				
Solenostoma				
Solenostoma (Jungermannia) orbiculata	NS		\checkmark	25
Southbyaceae				
Gongylanthus				
Gongylanthus ericetorum	Basid		\checkmark	40
"	FA		\checkmark	43
Southbya	-			-
Southbya nigrella	Basid	1	\checkmark	16, 28, 40, 43
Southbya tophacea	Basid			28 31 40 43
Trichocoleaceae	Duolu	*	•	20, 31, 40, 43
Leiomitria				
Leiomitra lanata	NS	./		30
Trichocolea	110	v		50
Trichocolag mollissing	NS		1	25
11 chocolea monissima	C M L		v	23

Species	Fungi	DNA	Microscopy	Reference
Trichocolea rigida	NS	1		30
Trichocolea tomentella	NS	\checkmark		30
Trichotemnomataceae				
Trichotemnoma				
Trichotemnoma corrugatum	NS		\checkmark	25
Porellales				
Frullaniaceae				
Frullania				
Frullania dilatata	NS	/	\checkmark	33
Fruitania eboracensis	NS NS	\checkmark	/	30
Fruitania jragitijotta Fruitania microphylla	NS			33
Frullania nisauallensis	NS	./	v	30
Frullania sp	NS	•	1	25
Frullania tamarisci	NS		1	33
Frullania teneriffae	NS		1	33
Goebeliellaceae				
Goebeliella				
Goebeliella cornigera	NS	\checkmark		30
Jubulaceae				
Jubula				
Jubula hutchinsiae	NS		\checkmark	33
Jubula hutchinsiae subsp. pennsylvanica	NS	\checkmark		30
Lejeuneaceae				
Cheilolejeunea	NG	,		20
Cheilolejeunea (Leucolejeunea) clypeata	NS	J (30
Cheuolejeunea (Leucolejeunea) sp.	INS	\checkmark		30
Cololejeunea calcarea	NS		1	33
Cololejeunea microsconica	NS		./	33
Colorg	145		v	55
Colura calvatrifolia	NS		1	33
Drepanoleieunea	110		·	22
Drepanolejeunea hamatifolia	NS		\checkmark	33
Harpalejeunea				
Harpalejeunea ovata	NS		\checkmark	33
Lejeunea				
Lejeunea cavifolia	NS		\checkmark	33
Lejeunea lamacerina	NS		\checkmark	33
Lejeunea patens	NS		\checkmark	33
Lejeunea ulicina	NS	\checkmark	\checkmark	30, 33
Marchesinia	NG		,	22
Marchesinia mackau Martina lainn an	INS		\checkmark	33
Mastigolejeunea Mastigolajounea anguiformis	NS	/		20
Musilgolejeunea anguijormis Musiocoleonsis	113	v		50
Myriocoleopsis Myriocoleopsis (Cololeieunea) minutissima	NS		./	33
Lepidolaenaceae	115		·	55
Gackstroemia				
Gackstroemia alpina	NS	\checkmark	\checkmark	25, 30
Lepidolaena				
<i>Lepidolaena</i> sp.	NS		\checkmark	25
Lepidolaena taylorii	NS	\checkmark		30
Porellaceae				
Lepidogyna				
Lepidogyna sp.	NS		\checkmark	25
Porella	NG		,	22
Porella arboris-vitae	NS		1	33
Porella cordaeana	NS	/	\checkmark	33
Porella navioularia	IND	v /		30
Forella obtusata	INS NS	v	1	33
Porella ninnata	NS	./	./	30 33
Porella platynhylla	NS	1		30,33
Porella sp.	NS	•	1	25
Radulaceae			-	
Radula				
Radula aquilegia	NS		\checkmark	33
Radula complanata	NS		\checkmark	33
Radula lindenbergiana	NS		\checkmark	33
Radula sp.	NS		\checkmark	25
Ptilidiales Ptilidiaceae				

Species	Fungi	DNA	Microscopy	Reference
Ptilidium				
Ptilidium ciliare	NS	1	1	25.30
Ptilidium sp.	NS	1		30
Anthocerotophyta				
Anthocerotopsida				
Anthocerotales				
Anthocerotaceae				
Anthoceros				
Anthoceros agrestis	Glom, Mucoro	\checkmark	\checkmark	14, 56
Anthoceros cristatus	Mucoro	\checkmark	1	57
Anthoceros fusiformis	Mucoro	\checkmark		56
Anthoceros lamellatus	Glom, Mucoro	\checkmark		56
Anthoceros laminiferus	Glom, Mucoro	\checkmark	\checkmark	2, 25, 56
Anthoceros punctatus	Glom, Mucoro	\checkmark	\checkmark	2, 56, 58
Anthoceros sp.	Glom, Mucoro	\checkmark	\checkmark	56
Folioceros				
Folioceros fuciformis	Glom	\checkmark		56
Folioceros sp.	Glom, Mucoro	\checkmark	\checkmark	56
Dendrocerotales				
Dendrocerotaceae				
Dendroceros				
Dendroceros crispus	NS	\checkmark		56
Dendroceros granulatus	NS		\checkmark	25
Dendroceros validus	NS	\checkmark	\checkmark	25, 56
Megaceros				
Megaceros flagellaris	NS	\checkmark		56
Megaceros denticulatus	NS		\checkmark	25
Megaceros leptohymenius	Glom, Mucoro	\checkmark		56
Megaceros pellucidus	Glom, Mucoro	\checkmark		56
	NS		\checkmark	25
Megaceros sp.	Glom, Mucoro	\checkmark		56
Nothoceros			_	
Nothoceros giganteus	NS	\checkmark	~	25, 56
Nothoceros vincentianus	Glom, Mucoro	\checkmark		56
Phaeomegaceros		,		A.F. F (
Phaeomegaceros coriaceus	Glom, Mucoro	~	1	25, 56
Phaeomegaceros hirticalyx	Mucoro	~	~	56
Phaeomegaceros sp.	Glom, Mucoro	\checkmark		56
Phymatocerotales				
Phymatocerotaceae				
Phymatoceros				2
Phymatoceros bulbiculosus	FA		\checkmark	3
(Aninoceros aicnolomus)				
Notothyladales				
Notothyladaceae				
Notoinyias	Class	/		5(
Notothylas javanica Notothylas orbioylaria	Glom	~		56
Notoinyias orbicularis	Giolii	V		50
Paraphymatoceros	Mugoro	/		2
Paraphymatoceros contaceus	NICOIO	v (2 56
Paraphymatoceros peursonii Paraphymatoceros sp	Mugoro	v (2
Phaeocaros	Mucoro	v		2
Phagocaros carolinianus	Glom Mucoro	1		2 25 56
Phaeoceros dandrocaroidas	Glom Mucoro		v	56
Phaeoceros lanis	Glom Musoro	v	/	2 2 56 50
Phaeoceros su	Glom Musoro	v	v	2, 3, 30, 39
Leiosporocerotopsida	Giolii, Mucoro	v		50
Leiosporocerotales				
Leiosporocerotaceae				
Leiosporoceros				
Leiosporoceros dussii	NS	1		56
L vconodionhyta	110	•		20
Lycopodionsida				
Lycopodiales				
Lycopodiaceae				
Austrolycopodium				
Austrolycopodium (Lycopodium) fastigiatum	Mucoro	1		60
Austrolycopodium (Lycopodium) magellanicum	NS	√		60
Austrolycopodium (Lycopodium) naniculatum	DSE, Glom	•	1	61
Dendrolycopodium	252, 01011		•	~.
Dendrolvcopodium dendroideum	NS	1		60
Dendrolvcopodium obscurum	NS	√		60
		•		

pecies	Fungi	DNA	Microscopy	Reference
Diphasiastrum				
Diphasiastrum (Lycopodium) alpinum	$Basid^{\times}$	\checkmark	\checkmark	62
"	Glom	\checkmark	\checkmark	62, 63
"	NS	\checkmark	\checkmark	60, 64
Diphasiastrum complanatum	NS		\checkmark	65
Diphasiastrum digitatum	Glom		\checkmark	66, 67
(Lycopodium digitatum/L. flabelliforme)			<i>,</i>	(2)
Diphasiastrum issleri	Glom		V (63
Diphasiastrum (Lycopodium) thyoides	DSE		1	68
Diphasiasirum (Lycopoaium) irisiachyum Humamia	Glom		V	0/
Huperzia approsa	NS	/		60
Huperzia appressa	INS NS	v /		60
Huperzia australiana "	Clam	V	/	60
Hunarzia lucidula	NS	1	v	60
Hungwig (I vaonodium) salago	NS	v /		60
Huperzia (Lycopoaium) seiago "	DSE	V	/	64
"	Glom		~	63 70
Hunavria sarvata	NS			71
"	Glom		~	71 70
Hungeria sourata vor longinatiolata	NS		v (70 65
Huperzia se	NS		~	71
Latariata abus	113		v	/1
Lateristachys (Lyconodialla) lateralis	Musoro	/		60
Lucerisiacnys (Lycopoaiena) internits	Mucoro	V		00
Lycopoalastrum	NE		/	65
Lycopodialla	113		v	05
Lycopoalella invadata	Musere	/	/	60.72
Lycopoaiena тапаана "	Glom	V		63 73
Luconodium	Giolii		v	03, 75
Lycopodium Lycopodium alayatum	NS	/	/	60.70
Lycopoulum cluvulum "	DSE	v	~	64 74
"	Clam	/	~	62 75 77
"	Musere?	v	v (05, 75-77
Incorrection algorithm only a contiguous	Glam	/	v	78
Lycopodium clavalum subsp. conliguum	Glom	V	/	65
Lycopoaium japonicum Dalbinhaaa	Giolii		v	05
Palhinhaea	Glom	/	/	60 71 78 80
I ummueu cernuu (I yaanadialla aamua/I yaanadium aamuum)	Giolii	v	v	00, 71, 78-80
(Lycopouleuu cernuu Lycopoulum cernuum) "	NS		/	65 74
"	Mucoro			78
Phlogmaniumus	Widebio		v	70
Phleamariurus (Hunerzia) affinis	Glom	./		77
Phleamariurus (Huperzia) crassus	Glom			77
Phleamariurus (Huperzia) hamiltonii	Glom	v	./	75
Phleamariurus henryi	NS			65
Phleamariurus hvnogaeus (Hunerzia hvnogaea)	Glom	./		77
Phleamariurus nhleamaria	NS		·	60
(Hungerzia phlegmaria/Lycopodium phlegmaria)	115	v		00
Phleamariurus nhvllanthus (Hunerzia nhvllantha)	Glom		./	79
Phleamariurus sauarrosus (Huperzia sauarrosa)	Glom			74
Phleomariurus tetragonus (Huperzia tetragona)	Glom	1	•	77
Phlegmariurus urbani (Hunerzia urbanii)	Glom	, ,		77
Pseudodinhasium	0.0	•		
Pseudodiphasium (Lycopodium) volubile	NS	1		60
Spinulum	1.0	•		
Spinulum (Lycopodium) annotinum	Mucoro	1		60
«	Glom	•	1	63
Isoëtales			-	~-
Isoëtaceae				
Isoëtes				
Isoëtes coromandelina	Glom		\checkmark	81
Isoëtes echinospora	DSE, Glom		\checkmark	82
"	NS		1	63
Isoëtes histrix	NS		✓	63
Isoëtes lacustris	DSE, Glom		1	82
"	NS		✓	63
Selaginellales				
Selaginallaceae				
Selaginella				
Selaginella arbuscula	Glom		1	79
Selaginella biformis	Glom		√	65
0			-	75

Species	Fungi	DNA	Microscopy	Reference
Selaginella cataphracta	NS		1	74
Selaginella chrysocaulos	NS		\checkmark	65
Selaginella davidii	Glom		\checkmark	65, 83
Selaginella delicatula	Glom		\checkmark	65
Selaginella doederleinii	DSE, Glom		\checkmark	75
Selaginella finitima	DSE, Glom		\checkmark	84
Selaginella fissidentoides	DSE, Glom		\checkmark	74
Selaginella frondosa	Glom		\checkmark	65
Selaginella furcillifolia	Glom		\checkmark	71
Selaginella helferi	NS		\checkmark	65
Selaginella intermedia	Glom		\checkmark	71
Selaginella involvens	Glom		\checkmark	65
Selaginella kraussiana	Glom	\checkmark	\checkmark	60, 63
Selaginella mairei	Glom		\checkmark	85
Selaginella martensii	Glom		\checkmark	84
Selaginella minutifolia	Glom		\checkmark	71
Selaginella moellendorffii	Glom		\checkmark	83
Selaginella monospora	NS		\checkmark	65
Selaginella obtusa	Glom		\checkmark	74
Selaginella pallescens	DSE, Glom		\checkmark	68
Selaginella pennata	NS	\checkmark		60
Selaginella picta	Glom		\checkmark	65
Selaginella plana	Glom		\checkmark	71
Selaginella pulvinata	Glom		\checkmark	65, 85
Selaginella remotifolia	Glom		\checkmark	65
Selaginella roxburghii var. strigosa	Glom		\checkmark	71
Selaginella sanguinolenta	Glom		\checkmark	65
Selaginella selaginoides	Glom	\checkmark	\checkmark	60, 63
Selaginella sp.	DSE, Glom		\checkmark	75
Selaginella sp.	Glom		\checkmark	80
Selaginella stipulata	Glom		\checkmark	71
Selaginella wightii	Glom		\checkmark	80
Selaginella willdenowii	NS		\checkmark	71

1. Ligrone R et al. (2007) Am J Bot 94:1756-1777

2. Bidartondo MI et al. (2011) Biol Lett 7:574-577

3. Stahl M (1949) Planta 37:103-148

4. Rimington WR et al. (2018) Proc Biol Sci 285: 20181600

5. Rimington WR et al. (2019) Mycorrhiza (in the press)

6. Carafa A, Duckett JG, & Ligrone R (2003) New Phytol 160:185-197

7. Field KJ et al. (2015) New Phytol 205:743-756

8. Lilienfield F (1911) Bulletin de l'Académie des Sciences de Cracovie Sér B:315-339

9. Goebel K (1891) Ann Jard Bot Buitenzorg 9:1-11

10. Grün C (1914) Flora 106:331-392

11. Duckett JG, Carafa A, & Ligrone R (2006a) Am J Bot 93:797-813

12. Schuster RM & Scott GAM (1969) J Hattori Bot Lab 32:219-268

13. Rikkinen J & Virtanen V (2008) J Exp Bot 59:1013-1021

14. Liepina L (2012) EEB 10:35-40

15. Kottke I et al. (2003) Mycol Res 107:957-968

16. Duckett JG & Read DJ (1995) New Phytol 129:439-477

17. Fonseca HMAC, Berbara RLL, & Pereira ML (2006) Mycorrhiza 16:503-508

18. Fonseca HMAC, Azevedo A, & Pereira ML (2013) Microsc Microanal 19:63-64

19. Ligrone R & Duckett JG (1994) Ann Bot 73:577-586

20. De AB (2017) IJARBS 4:51-58

21. Silvani VA et al. (2012) World J Microbiol Biotechnol 28:3393-3397

22. Ligrone R & Lopes C (1989) New Phytolo 111:423-433

23. Turnau K, Ronikier M, & Unrug J (1999) Acta Soc Bot Pol 68:63-68

24. Russell J & Bulman S (2005) New Phytol 165:567-579

25. Duckett JG & Ligrone R (2008) Flora of the Liverworts and Hornworts of New Zealand, vol. I, eds Engel J & Glenny D (Missouri Botanical Garden Press, USA), pp. 48–56

26. Field KJ et al. (2012) Nature Commun 3:835 27. Humphreys CP et al. (2010) Nature Commun 1:103 28. Bidartondo MI & Duckett JG (2010) Proc Biol Sci 277:485-492 29. Field KJ et al. (2016) ISME J 10:1514-1526 30. Davis EC & Shaw AJ (2008) Am J Bot 95:914-924 31. Read DJ et al. (2000) Philos Trans R Soc Lond B Biol Sci 355:815-830 32. Duckett JG & Ligrone R (2008) Can J Bot 86:346-358 33. Pocock K & Duckett JG (1985) New Phytol 99:281-304 34. Brown EA & Braggins JE (1989) J Hattori Bot Lab 66:1-132 35. Kottke I et al. (2008) BAAE 9:13-23 36. Preußing M et al. (2010) Mycorrhiza 20:147-159 37. Krause C et al. (2011) Fungal Biol 115:839-851 38. Pressel S et al. (2010) Phytotaxa 9:238-253 39. Weiß M et al. (2011) PLOS ONE 6:e16793 40. Duckett JG, Russell J, & Ligrone R (2006b) Can J Bot 84:1075-1093 41. Zhang T et al. (2013) Extremophiles 17:757-765 42. Newsham KK et al. (2014) Fungal Ecol 11:91-99 43. Paton JA (1999) The Liverwort Flora of the British Isles (Brill, Leiden) 44. Schuster RM (1969) The Hepaticae and Anthocerotae of North America, Volume 2 (Columbia University Press, Columbia) 45. Pressel S, Ligrone R, & Duckett JG (2008) Fieldiana Botany 47:59-72 46. Pressel S, P'ng KMY, & Duckett JG (2011) The Bryologist 114:38-51 47. Kowal J et al. (2018) Ann Bot 121:221-227 48. Kowal J et al. (2016) Funct Ecol 30:1014-1023 49. Schuster RM (1974) The Hepaticae and Anthocerotae of North America, Volume 3 (Columbia University Press, Columbia) 50. Chambers SM et al. (1999) Mycol Res 103:286-288 51. Newsham KK (2011) Mycorrhiza 21:231-236 52. Upson R, Read DJ, & Newsham KK (2007) New Phytol 176:460-471 53. Newsham KK & Bridge PD (2010) Mycorrhiza 20:307-313 54. Fukasawa Y, Ando Y, & Song Z (2017) Fungal Ecol 30:122-131 55. Pressel S et al. (2008) Am J Bot 95:531-541 56. Desirò A et al. (2013) Proc Biol Sci 280:20130207 57. Villarreal JC, Duckett JG, & Pressel S (2017) J Bryol 39:226-234 58. Schüßler A (2000) Mycorrhiza 10:15-21 59. Ligrone R (1988) Bot Gaz 149:92-100 60. Rimington WR et al. (2015) New Phytol 205:1394-1398 61. Fernández N. Messuti MI. & Fontenla S (2008) Am Fern J 98:117-127 62. Horn K et al. (2013) Am J Bot 100:2158-2174 63. Harley JL & Harley EL (1987) New Phytol 105:1-102 64. Treu R et al. (1995) Mycorrhiza 6:21-29 65. Zhi-wei Z (2000) Mycorrhiza 10:145-149 66. Bruce JG (1979) Am J Bot 66:1138-1150 67. Berch SM & Kendrick B (1982) Mycologia 74:769-776 68. Zubek S et al. (2010) Am Fern J 100:126-136 69. Laursen GA et al. (1997) Arct Alp Res 29:483-491 70. Takashima Y et al. (2014) J Sustain Agr 9:81-88 71. Kessler M et al. (2010) Plant Biol 12:788-793 72. Hoystead GA et al. (2019) Plant Physiol, https://doi.org/10.1104/pp.19.00729 73. Fuchs B & Haselwandter K (2004) Mycorrhiza 14:277-281 74. Kessler M et al. (2010) BAAE 11:329-336

- 75. Muthukumar T & Prabha K (2013) Symbiosis 59:15-33
- 76. Schmid E & Oberwinkler F (1993) New Phytol 124:69-81

- 77. Winther JL & Friedman WE (2008) New Phytol 177:790-801
- 78. Duckett JG & Ligrone R (1992) Can J Bot 70:58-72
- 79. Gemma JN, Koske RE, & Flynn T (1992) Am J Bot 79:843-852
- 80. Muthuraja R et al. (2014) Am Fern J 104:67–102
- 81. Radhika KP & Rodrigues BF (2007) Aquat Bot 86:291-294
- 82. Sudová R et al. (2011) Aquat Bot 94:183-187
- 83. Zhang Y, Guo L, & Liu R (2004) Mycorrhiza 14:25-30
- 84. Lara-Pérez LA et al. (2015) Symbiosis 65:85-92
- 85. Tao L, Jianping L, & Zhiwei Z (2004) Mycorrhiza 14:323-327

with a few exceptions where additional considerations were included in our calculations to improve the quality of our estimates:

- Aneuraceae—This Metzgeriidae family is the most speciesrich of the simple thalloid liverworts. Colonization by Basidiomycota is common in the species-poor, earlydiverging genera *Aneura*, *Lobatiriccardia* and *Verdoornia* (Rabeau et al. 2017) but less so in the largest, more derived genus *Riccardia* (Pressel et al. 2010). To avoid a considerable overestimation of symbiosis by Basidiomycota in Metzgeriidae, our calculations of fungal symbiosis occurrence rates in Aneuraceae were based on the assumption that 50% of *Riccardia* species can be colonized by Basidiomycota, i.e. the ratio of symbiotic vs. nonsymbiotic *Riccardia* species found by our survey (Table 1) plus our own observations on freshly collected specimens of a range of *Riccardia* species.
- 2) Plagiochilaceae—This is the most speciose family in the Jungermanniales with 767 species in ten genera; however, fungal symbiosis has only been reported in the four-species genus *Pedinophyllum*. For calculations, we considered *Pedinophyllum* to be the only Plagiochilaceae genus (Feldberg et al. 2010) that can be colonized by symbiotic Basidiomycota and the rest were considered non-symbiotic. Re-enforcing this assumption is that fact that neither Schuster (1980) nor Paton (1999) mention fungi other than in *Pedinophyllum*, and we have never seen them in fresh specimens of over 50 species in the family.
- 3) Gymnomitriaceae—This relatively speciose family (97 species) of nine genera contains only one genus (*Nardia*) for which fungal symbiosis has been reported, and the rest are non-symbiotic; thus, for calculations, we considered *Nardia* to be the only symbiotic genus in Gymnomitriaceae. As for the Plagiochilaceae, we have never seen fungi in freshly collected specimens other than in *Nardia*. The Gymnomitriaceae predominantly grow on bare rock, a substrate ill-suited to fungal symbioses.
- Jungermanniaceae—Fungal symbiosis has only been reported in *Eremonotus*, a single species genus (Bidartondo and Duckett 2010). All the other members of this family (37 species) that have been investigated (Paton 1999; Pocock and Duckett 1985; Schuster 1969) do not enter

into fungal symbiosis, so only *Eremonotus* was considered to be symbiotic in our calculations.

Numbers of species per genus/family are given in Table S1.

Inferring fungal symbiosis status

Fungal symbiosis status was mapped onto a representative phylogenetic diagram that contained all the plant families included in this survey with the relative positions of the plant families based on previously published phylogenies for the following plant groups: Haplomitriopsida and Marchantiopsida (Flores et al. 2017), Pelliidae and Metzgeriidae (Masuzaki et al. 2010), Jungermanniidae (Forrest et al. 2006; Shaw et al. 2015; Patzak et al. 2016), hornworts (Villarreal and Renner 2013) and lycophytes (PPG1 2016).

Results and discussion

Plant species numbers

The fungal symbiosis status of up to 648 liverwort, hornwort and lycophyte species, belonging to 194 genera, 82 families and 23 orders, was compiled (Table 1) by combining data from 84 publications. The number of species for each of these early-diverging plant groups and the fungal lineages that colonize them are listed in Table 2. The total value, 648 species, includes seven subspecies and 53 samples identified only to the genus level (sp.) that may represent duplicates (except when they are the only entry for that genus, e.g. Lepidogyna sp.). Thus, at least 591 species are included in our survey (Table 2). This represents a considerable increase on the number of early-diverging plant species, 180, included in Wang and Qiu's survey (Wang and Qiu 2006). The hornworts and lycophytes are well represented; our survey includes members of every hornwort and lycophyte family and of most genera except for one hornwort and four lycophyte genera (Table 1). The liverworts are less well represented; this is because of their higher diversity, comprising over twenty times the number of genera found in hornworts or lycophytes. While

Table 2 The numbers of earlydiverging plant species for which fungal symbiosis status has been reported. M - Mucoromycotina, G - Glomeromycotina, B -Basidiomycota, A - Ascomycota, FA - Fungal association. Where reports were contradictory (symbiotic and non-symbiotic), the symbiotic report is included. The number between parentheses represents the maximum number of different species, reflecting that some species were identified as 'sp.' so could represent duplicates of fully identified species

	Total	М	G	В	А	FA
Liverworts	491 (538)					
Haplomitriopsida	12	9	1	0	0	2
Haplomitriidae	8	6	1	0	0	1
Treubiidae	4	3	0	0	0	1
Marchantiopsida	88 (98)	14 (16)	33 (36)	0	0	4 (7)
Blasiidae	2	0	0	0	0	0
Marchantiidae	86 (96)	14 (16)	33 (36)	0	0	4 (7)
Jungermanniopsida	391 (428)	19 (20)	40 (41)	65 (70)	59 (64)	56 (58)
Pelliidae	48 (52)	19 (20)	40 (41)	0	0	0 (2)
Metzgeriidae	52 (56)	0	0	16 (20)	0	12
Jungermanniidae	291 (320)	0	0	49 (50)	59 (64)	44
Hornworts	27 (33)					
Anthocerotopsida	26 (32)	15 (21)	14 (19)	0	0	0
Anthocerotidae	7 (9)	6 (8)	5 (7)	0	0	0
Dendrocerotidae	12 (14)	5 (7)	4 (6)	0	0	1
Notothylatidae	7 (9)	4 (6)	5 (6)	0	0	0
Leiosporocerotopsida	1	0	0	0	0	0
Lycophytes	73 (77)					
Lycopodiopsida	73 (77)	6	53 (55)	1	0	0
Lycopodiales	35 (37)	6	22	1	0	0
Isoëtales	4	0	3	0	0	0
Selaginellales	34 (36)	0	28 (30)	0	0	0

coverage for liverworts is robust at the family level and includes 72 of the 87 families (Söderström et al. 2016), this is less so at the genus level where the fungal status of 217 of the 386 genera is currently unknown. However, early-diverging lineages are well represented at the genus level with only one Haplomitriopsida, one Marchantiopsida and five Pelliidae genera not included in Table 1. The remaining 210 genera with unknown fungal symbiosis status are members of the Metzgeriidae and Jungermanniidae. This reflects a research bias, as most studies have focused on species from known symbiotic clades (e.g. 24% of Pelliidae species and 17% of Marchantiopsida species have been investigated) while neglecting those from clades considered to be largely asymbiotic. Indeed, only 5% of Jungermanniidae species have been investigated to date, reflecting that the Lejeuneaceae, the most speciose Jungermanniidae family with ca. 2000 species, is asymbiotic (Kowal et al. 2018).

Since the survey by Wang and Qiu was published in 2006, the use of DNA sequencing to identify plant fungal symbionts has increased dramatically. To date, the fungal status of 259 fully named early-diverging plant species has been analysed by molecular methods versus only six reported in Wang and Qiu (2006).

Our survey unveiled contradictory reports on the fungal symbiotic status (symbiotic vs. non-symbiotic) of 51 species (42 liverworts, one hornwort and eight lycophytes) probably reflecting low fungal colonization levels (Rimington et al. 2015), habitat type and/or seasonal variation in colonization (personal observations) in these species. Colonization by two fungal lineages has been reported in 51 species (35 liverworts, 11 hornworts and 5 lycophytes). We found no report of more than two fungal lineages colonizing the same plant species. All dual colonisations involve either members of Mucoromycotina and Glomeromycotina (Mucoromycota) or Ascomycota and Basidiomycota (Dikarya), with the former (45 species) being more common than the latter (5 species).

Estimating symbiosis occurrence rates

Our estimates of fungal symbiosis occurrence rates for the different fungal lineages in liverworts, hornworts and lycophytes show that fungal symbiosis appears to be the norm in hornworts and lycophytes, but not in liverworts (Table 3). Occurrence rates were easier to estimate for hornworts and lycophytes than for liverworts, as these two groups contain less species and engage in less diverse symbioses than liverworts. We estimated that 69% of hornwort species can be colonized by Mucoromycotina fungi and 78% by Glomeromycotina is higher than by Mucoromycotina; 99% of lycophyte species can potentially form AM while only 4% are estimated to be symbiotic with Mucoromycotina

Table 3 Fungal symbiosisoccurrence rate estimates

	Mucoromycotina	Glomeromycotina	Basidiomycota	Ascomycota
Liverworts	4%	5%	7%	17%
Haplomitriopsida	100%	0	0	0
Marchantiopsida	22%	38%	0	0
Jungermanniopsida				
Pelliidae	97%	99%	0	0
Metzgeriidae	0	0	44%	0
Jungermanniidae	0	0	5%	20%
Hornworts	69%	78%	0	0
Lycophytes	4%	99%	0	0

(Table 3). The fungal status of each hornwort and lycophyte genus is found in Table S1.

Our estimates of fungal symbiosis occurrence rates in liverworts had to be calculated at the family, rather than genus, level (except for four families, as explained previously) because this group contains many more genera (ca. 386) than hornworts and lycophytes (12 and 18 genera, respectively) and the fungal symbiosis status of less than half (169) of these genera is currently known. However, the fungal symbiotic status of most liverwort families has been reported, with that of only 15 out of 87 families remaining unassigned. These 15 families all have low species numbers: less than ten species except for one family. Thus, the fungal symbiosis status of liverworts is well represented at the family level (Table S1).

We estimated that only 4% and 5% of liverwort species are colonized by Mucoromycotina and Glomeromycotina, respectively (Table 3). Symbioses involving Basidiomycota (7%) and Ascomycota (17%) appear to be more common in liverworts but an absence of fungal symbiosis is by far the prevalent state (71%). The sum of these estimates is greater than 100% due to several liverwort species forming dual colonization with both Mucoromycotina and Glomeromycotina. Below we consider the major liverwort groups individually:

Haplomitriopsida—Up to 100% of these earliest-diverging liverworts can be colonized by Mucoromycotina fungi. There has been a single molecular report of Glomeromycotina symbiosis in Haplomitrium chilensis (Ligrone et al. 2007); however this report was published prior to the discovery of Mucoromycotina colonization in liverworts and has since been questioned by several molecular investigations (Bidartondo et al. 2011; Field et al. 2015; Rimington et al. 2018). Presence of Mucoromycotina and not Glomeromycotina in Haplomitriopsida liverworts also agrees with the cytology of the fungus colonizing H. chilensis (Ligrone et al. 2007), which we now know to be typical of Mucoromycotina and not Glomeromycotina symbioses (e.g. Field et al. 2015). We have not included in our analyses a recent study by Yamamoto et al. (2019) reporting rare Glomeromycotina associations in Haplomitrium mnioides

from Japan, with Mucoromycotina being dominant, because the lack of anatomical details (i.e. sections of colonized axes and electron microscopy) and the limited molecular analyses presented indicate that further, more rigorous studies of this species may be required.

Marchantiopsida—These are the earliest-diverging liverworts to form Glomeromycotina symbioses; however, fungal colonization is relatively low and 22% and 38% of Marchantiopsida liverworts are estimated to be colonized by Mucoromycotina and Glomeromycotina, respectively. These results are skewed by the absence of symbionts from the most speciose Marchantiopsida family, Ricciaceae (Table S1), where both terrestrial and aquatic taxa lack symbionts. When Ricciaceae is excluded from calculations, the colonization estimates increase to 43% for Mucoromycotina and 74% for Glomeromycotina.

Pelliidae—This is the latest-diverging liverwort group to form Mucoromycotina and Glomeromycotina symbioses, and colonization is common at 97% and 99%, respectively.

Metzgeriidae—Basidiomycota colonization is estimated to occur in 44% of Metzgeriidae liverworts. If no assumption of 50% colonization in *Riccardia* species was applied to our calculations (see exception 1 in 'Methods'), then this estimate would increase to 75%.

Jungermanniidae—Ascomycota and Basidiomycota have only been reported in the Jungermanniales and are not present in the Porellales or Ptilidiales. Our calculations suggest that 5% of Jungermanniidae species can be colonized by Basidiomycota while 20% can be colonized by Ascomycota.

Our occurrence rate estimations for Glomeromycotina colonization in early-diverging land plants disagree with those published previously by Brundrett (2009), except for lycophytes. For the latter, our results agree with 100% colonization (Brundrett 2009) (Table 3). For hornworts, our estimate of 78% is lower than the previous one of 100% (Brundrett 2009), although it confirms that colonization by Glomeromycotina in hornworts in common. The most striking discrepancy is between our finding that only 5% of liverworts likely form arbuscular mycorrhizal-like associations and the 60% estimate by Brundrett (2009). Furthermore, our results indicate that previous estimates for the formation of any type of fungal symbiosis in bryophytes have also been excessive. Wang and Qiu (2006) estimated that 46% of bryophytes enter into symbiosis with fungi, whereas Brundrett and Tedersoo (2018) put this value at 25%, while also stating that in bryophytes the majority of these relationships involve Glomeromycotina fungi. In our study, after accounting for the ca. 13,000 non-symbiotic moss species, we estimate that only 11% of bryophytes enter into a symbiosis with fungi and that the most widespread symbiosis is with Ascomycota (53%) rather than Glomeromycotina (33%). The large number of species in Lepidoziaceae, within Jungermanniidae (751 species), is principally responsible for the Ascomycota occurrence rate estimate being higher than that of the other fungal lineages combined. Even though our fungal symbiosis occurrence rates are considerably lower than previously published ones, they too may represent overestimates since our calculations are based on the assumption that all members of a plant genus (or family for liverworts) can be colonized by a fungal lineage if at least one member of the genus (or family) is colonized by that lineage. While efforts were made to prevent overestimation in four liverwort families where an absence of symbiosis is common (Aneuraceae, Gymnomitriaceae, Jungermanniaceae and Plagiochilaceae), more data are needed to determine which families are fully symbiotic and for which symbiosis is more variable.

Another important consideration in these estimations is the symbiotic status of the fungi colonizing plants. All lineages of Mucoromycotina related to the Endogonales and Glomeromycotina are considered to be mycorrhizal-like when in association with early-diverging plants (Rimington et al. 2015; Field et al. 2016a, b). This is however not the case for Ascomycota and Basidiomycota, which are far more diverse than Mucoromycotina and Glomeromycotina and regularly colonize these plants as commensals or parasites (Davis and Shaw 2008). The structures formed by Ascomycota and Basidiomycota while colonizing early-diverging plants are not necessarily diagnostic of mutualisms, and thus, it is difficult to infer mutualistic, commensal or parasitic relationships based on morphology alone (Pressel et al. 2010). Therefore, morphological observations of Basidiomycota in Metzgeriidae and Ascomycota and Basidiomycota in Jungermanniidae may not necessarily reflect mycorrhizallike relationships. An additional complication is that, at present, Hyaloscypha (Pezoloma, Rhizoscyphus) ericae is the only Ascomycota species for which mutualistic nutrient exchange with liverworts has been confirmed (Kowal et al. 2018); thus, reports of colonization by Ascomycota that have not been identified as H. ericae using DNA sequencing may not represent mutualisms. For Basidiomycota, so far only Tulasnella and Serendipita (Sebacina) have been reported as genera symbiotic with liverworts (Bidartondo and Duckett 2010); however, both associations await physiological tests for exchange between partners. It follows that colonization of liverworts by mycorrhizal-like Ascomycota and Basidiomycota may have been overestimated and efforts are now required to identify molecularly the fungal symbionts of these plants as well as testing for nutrient exchange.

In contrast, Mucoromycotina occurrence rates are likely underestimates, especially for lycophytes. Traditionally, the unique structures of Glomeromycotina, in particular the arbuscules, made them easily and accurately identifiable through microscopy (Smith and Read 2008). However, the recent discovery of endosymbiotic Mucoromycotina, which cannot be distinguished from Glomeromycotina cytologically (Desirò et al. 2013; Field et al. 2016a, b) together with a report that arbuscule-forming fine root endophytes may be members of the Mucoromycotina (Orchard et al. 2017), indicates that Mucoromycotina symbionts have likely been misidentified as Glomeromycotina on a number of occasions (Field et al. 2019). It is possible, therefore, that some of the reports of Glomeromycotina symbioses in Table 1 are actually incorrect, although, at present, it is not possible to determine if and how these potential misidentifications might have influenced our occurrence rate estimations.

These caveats aside, our estimates can still be considered the best fungal symbiosis occurrence rates to date for earlydiverging plants. While those for early-diverging liverworts are based on fairly comprehensive information and are unlikely to change with additional data, those for later-diverging groups are likely to improve as more data become available for these plants.

Inferring gains and losses of symbiosis

The gains and losses of fungal symbiosis during the evolutionary history of the early-diverging plant families included in Table 1 have been inferred (Fig. 1). These are discussed below:

Liverworts-The liverworts have had a more diverse history of losses and gains of symbiosis than the hornworts and lycophytes. Mucoromycotina likely formed the ancestral symbiosis with liverworts and appear to have been maintained as the sole symbionts in the Haplomitriopsida (Rimington et al. 2019). There have been losses of Mucoromycotina symbiosis in Marchantiopsida liverworts during the divergence of the Blasiales, Sphaerocarpales and Marchantiales. In the Marchantiales, symbiosis has been regained in three families, Monocleaceae, Aytoniaceae and Targioniaceae. In Pelliidae, Mucoromycotina symbiosis has been maintained in all families except four (Hymenophytaceae, Phyllothalliaceae, Petallophyllaceaeand Noterocladaceae). Conversely, Glomeromycotina symbiosis likely had a single origin in liverworts after the divergence of the Haplomitriopsida, followed by several losses in the Marchantiopsida, from

Sphaerocarpales and six families of the Marchantiales, but only one loss in the Pelliidae, from the Phyllothalliaceae. After the divergence of the Pelliidae, there was a complete loss of both Mucoromycotina and Glomeromycotina symbioses in liverworts. Basidiomycota and Ascomycota symbioses appear to have been gained and lost multiple times during the evolution of the Metzgeriidae and Jungermanniidae. In the Metzgeriidae, there was a single gain of Basidiomycota symbiosis within the Aneuraceae and a subsequent loss from a large number of the later-diverging Riccardia species (Rabeau et al. 2017). Because the fungal symbiosis status of many Jungermanniidae families remains unresolved, it is not yet possible to accurately estimate gains and losses of Ascomycota and Basidiomycota symbioses in this subclass. Based on the better-studied families (highlighted in grey in Fig. 1), Ascomycota symbiosis appears to have evolved at least six times, with two major losses, while Basidiomycota symbiosis appears to have been gained on at least four occasions, with at least one loss. Alternatively, it is possible that Ascomycota and Basidiomycota symbioses had a single origin in the Jungermanniales followed by a large number of losses. Although this seems less likely, multiple losses of AM and rhizobia have been inferred in angiosperms, so until the fungal symbiosis status of these liverworts is fully resolved for all families, ancestral reconstruction will be of limited value to further our understanding of fungal associations in these plants.

Hornworts-Apart from some individual losses and apparent regains in certain hornwort species (Desirò et al. 2013), both Mucoromycotina and Glomeromycotina symbioses have been maintained throughout the Anthocerotopsida. Fungal symbiosis has never been recorded in the single species class Leiosporocerotopsida that contains the earliest-diverging extant hornwort Leiosporoceros dussii. Leiosporoceros dussii is notable not only for its lack of fungal symbiosis but also for its unique cyanobacterial symbiosis (Villarreal and Renzaglia 2006). With the order of divergence of the bryophytes under debate (Puttick et al. 2018), it is unknown whether Mucoromycotina and Glomeromycotina are both ancestral symbionts of all hornworts and were lost from Leiosporocerotopsida or whether these symbioses were gained in the hornworts only after Leiosporocerotopsida branched off. It also remains to be determined whether members of the Phymatocerotaceae are colonized by Mucoromycotina, Glomeromycotina or both fungi since the only record for this family is a report of 'a fungal association' (Stahl 1949); however, the regular colonization of the other Anthocerotopsida families by Mucoromycotina and Glomeromycotina suggests this family is also colonized by both fungal lineages.

Lycophytes—Phylogenetic inference (Fig. 1) and fossil evidence (Strullu-Derrien et al. 2014) both support that the ancestor of all vascular plants entered into symbiosis with

◄ Fig. 1 The phylogenetic position and fungal symbiosis status of earlydiverging plant families. Branch lengths have no value and only show how the families are currently considered to be related. Initials in the table denote: M Mucoromycotina, G Glomeromycotina, A Ascomycota, B Basidiomycota. A check indicates presence, a cross absence, and a question mark indicates an unknown identity reported only as 'fungal association'. Checks highlighted in grey are likely accurate reports and were used for occurrence rate estimations, whereas the mutualistic status of un-highlighted checks remains unknown (only relevant for Ascomycota and Basidiomycota symbioses in liverworts). An asterisk indicates a likely incorrect report of symbiosis

Mucoromycotina and Glomeromycotina. Within the lycophytes, there have only been losses of symbiosis and no subsequent gains. The loss of Mucoromycotina symbiosis appears to have occurred on a larger scale than that of Glomeromycotina symbiosis, with a major loss after the divergence of the Lycopodiaceae which resulted in Isoëtaceae and Selaginellaceae apparently being colonized only by Glomeromycotina. It should be noted however that no fungal molecular data have been generated from Isoëtaceae and all microscopy reports predate the discovery of Mucoromycotina in lycophytes; therefore a symbiosis with Mucoromycotina cannot be ruled out. Additionally, only three of the 688 Selaginellaceae species have been analysed molecularly (Rimington et al. 2015); therefore, this family may also enter into symbiosis with Mucoromycotina as well as Glomeromycotina. There have also been losses of Mucoromycotina symbiosis within the Lycopodiaceae and the subfamily Huperzoideae is only colonized by Glomeromycotina. Within the subfamily Lycopodioideae there appears to have been a complete loss of symbiosis in the Lycopodiastrum-Pseudolycopodium-Austrolycopodium-Dendrolycopodium-Diphasium clade (Field et al. 2016a). The low levels of colonization of lycophytes by symbiotic fungi and the evolution of non-symbiotic species suggest that these plants may have a low dependence on their mycorrhizal partners when mature (Rimington et al. 2015). On the other hand, the gametophytes of lycophytes are often subterranean and achlorophyllous and therefore fully dependent on their symbiotic fungi for nutrition (Schmid and Oberwinkler 1993).

Identifying lycophyte fungal symbionts

The identity of the fungi that enter into symbiosis with lycophytes and the extent of these symbioses remain poorly resolved. While the available evidence indicates that only Mucoromycotina and Glomeromycotina colonize members of this lineage (Pressel et al. 2016), more work is needed to confirm this and to determine which symbionts dominate in nature (Lehnert et al. 2017). Symbiosis with Glomeromycotina has been reported more frequently than with Mucoromycotina (53 species vs. 6); however, most of these reports precede the discovery of Mucoromycotina-plant symbiosis and also lack molecular identification. Indeed, a recent molecular survey found a smaller difference in incidence of colonization between the two fungal lineages, albeit with Glomeromycotina also being the dominant type (Rimington et al. 2015). There has only been one report of colonization by Basidiomycota in lycophytes (Horn et al. 2013). However, because of a lack of electron microscopy evidence and of molecular methods suitable for detecting Mucoromycotina in this report, and as it contradicts all previous and subsequent reports (Table 1), its conclusion has been called into doubt. Reassessing the published images in Horn et al. (2013), Strullu-Derrien et al. (2014) proposed that the colonizing fungus more likely belongs to Mucoromycotina than Basidiomycota. Dark-septate endophytes (DSE) are Ascomycota fungi (Pressel et al. 2016) and so far have been recorded in ten lycophyte species from all three lycophyte families. However, there is no evidence that DSE may form mutualistic associations with lycophytes (Pressel et al. 2016). Thus, at present, only Glomeromycotina and Mucoromycotina can be considered mycorrhizal partners of this early-divergent vascular plant lineage.

Conclusions

In concluding their seminal work, Wang and Qiu (2006) highlighted that 'more basal land plants should be investigated, as they occupy an especially important position in our understanding of the origin of mycorrhizal symbiosis'. In the subsequent 13 years considerable effort has gone into addressing some of these gaps in knowledge so that the fungal symbiosis status of more than three times the number of earlydiverging species reported in Wang and Qiu is now known. Nevertheless, further research is still required as to date only 6% of liverwort, 13% of hornwort and 5% of lycophyte species have been examined. Within liverworts, our survey highlights Jungermanniidae as the group in most need of further investigation. Lycophytes also require further investigation; it is likely that estimates of the occurrence of Mucoromycotina symbiosis in this lineage will increase with additional use of molecular methods.

Compiling this survey of fungal symbioses in earlydiverging plants has highlighted the importance of both DNA sequencing and microscopy for determining the identity of plant fungal symbionts. Microscopy alone is not enough to identify fungi unless they display truly diagnostic characteristics; DNA sequencing allows us to determine fungal presence, but not whether this represents a symbiosis. Combining these two complementary methods is essential to fully understand the distribution and diversity of fungal symbiosis in plants, while physiological studies of resource exchange between partners are needed to assess whether the plant-fungus association is functionally mycorrhizal or mycorrhizal-like. Acknowledgments WRR was supported by the NERC Doctoral Training Programme (Science and Solutions for a Changing Planet).

Author contributions WRR, JGD, MIB and SP conceived the study; WRR, JGD and SP compiled and examined data; WRR carried out analysis and wrote the first draft, and all authors contributed to the manuscript. We thank the editor and two reviewers for their comments.

Funding information We received support from NERC to KJF, SP (NE/N00941X/1) and MIB (NE/N009665/1). KJF is funded by a BBSRC Translational Fellowship (BB/M026825/1).

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Adams DG, Duggan PS (2008) Cyanobacteria-bryophyte symbioses. J Exp Bot 59:1047–1058
- Bidartondo MI, Duckett JG (2010) Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proc Royal Soc B Biol Sci 277:485–492
- Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7: 574–577
- Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77
- Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108– 1115
- Davis EC, Shaw AJ (2008) Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot 95:914–924
- de Sousa F, Foster PG, Donoghue PCJ, Schneider H, Cox CJ (2019) Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.). New Phytol 222:565–575
- Desirò A, Duckett JG, Pressel S, Villarreal JC, Bidartondo MI (2013) Fungal symbioses in hornworts: a chequered history. Proc R Soc Lond B Biol Sci 280:20130207
- Duckett JG, Ligrone R (2008) A cytological analysis of basidiomycetous endophytes in New Zealand Aneuraceae (simple thalloid liverworts, Metzgeriidae); confirmation of the derived status of *Verdoornia*. Can J Bot 86:346–358
- Fehrer J, Réblová M, Bambasová V, Vohník M (2019) The rootsymbiotic *Rhizoscyphus ericae* aggregate and *Hyaloscypha*

(Leotiomycetes) are congeneric: phylogenetic and experimental evidence. Stud Mycol 92:195–225

- Feldberg K, Vana J, Zhu RL, Heinrichs J (2010) The systematic position of *Pedinophyllum* (Marchantiophyta: Jungermanniales). Cryptogamie Bryol 31:125–133
- Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling DJ (2012) Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO₂ decline. Nat Commun 3:835
- Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2015) First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO₂. New Phytol 205:743–756
- Field AR, Testo W, Bostock PD, Holtum JAM, Waycott M (2016a) Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: *Huperzia, Phlegmariurus* and *Phylloglossum*. Mol Phylogenetics Evol 94:635–657
- Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2016b) Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO₂ decline. ISME J 10:1514–1526
- Field KJ, Bidartondo MI, Rimington WR, Hoysted GA, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2019) Functional complementarity of ancient plant–fungal mutualisms: contrasting nitrogen, phosphorus and carbon exchanges between Mucoromycotina and Glomeromycotina fungal symbionts of liverworts. New Phytol 223:908–921
- Flores JR, Catalano SA, Muñoz J, Suárez GM (2017) Combined phylogenetic analysis of the subclass Marchantiidae (Marchantiophyta): towards a robustly diagnosed classification. Cladistics 34:517–541
- Forrest LL, Davis EC, Long DG, Crandall-Stotler BJ, Clark A, Hollingsworth ML (2006) Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. Bryologist 109:303–334
- Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:1–102
- Hassler M, Schmitt B (2018) Checklist of ferns and lycophytes of the world version 7.4. Available at: http://worldplants.webarchiv.kit. edu/ferns/index.php
- Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547
- Horn K, Franke T, Unterseher M, Schnittler M, Beenken L (2013) Morphological and molecular analyses of fungal endophytes of achlorophyllous gametophytes of *Diphasiastrum alpinum* (Lycopodiaceae). Am J Bot 100:2158–2174
- Hoysted GA, Jacob AS, Kowal J, Giesemann P, Bidartondo MI, Duckett JG, Gebauer G, Rimington WR, Schornack S, Pressel S, Field KJ (2019) Mucoromycotina fine root endophyte fungi form nutritional mutualisms with vascular plants. Plant Physiol 181:565–677
- Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39
- Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw J, Turetsky MR (2016) The *Sphagnum* microbiome: new insights from an ancient plant lineage. New Phytol 211:57–64
- Kowal J, Pressel S, Duckett JG, Bidartondo MI, Field KJ (2018) From rhizoids to roots? Experimental evidence of mutualism between liverworts and ascomycete fungi. Ann Bot 121:221–227
- Lehnert M, Krug M, Kessler M (2017) A review of symbiotic fungal endophytes in lycophytes and ferns – a global phylogenetic and ecological perspective. Symbiosis 71:77–89

- Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007) Glomeromycotean associations in liverworts: a molecular cellular and taxonomic analysis. Am J Bot 94:1756–1777
- Masuzaki H, Shimamura M, Furuki T, Tsubota H, Yamaguchi T, Majid HMA, Deguchi H (2010) Systematic position of the enigmatic liverwort *Mizutania* (Mizutaniaceae, Marchantiophyta) inferred from molecular phylogenetic analyses. Taxon 59:448–458
- Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, Gleeson DB, Jeffery RP, Powell JR, Walker C, Bass D et al (2017) Fine endophytes (*Glomus tenue*) are related to Mucoromycotina, not Glomeromycota. New Phytol 213:481–486

Paton JA (1999) The liverwort flora of the British Isles. Brill, Leiden

- Patzak SDF, Renner MAM, Schäfer-Verwimp A, Feldberg K, Heslewood MM, Peralta DF, de Souza AM, Schneider H, Heinrichs J (2016) A phylogeny of Lophocoleaceae-Plagiochilaceae-Brevianthaceae and a revised classification of Plagiochilaceae. Org Divers Evol 16:481– 495
- Pimm SL, Raven PH (2017) The fate of the world's plants. Trends Ecol Evol 32:317–320
- Pocock K, Duckett JG (1985) On the occurrence of branched and swollen rhizoids in British hepatics: their relationships with the substratum and associations with fungi. New Phytol 99:281–304
- PPG1 (2016) A community derived classification for extant lycophytes and ferns. J Sys Evol 54:563–603
- Pressel S, Bidartondo MI, Ligrone R, Duckett JG (2010) Fungal symbioses in bryophytes: new insights in the twenty first century. Phytotaxa 9:238–253
- Pressel S, Bidartondo MI, Field KJ, Rimington WR, Duckett JG (2016) Pteridophyte fungal associations: current knowledge and future perspectives. J Sys Evol 54:666–678
- Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ (2018) The interrelationships of land plants and the nature of the ancestral embryophyte. Curr Biol 28:733–745
- Rabeau L, Gradstein SR, Dubuisson J, Nebel M, Quandt D, Reeb C (2017) New insights into the phylogeny and relationships within the worldwide genus *Riccardia* (Aneuraceae, Marchantiophytina). Eur J Taxon 273:1–26
- Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-yearold vesicular-arbuscular mycorrhizae. PNAS 91:11841–11843
- Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD, Duckett JG (2007) Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist 110:179–213
- Rikkinen J, Virtanen V (2008) Genetic diversity in cyanobacterial symbionts of thalloid bryophytes. J Exp Bot 59:1013–1021
- Rimington WR, Pressel S, Duckett JG, Bidartondo MI (2015) Fungal associations of basal vascular plants: reopening a closed book? New Phytol 205:1394–1398
- Rimington WR, Pressel S, Duckett JG, Field KJ, Read DJ, Bidartondo MI (2018) Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Proc R Soc Lond B Biol Sci 285:1888
- Rimington WR, Pressel S, Duckett JG, Field KJ, Bidartondo MI (2019) Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts. Mycorrhiza 29:551–565

- Schmid E, Oberwinkler F (1993) Mycorrhiza-like interaction between the achlorophyllous gametophyte of *Lycopodium clavatum* L. and its fungal endophyte studied by light and electron-microscopy. New Phytol 124:69–81
- Schuster RM (1969) The Hepaticae and Anthocerotae of North America, Volume 2. Columbia University Press, Columbia
- Schuster RM (1980) The Hepaticae and Anthocerotae of North America, Volume 4. Columbia University Press, Columbia
- Shaw B, Crandall-Stotler B, Váňa J, Stotler RE, von Konrat M, Engel JJ, Davis EC, Long DG, Sova P, Shaw AJ (2015) Phylogenetic relationships and morphological evolution in a major clade of leafy liverworts (phylum Marchantiophyta, order Jungermanniales): suborder Jungermanniineae. Syst Bot 40:27–45
- Smith SE, Read DJ (1997) Mycorrhizal symbiosis, Second edn. Academic Press, Cambridge
- Smith SE, Read DJ (2008) Mycorrhizal symbiosis, Third edn. Academic Press, Cambridge
- Söderström L, Hagborg A, von Konrat M, Bartholomew-Began S, Bell D, Briscoe L, Brown E, Cargill DC, Costa DP, Crandall-Stotler BJ et al (2016) World checklist of hornworts and liverworts. Phytokeys 59:1–828
- Stahl M (1949) Die Mycorrhiza der Lebermoose mit besonderer Berucksichtigung der thallosen formen. Planta 37:103–148
- Stotler RE, Crandall-Stotler B (2017) A synopsis of the liverwort flora of North America north of Mexico. Ann Mo Bot Gard 102:574–709
- Strullu-Derrien C, Kenrick P, Pressel S, Duckett JG, Rioult J-P, Strullu D-G (2014) Fungal associations in *Horneophyton ligneri* from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant–fungus symbioses. New Phytol 203:964–979
- Upson R, Read DJ, Newsham KK (2007) Widespread association between the ericoid mycorrhizal fungus *Rhizoscyphus ericae* and a leafy liverwort in the maritime and sub-Antarctic. New Phytol 176:460–471
- Villarreal JC, Renner SS (2013) Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evol Biol 13:239
- Villarreal JC, Renzaglia KS (2006) Structure and development of Nostoc strands in Leiosporoceros dussii (Anthocerotophyta): a novel symbiosis in land plants. Am J Bot 93:693–705
- Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363
- Warshan D, Espinoza JL, Stuart RK, Richter RA, Kim SY, Shapiro N, Woyke T, Kyrpides NC, Barry K, Singan V et al (2017) Feathermoss and epiphytic *Nostoc* cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. The ISME J 11:2821–2833
- Yamamoto K, Shimamura M, Degawa Y, Yamada A (2019) Dual colonization of Mucoromycotina and Glomeromycotina fungi in the basal liverwort, *Haplomirium mnioides* (Haplomitriopsida). J Plant Res 132:777–788. https://doi.org/10.1007/s10265-019-01145-3

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.