
This is a repository copy of Priority Assignment on Partitioned Multiprocessor Systems
with Shared Resources.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/161461/

Version: Accepted Version

Article:

Zhao, Shuai, Chang, Wanli orcid.org/0000-0002-4053-8898, Wei, Ran et al. (4 more
authors) (Accepted: 2020) Priority Assignment on Partitioned Multiprocessor Systems with
Shared Resources. IEEE Transactions on Computers. ISSN 0018-9340 (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Priority Assignment on Partitioned Multiprocessor

Systems with Shared Resources
Shuai Zhao, Wanli Chang, Ran Wei, Weichen Liu, Nan Guan, Alan Burns and Andy Wellings

Abstract—Driven by industry demand, there is an increasing
need to develop real-time multiprocessor systems which contain
shared resources. The Multiprocessor Stack Resource Policy
(MSRP) and Multiprocessor resource sharing Protocol (MrsP)
are two major protocols that manage access to shared resources.
Both of them can be applied to Fixed-Priority Preemptive
Scheduling (FPPS), which is enforced by most commercial real-
time systems regulations, and which requires task priorities to be
assigned before deployment. Along with MSRP and MrsP, there
exist two forms of schedulability tests that bound the worst-
case blocking time due to resource accesses: the traditional ones
being more widely adopted and the more recently developed
holistic ones which deliver tighter analysis. On uniprocessor
systems, there are several well-established optimal priority as-
signment algorithms. Unfortunately, on multiprocessor systems
with shared resources, the issue of priority assignment has not
been adequately understood. In this work, we investigate three
mainstream priority assignment algorithms – Deadline Mono-
tonic Priority Ordering (DMPO), Audsley’s Optimal Priority
Assignment (OPA), and Robust Priority Assignment (RPA), in
the context of partitioned multiprocessor systems with shared
resources. Our contributions are multifold: First, we prove
that DMPO is optimal with the traditional schedulability tests.
Second, two counter examples are given as evidence that DMPO
is not optimal with the tighter holistic schedulability tests. Third,
we then analyse the pessimism arising from the adoption of OPA
and RPA with the holistic tests. Lastly, we propose a Slack-
based Priority Ordering (SPO) algorithm that minimises such
pessimism, and has polynomial time complexity. Comprehensive
experiments show that SPO outperforms (i.e., results in a larger
number of schedulable systems) DMPO, OPA and RPA in general
with the holistic schedulability tests, by up to 15%. With the
theoretical contributions, this paper is a useful guide to priority
assignment in real-time partitioned multiprocessor systems with
shared resources.

I. INTRODUCTION

Emerging embedded applications in various domains such

as automotive, robotics, medical, communication and indus-

trial automation [10]–[12], [23], requires the wide adoption of

real-time multiprocessor systems [16]. Whilst more computa-

tional power can be obtained, the transition from uniprocessor

to multiprocessor systems raises new challenges and breaks

many well-practised real-time algorithms. One critical issue is

S. Zhao, W. Chang, A. Burns and A. Wellings are with the Department of
Computer Science, University of York, UK. E-mail: shuai.zhao@york.ac.uk,
wanli.chang@york.ac.uk, alan.burns@york.ac.uk, andy.wellings@york.ac.uk

R. Wei is with the School of Artificial Intelligence, Dalian University of
Technology, China. E-mail:ranwei@dlut.edu.cn

W. Liu is with the School of Computer Science and Engineering, Nanyang
Technological University, Singapore. E-mail:liu@ntu.edu.sg

N. Guan is with the Department of Computing, Hong Kong Polytechnic
University, China. E-mail:nan.guan@polyu.edu.hk

W. Chang is the corresponding author.

the management of logical and physical resources shared by

tasks executing in parallel, such as data structures, I/O and

network ports [7].

On uniprocessor systems, mature resource sharing protocols

are well understood with several optimal solutions available,

such as Priority Ceiling Protocol (PCP) [28], Stack Resource

Policy (SRP) [3] and Deadline Floor Protocol (DFP) [8]. On

multiprocessor systems, optimal resource sharing protocols are

not available [33]. However, many solutions, e.g., Multipro-

cessor PCP (MPCP) [27], Multiprocessor SRP (MSRP) [19]),

and the Multiprocessor resource sharing Protocol (MrsP) [9]

have been proposed for managing globally shared resources,

i.e., those resources shared between processors. In the mean

time, new holistic schedulability tests for analysing these

protocols are emerging, such as the framework proposed

in [32] for several spin-based protocols (including MSRP) and

the analysis proposed in [34], [35] for both MSRP and MrsP.

They provide tighter schedulability results than the traditional

schedulability tests reported together with the protocols.

The majority of commercial real-time systems regulations

enforce Fixed-Priority Preemptive Schedulers (FPPS), where

priorities must be first assigned to tasks [15]. As an optimal

priority assignment [16], Deadline Monotonic Priority Order-

ing (DMPO) has been widely used for decades on uniprocessor

systems. In addition, search-based priority assignments such

as Audsley’s Optimal Priority Assignment scheme (OPA) [2]

and Robust Priority Assignment (RPA) [14] are optimal for

a wider range of systems. Furthermore, these priority assign-

ments have been proved to remain optimal on uniprocessor

systems, in the presence of shared resources managed by those

optimal uniprocessor resource sharing protocols, e.g., SRP and

PCP [5]. However, on multiprocessor systems with shared

resources, whether DMPO and these search-based priority

assignments maintain their optimality (or even applicability)

is unknown [5], [16].

Main contributions: In this paper, we investigate optimality

and applicability of three mainstream priority assignment

algorithms — DMPO, OPA and RPA — in the context of

partitioned (i.e., fixed allocation of tasks to processors and

no migration) multiprocessor systems with shared resources,

based on two multiprocessor resource sharing protocols —

MSRP and MrsP — and their schedulability tests. We prove

that DMPO remains optimal under the traditional schedula-

bility tests of both MSRP and MrsP. However, its optimality

is undermined in the tighter holistic schedulability tests. In

addition, we explain the pessimism resulting from applying

OPA and RPA to the holistic tests with experimental evidence,

which illustrates that these algorithms are no longer optimal.

A Slack-based Priority Ordering (SPO) with polynomial time

complexity is then proposed to minimise the pessimism in-

curred when applying the holistic schedulability tests. Finally,

experimental results show the impact of priority assignment

on the schedulability of multiprocessor systems with shared

resources, and the effectiveness of SPO.

Organisation of this paper: Section II describes the

priority assignments studied in this paper. Section III gives

the system model and explains the targeted resource sharing

protocols, i.e., MSRP and MrsP. Section IV presents the

traditional and holistic schedulability tests for MSRP and

MrsP, respectively. A comprehensive investigation towards the

optimality and applicability of DMPO, OPA and RPA under

the considered schedulability tests is conducted in Sections V

and VI. In Section VII, SPO is proposed and discussed

in detail. Section VIII reports the experimental results and

Section IX draws conclusions from the study and discusses

future work.

II. RELATED WORK

In this section, we provide a brief review of the major

priority assignment algorithms related to this work, based on a

survey reported in [16]. Descriptions of the targeted multipro-

cessor resource sharing protocols and their schedulability tests

are given in later sections. Note that in this work we focus

on the priority assignment problem rather than the resource

sharing and analysis issues of multiprocessor systems.

DMPO proposed in [25] assigns higher priorities to tasks

with shorter deadlines. As proved in [16], DMPO is optimal

for sporadic tasks with constrained deadlines. Notably, DMPO

remains optimal in the presence of shared resources managed

by SRP, PCP and DFP on uniprocessors [5] whilst the Dead-

line Minus Release Jitter Monotonic (D-J) Priority Ordering

is optimal in the presence of release jitters [37]. However, the

optimality of DMPO can be easily undermined with minor

changes to the system, such as in the presence of arbitrary

deadlines [24], [25].

In [2], a search-based priority assignment algorithm, OPA,

is proposed. Given a set of tasks with priorities unassigned,

this algorithm starts from the lowest priority level and checks

whether there exists a priority-unassigned task that is schedu-

lable at that priority level; assuming all other unassigned

tasks have a higher priority. If such a task is found, it is

assigned this priority. The algorithm then moves on to the

next priority level and checks the rest of the unassigned tasks.

The algorithm returns a schedulable solution if each task is

assigned a priority. OPA is an optimal priority assignment

as it guarantees that a schedulable priority ordering can be

found if there are any, with a worst-case of n(n + 1)/2
iterations. In addition, OPA is proved to be optimal for a wider

range of application semantics than DMPO, such as systems

with offset release times [1], arbitrary deadlines [30], non-

preemptive execution [22] and mixed criticalities [31]. Later,

several extension based on OPA have been developed to further

optimise priority ordering based on different metrics, such as

minimising the number of priority levels [2], or minimising

the lexicographical distance [13].

However, with OPA, tasks are assigned an arbitrary priority

if there exists more than one schedulable task at a given

priority level. As described in [14], this can result in a system

that is merely schedulable, but fragile to minor changes of

task parameters, execution budgets overrun or under-estimated

interference. To address this concern, RPA was developed

in [14] as an extension of OPA, with an approach to specify

the exact task that should be assigned at each priority level.

In RPA, an interference function is introduced to model the

amount of potential interference that tasks can incur on each

priority level whilst remaining schedulable. With this function,

RPA aims to produce a priority ordering that can tolerate the

maximum amount of additional interference.

Similar to OPA, RPA starts with the lowest priority level

and requires n(n+1)/2 binary searches to find the maximum

additional interference for all priority levels. On a given

priority level, the task that can tolerate the maximum amount

of additional interference will be assigned that priority. The

algorithm then iterates to the next priority level until all tasks

are assigned a priority. If a feasible priority ordering can be

found, this system is guaranteed to be schedulable and is

able to cope with the minimal tolerable additional interference

among all priority levels.

III. SYSTEM MODEL AND RESOURCE SHARING

PROTOCOLS

As partially discussed in Section I, most commercial real-

time systems regulations enforce FPPS and explicitly mandate

the use of spin locks for managing shared resources (e.g., the

AUTOSAR framework for automotive systems [17], [18]). In

this work, we focus on the general sporadic task model in

fully-partitioned multiprocessor systems with FPPS and spin-

based resource sharing protocols adopted.

The multiprocessor system under study contains M pro-

cessors (P1 to PM). We consider a set of tasks Γ and the

tasks allocated to each processor are fixed before execution

(i.e., fully-partitioned). Tasks can present periodic or sporadic

activation patterns following the general sporadic task model.

For a given task in the system (denoted by τx), it has a period

Tx, a relative deadline Dx, a priority pri(τx), a pure worst-

case computation time Cx, and a response time Rx. The pure

computation time of τx indicates the time it takes to execute

without waiting for, or accessing, shared resources. Deadlines

are constrained, that is: Dx ≤ Tx). The index value of a task

also indicates its priority (i.e., pri(τx) = x), and each task is

assigned a unique priority. A higher priority value indicates a

higher execution eligibility.

Within the system, there also exists a set of resources R that

are shared among tasks. These resources are accessed in the

mutual exclusion manner, by their associated critical sections,

for data consistency. For each shared resource rk, ck denotes

the worst-case cost for executing its associated critical section.

During each release, a task τx may request a resource rk a

number of times, denoted by Nk
x . The relation between tasks

and resources is described by two functions: F (τx) returns the

set of resources requested by the task τx, and G(rk) returns

the set of tasks accessing the resource rk. Accesses to shared

2

resources are assumed to be managed in compliance with

either MSRP or MrsP. The reason for such a choice is that

MSRP and MrsP represent two mainstream resource-accessing

approaches (the non-preemptive and the resource ceiling) with

schedulability tests well supported and understood.

In this work, we assume that a task can hold at most

one resource at any time instant. Nested critical sections can

be trivially supported via group locks [33] — where nested

resources are grouped together and managed by one lock —

without affecting any analysis or conclusion made in this pa-

per. The finer-grained ordered lock requires some fundamental

changes on the underlying schedulability analysis [21] and

will be investigated in future work. In addition, the resource

accessing time ck of a resource rk is taken as the worst-case

accessing time among all tasks that require the resource. This

assumption (also applied in [9]) eases the presentation without

affecting the foundations of the schedulability analysis in this

paper.

MSRP [19], [20] is developed as the extension of SRP [3]

for uniprocessor systems. Under MSRP, resources are ac-

cessed from the task’s host processor in a non-preemptive

fashion. Resource requesting tasks that are not immediately

handled will keep spinning non-preemptively until the access

is granted. A FIFO queue is used to grant access to the

resource, allowing the spin-waiting time to be bounded by

the number of processors with tasks that request the resource.

However, as for local resources, PCP is applied so that these

resources are executed in a preemptive fashion.

For MrsP [9], a priority ceiling is used instead of the

non-preemptive approach for both local and global resources.

Under this protocol, a global resource is served in a FIFO

order, and has a set of ceiling priorities (one for each processor

with tasks requesting that resource). The ceiling priority of a

resource rk on a given processor Pm is the maximum priority

of all tasks on Pm that use rk. For each request to rk on

Pm, the requesting task inherits that ceiling priority during

the entire resource access, including the time it spin waits for

the resource. Notably, MrsP introduces a helping mechanism

where a preempted resource-accessing task can be helped

by other tasks waiting (spinning) for the resource, to keep

executing rather than waiting in the run queue. This helping

mechanism can be realised through either duplicate execution

or the task migration approach [9], [21]. In the worst case, a

resource-waiting task has to execute on behalf of all other tasks

in the FIFO queue each time it requests a resource. This leads

to the same worst-case resource accessing time as MSRP [9].

IV. SCHEDULABILITY TESTS FOR MSRP AND MRSP

With a resource sharing protocol enforced, a schedulability

test S must be supported to bound the worst-case blocking

time due to resource access. With the strong guarantee of

resource execution progress (i.e., the non-preemptive fashion)

in MSRP and the helping mechanism in MrsP, the schedulabil-

ity tests of these two protocols are similar, but with different

approaches to capture the blocking that tasks can incur upon

their arrival [32], [34].

A. Traditional Schedulability Tests

Along with the development of MSRP and MrsP, a schedu-

lability test was developed for both protocols to provide a

safe bound for blocking due to accessing shared resources [9],

[19]1. Under both protocols, the response time (Ri) of a given

task τi is bounded by Equation (1). Ci is the total computation

time of τi (including the time τi waits (spins) for and executes

with each requested resource). Bi denotes the amount of

blocking τi can incur upon its arrival. Function lhp(i) returns

a set of local tasks with a priority higher than the priority of

τi, i.e., pri(τi). In addition, Th is the period of τh and Ch is

the total computation time of τh (with the same principals as

Ci).

Ri = Ci +Bi +
∑

τh∈lhp(i)

°

Ri

Th

§

Ch (1)

Notation Ci is bounded through Equation (2). Function
∑

rk∈F (τi)
Nk

i e
k denotes the total time τi spends on waiting

and executing with each requested resource (obtained through

F (τi)) in one release, where N i
k is the number of times τi

requests rk in one release and ek is the worst-case accessing

time to rk.

Ci = Ci +
∑

rk∈F (τi)

Nk
i e

k (2)

As the requests to a resource under MSRP are served in

a non-preemptive FIFO order, ek is effectively bounded by

the number of processor containing requests to rk, as given

in Equation (3), in which G(rk) denotes the set of tasks

that require rk, ck for worst-case cost for executing with rk,

function map() returns a set of processors where the given

tasks are assigned to, and | · | returns the size of the given

set.

As for MrsP, although it adopts a preemptive approach for

resource accessing, in the worst case, a task executes on behalf

of all other tasks in the FIFO queue before it can execute with

the resource (see [9] for MrsP’s helping mechanism). Thus, the

worst-case blocking time that a MrsP task can incur is also

bounded by Equation (3), as discussed in [9].

ek = |map(G(rk))|∗ck (3)

The arrival blocking (Bi) of τi is computed through Equa-

tions (4) and (5), where êi is the arrival blocking τi can incur

with potential remote delay, b̂ is the maximum non-preemptive

section in the underlying operating system and FA(τi) returns

the set of resources that can cause τi to incur blocking upon

its arrival.

Bi = max{êi, b̂} (4)

êi = max{ek|rk ∈ FA(τi)} (5)

However, as MSRP and MrsP use different priority levels

for accessing globally shared resources (i.e., non-preemptive

and priority ceiling), the approaches for identifying such

resources are different under these protocols. For MSRP, a

1We refer to these tests as the traditional schedulability tests for MSRP and
MrsP.

3

global resource rk can cause τi to incur arrival blocking if rk

is requested by a local lower priority task of τi (denoted by τll).
As for a local resource, PCP [28] is enforced so that a resource

can cause such blocking if it has a higher priority ceiling than

pri(τi) and is requested by τll. Equation (6) yields the set of

resources that can cause arrival blocking under MSRP (denote

by FA
† (τi)), where Nk

ll gives the number of requests from τll
to rk in one release.

FA
† (τi) = {rk|Nk

ll > 0 ∧ (rk is global ∨ pri(rk) ≥ pri(τi))}
(6)

With MrsP, as both local and global resources are accessed

with ceiling priorities, FA
‡ (τi) is simply bounded by finding

the resources that have a higher ceiling than pri(τi) on P (τi)
(i.e., τi’s hosting processor) and are requested by τll, as given

in Equation (7).

FA
‡ (τi) = {rk|Nk

ll > 0 ∧ pri(rk, P (τi)) ≥ pri(τi)} (7)

The above schedulability tests provide a simple analysis

in which a safe blocking bound can be obtained. Notably,

with this approach, the worst-case blocking of tasks in one

processor can be obtained regardless of the exact resource

usage on remote processors (i.e., it is less vulnerable to

changes in the system). These highly decoupled schedulability

tests are favourable at early design and development stages of

systems, where tasks’ parameters and execution behaviours

may change frequently.

B. Holistic Schedulability Tests

Despite the advantages of the original schedulability tests

described above, these tests rely on the assumption that each

time a task (denoted by τi) request a resource, there will

always be a remote request on each remote processor in

map(G(rk)) that can block τi, regardless of the actual number

of possible requests that can be issued within the time period

Ri. In addition, as described in [32], these tests rely on the

inflation of blocking time to task execution time, which intro-

duce extra pessimism. Subsequently, [6] proposed an improved

schedulability test for several spin-lock protocols (including

MSRP) based on Integer Linear Programming2. Later on,

[34] reformatted the ILP-based analysis to remove the need

for any optimisations, and proposed a holistic schedulability

test in the context of MrsP, which analyses the total number

of resource requests that can be issued within a given time

period. This holistic analysis can be directly applied to both

MSRP and MrsP with the corresponding FA(τi) functions

(i.e., Equations (6) and (7) in Section IV-A) adopted.

In the holistic analysis by [34], the response time of τi is

bounded by Equation (8), where Ci is the pure worst-case

computation time of τi (i.e., without accessing any shared

resource), Ei is the total resource accessing time of τi with the

potential spin delay accounted for and the indirect spin delay

(i.e., the transitive blocking) incurred by τi from each local

high priority task τh (which preempts τi but is blocked for

2Referred to as the ILP-based analysis hereafter.

requesting a locked resource), and Bi is the arrival blocking

of τi.

Ri = Ci + Ei +Bi +
∑

τh∈hpl(i)

°

Ri

Th

§

· Ch (8)

Ei is obtained through Equation (9), where ζki yields the

total number of requests to rk issued by τi’s local higher

priority tasks and ξki,m gives the number of requests to rk

from a remote processor Pm. Note that this analysis uses a

holistic approach on bounding the blocking time, where the

maximum blocking that τi can incur from a remote processor

Pm due to rk during τi’s release is bounded by the minimal

value between Nk
i +ζki (the total number of requests to rk from

τi and its local higher priority tasks within the duration of Ri)

and ξki,m. By doing so, this analysis is less pessimistic than the

traditional test as 1) the analysis computes the exact number

of remote requests that can cause the blocking (i.e., avoiding

the assumption used by the original tests in Section IV-A) and

2) each critical section (i.e., resource request) is accounted for

only once (avoiding inflating tasks’ computation times).

Ei =
∑

rk∈R

(Nk
i +ζki +

∑

Pm 6=P (τi)

min{Nk
i +ζki , ξ

k
i,m})×ck (9)

ζki and ζki,m are obtained from Equations (10) and (11)

respectively. As shown in the equations, a jitter3 interval (i.e.,

Rh and Rj respectively) is included to extend the duration

of τi’s release to provide a safe upper bound. As described

and proved in [6] (see Lemma 5.1 in [6]), in multiprocessor

systems, at most
†

t+Rx

Tx

£

jobs of τx can be released within a

given duration t. This lemma forms the fundamental approach

for calculating the number of requests being issued within a

given duration, and is applied by the improved schedulability

tests in [32]–[34].

ζki =
∑

τh∈lph(i)

°

Ri +Rh

Th

§

Nk
h (10)

ξki,m =
∑

τj∈ΓPm

°

Ri +Rj

Tj

§

Nk
j (11)

The arrival blocking (Bi) of τi (in Equation 8) is computed

through Equation (4), but with a different approach for bound-

ing, as provided in Equations (12) and (13).

êi = max{|αk
i |·c

k|rk ∈ FA(τi)} (12)

in which αk
i denotes the set of processors that contain unac-

counted requests to rk (i.e., requests that are not accounted

for in Ei) and is computed as:

αk
i , {Pm|ξki,m− ζki −Nk

i > 0∧Pm 6= P (τi)}∪P (τi) (13)

For each rk that belongs to FA(τi), this equation identifies

the remote processors that contain unaccounted requests (i.e.,

ξki,m − ζki − Nk
i > 0), where a request to rk in each of

these processors can block τi upon its arrival. Therefore, by

bounding the number of such processors, Equation (12) yields

the maximum blocking that τi can incur among all resources

in FA(τi).

3An extra time period to safely bound the number of executable jobs a task
can have within a given duration.

4

TABLE I: Schedulability tests for MSRP and MrsP

Protocols traditional test holistic test

MSRP(†) S† S⋄
†

MrsP(‡) S‡ S⋄
‡

To summarise, in this paper we consider the above schedula-

bility tests (the traditional and the holistic test) for MSRP and

MrsP, respectively, to investigate the priority assignment prob-

lem in multiprocessor systems. Table I shows the notations

used of the resource sharing protocols considered and their

schedulability tests. Note that the behaviour of the cache has

no impact on resource accesses, and only influences priority

assignment via the pure worst-case computation time parame-

ter C. Our work focuses on resource sharing and assumes that

C is known. Estimating C needs to consider cache, e.g., in

preemption and migration. Runtime overhead of both MSRP

and MrsP has been studied in terms of real implementations

and schedulability tests [29], [33], [36], where the overhead

of context switches and potential migrations is considered. In

future work, the analysis of cache-related costs and runtime

overheads will be integrated to the schedulability tests, and the

impact of such costs on the priority assignment investigated.

V. DMPO WITH TRADITIONAL SCHEDULABILITY TESTS

To the best of our knowledge, the optimality of DMPO

in the presence of blocking holds only for uniprocessor

systems [5], [16]. However, whether this algorithm remains

optimal in multiprocessor systems with shared resources is

unknown. This section investigates the optimality of DMPO

in multiprocessor systems with shared resources managed

by these protocols. Schedulability tests considered in this

section are the traditional schedulability tests described in

Section IV-A. The term Optimal Priority Ordering is defined

in [16].

Definition 1. A priority assignment algorithm Λ is optimal

with a task model, a scheduling algorithm G, and a schedula-

bility test S, if and only if every set of tasks that is compliant

with the task model is deemed schedulable with G by S under

other priority assignments is also schedulable with Λ.

The following base case and inductive step (similar to the

proof in [16]) for proving the optimality of DMPO is con-

ducted in a multiprocessor system, with tasksets that comply

with the system and task model described in Section III, using

schedulability tests S† and S‡ .

Base case: A priority assignment algorithm Λx is assumed to

be schedulable for a given taskset Γ with M processors

under schedulability test S† or S‡ (see Figure 1), where

Λx
Γ denotes the schedulable priority order for the taskset

Γ.

Inductive step: under Λx
Γ, a pair of adjacent tasks not in

DMPO order are chosen with their priorities swapped to

form a new priority ordering, denoted as Λx−1
Γ . Then,

proof is presented to demonstrate that no tasks have

missed their deadlines due to this priority swapping. For

a taskset with n tasks, at most x = n(n + 1)/2 priority

Pm

L
G
!

G"#$

𝜏&

𝜏'

G()*

G"#$

𝜏′'

𝜏′&

G()*

P0,…,m-1 Pm+1,…,M

L
G
!,-

Fig. 1: A priority swap

swapping are required to transfer the priority ordering

from Λx
Γ to DMPO in one processor (i.e., Λ1

Γ = DMPOΓ).

If no tasks have missed their deadlines under S† and S‡

respectively during the entire priority reordering for all

processors, there will be no task sets that are schedulable

with Λx
Γ but are not schedulable with DMPO, and hence,

proving the optimality of DMPO.

The system shown in Figure 1 is adopted to conduct the

proof below. A priority exchange is performed between τy and

τz on Pm, where Γtop and Γbtm denote the set of local higher

and lower priority tasks respectively. In addition, the system

contains a set of shared resources that are managed by MSRP

or MrsP, and functions F (τx) and G(rk) given in Section III

are adopted here to describe the usage of shared resources.

Hence, unlike the proof presented in [5] (which relies on

explicit resource usage), the proof in this paper is conducted

with generalised resource usage i.e., without any resource

sharing assumptions imposed. In addition, it is important to

highlight that, under the traditional analysis of both MSRP

and MrsP, swap the priorities of two adjacent tasks does not

affect the response time of the tasks with a higher (or lower)

priority. This is because in the traditional analysis, the response

time of a task may depends on the independent properties of

higher (or lower) priority tasks, but does not depend on their

relative priority ordering [14].

Note that the priority ordering Λx
Γ does not comply with the

DMPO algorithm. With DMPO adopted, increasing priorities

are assigned in the reverse ordering of deadlines. However,

with the priority ordering policy Λx adopted, there exists at

least one pair of tasks (say τ1 and τ2) that D1 < D2 with

pri(τ1) < pri(τ2). In this proof, we assume Dy > Dz and

pri(τy) > pri(τz) under Λx
Γ. To differentiate the response

time of τy and τz under both priority orderings, R′
y and R′

z

are used to denote the response time of τy and τz after the

priority swap i.e., with the priority ordering Λx−1
Γ .

Theorem 1. DMPO is optimal in fully partitioned multi-

processor deadline-constrained systems in the presence of

blocking under S† (MSRP) or S‡ (MrsP).

Proof. For both S† and S‡ , the response time of a given task

is determined by the independent task properties only and the

cost for accessing a resource rk is always |map(G(rk))|×ck,

as shown in Equation (3). Below we prove the optimally of

DMPO under S† and S‡ respectively.

5

With traditional MSRP analysis S† : we firstly prove that

R′
z ≤ Dz after the priority swap. Under Λx

Γ, τz incurs inter-

ference and indirect spin delay from τy , which is calculated

as the following by Equations (2) and (3).
°

Rz

Ty

§

(Cy +
∑

rk∈F (τy)

Nk
y × |map(G(rk))|×ck) (14)

With Λx−1
Γ , τz will not incur such interference, where it

can only be preempted by Γtop. However, τz could incur a

potentially increased arrival blocking due to the priority swap.

According to Equation (6), the resources that can cause τz to

incur arrival blocking under Λx−1
Γ is identified as

FA(τz) ,{rk|rk ∈ F (Γbtm) ∪ F (τy)∧
Ä

rk is global ∨ rk ∈ F (Γtop) ∪ F (τz)
ä

}
(15)

However, under Λx
Γ, FA(τz) is

FA(τz) ,{rk|rk ∈ F (Γbtm) ∧
Ä

rk is global ∨

rk ∈ F (Γtop) ∪ F (τy) ∪ F (τz)
ä

}
(16)

The above calculations illustrate that there could be more

resources that can cause τz to incur arrival blocking with

Λx−1
Γ than that of Λx

Γ. First, the number of global resources

that can cause arrival blocking to τz after the swapping could

be increased, where such resources are rk ∈ F (Γbtm) in Λx
Γ

and rk ∈ F (τy) ∪ F (Γbtm) under Λx−1
Γ , assuming rk is a

global resource. In addition, local resources that are requested

by τy and tasks with a priority equal to or higher than

pri(τz) (i.e., G(rk) = {Γtop, τy}, G(rk) = {τy, τz} or

G(rk) = {Γtop, τy, τz}) can now block τz upon its arrival

under Λx−1
Γ . Accordingly, the resources that can cause τz to

incur an increased arrival blocking is summarised as follows:

{rk|rk ∈ F (τy)∧
Ä

rkis global∨rk ∈ F (τtop)∪F (τz)
ä

} (17)

Therefore, in the worst case, τz’s arrival blocking can

increase after the priority swap due to the resources identified

above. However, as shown above, the resource (say rk) that

causes this increased arrival blocking is one of τy’s requested

resources (i.e., rk ∈ F (τy)), regardless whether rk is a global

or local resource.

Recall the decreased indirect spin delay of τz after the

priority swap in Equation (14). The potential increase of the

arrival blocking of τz after the priority swap is at most equal

to the guaranteed decrease of its indirect spin delay, as the

arrival blocking can occur only once (i.e., |map(G(rk))|×ck)

whilst τy could access that resource at least once during each

release.

In addition, as τz will not incur the interference of τy’s pure

computation time (i.e., Cy) after the priority swap, the increase

of the arrival blocking of τz is always less than the decrease

of its interference after the priority swap i.e., R′
z < Rz ≤ Dz .

On the other side, if τz’s arrival blocking is not increased

after the priority swap, it is still schedulable as it incurs

less interference with the same amount of direct spin delay

and a non-increased arrival blocking. Therefore, τz remains

schedulable under Λx−1
Γ with schedulability test S† regardless

of the exact resource usage.

Now we prove that R′
y ≤ Dy . This can be achieved by

comparing Rz and R′
y . Firstly, we observe that τz in Λx

Γ and

τy in Λx−1
Γ can be blocked upon their arrival by the same

set of resources (see Equation (16)), and hence, leads to the

same amount of arrival blocking, denote as B below. To ease

the comparison, we ignore the interference from the tasks in

Γtop for the time being, and will consider this interference

later on. Such an approach is valid because the amount of

interference from high priority tasks increases monotonically

with the increase of response time, where R1 ≥ R2 then
†

R1

Tx

£

Cx ≥
†

R2

Tx

£

Cx for τx and vice versa.

The following presents the calculations of response time of

τz with Λx
Γ and τy under Λx−1

Γ respectively.

Rz = Cz +B +

°

Rz

Ty

§

Cy

= Cz +B +Np × Cy

(18)

For τz in Λx
Γ, as no assumption can be made between Rz

and Ty so that τy could preempt τz more than once, where Np

denotes the number of such preemptions and Np =
†

Rz

Ty

£

≥ 1.

R
′

y =Cy +B +

°

R′

y

Tz

§

Cz

=Cy +B +

°

Cy +B

Tz

§

Cz

=Cy +B + Cz

(19)

For τy under Λx
Γ, the recursive calculation of R′

y starts from

R′
y = Cy + B. From the calculation in Equation (18), we

observe that Cy + B < Rz ≤ Dz ≤ Tz (τz is schedulable

under Λx−1
Γ). Therefore, R′y is updated as Cy+B+Cz , with

⌈

Cy+B

Tz

⌉

= 1. With further recursive calculations of R′
y , R′

y’s

value is not changed because R′
y = Cy + B + Cz ≤ Rz ≤

Dz ≤ Tz so that
⌈

R′

y

Tz

⌉

is fixed to 1.

Thus, it is now clear that R′
y ≤ Rz , assuming no inter-

ference from tasks in Γtop. With such interface considered,
⌈

R′

y

Th

⌉

Ch is at most equal to
†

Rz

Th

£

Ch for each τh in Γtop,

given R′
y ≤ Rz . This further supports the conclusion that

R′
y ≤ Rz . Therefore, we prove that τy remains schedulable

after the priority swap as R′
y ≤ Rz ≤ Dz < Dy with any

resource usage applied.

With traditional MrsP analysis S‡ : With the traditional

MrsP test, the only difference from S† is that, the resources

that can cause tasks to incur arrival blocking are determined

by the ceiling priority of shared resources, as given through

Equation (7). Accordingly, the set of resources that can cause

arrival blocking to τy and τz under both priority orderings

with MrsP adopted are identified below.

With the priority ordering Λx
Γ, resources that can cause

arrival blocking of τy is:

FA
‡ (τy) , {rk|rk ∈ F (Γbtm)∪F (τz)∧r

k ∈ F (Γtop)∪F (τy)}
(20)

and the resources that can cause arrival blocking of τz is:

FA
‡ (τz) , {rk|rk ∈ F (Γbtm)∧rk ∈ F (Γtop)∪F (τy)∪F (τz)}

(21)

6

Under the priority ordering Λx−1
Γ , FA

‡ (τy) becomes

FA
‡ (τy) , {rk|rk ∈ F (Γbtm)∧rk ∈ F (Γtop)∪F (τz)∪F (τy)}

(22)

and FA
‡ (τz) is calculated as:

FA
‡ (τz) , {rk|rk ∈ F (Γbtm)∪F (τy)∧r

k ∈ F (Γtop)∪F (τz)}
(23)

Similar with the S† case, τz could incur an increased arrival

blocking due to a resource that is requested by τy (i.e., in

F (τy)) after the priority swap. As proved before under S† , the

potential increase of τz’s arrival blocking is always less than

the guaranteed decrease of the interference it suffers. Thus, τz
remains schedulable in Λx−1

Γ i.e., R′
z < Rz ≤ Dz , based on

S‡ .

In addition, the set of resources that can cause τz in Λx
Γ

and τy in Λx−1
Γ to incur arrival blocking are identical, as

shown in Equations (21) and (22). That is, the calculations

of Rz and R′
y under S‡ are identical with the S† case,

see Equations (18) and (19). Therefore, it also leads to the

conclusion that R′
y ≤ Rz ≤ Dz < Dy after the priority swap.

Accordingly, the DMPO algorithm remains optimal under S‡

with the considered system and task model.

With the above proof, we provide evidence that two ad-

jacent tasks that are schedulable under priority Λx
Γ remain

schedulable after swapping their priorities (i.e., in Λx−1
Γ),

according to the traditional schedulability tests. By swapping

all the adjacent tasks with the incorrect priority order in each

processor in Figure 1 according to DMPO, a schedulable

system with the DMPO algorithm can be obtained.

Summarise the above, we conclude that DMPO remains

optimal in multiprocessor systems with shared resources under

the traditional schedulability tests of MSRP or MrsP, in

which the response time is decided only by independent task

parameters (e.g., Ci and Ti) and the accessing time of a shared

resource is fixed by the number of processor that contain tasks

that request that resource.

VI. PRIORITY ASSIGNMENTS UNDER HOLISTIC

SCHEDULABILITY TESTS

As described in Section IV-B, the holistic schedulability test

is less pessimistic than the traditional analysis by bounding

the exact number of executable tasks within a given dura-

tion. However, whilst obtaining tighter schedulability results,

response time dependencies are also introduced, where the

response time of a given task potentially depends on the

response time of all other tasks in the system. Under such a

schedulability test, optimality of the DMPO and applicability

of the existing OPA-like search-based priority assignments

could be jeopardised. In this section, we investigate the opti-

mality and applicability of DMPO, OPA and RPA, with the

holistic schedulability tests S⋄
† and S⋄

‡ given in Table I.

A. Optimality of DMPO

We prove that the DMPO algorithm is not optimal with

holistic schedulability tests by deriving two counter examples,

as described in the following theorem and proof.

Theorem 2. DMPO is not optimal in fully partitioned multi-

processors constrained-deadline systems with shared resources

managed by MSRP or MrsP under S⋄
† (MSRP) or S⋄

‡ (MrsP).

Proof. This proof is conducted by counter examples. Figure 2

shows a three-processor system with two shared resources r1

and r2. Table II gives the task property and resource usage in

processor P1. A priority swap is performed between τ2 and

τ3. Under priority ordering W x, pri(τ3) > pri(τ2) > pri(τ1)
with D3 > D2, i.e., the task with a longer deadline is assigned

with a higher priority. With DMPO, pri(τ2) > pri(τ3) >
pri(τ1) so that priorities are assigned in the reverse order

of deadlines. In addition, we assume there exists sufficient

requests to r1 and r2 from both P0 and P2 so that the cost of

accessing r1 (or r2) from P1 is always 3c1 (or 3c2).
Under MSRP, both r1 and r2 can cause arrival blocking to

τ2 and τ3 in both priority orderings due to the non-preemptive
resource accessing approach so that FA(τ2) = FA(τ3) =
{r1, r2} in Λx

Γ and DMPO. The response time calculation of
τ3 and τ2 under priority ordering Λx

Γ is shown below.

R3 =C3 + E3 +B3

=C3 + 3c1 +max{3c1, 3c2}

=1 + 3× 1 + 3× 2

=10

R2 =C2 + E2 +B2 +
⌈

R2

T3

⌉

C3

=C2 + 3c2 +max{3c1, 3c2}+
⌈

R2

T3

⌉

C3 +
⌈

R2 +R3

T3

⌉

3c1

=1 + 3× 2 + 3× 2 +
⌈

R2

27

⌉

× 1 +
⌈

R2 + 10

27

⌉

× 3

=17

From the above calculations, we can see that both tasks are

able to meet their deadlines before the priority swap. However,

after the swap, R′
3 has missed its deadline, as computed below.

R
′

2 =C2 + E2 +B2

=C2 + 3c2 +max{3c1, 3c2}

=1 + 3× 2 + 3× 2

=13

R
′

3 =C3 + E3 +B3 +

°

R′

3

T2

§

C2

=C3 + 3c1 +max{3c1, 3c2}+

°

R′

3

T2

§

C2 +

°

R′

3 + 13

17

§

3c2

=1 + 3× 1 + 3× 2 +

°

R′

3

17

§

× 1 +

°

R′

3 + 13

17

§

× (3× 2)

=30

With MrsP’s holistic test (i.e., S⋄
‡), the situation is similar

but with different response time values. Under this protocol

(which uses priority ceiling), FA
‡ (τ3) = {r1} in Λx

Γ and

FA
‡ (τ2) = {r2} after the priority swap. However, it does not

change the fact that both tasks are schedulable before the swap

(R3 = 7, R2 = 17) but τ3 misses its deadline after having its

priority reduced (R′
2 = 13 and R′

3 = 30).

Based on the above counter-example, we demonstrate that

DMPO is not optimal under the holistic test due to response

time dependencies in Equation (10), which are introduced to

reduce the pessimism for inflating task execution time.

7

P1

𝜏3

𝜏2

𝜏1

𝜏′2

𝜏′3

𝜏1

P0 P2

𝑟$

𝑟%

𝑟%

𝑟$

L
G
&

DMPO

Fig. 2: A priority swap: Example one

TABLE II: Task properties and resource usage in P1 of the

system in Figure 2

Task (τx) Cx Tx Dx

τ2 1 17 17
τ3 1 27 27

Resource (rk) ck G(rk) Nk
x

r1 1 {τ1, τ3} N1

1
= 1, N1

3
= 1

r2 2 {τ1, τ2} N2

1
= 1, N2

2
= 1

However, the above calculations are performed with the

assumption that the cost of each access to rk is |map(G(rk))|.
Below we provide another example demonstrating that the op-

timality of DMPO can also be undermined due to the response

time dependency from remote tasks (in Equation (11)), which

is applied to minimise the pessimism from using a constant

upper bound when computing the cost of accessing shared

resources. Figure 3 presents a dual-processor system with

three tasks and a resource (r1) shared between two processors.

Table III gives the task parameter and resource usage of this

system. A priority swap is performed between τ1 and τ2 on

P0, as given in Figure 3. In this example, pri(τ1) > pri(τ2)
before the priority swap whilst pri(τ2) > pri(τ1) after the

swap.

Under Λx
Γ, no task will incur arrival blocking (i.e., ê = 0

for all tasks) with either MSRP or MrsP applied, as only τ1
and τ3 request r1. Thus, the response time of all three tasks

under both S⋄
† and S⋄

‡ is identical, and all tasks are able to

P0

𝜏1

𝜏2

𝜏′2

𝜏′1

P1

𝜏3

L
G
#

DMPO

𝑟)

𝑟)

Fig. 3: A priority swap: Example two

TABLE III: Task properties and resource usage of the system

in Figure 3

Task (τx) Px Cx Tx Dx

τ1 0 2 28 28
τ2 0 5 20 20
τ3 1 3 35 20

Resource (rk) ck G(rk) Nk
x

r1 4 {τ1, τ3} N1

1
= 1, N1

3
= 3

meet their deadlines, as shown below.

R1 =C1 + E1

=C1 +N
1

1 c
1 +min{N1

1 c
1
,

⌈

R1 +R3

T3

⌉

N
1

3 c
1}

=2 + 4 +min{4,
⌈

R1 + 18

35

⌉

× 12}

=10

R2 =C2 + E2 +
⌈

R2

T1

⌉

C1

=C2 +min{
⌈

R2 +R1

T1

⌉

N
1

1 c
1
,

⌈

R2 +R3

T3

⌉

N
1

3 c
1}

+
⌈

R2 +R1

T1

⌉

N
1

1 c
1 +

⌈

R2

T1

⌉

C1

=5 +min{
⌈

R2 + 10

28

⌉

4,
⌈

R2 + 18

35

⌉

12}+
⌈

R2 + 10

28

⌉

4

+
⌈

R2

28

⌉

× 2

=15

R3 =C3 + E3

=C3 +N
1

3 c
1 +min{N1

3 c
1
,

⌈

R3 +R1

T1

⌉

N
1

1 c
1}

=2 + 12 +min{3× 4,
⌈

R3 + 10

28

⌉

× 1× 4}

=18

However, after the priority swap (i.e., with the DMPO

applied), τ3 misses its deadline due to a response time increase

of τ1, as shown below with S⋄
† .

8

R
′

2 =C2 +B1

=5 + |{P0, P1}|×4

=13

R
′

1 =C1 + E1 +

°

R′

1

T2

§

C2

=2 + 1× 4 + min{1× 4,

°

R′

1 + 22

35

§

× 12}+

°

R′

1

28

§

× 5

=15

R
′

3 =C3 + E3

=2 + 12 +min{12,

°

R′

3 + 15

28

§

× 4}

=22

Under S⋄
‡ , the only difference is that τ2 now does not incur

arrival blocking due to the resource ceiling facility, and hence,

R′
2 = 5. However, this does not affect the values of R′

1 and

R′
3, where τ3 still misses its deadline. Note, in this example,
†

R2+R1

T1

£

=
†

R2

T1

£

so that no extra jobs of τ1 are executed

during R2 due to the jitter introduced in Equation (10). Thus,

the non-optimality of DMPO in this example is caused only

by the response time dependency from remote processors.

B. Applicability of OPA-like Priority Assignments

As for the OPA-like search-based algorithms reviewed in

Section II (e.g., OPA and RPA), their optimality hold as long

as the given schedulability test is applicable. In [14], three

application conditions are formalised for both OPA and RPA

(including their extensions):

1: “The schedulability of a task τx may, according to test

S, depend on any independent properties of tasks with

priorities higher than pri(τx), but not on any properties

of tasks that depend on their relative priority ordering.”

2: “The schedulability of a task τx may, according to test

S, depend on any independent properties of tasks with

priorities lower than pri(τx), but not on any properties

of those tasks that depend on their relative priority

ordering.”

3: “When the priorities of any two tasks of adjacent priority

are swapped, the task being assigned the higher priority

cannot become unschedulable according to test S, if it

was previously schedulable at the lower priority.”

Conditions 1 and 2 are violated by holistic schedulability

tests, where the response time of a task depends on response

time of potentially all other tasks in the system and such

dependency can become a circular chain. For instance, τ1
and τ2 are allocated to different processors and share the

same resource. Thus, the calculation of response time of

either task requires the response time of the other. The OPA-

like algorithms attempt to get fixed response time with the

assumption that all the unexamined tasks (i.e., tasks that have

not being assigned with a priority) have higher priorities, but

without assuming any exact priority ordering for those tasks.

However, with the holistic tests (and so for the ILP-based

tests), the response time of tasks in a system must be calculated

iteratively and alternatively until response times of all tasks

is fixed with explicit task priorities (assuming the system is

schedulable). Therefore, for OPA and RPA, it is not possible to

obtain the exact response time of a given task without knowing

the response time of the local higher priority tasks and the

remote tasks that share the same resources, under the holistic

schedulability tests.

Nonetheless, by replacing the jitter parameter (i.e., Rh and

Rj in Equations (10) and (11) respectively) to an independent

task property (e.g., deadlines), these search-based priority

assignment algorithms can be applied as the schedulability

tests now satisfy all application conditions described above.

We denote such an approach as OPA-D and RPA-D hereafter.

However, the concern with such an approach is that, by

replacing Rx with Dx, considerable pessimism can be imposed

on the schedulability results as Rx ≤ Dx in a schedulable

system, which could lead to unschedulable results for systems

that are actually feasible. Furthermore, as compromises must

be made to the schedulability test, the optimality of these

priority ordering algorithms could also be undermined. In

Section VIII, evaluations are conducted to investigate the

performance of OPA-D and RPA-D and to provide evidence

that these compromised priority ordering algorithms under

tighter holistic schedulability tests are not optimal.

VII. SPO: A SLACK-BASED PRIORITY ORDERING

ALGORITHM

As proved in Section VI, DMPO is not optimal under the

holistic schedulability tests of MSRP or MrsP due to response

time dependencies. In addition, OPA-like algorithms are not

applicable without compromises, which could undermine the

accuracy of the schedulability tests, which in turn undermines

their optimality (see evidence in Section VIII). Thus, with

holistic tests, there could be cases where a system that is

actually schedulable with a certain priority ordering, but

which cannot be found by either the static (i.e., DMPO) or

search-based (i.e., OPA-like) priority assignment algorithms

considered in this paper. In addition, due to the high degree of

response time dependency in the holistic tests, optimal priority

assignments may not be achievable as the response time of a

given task cannot be fixed at a given priority level without

knowing the priority and response time of other tasks.

In this section, a new priority ordering algorithm is de-

veloped, namely Slack-based Priority Ordering (SPO). SPO

shares a similar philosophy to OPA-like algorithms, which

examine each priority level (starting from the lowest priority)

and assigns the priority to a task from amongst all the

unexamined tasks (i.e., tasks that are not assigned a priority).

However, unlike the OPA-like algorithms, a response time

approximation approach is introduced in SPO to minimise the

pessimism incurred due to its use in holistic schedulability

tests.

In essence, SPO takes into consideration the response time

dependencies and aims at minimising the pessimism in the

4If tasks have the same λ, the task with longest deadline is assigned with
the priority.

5In this paper, the extension parameter η is set to 5.

9

Algorithm 1: The SPO Algorithm

1 for m=0,. . . ,M do

2 for each priority level Pri, lowest first do

3 for τx ∈ unexamined tasks on Pm do

4 Assuming that all unassigned tasks in Pm

have higher priorities, calculate λx for each

unexamined task τx by Algorithm 2;
end

5 Assign priority Pri to the task with the largest

λ4;
end

6 Get response times of all tasks in Pm via test S, and

set R = D for all unexamined tasks and tasks with

R > D on Pm;
end

7 Get response time of all tasks in the system via S;

8 if system is schedulable then

9 return true;

else

10 return false;

end

Algorithm 2: Computing λx for τx

1 Set R = D for each unexamined remote task;

2 Calculate response times of all tasks in P (τx) iteratively

and alternately by test S. The calculation ends when R
is fixed for each task in Pm, or R ≥ η ·D for all other

tasks that missed their deadlines;5

3 return Dx −Rx;

response time calculation with such dependencies. Compared

with OPA-D and RPA-D, which simply assume R = D for all

other tasks when computing Ri of a given task τi, SPO gradu-

ally replaces this pessimistic upper bound for tasks achieving a

fixed point of response time during the iterative process, which

will be explained below in detail. Therefore, SPO generally

yields more accurate response times than OPA-D and RPA-D.

In addition, when computing Ri, SPO calculates the response

time of all tasks on τi’s processor in a holistic fashion (detailed

description below). Such an approach completely avoids the

pessimism caused by the response time dependency between

τi and its local higher-priority tasks. By contrast, in OPA-D

and RPA-D, this pessimism exists during the entire priority

assignment process.

Algorithm 1 gives the pseudo code of the SPO algorithm,

where S denotes the underlying schedulable test. As shown

in the algorithm, SPO assumes that tasks are pre-allocated

to each processor before applying priority ordering. For a

system with M processors, the algorithm starts from the first

processor P0 and yields a priority ordering for tasks in each

processor. Optimising the order for iterating the processors

will be conducted in future work, to further improve the

performance of the proposed algorithm. For a given processor

Pm, the algorithm calculates the free capacity λx (where

λx = Dx − Rx for τx) of all unexamined tasks on Pm

for each priority level Pri by Algorithm 2. Then, the task

with the maximum free capacity λx is assigned with the

priority (line 4). After examining each task in Pm, the response

time of tasks in this processor is calculated in line 6. Then,

the algorithm repeats the above procedures for tasks in each

processor. Finally, with each task assigned with a priority,

SPO verifies whether the given priority ordering can lead to a

schedulable system by schedulability test S.

Unlike OPA-D and RPA-D described in Section VI-B, the

SPO algorithm minimises the pessimism due to the assumption

that the response times of all other tasks are equal to their

deadlines. First, to estimate the response time of a given

task, SPO calculates its response time in the context of its

hosting processor. That is, the response time of a given task

is calculated by iterating and alternating the response time

calculation of all tasks in that processor. Specifically, in each

iteration, the response time of every task is computed once,

starting from the highest-priority one. Taking a partition of

three tasks τ1, τ2, τ3 with pri(τ1) > pri(τ2) > pri(τ3) as an

example, the computation of R2, for instance, is performed

by iterating the response time calculations of all three tasks,

to cope with the discussed response time dependency. In each

iteration, the response time of τ1, τ2, and τ3 is computed once

in this order to update R2. The iterative process is terminated

when for all tasks, a fixed point is reached or R ≥ η ·D. In

this way, the response time dependencies from local higher

priority tasks (see Equation (10)) are considered (see line 6

in Algorithm 1 and line 2 in Algorithm 2), and hence, the

pessimism caused by ignoring this dependency (e.g., the OPA-

D approach) is eliminated.

As for the response time dependency from remote tasks

(Equation (11)), this algorithm holds the assumption of R = D
only for unexamined remote tasks (i.e., tasks that are not yes

assigned a priority). For instance, when assigning priorities to

tasks in P5, the response times of tasks in P0 to P4 (calculated

by line 6 in previous rounds) are used to calculate the response

time of tasks in P5, instead of their deadlines. By doing so,

more accurate (less pessimistic) response times of tasks in P5

could be obtained in general as R ≤ D for all examined tasks.

To this end, the time complexity of SPO can be determined.

Although the algorithm contains a three-level nested loop, in

total, at most n(n+1)/2 calls (similar with OPA and RPA) to

line 4 is required to assign priorities to a taskset with n tasks.

As for line 4, instead of one invocation to S with OPA and

RPA applied, SPO issues up to n invocations to test S to get

a response time approximation for each task. Therefore, the

time complexity of the SPO algorithm is O(n3); but note the

non-polynomial time complexity of the actual schedulability

test S.

In addition, unlike OPA and RPA, SPO allows the situation

where all the tasks miss their deadlines for a given priority

level. As the response times of unexamined remote tasks are

assumed to be their deadlines, there can be cases where the

response times of tasks are higher than their deadlines under

a given priority level, but some of the tasks are actually

schedulable. In this situation, the SPO algorithm aims to assign

the priority to the task that is closet to be schedulable among

these deadline-missing tasks. To achieve this, an extension

10

parameter η is introduced to extend the iterative response time

calculations, where the calculation ends when the response

time has elapsed to η ·D for all deadline-missing tasks except

τx (the currently studied task), as shown in Algorithm 2.

The implication is that for a given priority level, there

could be several tasks with response times that are slightly

higher than their deadlines. However, with further iterative

calculations, variances between the λ value of these tasks

could be revealed or magnified, where the task with the highest

λ value is closest to be schedulable at this priority level in

general, compared to other tasks. Therefore, by using this

approach, tasks are more likely to be assigned appropriate

priorities so that the possibility for obtaining a feasible priority

ordering is increased. Such an approach has also been applied

in [26] in a different context and with its effectiveness proved,

where the response time calculation of tasks is extended for

deadline-missing tasks to determine the system configuration

that is closest to be schedulable.

VIII. EXPERIMENTAL RESULTS

The above sections have investigated the optimality and

applicability of existing major priority ordering approaches. To

this end, we have concluded that DMPO is not optimal under

the holistic tests described in Section IV-B whilst both OPA

and RPA suffer from extra pessimism in order to be applicable

with such tests (i.e., the OPA-D and RPA-D approaches).

Then, a new search-based priority ordering algorithm (SPO) is

developed that minimises the pessimism arising from adopting

the holistic schedulability tests. In this section, experiments

are conducted with these priority ordering algorithms to 1)

investigate the impact of priority assignment on the schedu-

lability of multiprocessor systems with shared resources, and

to 2) compare the performance (in terms of resulting system

schedulability) between these priority assignment algorithms6.

The experimental setup is similar to that of the ILP-based

analysis work in [32], which covers a large scale of system

configurations. We consider platforms with up to M = 16
processors, and up to n = 10M tasks with a total utilisation

U = 0.1n. Tasks are pre-allocated to processors based on

the Worst-Fit heuristic. Task periods are randomly chosen

between [1ms, 1000ms] in a log-uniform distribution. In this

evaluation, we assume that the deadline of the tasks are equal

to their periods (D = T). The utilisation of each task is

computed based on the UUniFast-Discard algorithm in [4]

and subsequently, the total computation time (including the

time executing with shared resources) for each task can be

obtained, denoted as C ′
x. In addition, tasks in each system

share either M/2, M or 2M resources. A wide range of

critical section length L = [1µs, 500µs] is supported. A

real value parameter κ is introduced to specify the number

of tasks on each processor that can access resources (i.e.,

⌊κ · n⌋), where κ ∈ [0.0,1.0]. A task will issue requests to a

number of randomly chosen resources, but limited to the range

6Due to the large volume of results (1440 system configurations in total), in
this paper we focus on major trends and selectively present four experiments
that exhibit the discussed effects. The complete results for all system con-
figurations are publicly accessible online at https://github.com/omitted12345/
PriorityAssignments with experimental implementations available.

1 5 10 15 20 25 30 35 40 45 50

number of critical sections

0

0.2

0.4

0.6

0.8

1

s
c
h

e
d

u
la

b
le

SPO

DMPO

OPA-D

RPA-D

DMPO*

Fig. 4: Schedulability of MSRP systems for M = 16, n = 64,

κ = 0.4, L = [1µs, 15µs] and M shared resources

1 5 10 15 20 25 30 35 40 45 50

number of critical sections

0

0.2

0.4

0.6

0.8

1

s
c
h

e
d

u
la

b
le

SPO

DMPO

OPA-D

RPA-D

DMPO*

Fig. 5: Schedulability of MrsP systems for M = 16, n = 64,

κ = 0.25, L = [50µs, 100µs] and M shared resources

[1,M]. The number of requests is randomly decided between

[1, A], where A = {1, 5, 10, 20} unless specified otherwise.

Let CR

x be the total resource computation time of τx (i.e.,

CR

x =
∑

rk∈F (τx)
Nk

x · ck), we enforce that C ′
x −CR

x ≥ 0 and

set Ci = C ′
x − CR

x .

Figure 4 and Figure 5 (for MSRP and MrsP respectively)

shows the percentage of schedulable systems among 1000

randomly generated input systems by each priority ordering

algorithm. The experiments are conducted by varying A (re-

source request frequency). The holistic schedulability test is

applied in SPO, DMPO, OPA-D and RPA-D and the traditional

test is used in DMPO* (see labels in the figures). As observed

in both graphs, although the DMPO is optimal with the

traditional schedulability test, this priority assignment strategy

(i.e., DMPO*) does not perform well (by comparison) due to

the pessimism of the analysis itself (recall Section IV). Indeed

this combination yields the worst performance among all

examined algorithms. In addition, among priority assignments

with the holistic tests, OPA-D and RPA-D exhibit the worst

performances, which illustrates that the pessimism introduced

for the use of the holistic tests significantly affects the perfor-

mance of these search-based algorithms. In addition, the RPA

algorithm yields the same schedulability as OPA. This is to be

expected as RPA aims at providing robust priority ordering for

systems that are deemed to be schedulable. For such systems,

a schedulable priority ordering can also be found by OPA. This

also provides evidence that OPA and RPA are not optimal with

holistic tests.

However, although SPO inherits the philosophy of OPA and

RPA, in both figures it demonstrates the best performance in

general, where it outperforms OPA-like algorithms in all cases.

11

1-15 15-30 30-50 50-75 75-100 100-150 150-200 1-200

length of critical sections (us)

0

0.2

0.4

0.6

0.8
s
c
h

e
d

u
la

b
le

SPO

DMPO

OPA-D

RPA-D

DMPO*

Fig. 6: Schedulability of MSRP systems for M = 16, n = 48,

κ = 0.45, A = 30 and M shared resources

1-15 15-50 50-100 100-200 200-300 300-400 400-500 1-500

length of critical sections (us)

0

0.2

0.4

0.6

0.8

1

s
c
h

e
d

u
la

b
le

SPO

DMPO

OPA-D

RPA-D

DMPO*

Fig. 7: Schedulability of MrsP systems for M = 16, n = 48,

κ = 0.4, A = 10 and M shared resources

In addition, SPO outperforms DMPO in most cases, and their

performance differential is amplified when blocking becomes

the bottleneck factor of system schedulability (see A ≥ 20
in both figures). The above observations indicates that SPO

effectively reduces the pessimism incurred when adopting the

holistic tests.

Similar observations towards DMPO*, OPA and RPA are

also obtained in Figures 6 and 7, which vary the length of

critical sections (i.e., L) under MSRP and MrsP, respectively.

One interesting observation is that under this experiment, SPO

demonstrates different performances between these protocols.

Under MSRP (see Figure 6), the performance of SPO is similar

to that of DMPO with L ≤ 100µs and can hardly schedule

any system. However, with MrsP applied, SPO outperforms

other priority assignments and can lead to strong system

schedulability with L > 100µs. Such an observation is due to

the non-preemptive nature of MSRP, which is not favourable

to long critical sections [34] because of the significant arrival

blocking it introduces. Thus, for long critical sections, MSRP

can hardly schedule any system regardless of the priority

assignment applied.

As for MrsP, which adopts a priority ceiling facility and is

more favourable to long critical sections [34], SPO demon-

strates equal or better performances in most cases. Further-

more, for the last group of results in Figures 6 and 7, mixed

length of critical sections is applied (with a length varying

from 1 to 200 µs) to provide a realistic scenario where

both short and long resources exist in the system. From

these results, SPO again outperforms the existing priority

assignments, in terms of the resulting system schedulability,

when either MSRP or MrsP is applied.

TABLE IV: Percentage of schedulable MSRP systems for

M = 16, n = 64, κ = 0.4, L = [1, 15]µs and M resources

A
SPO

&
!DMPO

!SPO
&

DMPO

SPO
&

!OPA-D

!SPO
&

OPA-D

DMPO
&

!OPA-D

!DMPO
&

OPA-D

20 2.92 0.68 14.22 0 13.09 1.11
25 3.37 0.45 15.34 0 13.53 1.11
30 3.37 0.81 15.25 0.0 13.73 1.04
35 3.89 0.73 15.01 0.01 12.97 1.13
40 3.99 0.75 14.69 0.01 12.62 1.18
45 3.76 0.8 14.2 0.0 12.21 0.97
50 3.98 0.75 14.08 0.0 12.08 1.23

TABLE V: Percentage of schedulable MrsP systems for M =
16, n = 48, κ = 0.4, A = 10 and M resources

L
in
µs

SPO
&

!DMPO

!SPO
&

DMPO

SPO
&

!OPA-D

!SPO
&

OPA-D

DMPO
&

!OPA-D

!DMPO
&

OPA-D

[15, 50] 2.17 0.47 12.07 0.00 11.38 1.00
[50, 100] 3.33 0.51 14.14 0.00 12.63 1.25
[100, 200] 3.76 0.63 13.51 0.00 11.96 1.17
[200, 300] 3.90 0.44 13.12 0.01 10.95 1.13
[300, 400] 4.20 0.43 12.96 0.00 10.29 1.17
[400, 500] 4.16 0.38 12.33 0.01 9.80 1.37
[1, 500] 4.52 0.39 13.04 0.00 10.65 1.15

The above experiments demonstrate the overall performance

of the examined priority assignments. Tables IV and V shows

the percentage of systems where the priority assignment A
can schedule but algorithm B cannot in 10,000 systems, for

MSRP and MrsP respectively. A & !B indicates the systems

that are schedulable under A (e.g., SPO) but are unfeasible

with B (e.g., !DMPO). The priority ordering algorithms that

are examined in this experiment include the DMPO, RPA-D

and SPO algorithms. The outputs of RPA-D is identical with

that of OPA-D, and thus, is omitted.

Similar to the results obtained in the figures, both DMPO

and SPO algorithms perform better than that of the OPA-D

and RPA-D algorithms. In addition, SPO can schedule many

more systems then the other algorithms; up to 15% of the

input systems are schedulable under SPO but are unfeasible

with OPA-D and RPA-D. However, as given in this table, no

priority algorithm dominates others. For instance, DMPO is

able to schedule 81 and 63 systems that SPO cannot with

A = 30 and L = [100µs, 200µs] under MSRP and MrsP

respectively. Therefore, we conclude that the SPO algorithm

yields better performance than others in general with holistic

schedulability tests for either MSRP or MrsP. However, none

of these priority assignment algorithms is optimal with the

system model, resource sharing protocols and tighter holistic

tests considered in this paper.

These observations imply that an appropriate approach to

use in practice is a two-stage one: first apply the simpler

DMPO, if this fails to deliver a schedulable system apply SPO.

IX. CONCLUSION

In this paper, we investigate the optimality and applica-

bility of DMPO, OPA and RPA in multiprocessor systems

with shared resources managed by either MSRP or MrsP.

We prove that DMPO remains optimal under the traditional

schedulability tests of these protocols, but its optimality is

12

undermined due to the response time dependencies in the

tighter holistic schedulability tests. In addition, a discussion

is provided explaining the issues involved in applying the

OPA-like search-based algorithm to the holistic tests, and the

compromises required for its adoption. Subsequently, a search-

based priority assignment method (SPO) that minimises the

pessimism from the adoption on the holistic tests is developed,

with polynomial time complexity. Finally, the impact of pri-

ority assignment on schedulability of multiprocessor systems

with shared resources is investigated. We demonstrate that

SPO has a better performance in general than other examined

priority assignments, however, there exists no optimal priority

ordering algorithm for the holistic schedulability tests for

either MSRP or MrsP.

Further research towards the optimality and applicability of

priority assignment may include (i) generalisation on resource

accessing rules (e.g., non-preemptive, priority ceiling, and base

priority) and accessing orders (e.g., FIFO and priority-ordered)

instead of treating certain specific protocols; (ii) extension

to support fine-grained nested locking and consideration of

runtime overhead (e.g., preemptions, migrations and cache-

related costs). In addition, the impact of priority assignment

on the schedulability of more complex system models (e.g.,

arbitrary deadlines) is not known and requires investigation.

REFERENCES

[1] N. C. Audsley. Optimal priority assignment and feasibility of static

priority tasks with arbitrary start times. University of York, Department
of Computer Science, 1991.

[2] N. C. Audsley. On priority assignment in fixed priority scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[3] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time

Systems, 3(1):67–99, 1991.
[4] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability

tests. Real-Time Systems, 30(1-2):129–154, 2005.
[5] K. Bletsas and N. Audsley. Optimal priority assignment in the presence

of blocking. Information processing letters, 99(3):83–86, 2006.
[6] B. B. Brandenburg. Scheduling and locking in multiprocessor real-time

operating systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2011. https://cs.unc.edu/∼anderson/diss/bbbdiss.pdf.

[7] B. B. Brandenburg. Multiprocessor real-time locking protocols: A
systematic review. arXiv preprint arXiv:1909.09600, 2019.

[8] A. Burns, M. Gutierrez, M. A. Rivas, and M. G. Harbour. A deadline-
floor inheritance protocol for edf scheduled embedded real-time systems
with resource sharing. IEEE Transactions on Computers, 64(5):1241–
1253, 2014.

[9] A. Burns and A. J. Wellings. A schedulability compatible multiprocessor
resource sharing protocol–mrsp. In Real-Time Systems (ECRTS), 2013

25th Euromicro Conference on, pages 282–291. IEEE, 2013.
[10] W. Chang, S. Chakraborty, et al. Resource-aware automotive control

systems design: A cyber-physical systems approach. Foundations and

Trends R© in Electronic Design Automation, 10(4):249–369, 2016.
[11] W. Chang, R. Wei, S. Zhao, A. J. Wellings, J. Woodcock, and A. Burns.

Development automation of real-time java: Model-driven transformation
and synthesis. ACM Transactions in Embedded Computing Systems,
2020.

[12] W. Chang, S. Zhao, R. Wei, A. Wellings, and A. Burns. From java to
real-time java: a model-driven methodology with automated toolchain.
In Proceedings of the 20th ACM SIGPLAN/SIGBED International Con-

ference on Languages, Compilers, and Tools for Embedded Systems,
pages 123–134, 2019.

[13] Y. Chu and A. Burns. Flexible hard real-time scheduling for deliberative
AI systems. Real-Time Systems, 40(3):241–263, 2008.

[14] R. I. Davis and A. Burns. Robust priority assignment for fixed priority
real-time systems. In Real-Time Systems Symposium, 2007. RTSS 2007.

28th IEEE International, pages 3–14. IEEE, 2007.

[15] R. I. Davis and A. Burns. A survey of hard real-time scheduling for
multiprocessor systems. Acm Computing Surveys, 43(4):1–44, 2011.

[16] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns. A review of
priority assignment in real-time systems. Journal of systems architecture,
65:64–82, 2016.

[17] S. N. Dinh, J. Li, K. Agrawal, C. Gill, and C. Lu. Blocking analysis
for spin locks in real-time parallel tasks. IEEE Transactions on Parallel

and Distributed Systems, 2017.
[18] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller,

P. Heitkämper, G. Kinkelin, K. Nishikawa, and K. Lange. AUTOSAR–a
worldwide standard is on the road. In 14th International VDI Congress

Electronic Systems for Vehicles, Baden-Baden, volume 62, 2009.
[19] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization of

real-time task sets in single and multi-processor systems-on-a-chip. In
Real-Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd

IEEE, pages 73–83. IEEE, 2001.
[20] P. Gai, G. Lipari, and M. Di Natale. Stack size minimization for em-

bedded real-time systems-on-a-chip. Design Automation for Embedded

Systems, 7(1-2):53–87, 2002.
[21] J. Garrido, S. Zhao, A. Burns, and A. Wellings. Supporting nested

resources in MrsP. In Ada-Europe International Conference on Reliable

Software Technologies, pages 73–86. Springer, 2017.
[22] L. George, N. Rivierre, and M. Spuri. Preemptive and non-preemptive

real-time uniprocessor scheduling. PhD thesis, Inria, 1996. https://hal.
inria.fr/inria-00073732.

[23] Y. Jiang, H. Song, R. Wang, M. Gu, J. Sun, and L. Sha. Data-centered
runtime verification of wireless medical cyber-physical system. IEEE

transactions on industrial informatics, 13(4):1900–1909, 2016.
[24] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbi-

trary deadlines. In Real-Time Systems Symposium, 1990. Proceedings.,

11th, pages 201–209. IEEE, 1990.
[25] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-

priority scheduling of periodic, real-time tasks. Performance evaluation,
2(4):237–250, 1982.

[26] A. Racu and L. S. Indrusiak. Using genetic algorithms to map hard
real-time on noc-based systems. In Reconfigurable Communication-

centric Systems-on-Chip (ReCoSoC), 2012 7th International Workshop

on, pages 1–8. IEEE, 2012.
[27] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization

protocols for multiprocessors. In Real-Time Systems Symposium, 1988.,

Proceedings., pages 259–269. IEEE, 1988.
[28] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols:

An Approach to Real-Time Synchronization. IEEE Computer Society,
1990.

[29] J. Shi, K.-H. Chen, S. Zhao, W.-H. Huang, J.-J. Chen, and A. Wellings.
Implementation and evaluation of multiprocessor resource synchroniza-
tion protocol (mrsp) on litmusrt. In 13th Workshop on Operating Systems

Platforms for Embedded Real-Time Applications, 2017.
[30] K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approach

for analyzing fixed priority hard real-time tasks. Real-Time Systems,
6(2):133–151, 1994.

[31] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS, 2007.

[32] A. Wieder and B. B. Brandenburg. On spin locks in AUTOSAR:
Blocking analysis of FIFO, unordered, and priority-ordered spin locks.
In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, pages 45–56.
IEEE, 2013.

[33] S. Zhao. A FIFO Spin-based Resource Control Framework for Symmet-

ric Multiprocessing. PhD thesis, University of York, 2018.
[34] S. Zhao, J. Garrido, A. Burns, and A. Wellings. New schedulability

analysis for MrsP. In Embedded and Real-Time Computing Systems

and Applications (RTCSA), 2017 IEEE 23rd International Conference

on, pages 1–10. IEEE, 2017.
[35] S. Zhao, J. Garrido, R. Wei, A. Burns, A. Wellings, and A. Juan.

A complete run-time overhead-aware schedulability analysis for MrsP
under nested resources. Journal of Systems and Software, 159:110449,
2020.

[36] S. Zhao and A. Wellings. Investigating the correctness and efficiency of
MrsP in fully partitioned systems. In The 10th York Doctoral Symposium

on Computer Science and Electronics. The University of York, 2017.
[37] A. Zuhily and A. Burns. Optimal (D-J)-monotonic priority assignment.

Information Processing Letters, 103(6):247–250, 2007.

13

	I Introduction
	II Related Work
	III System Model and Resource Sharing Protocols
	IV Schedulability Tests for MSRP and MrsP
	IV-A Traditional Schedulability Tests
	IV-B Holistic Schedulability Tests

	V DMPO with Traditional Schedulability Tests
	VI Priority Assignments under Holistic Schedulability Tests
	VI-A Optimality of DMPO
	VI-B Applicability of OPA-like Priority Assignments

	VII SPO: A Slack-based Priority Ordering Algorithm
	VIII Experimental results
	IX Conclusion
	References

