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This paper provides a new deglacial chronology for retreat of the Irish Ice Sheet from the continental shelf of western
Ireland to the adjoining coastline, a region where the timing and drivers of ice recession have never been fully
constrained. Previous work suggests maximum ice-sheet extent on the outer western continental shelf occurred at ~26—
24 cal. ka BP with the initial retreat of the ice marked by the production of grounding-zone wedges between 23—
21.1 cal. ka BP. However, the timing and rate of ice-sheet retreat from the inner continental shelf to the present coast
are largely unknown. This paper reports 31 new terrestrial cosmogenic nuclide (TCN) ages from erratics and ice-
moulded bedrock and three new optically stimulated luminescence (OSL) ages on deglacial outwash. The TCN data
constrain deglaciation of the near coast (Aran Islands) to ~19.5-18.5 ka. This infersice retreated rapidly from the mid-
shelfafter 21 ka, but the combined effects of bathymetric shallowing and pinning acted to stabilize the ice at the Aran
Islands. However, marginal stability was short-lived, with multiple coastal sites along the Connemara/Galway coasts
demonstrating ice recession under terrestrial conditions by 18.2-17. ka. This pattern of retreat continued as ice
retreated eastward through inner Galway Bay by 16.5ka. South of Galway, the Kilkee—Kilrush Moraine Complex and
Scattery Island moraines point to late stage re-advances of the ice sheet into southern County Clare ~14.1-13.3 ka, but
the large errors associated with the OSL ages make correlation with other regional re-advances difficult. It seems more
likely that these moraines are the product of regional ice lobes adjusting to internal ice-sheet dynamics during
deglaciation in the time window 17-16 ka.

David H. Roberts ( D. H. Roberts@durham.ac.uk ), Colm 0 Cofaigh, David J. A. Evans and David Small, Department
of Geography, Durham University, Durham DHI 3LE, UK; Colin K. Ballantyne, School of Geography and
Sustainable Development, University of St Andrews, St Andrews KY16 9AL, UK, Matthew Burke, Scottish Environment
Protection Agency, Aberdeen AB11 9QA, UK; Richard C. Chiverrell and Rachel K. Smedley, School of Environmental
Sciences, University of Liverpool, Liverpool L3 5DA, UK; Chris D. Clark and Jeremy Ely, Department of Geography,
University of Sheffield, Sheffield S10 2TN, UK, Geoff A. T. Duller, Department of Geography & Earth Sciences,
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March 2020.

Inrecent years our understanding of the extent, chronol-
ogy and dynamics of the last British-Irish Ice Sheet
(BIIS) has undergone significant advances. This is
particularly the case on the continental shelves sur-
rounding Britain and Ireland where our knowledge of
ice-sheet extent has improved due to the acquisition of
new sedimentary, geophysical and geomorphological
data sets, and our understanding of the timing and style
of BIIS retreat has developed as new chronological data
sets have become available. Earlier models of ice-sheet
extent in western Ireland depicted unglaciated enclaves
on land and very limited extension of the ice margin
beyond the present coastline (e.g. Bowen et al. 2002).
However, it is now evident that during the global Last
Glacial Maximum (26.5-19 ka BP; Clark, PU et al
2009¢) the BIIS expanded to the continental shelf edge
west of Ireland and Britain (Benetti e al. 2010; Dunlop
et al. 2010, 2011; O Cofaigh et al. 2012, 2019; Peters
et al. 2015, 2016; Praeg et al. 2015). The marine-based
sectors of the ice sheet were highly dynamic, with major
shelf-edge terminatingice streams delivering sediment to

DOI 10.1111/bor.12448

the continental margin during phases of maximum ice
extent (e.g. Callard et al 2018; Scourseet al. 2019). Well-
developed suites of grounding-zone wedges and mor-
aines record grounding-line recession across the conti-
nental shelf as the ice sheet retreated in response to
climatic, oceanic and sea-level forcing. These landforms
and associated sedimentary records indicate that retreat
was interrupted by periods of quasi-stability or ground-
ing-line re-advance. To the northwest of Ireland on the
Malin Shelf the ice sheet reached the shelf edge at
~26.7 cal. ka BP but retreat was underway by ~25.9 cal.
ka BP or earlier (Callard et al. 2018; O Cofaigh et al
2019). In contrast, offshore of central western Ireland,
existing data indicate that the ice sheet reached the outer
Porcupine Bank sometime after 24.1 cal. ka BP but
retreated much later and was still grounded on the mid-
shelf at ~18.5 cal. ka BP (Peters et al 2015, 2016).

On the Atlantic shelf offshore of Galway Bay, western
Ireland, the ‘Galway Lobe’ (Peters et al. 2016) was
sourced by ice from the Irish Midlands flowing along a
southwest trajectory (Greenwood & Clark 2009a).

© 2020 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium
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Recession of this lobe across the continental shelf has
been a focus of recent work (Peters et al 2015, 2016;
Callard et al. 2019) but other than regional bedform
mapping, very little is known about the timing of the
marine to terrestrial transition of the ice sheet in western
Ireland. From Galway Bay to southern County Clare
(Fig. 1) only three *°Cl cosmogenic exposure ages
constrain deglaciation of the coast (20.9-15.3 ka; Bowen
et al. 2002), but are all single samples making assessment
of age uncertainties difficult. Additionally, they provide
no insights into local deglacial conditions. Further north
terrestrial cosmogenic nuclide (TCN) ages show that a
marine embayment had developed along the north coast
of Ireland by ~22-21 ka, though much of Donegal Bay
remained ice-covered until ~17.0 ka (Small et al. 2017,
Wilson et al. 2019).

Evidence for regional re-advances during deglaciation
islargely unreported in central western Ireland, with only
Greenwood & Clark (2009a) identifying a late phase re-
organization of regional ice flow into southern County
Clare. To the north of Connemara in Mayo and Donegal
(Fig. 1), some authors have argued for deglaciation of
the coastline under glaciomarine conditions at ~20.0 cal.
ka BP (McCabe ef al 1986, 2005). However, this
hypothesis is contentious and recent reconstructions of
relative sea level during deglaciation suggest that while
parts of the northwest coast of Ireland may have
experienced glaciomarine conditions the central coastal
areas of western Ireland more likely deglaciated under
terrestrial conditions (Evans e al. 2015; Edwards et al.
2017).

This paper provides a new deglacial chronology for
retreat of the BIIS from the inner continental shelf
offshore of western Ireland to the adjoining coastline. To
allow integration of the offshore chronology with
terrestrial deglaciation chronology, the paper focuses
on dating sites between Connemara and the Shannon
Estuary, where westerly ice flow from the Irish Midlands
fed the Galway Lobe Grounding Zone Wedge
(GLGZW) and Galway Lobe Readvance Moraine
(GLRM) identified by Peters et al. (2016). Particular
aims include: (i) establishing when the ice margin
retreated across the present coastline to become land-
based; (ii) determining any change in the rate of ice-
margin retreat as it became grounded on land; and (iii)
exploring the implications of our age data for the
interpretation of proposed regional re-advances of the
Irish component of the BIIS. The paper provides 31 new
terrestrial cosmogenic nuclide (TCN) dates on samples
from glacially transported, erratic boulders and ice-
moulded bedrock, supplemented by three new optically
stimulated luminescence (OSL) dates on deglacial out-
wash. This chronology constrains the timing of the
marine—terrestrial transition in ice-sheet retreat along
200 km of coastline from Connemara, County Galway
in the north to the Shannon estuary in Country Clare to
the south (Figs 1, 2).

BOREAS

Regional ice-sheet history

During the Last Glacial Maximum (LGM) the Irish Ice
Sheet (IIS) ice flowed from a number of terrestrial source
areas onto the western Irish continental shelf (Fig. 1).
From the evidence provided by the dispersal of erratic
boulders and the alignment of striae and glacial bed-
forms, several researchers have identified ice-flow pat-
terns in western Ireland. This was dominated by radial ice
movement centred on the Connemara mountains in the
north of the area, and westwards or southwestwards
movement of ice from the Irish Midlands between
southern Connemara and the Shannon Estuary (e.g.
Synge & Stephens 1960; Synge 1979; McCabe 2008;
Smith e al. 2008 Smith & Knight, 2011; Fig. 2A). A
more nuanced interpretation has been provided by
Greenwood & Clark (2009a, b) on the basis of sequential
(cross-cutting) flowsets derived from bedform alignments
detected on satellite imagery and digital elevation models.
Their interpretation suggests that southwestwards ice
flow persisted across the area south of the Connemara
mountains during and after the LGM, and was succeeded
by southwards ice movement as the IIS shrank towards a
residual ice divide located over the mountains of northern
Connemara and southern County Mayo (Fig. 2B). In the
Connemara area, flowset Fs54 clearly relates to the
offshore movement of outlet glaciers across the coast
from the Connemara mountains. Flowsets Fsl17 and
Fsl18, which supplied ice into Clew Bay, also appear to
have been sourced from the northern Connemara moun-
tains. However, the dominant regional advance phase
flowset is Fs6, which shows ice fed from central Ireland
moving southwest across Galway Bay and County Clare
(Fig. 2B). The convergent pattern of lineations led
Greenwood & Clark (2009a) to infer that ‘fast” and thick
ice flow may have characterized this flowset, but a
definitive ice stream signal is not discernible (cf. Stokes &
Clark 1999). End moraine complexes in southern County
Clare led Greenwood & Clark (2009b) to suggest that Fs6
shifted to a more southerly flow trajectory as deglaciation
progressed and ice divides re-orientated west to east north
of Galway Bay (Fig. 2B).

During the LGM the IIS grew rapidly after 32 ka BP
and extended offshore on to the western continental shelf
(Ballantyne & O Cofaigh 2017). Before the present
century, most models of the extent of the BIIS placed the
limit of the last ice sheet a short distance offshore from
western Ireland. The presence of moraines near the shelf
edge was first documented by Haflidason ez al. (1997) on
the basis of reflection seismic profiles, and those
moraines were assumed by Sejrup ef al. (2005) to mark
the westward extent of the BIIS. C.D. Clark et al. (2012)
subsequently employed the Olex bathymetric database to
conduct more detailed mapping of the shelf west of
Ireland, and depicted moraines (or grounding zone
wedges) extending along the shelf edge. These were
interpreted as indicating that during the LGM the lastice
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Fig 1. The configuration of the BIIS at the Last Glacial Maximum. Maximum ice extent offshore from western Ireland is likely to have been
reached at ~26-24 cal. ka BP. Ice retreat and re-advance across the mid-shelfis dated to between 21 and 18.5 cal. ka BP and is marked by the Galway
Lobe Grounding Zone Wedge (GLGZW) and the Galway Lobe Re-advance Moraine (GLRM) (see Fig. 3). Deglaciation of the inner shelf back to

the Galway and County Clare coast is poorly constrained.

sheet had extended to the shelf break, with the advance of
the ice margin being limited by calving at a deep-water
marine-terminating margin. Peters et al. (2015) con-
firmed that the BIIS extended westwards to the shelf
edge, and provided stratigraphical, morphological and
chronological evidence that the ice margin had extended
onto the Porcupine Bank, some 80 km farther west than
previously mapped (Fig. 1), sometime after~24.1 cal. ka
BP.

Peters et al. (2016) showed that an 80-km-long arcuate
moraine, the West Ireland Moraine (WIM), marks the
westward limit of a grounded ice margin near the shelf
break at<24.1 cal. kaBP(Fig. 3). Theyalsodescribed two
major features deposited during subsequent eastward
retreat of the ice margin towards Galway Bay. The older of
these, the Galway Bay grounding-zone wedge (GLGZW),
is located 120-140 km west of the mouth of Galway Bay,
extends north-south for ~150 km and represents a
prolonged stillstand or oscillating grounded ice margin,
apparently buttressed by an extensive ice shelf to the west.

Deposition of this grounding zone wedge is constrained by
radiocarbon dates to within the period ~21.2 to ~18.5 cal.
ka BP. Nested inside this feature, approximately 100 km
west of the mouth of Galway Bay, is a recessional or re-
advance moraine, the Galway Lobe recessional moraine
(GLRM), deposited after ~18.5 cal. ka BP.

Information regarding the timing of ice-margin retreat
on land between Clew Bay and the Shannon Estuary has
previously been limited to a handful of TCN exposure
ages, all obtained from single samples collected from
exposed bedrock surfaces; all previously published
cosmogenic '°Be ages listed below have been recalibrated
according to the protocol outlined in the following
section. These published ages exhibit little consistency.
Two samples obtained by Bowen ef al. (2002) for coastal
sites north of the Shannon Estuary yielded cosmogenic
Cl ages of 20.341.9 and 15.3+1.0 ka, and a single
sample obtained from near the mouth of Galway Bay
gave a *°Cl exposure age of 20.9+2.7 ka (Fig. 3). A
bedrock surface sampled by Ballantyne et al. (2008) near
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Fig 2. A.Regional striae patterns showing ice radiating from the Connemara mountains (Smith ez al. 2008). B. Regional ice flowlines based on
subglacial bedforms (Greenwood & Clark 2009b). Note Fs6 and Fs54 denoting ice flow offshore toward the southwest and west, respectively.
However, the inset panels in B show a late southerly flow switch (Fs5) across County Clare during deglaciation that may be associated with moraine

complexes at Kilrush-Kilkee and Scattery Island.

the head of Clew Bay produced a single cosmogenic '°Be
exposure age 18.940.9 ka, and another from 305 m
altitude near Killary Harbour gave an exposure age of
16.940.8 ka. North of Clew Bay, Ballantyne ez al. (2008)
obtained two consistent '’Be ages (19.1+1.0 and
19.2+1.0 ka) for ice-moulded bedrock on a col at
440 m altitude, which they interpreted as representing
the timing of ice-sheet thinning.

The most comprehensive suite of TCN ages hitherto
reported for western Ireland consists of eight '°Be ages
obtained by Clark et al (2009a) from boulder samples on
low ground near Furnace Lough, north of the head of
Clew Bay. These (recalibrated) ages range from 15.8+1.3
to 19.4+1.8 ka, with an uncertainty-weighted mean
(UWM) age of 16.9£+1.0 ka, but the wide scatter of ages
suggests that some may be compromised by transient
sediment shielding or nuclide inheritance. Ballantyne & O
Cofaigh (2017)suggested that the timing of deglaciation at
this site may be equally represented by the three oldest ages
(UWM = 18.4+1.0 ka) or the three youngest (UWM =
15.741.0 ka). The wide range of TCN ages hitherto
obtained for western Ireland allows little confidence to be
placed on their accuracy, particular as only a single sample
of uncertain validity was dated at most sites.

Material and methods

Terrestrial cosmogenic radionuclide analysis and age
calculation

The sampling procedures followed in this paper follow
Robertser al (2008). All the samples for exposure dating
were collected from heavily glacially abraded terrain with
perched boulders. The vast majority of samples came
from erratics, with only three samples taken from
bedrock exposures. None of the samples was related to
specific ice-marginal geomorphology (e.g. moraines),
but in all cases the sites mark ice recession across a
bedrock, subglacial surface (Small et al 2017). In all, 31
samples were collected and analysed (Tables 1-3, S1).
Sample locations and elevations were recorded using a
hand-held GPS. The sample lithologies are predomi-
nantly granites with a few metasandstones or quartzites.
Target samples were subglacial in origin, being suban-
gular to subrounded and clearly abraded/striated. Large
stable bouldersstanding>50 cm abovelocal ground level
were chosen to minimize potential sediment, vegetation
and snow cover. Sample surfaces were over 30 cm from
all edges. Heavily weathered, disintegrated or spalled
surfaces were not sampled. Surface dip and strike were
recorded. Shielding was recorded and corrected for using

the CRONUS-Earth online calculator (Balco et al. 2008;
accessed 23/03/2016; http://hess.ess.washington.edu/ma
th/general/skyline_input.php).

Sample preparation for surface exposure ages follows
the methods outlined in Small ef al (2017) and was
executed at the Cosmogenic Isotope Analysis Facility —
Scottish Universities Environmental Research Centre
(CIAF - SUERC) and the Cosmogenic Nuclide Labora-
tory at the University of Glasgow. Full sample details
including data on quartz (g), carrier (ug g '), '°Be/’Be
and blank '’Be/’Be with related uncertainties are pro-
vided in Table S1. The 250-500 um size fraction was
used. The '°Be/’Be ratios were measured and calculated
on the 5 MV accelerator mass spectrometer (AMS) at
SUERC (Xu ef al. 2010). '"Be exposure ages were
calculated using the CRONUS-Earth calculator (devel-
opmental version, accessed 02/06/2019; Wrapper script
2.3, Main calculator 2.1, constants 2.2.1, muons 1.1;
http://hess.ess.washington.edu/math/al_be_v22/
al_be_calibrate_v22.php; Balco er al. 2008) and, for
comparison, the CRONUScalc calculator (http://webl.
ittc.ku.edu:8888/2.0/html; accessed 02/06/2019; Marrero
et al. 2016; Table 2). Ages calculated in the CRONUS-
Earth calculator are calibrated using a local production
rate from Scotland (LL LPR; reference production rate
4.0240.18 atoms g ' a~!; Fabel er al 2012). The
CRONUScalc calculator allows users to calculate expo-
sure ages using the Lifton-Sato-Dunai scaling scheme
(SA) (Lifton et al. 2014) with a reference production rate
of 3.92 atoms g~ ' a~!. All previously reported '°Be ages
were recalibrated using the CRONUS-Earth online
calculator as per above. *°Cl ages are not re-calculated
but should be viewed with caution as regional production
rates are unknown. We use an erosion rate of | mmka .
Assuming erosion rates of 2 and 0 mm ka~' produces
ages up to ~2% older and ~1% younger, respectively, and
does not alter our interpretations. Additionally, erosion
rates on glaciated crystalline rocks are generally quite
lowat<2 mmka ' (André 2002). Uncertainties are cited
as full (external) uncertainties and mean ages presented
as uncertainty weighted means (UWMs; Table 3). All
TCN ages are given as ‘ka’.

Optically stimulated luminescence analysis and age
calculation

Samples for optically stimulated Iuminescence (OSL)
dating were collected from exposures of glacigenic
sediment, selecting lithofacies with the greatest potential
for exposure to daylight in order to maximize the
likelihood of identifying grains that had their OSL signal
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Fig. 3. A. The physiography and bathymetry of western Ireland and the adjacent continental shelf. The Connemara mountains are situated
between Galway Bay and Clew Bay and would have harboured an independent ice cap later subsumed by the main Irish Ice Sheet as ice expanded
westwards on the continental shelf. Pre-existing TCN ages form the region are indicated by yellow symbols (italicized ages represent uncertainty
weighted means of multiple samples). New TCN ages are marked in red and new OSL ages in grey. B. The Galway Lobe Grounding Zone Wedge
(GLGZW), the Galway Lobe Re-advance Moraine (GLRM) and the Galway Lobe Moraine (GLM) mark ice recession from the continental shelf.
The Aran Islands are located offshore at the mouth of Galway Bay. Site name abbreviations for TCN and OSL sites are detailed in Table 1.
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reset at deposition. Opaque plastic tubes were hammered
into the sediment and then returned to the Aberystwyth
Luminescence Research Laboratory for analysis.
External beta dose-rates were determined for OSL
dating using inductively coupled plasma mass spectrom-
etry (ICP-MS) and inductively coupled plasma atomic
emission spectroscopy (ICP-AES), while the external
gamma dose-rates were determined using in situ gamma
spectrometry (Table 4). Quartz grains were isolated from
the bulk sediment samples and used for OSL analysis
following the protocols outlined in Smedley et al
(2017a). All luminescence measurements were per-
formed using a Risg TL/OSL DA-15 automated single-
grain system equipped with a “°Sr/°°Y beta source
(Botter-Jensen et al. 2003). Stimulation was performed
using a green laser and detected through a 2.5-mm-thick
U-340 filter and convex quartz lens placed in front of the
photomultiplier tube. The signal was recorded at 125 °C
foratotal of 1 s, where the OSL signal was summed over
the first 0.1 s of stimulation and the background
calculated from the final 0.2 s. Instrument reproducibil-
ity of 2.5% was incorporated into the calculation of the
equivalent dose (D) values. Preheat plateau tests were

Deglaciation of the western sector of the Irish Ice Sheet 7

used to determine the preheat temperature (180 °C) used
in the single aliquot regenerative dose (SAR) protocol
(Murray & Wintle 2000) for OSL analysis.

Grains were mounted into 10 by 10 grids of 300-pum-
diameter holes in a 9.8-mm-diameter aluminium single-
grain disc for analysis. The grain size analysed for OSL
dating varied between the three samples due to a lack of
grains >180 pm in diameter in samples TSSCATO02 and
TSPYNEOQ2. Single-grain analysis was performed on
sample TSTULAO1 (grain size = 180-250 pm) to deter-
mine D, values for dating. However, micro-hole analyses
were performed on samples TSSCATO02 (125-180 pm)
and TSPYNEO02 (90-125 pum) as up to four and nine
grains, respectively, were located in each during OSL
analysis. The OSL signal-intensities emitted by quartz
grains in these samples were very dim, making OSL
analysis extremely challenging. D, values were deter-
mined from only 0.4-0.5% of the total grains analysed,
and so up to 11 700 grains needed to be analysed to
characterize the single-grain D, distribution. However,
the very dim OSL signal intensities likely meant that the
OSL signals emitted by micro-hole analyses were dom-
inated by a single brighter grain in each hole, and so the

Table 1. TCN sample codes, locational data, outcrop and rock type, sample thickness and density and shielding.

Sample Location Lat. Long. Elevation  Outcrop Sample Thickness Density ~ Shielding
code (masl)  type lithology (cm) (gem™?)
T5BHO1 Black Head (BH) 53.14528 —9.27667  12.00 Erratic Granite 4 2.6 0.9999
T5BH02 Black Head 53.14528 —9.27883 7.00 Erratic Granite 4 2.6 0.9939
T5BHO3 Black Head 53.14362 —9.27833  15.00 Erratic Granite 4 2.6 0.9939
T5CLO1 Claddaghduff 53.53500 —10.1300  25.00 Erratic Granite 4 2.6 0.9991
(@n
T5CL02 Claddaghduff 53.5372  —10.1304 32 Erratic Granite 4 2.6 0.9970
T5CL03 Claddaghduff 53.5395  —10.1261 35 Erratic Granite 4 2.6 0.9987
T5CL04 Claddaghduff 53.5382 —10.1270 26 Erratic Granite 4 2.6 1.0000
T5CL06 Claddaghduff 53.55333  —10.1647  19.00 Erratic Granite 4 2.6 1.0000
T5CLO7 Claddaghduff 53.55467 —10.1644  19.00 Erratic Granite 4 2.6 1.0000
T5IEOL Illion East (IE) 5348133 —9.66740 105.00 Erratic Meta sandstone 4 2.6 0.9938
TSIE02 Illion East 5348136 —9.6674 105 Erratic Meta sandstone 4 2.6 0.9970
TS5IEO3 Illion East 53.48150 —9.66740 105.00 Erratic Quartzite 4 2.6 0.996
TSIE04 Illion East 53.48148 —9.66735 107 Erratic Meta sandstone 4 2.6 0.9984
TS5IMO1 Inis Medin (IM) 53.06722 —9.60805  15.00 Erratic Granite 4 2.6 1
TS5IMO02 Inis Medin 53.07805 —9.61278  33.00 Erratic Granite 4 2.6 0.9999
T5IMO03 Inis Medin 53.07830 —9.61260  34.00 Erratic Meta sandstone 4 2.6 0.99
TS5IMO04 Inis Medin 53.07972 —9.61028  43.00 Erratic Granite 4 2.6 1
T5KKOI Kilkieran (KK) 53.31180 —9.76940  89.00 Erratic Granite 4 2.6 1
TSKKO02 Kilkieran 53.31140 —-9.76970  82.00 Bedrock Granite 4 2.6 1
T5KKO03 Kilkieran 53.31100 —9.76980  75.00 Bedrock Granite 4 2.6 0.9939
TSKKO04 Gowlan East 53.39730 —9.68250  35.00 Erratic Granite 4 2.6 0.9988
(GE)
TSKKOS5 Gowlan East 53.39760 —9.68220  37.00 Erratic Granite 4 2.6 0.9988
T5KKO06 Gowlan East 53.39920 —9.68320  34.00 Erratic Granite 4 2.6 0.9994
T5MOYO0l  Moycullen 53.31550 —9.18910  72.00 Erratic Granite 4 2.6 0.9994
(MOY)
T5MOY02  Moycullen 53.31518 —9.18855  70.00 Erratic Granite 4 2.6 0.9994
T5MOY03  Moycullen 53.31572 —9.18877  73.00 Erratic Granite 4 2.6 0.9998
T5MOY04  Moycullen 53.31473 —9.18915  73.00 Erratic Granite 4 2.6 0.9989
T5SMOY05  Moycullen 53.31540 —9.18890  73.00 Erratic Granite 4 2.6 0.9927
T50U04 Rossaveel (OU) 53.28083 —9.51862  59.00 Erratic Granite 4 2.6 0.9988
T50U05 Rossaveel 53.28278 —9.51722  70.00 Erratic Granite 4 2.6 0.9999
T50U06 Rossaveel 53.28333 —9.51305  54.00 Bedrock Granite 4 2.6 0.9939
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Table 2. TCN age calculations. Note both CRONUS 2.3 LLPR LM and 2.0 LM version are provided for comparative purposes. Assuming erosion
rates of 2and 0 mmka " makes our ages ~2% older and ~1% younger, respectively, and does not alter our interpretations. Erosion rates on glaciated

crystalline rocks are generally low at <2 mm ka~' (André 2002).

Sample AMS Erosion rate '°Be +— CRONUS 2.3 Int. Ext. CRONUS Int. Ext.
code 1D (cm a’l) (atoms (atoms LLPR LM (ka) uncert. uncert. 2.0LM (ka)  uncert. uncert.
g g (ka) (ka) (ka) (ka)
TSBHO1 b8679  0.0001 54832 3655 13.9 0.9 1.1 13.9 0.9 1.4
T5BHO02 b8680  0.0001 65848 4793 16.8 1.2 1.4 16.8 1.2 1.8
T5BHO03 b8681  0.0001 46974 3566 11.8 0.9 1.1 11.8 0.9 1.3
T5CLO1 b8684  0.0001 60499 6202 15.0 1.6 1.7 15.0 1.6 2.0
T5CL02 b10296 0.0001 69900 2213 17.5 0.6 1.0 17.5 0.6 1.5
T5CL03 b10297 0.0001 69150 2261 17.3 0.6 1.0 17.3 0.6 1.5
T5CL04 b10298 0.0001 69221 2236 17.3 0.6 1.0 17.4 0.6 1.5
T5CL06 b8685  0.0001 74342 7295 18.7 1.9 2.0 18.7 1.9 2.4
T5CLO07 b8686  0.0001 66010 6531 16.5 1.7 1.8 16.5 1.7 2.1
TSIEOL b9961  0.0001 62107 3996 16.6 0.8 1.1 14.3 0.9 1.1
TSIE02 b10647 0.0001 83291 5136 19.3 1.2 1.5 19.0 1.2 2.0
T5IE03 b10424  0.0001 78652 4244 18.2 0.8 1.2 18.2 0.8 1.7
TSIE04 b10658  0.0001 45174 2901 10.3 0.7 0.8 10.3 0.7 1.1
T5IMO1 b8675  0.0001 67412 3864 17.0 1.0 1.2 17.0 1.0 1.7
T5IMO02 b8677  0.0001 76133 4173 19.0 1.0 1.3 19.0 1.0 1.8
T5IMO03 b10300 0.0001 89161 2918 223 0.8 1.3 22.0 0.8 2.0
TS5IMO04 b8678  0.0001 81179 4537 20.1 1.1 1.4 20.0 1.1 2.0
T5KKO1 b10301  0.0001 72234 2370 16.9 0.6 1.0 16.9 0.6 1.5
T5KKO02 b10425 0.0001 73327 3273 17.2 0.6 1.0 17.3 0.6 1.5
T5KKO03 b10302  0.0001 72805 3271 17.2 0.8 1.1 17.3 0.8 1.6
T5KKO04 b10303  0.0001 78033 2979 19.3 0.8 1.2 19.3 0.8 1.7
T5KKO05 b10306  0.0001 67407 2358 16.6 0.6 1.0 16.6 0.6 1.5
T5KKO06 b10307 0.0001 70822 2175 17.5 0.6 1.0 17.5 0.6 1.5
T5MOYO01 bl10308 0.0001 66723 2255 15.8 0.6 0.9 15.8 0.6 1.4
T5MOY02 b9653  0.0001 66008 2705 15.7 0.6 0.9 15.7 0.6 1.4
T5SMOY03 b9654  0.0001 69037 2622 16.4 0.6 0.9 16.4 0.6 1.4
T5MOY04 19657  0.0001 72383 2900 17.2 0.6 1.0 17.2 0.6 1.5
T5MOY05 bl10319 0.0001 74225 2419 17.6 0.6 1.0 17.7 0.6 1.5
T50U04 b8687  0.0001 67480 6607 16.3 1.6 1.8 16.3 1.6 2.1
T50U05 b8688  0.0001 56926 5548 13.5 1.3 1.5 13.5 1.3 1.7
T50U06 b8567  0.0001 76604 3185 18.4 0.8 1.1 18.4 0.8 1.6

D. distributions would be similar to single grain
measurements. The very dim OSL signal-intensities
emitted by the quartz grains from this region in
comparison to the rest of the BIIS (e.g. Smedley et al.
2017a, b; Chiverrell et al. 2018; Bradwell et al. 2019) are
likely because the grains were eroded locally from
carbonate bedrock, with little opportunity for sensitiza-
tion of the OSL signal.

Successful dose-recovery experiments were performed
on samples TSSCATO02 and TSKSWOl and demon-
strated that the SAR protocol was appropriate for OSL
analysis. Six screening criteria were applied to the data
throughout the analyses; associated uncertainties were
included for each test. Grains were only accepted if the
response to the test dose was greater than three sigma
above the background; the test dose uncertainty was
<20%, the recycling ratios and OSL-IR depletion ratios
were within the range 0.8—1.2; recuperation was <5% of
the response from the largest regenerative dose (150 Gy)
and the single-grain D, values were not part of a
population of very low doses that were identified by the
finite mixture model (FMM) to be inconsistent with the
geological context of the sample. The single-grain D,

values determined for each sample are given in Tables S2—
S4. To determine OSL ages, D, values were calculated
using the minimum age model (MAM) as the single-grain
D, distributions were asymmetrically distributed and
therefore deemed to have been heterogeneously bleached
prior to burial. The overdispersion determined from
dose-recovery experiments (Table 5) estimated the scat-
ter in the single-grain D, distributions arising from
intrinsic sources of uncertainty that were beyond mea-
surement uncertainties. The intrinsic overdispersion was
then added in quadrature to the extrinsic overdispersion
arising from external microdosimetry (~20%) to deter-
mine oy, for the MAM (after Smedley e al. 2017b). The
MAM D, valueswere divided by the environmental dose-
rates to determine an age for each sample (Table 5). All
OSL ages are given as ‘ka’. It should be noted that all
radiocarbon ages are quoted as cal. ka BP with reference
to 1950.

New constraints on the timing of deglaciation

The aim of the sampling rationale employed in this paper
was to date ice retreat along the local flowlines as the ice
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Table 3. Statistical analysis of TS TCN ages. Sample code numbers that have been underlined represent the samples used to calculate uncertainty-
weighted means (UWM) = uncertainty-weighted mean; Uy = external (total) uncertainty associated with UWM; AM = arithmetic mean; Up =
arithmetic mean of external (total) uncertainties; y’g = reduced Chi-squared value; v = degrees of freedom (=7 — 1).

Site name Samplecode = CRONUSv2.3 Int. uncert. (ka)  Ext.uncert. (ka)  x’r UWM (ka)  Ext. uncert. (ka)
LLPR LM (ka)

Black Head T5BHO1 139 0.9 1.1 11.81 (n=13) N/A N/A
T5BH02 16.8 1.2 1.4
TS5BHO03 11.8 0.9 1.1

Claddaghduff  T5CLO1 15.0 1.6 1.7 0.73(n=6) 17.3 0.8
T5CLO2 17.5 0.6 1.0
T5CLO3 17.3 0.6 1.0
T5CL04 17.3 0.6 1.0
T5CLO06 18.7 1.9 2.0
TS5CLO7 16.5 1.7 1.8

Illion East TSIEO1 16.6 0.8 1.1 2.55(m=4) 18.1 1.1
T5IE02 19.3 1.2 1.5
TSIEO3 18.2 0.8 1.2
TS5IE04 20.0 1.3 1.8

Inis Medin TSIMO1 17.00 1 1.2 6.85(n=4) 19.5 1.2
T5IMO02 19.00 1 1.3
TS5IMO03 22.3 0.8 1.3
T5IM04 20.1 1.1 1.4

Kilkieran T5KKOI 16.9 0.6 1 0.13(n=3) 17.1 0.8
TS5KKO02 17.2 0.6 1
T5KKO03 17.2 0.8 1.1

Gowlan East TS5KK04 19.3 0.8 1.2 0.13(n=3) 17.1 0.8
T5KKO05 16.6 0.6 1
TS5KK06 17.5 0.6 1

Moycullen T5SMOYO1 15.8 0.6 0.9 1.94(n=5) 16.5 1.9
T5MOY02 15.7 0.6 0.9
T5SMOYO03 16.4 0.6 0.9
T5MOY04 17.2 0.6 1
T5SMOYO05 17.6 0.6 1

Rossaveel T50U04 16.3 1.6 1.8 6.86(n=3) 182 1.0
T50U05 13.5 1.3 1.5
T50U06 184 0.8 1.1

margin retreated from offshore to onshore. Flowline
reconstruction is based on mapping of subglacial bed-
forms as reported by Greenwood & Clark (2009a). The
geomorphic setting of each sample site is outlined below.
The Aran Islands offshore from Galway Bay provide a
clear set of pinning points on the inner shelf as the ice
margin migrated eastward towards the coast. Claddagh-
duff is the most westerly sampling site, capturing ice
retreat back to the Connemara coast. The TCN ages
from Kilkieran, Gowlan East and Illion East track the

timing of ice recession in a northeasterly direction back
towards the Connemara Mountains, while those
obtained for Rossaveel and Oughterard constrain the
timing of ice retreat further east. The sites at Moycullen
and Black Head were sampled to establish the timing of
eastward migration of the ice margin through inner
Galway Bay into the interior lowlands of Ireland (Fig. 3).

In southern County Clare a series of sites with exposed
glacial sediments were also investigated in order to
obtain OSL ages to constrain the timing of ice-margin

Table 4. Environmental dose-rates determined using ICP-MS and ICP-AES analysis and in situ gamma spectrometry. The chemical
concentrations are presented with decimal points relevant to detection limit. The dose-rates were calculated using the conversion factors of
Guerin et al. (2011) and beta dose-rate attenuation factors of Guerin et al. (2012). Water contents were estimated considering the field and
saturated water contents, and the environmental history for each sample; these values are expressed as a percentage of the mass of dry sediment.
Cosmic dose-rates were determined after Prescott & Hutton (1994). Dose-rates were calculated using the Dose Rate and Age Calculator (DRAC;

Durcan et al. 2015).

Sample Depth  Water U(ppm) Th K (%) Rb Beta Gamma Cosmic Total
(m) content (%) (ppm) (ppm) dose-rate  dose-rate dose-rate dose-rate
(Gyka™") (Gyka™") (Gyka™h (Gyka™")
TSSCAT02 1.5 30+5 3.30+0.33 104+1.0 1.6+£0.2 84.0+8.4 1.33+£0.13 0.83+0.05 0.17£0.02 2.40+0.14
TSPYNEO2 5.2 20+5 3.08+0.31  9.5+1.0 1.3+£0.1 65.6+6.6 1.32+0.10 0.81+0.05 0.11+0.01 2.52+0.13
TSKSWO01 1.0 2345 2.88+0.29 10.6+1.1 1.9+£0.2 93.1+9.3 1.52+0.14 0.92+0.06 0.18+0.02 2.67+0.15
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retreat. Two sites (Scattery Island and Pynes Pit) exhibit
outwash and glaciolacustrine sediments associated with
moraine ridges and thus constrain the ages of ice-
marginal positions during overall retreat. The third site
on the southwest coast of County Clare (Portacarron)
has no distinctive geomorphology to demarcate the ice
margin, but glacifluvial sediments were used to provide a
deglacial OSL age.

Cosmogenic surface exposure ages

The first six sites described below (Claddaghduff,
Kilkieran, Gowlan East, Ilion East, Rossaveel and
Moycullen) have common characteristics. All are situ-
ated on low (<105 m a.s.l.), glacially scoured ground
comprising small bedrock knolls and occasional roches
moutonnées rising above peat and patchy drift cover,
with abundant erratic boulders. The latter are generally
subangular to subrounded, indicating that they experi-
enced active subglacial transport prior to deposition. For
brevity, and consistency with previously published
papers from the BRITICE-CHRONO project, we go
on to discuss ages as calculated using the LLPR and the
CRONUS-Earth online calculator (Balco et al 2008).

Claddaghduff. — Claddaghduffissituated on the western
edge of the Connemara coastline to the south of Cleggan
(Fig. 3). The alignment of subglacial bedforms suggests
a strong west to southwest ice-flow direction. The area is
littered with perched granite erratics, -2 m in diameter
(Fig. 4). Striae are rare, due to granular disintegration
(1-5 mm), pitting (3-5 mm) and spallation (~5—
15 mm). The top surfaces of sampled boulders all sit
over 1 m above the local ground level. Samples were
collected from two adjacent locations (samples CLOI-
04, and CL06-07 in Tables 1 and 2). They provide age
estimates of 15.0+1.7, 17.5+1.0, 17.3+1.0, 17.3+1.0,
18.742.0 and 16.5+1.8 ka, respectively. Taken together
they produce a reduced Chi-square (y°r) value of 0.73
with and a UWM of 17.2940.82 ka. This is statistically
indistinguishable from the UWM for the three most
tightly constrained samples (CL02+03+04; UWM =
17.440.9 ka; Table 3); an age of 17.34-0.8 ka is adopted
in the Discussion section.

Kilkieran and Gowlan east. — These sites are located
25 km east of that at Claddaghduff (Fig. 3). The granite
surfaces of the numerous granite boulders have suffered
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minor granular disintegration (1-3 mm) and some
spallation (up to 10 mm). Sample KK1 was obtained
from a perched erratic, and samples KK2 and KK3 from
the plucked lee-sides of roches moutonnées. The three
samples provide '°Be ages of 16.941.0, 17.2+1.0 and
17.2+1.1 ka, respectively (Tables 2, 3), and produce a
y*r value of 0.13 and a UWM of 17.1+0.8 ka.

Approximately 12 km inland to the northeast a
further set of samples from Gowlan East (Fig. 3)
provides further constraints on deglaciation in this area.
Here large granite erratics were deposited as the ice
margin retreated towards the Twelve Bens, in the heart of
the Connemara Mountains. Some of these are
3 x 3 x 2 m in diameter and stand well clear of the
surrounding peat. Samples KK04-06 yielded exposure
agesof 19.34+1.2,16.6+1.0and 17.5+1.0ka, respectively
(Table 2). These ages yield a 3’ value of 4.26 suggesting
a significant contribution from geological uncertainty.
Sample KK04 cannot be identified as an outlier on the
basis of an extreme studentized deviate (ESD) test (cf.
Jones et al. 2019). However, as this site lies inland (i.e. up
ice) of the Kilkieran site it would be expected to have
deglaciated later than 17.14+0.8 ka (the UWM for
Kilkieran), a scenario not consistent with the older age
of KK04. Additionally, we note that the younger two
ages (KKO05 and KKO06) are in agreement and are
indistinguishable from the cluster of ages at Kilkieran.
On this basis, we favour the interpretation that the UWM
of KKO05 and KKO06 (17.140.9 ka) is the best estimate of
the timing of deglaciation at this site (Table 3).

Illion East. — Thissitelies~13 kmnorth of Gowlan East,
in the foothills of the Twelve Bens; the TCN ages for this
site therefore mark retreat of the ice margin towards its
mountain source area. The area is covered by subangular
to subrounded metasandstone erratic boulders that
exhibit minor granular disintegration (1-3 mm), surface
pitting (3—5 mm) and spallation (up to 10 mm). Four
samples from boulders (IE 01-04) provided ages of
16.6+1.1, 19.34+1.5, 18.2+1.2 and 20.0+1.8 ka, respec-
tively (Table 2), and havea x’g value of 2.55; however, no
samples are flagged as statistical outliers (ESD or
Chauvenet test). We consider the UWM age of all four
samples of 18.1+1.1 ka as a reasonable estimate of the
timing of deglaciation.

Rossaveel. — At Rossaveel the alignment of ice moulded
bedforms suggests ice movement in a southwesterly

Table 5. OSL analysis results, including the overdispersion of the data obtained from dose-recovery tests (DR OD), the total number of grains
analysed for dating each sample, the number of grains (1) that yielded equivalent dose values, the overdispersion (OD) of this data, and the sigma-b
value (o) used in the minimum age model for calculating the equivalent dose (D.) used to determine the age.

Sample Grain size (um) DR OD (%) Total analysed n OD (%) (8 D. (Gy) Age (ka)
T5SCATO02 125-180 29 6500 35 52 0.35 33.0+6.9 13.7£3.0
T5PYNEO02 90-125 - 11 700 43 66 0.35 30.5+5.9 13.3+£2.7
TSKSWO1 180-250 41 6900 43 61 0.40 37.549.3 14.1£3.6
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Fig 4. A.The Claddaghduff site is characterized by ice scoured terrain with subglacial bedform long axes trending west/southwest. The area is
littered with perched, subglacial, granite erratics (CL 6 shown). B. Striae are rare, due to granular disintegration (1-5 mm), pitting (3-5 mm) and
sometimes spallation (~5-15 mm). Sample surfaces were elevated over 1 m above the local ground level. C. Samples were taken from the upper
surfaces of these boulders using a rock saw. Sample thickness was typically 3 cm. The UWM exposure age for this site is 17.3+0.8 ka.

direction. Samples were taken from two erratics (OU4 and
OUS5) and the lee-side of a roche moutonnée (OU06;
Fig. 5; Tables 1, 2). These returned ages of 16.3+1.8,
13.5+1.5 and 18.4+1.1 ka, respectively (Table 2). The
samples have y’r = 6.86. We note that OUO5 is signifi-
cantly younger than the other samples both at this site and
within the data set as a whole but it is not a statistical
outlier. Using only OU04 and OUO06 provides an UWM
of 18.24+1.0 ka, but this has a low confidence for the same
reasons as outlined for the Illion East site (Table 3).

Moycullen. — Five samples were obtained from Killa-
goola, just south of Moycullen (Fig. 6). The terrain at this
site is littered with large (1-2 m diameter) granite
boulders that exhibit surface granular disintegration (2—
5 mm) and pitting (1-3 mm) but are clearly subglacial in
origin. The five samples (MOY 01-05) provided ages of
15.840.9,15.7+0.9,16.4+0.9,17.2+1.0and 17.6+1.0 ka,
respectively (Table 2). No sample is a statistical outlier

and the five samples together give a x°g value of 1.94,
which suggests they are from the same population at the
95% confidence interval. Using all five provides a UWM
of 16.54+1.9 ka and this is used in discussion (Table 3).

Black Head. — At Black Head in County Clare, granite
erratic boulders can be found resting on a limestone
pavement situated just above sea level (samples range
from7-12 ma.s.l.;Fig. 7). Theerratics aresubangularto
subrounded but devoid of striae due to surface weath-
ering and pitting. Regional ice movement across Black
Head has been mapped as flowing southwest initially
with a possible late phase switch to a more southerly flow
(Greenwood & Clark 2009a). The three ages (BH01-03)
obtained from this site are all significantly different and
give a g value of 11.81 (Table 4); the two closest (and
youngest) ages of 13.8+1.1and 11.84+1.1 kawould imply
deglaciation around the time of the Younger Dryas,
which is considered very unlikely for this site. Consider-
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ing it within the context of all the geochronological data
presented here and used with caution, the oldest age
(16.8+1.4 ka) suggests the minimum age for deglaciation
at this site. It is not easy to explain the ‘young’ ages for
this site, but it is possible the erratics may have been
shielded at some point by sediment or that despite trying
to avoid spalled surfaces these were inadvertently sam-
pled at this site.

Inis Medin. — The Aran Islands lie at the mouth of
Galway Bay approximately 40 km west of Galway City.
They are composed of Carboniferous limestone and
form spectacular glaciokarst. The passage of ice across
the islands is represented by prominent granite erratics
transported from the Galway mainland. They are
ubiquitous on all three islands but sampling of four
boulders was confined to the south side of Inis Medin.
Here the landscape is devoid of any sediment cover with
perched erratics sitting directly on exposed limestone
(Fig. 8). All the samples have suffered some surface
granular disintegration, pitting and spalling. Many
erratics sit on raised pedestals (10-25 cm above local
ground level) indicating postglacial lowering of the
surrounding limestone pavement.

Samples IM01-IM04 from Inis Medin produced
widely divergent ages (17.0+1.2, 19.04+1.3, 22.3£1.3
and 20.1£1.4 ka, respectively). Interpretation of the
four exposure ages from this site is not straightfor-
ward. The four samples give a y°g value of 6.85,
indicating significant geological uncertainty but none
is flagged as a statistical outlier. Only two ages
(IM02+04) for this site are consistent within analytical
uncertainties, yielding an UWM of 19.51+1.17 ka
(Tables 2, 3). This is somewhat older than other TCN
ages reported onshore. It could indicate -earlier
deglaciation; however, the youngest three ages have
an acceptable y’g value (2.20) and give an UWM
18.55+1.03 ka suggesting a later deglaciation age,
more compatible with that implied by onshore sites.
The three oldest ages (IM02-04) do not yield an
acceptable y’r value (4.08). IM03 (22.32+0.80 ka)
may be compromised by nuclide inheritance as it is
significantly older than the other samples. In the
Discussion, we adopt the deglacial age of 18.5+1.0 ka
for the Aran Islands, with the caveat that this may still
overestimate the timing of deglaciation.

Optically stimulated luminescence ages

Three sites comprising sediment exposures in glacifluvial
and glaciolacustrine outwash were investigated in
southwest County Clare and sampled for OSL dating
(Figs 9, 10).

The coastal plain south of Kilkee is relatively flat
lying with few geomorphic features of note. However,
at Portacarron, to the southwest of Kilkee, approx-
imately 4 m of glaciogenic sediment overlies shale
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bedrock (Fig. 10A). Overlying the bedrock is 2.1 m of
poorly sorted, massive to locally chaotic, subangular
to subrounded bouldery gravel that fines upwards
crudely and gradationally into trough cross-bedded,
cobble-boulder gravel with localized zones of scour
and fill. The gravels are interpreted as proximal
glacifluvial outwash (Miall 1978, 1992). These are
overlain by stratified and rippled coarse to medium
sands overlain in turn by laminated sands. These
mark a transition to more distal sandur conditions
(Miall 1978; Smith 1985). An OSL age from 3.90 m
depth within rippled sands in this unit provided a
deglacial age of 14.1+3.6 ka (Tables 4, 5). Above this,
a massive, grey diamicton with a silty-clay matrix and
dispersed clasts of shale, limestone and sandstone is
interpreted as a subglacial till marking ice advance
back over the site.

The terrain between Kilkee and Kilrush exhibits
several linear and elliptical ridges running west to east
that form a broad belt of hummocky terrain that can also
be traced running northeast between Kilrush and Coor-
aclare. We term this the ‘Kilkee—Kilrush Moraine
Complex’ (Fig. 9A, B). To the southwest of Cooraclare
well-developed hummocky terrain with occasional flat-
topped mounds occurs up to 41 m a.sl. Pynes Pit,
located 1.7 km southwest of Cooraclare, is a sand and
gravel quarry within one of these flat-topped mounds. A
10-m-high section in the southeast face of the pit exposes
a succession of stratified gravels, sands and fines
(Fig. 10A, B). Three main lithofacies were identified.
Thelower 1.8 m of sedimentis a crudely stratified, coarse
sandy pebble gravel that dips generally southwards. It is
interpreted as proximal glacifluvial outwash (Miall
1978). The gravels are overlain by a series of laminated
silty sands and silt/clays with Type B, ripple-drift cross-
lamination and draped lamination up to 4.57 m depth in
the section log. In places, laminae exhibit rhythmic
couplets with lower silty sands overlain sharply by silty
clays (Fig. 10B). Between 3.24 and 4.18 m the sediments
become more sandy and transition to Type A ripples. At
~4.0 m they also exhibit ball and pillow structures.
Small-scale, sub-vertical faults are ubiquitous through
this unit. These sediments point to deposition by a
combination of low energy traction currents and sus-
pension settling to produce the climbing ripples, draped
lamination and rhythmically laminated fines (Gustavson
et al. 1975; Smith & Ashley 1985). Such successions are
consistent with a glaciolacustrine depositional environ-
ment and it is possible that they represent deltaic
bottomsets or distal foresets; the flat top of the mound
in which they are exposed supports a deltaic interpreta-
tion. A high influx of fine sediment with rapid deposition
from suspension is consistent with the ripple-drift
lamination as well as soft-sediment deformation struc-
tures (faulting and ball and pillows; Gustavson et al.
1975; Teller 2003). The rhythmically laminated couplets
may be varves and reflect a seasonal control on
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Fig 5. TheRossaveel regionischaracterized by glacially scoured terrain with roches moutonnées and glacially sculpted bedrock bumps. Samples were
taken from two erratics (OU4 and OUS5) and the lee-side of a roche moutonnée (OU06; Tables 1-3). A, B. OU4, an erratic, provided an exposure age of
16.3+1.8 ka. Note the heavy lichen cover on this sample. C. Sample OU6 was taken from bedrock surface in the lee-side of a large roche moutonnée,
which provided an age of 18.4+1.1 ka. Using only OU04+06 provides an UWM of 18.2+1.0 ka, but this has a low level of confidence.

sedimentation (cf. Ashley 1975; Palmer et al. 2008) but
confirmation of this requires further investigation. An
OSL sample taken between 4.18-4.57 m from a rippled
sand bed provided an age of 13.3+2.7 ka (Tables 4, 5).
The sequence then coarsens upwards with beds of
stratified gravel at 4.57 m and again at 5.40 m marking
a return of more proximal sedimentation to the site.
From 5.59 m to the top of the section at 8.59 m crudely
bedded to massive cobble gravels, exhibiting locally
developed imbrication, mark a full return to high energy
glacifluvial conditions. These may represent delta
topsets. These sediments clearly form part of the
Kilkee—Kilrush Moraine Complex, but they are not
significantly glaciotectonized at this locality.

The final site investigated in southwest Clare is
Scattery Island in the Shannon Estuary (Figs 9A, 10A,
C). Scattery Island has been previously interpreted as a
thrust moraine formed during deglaciation at ~17-16 ka
with ice pushing from east to west, subparallel to the
estuary (McCabe 2008). It may represent a continuation
of the Kilkee—Kilrush Moraine Complex further north
(Fig. 9A). The lowest lithofacies is a folded and thrust
laminated clay with large clasts. This unit is clearly
waterlain (either glaciolacustrine or glaciomarine) with
an ice-rafted component (McCabe 2008). Above the
lower deformed clay up to 6 m of crudely stratified to
massive, coarse cobble gravel forms the main coastal

sediment exposure on the west coast of the island
(Fig. 10A, C). In places stratified, discontinuous sand
pods are interbedded with the gravel. The sand and
gravels undoubtedly relate to increasingly proximal
glacifluvial and ice-marginal conditions as ice re-
advanced to form the Scattery Island moraine. McCabe
(2008) reported several distinct thrusts cross-cutting the
section and thrust ridges up to 12 m high trending NNE
to SSW across the island. A single OSL sample from a
sandy unit at 8.90 m up the section provided an age of
13.743.0 ka (Tables 4, 5).

Discussion

Ice-sheet retreat across the continental shelf offshore of
central western Ireland

The arcuate planform of moraines and grounding zone
wedges across the continental shelf demonstrate that the
western sector of the IIS was composed of a series of
confluent lobes that formed distinct flow elements within
the ice sheet as it moved offshore. The onshore flowset
mapping of Greenwood & Clark (2009a) indicates that
ice crossing the area from the Connemara mountains to
the Shannon Estuary flowed generally southwestwards
on land and then westwards across the adjacent shelf as
the Galway Lobe (Figs 2, 3). The footprint of the Galway
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Fig. 6. A,B.Theareasouth of Moycullenischaracterized by hilly terrain that is glacially scoured and littered with large granite erratics. These large
erratics have flat upper surfaces that sit over 1 m above the local ground level that is often covered in peat. These erratics are not striated due to
surface granular disintegration (2-5 mm) and pitting (1-3 mm). Using all five ages (MOY 1-5) provides a UWM age of 16.5+1.91 ka.

Lobe dominates the offshore sea-floor geomorphology
in the form of the GLGZW, the GLRM and the inner
GLM (Fig. 3; Peters et al. 2016). North of the Con-
nemara mountains westward ice flow was focused along
the Killary Harbour fjord and Clew Bay to feed the
offshore Connemara Lobe (Figs 2, 3).

Recent work offshore has shed new light on the timing
of ice advance and subsequent retreat of the IIS back
towards the Connemara, Galway and Clare coasts
(Peters et al. 2016; Callard et al. 2019). At the LGM,
Galway Lobe ice contributed to extension of the ice
margin as far west as the Porcupine Bank, where the
presence of multiple moraine complexes and grounding-
zone wedges indicates an oscillating ice margin between
~26.4 and ~24.4 cal. ka BP. Oscillatory retreat of the ice
margin to the mid-shelf was followed by a period of
relative stability as the ice grounded at the GLGZW
between ~23.0 and ~21.1 cal. ka BP, but the inner shelf
appears to have been largely ice-free by 17.1 cal. ka BP
(Callard et al. 2019; Fig. 11A).

Our sampling at Inis Medin on the Aran Islands aimed
to establish the timing of ice-margin retreat to the mouth
of Galway Bay, but the TCN ages for this site are
inconsistent. Using the youngest age (IM01) in isolation
providesanage of 17.0+1.0 ka for deglaciation of this site
(Table 3), which is consistent with an adjacent offshore

deglacialage of 17.1 cal. ka BP reported by Callard et al
(2019). Collectively, however, the TCN ages for Inis
Medin suggest much earlier deglaciation, at
19.54+1.2 ka, or, more plausibly 18.54+1.0 ka (see above).
The Aran Islands form a natural barrier across outer
Galway Bay and are coincident with the —50 m contour
close to shore. If ice retreated rapidly from the mid-shelf
after ~21 ka, the combined effect of bathymetric shal-
lowing and pinning on the Aran Islands may have
stabilized the grounding line, slowing or halting ice-
margin retreat (Fig. 11B).

The ice-sheet surface model simulations in Fig. 11B
represent a central flowline from inner Galway Bay
through the Aran Islands to the edge of the continental
shelf (Fig. 11A). The ice-surface profiles are extracted
from a three-dimensional ice-sheet model simulation,
using the Parallel Ice Sheet Model (PISM; Winkelmann
et al 2011), which was forced to fit the empirically defined
ice limits at the thousand year timesteps. The profiles are
instructive in demonstrating change in steepness of
surface ice slopes as the ice margin underwent a transition
from being marine-terminating (low slopes) to terrestrial
terminating (higher slopes), likely arising from the dual
consequence of changein basal shear stress from substrate
contrasts and the loss of the marine margin. Ice-surface
elevation would have been ~600-700 m a.s.l. across the
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Fig 7. A.AtBlack Head granite erratics rest on a limestone pavement. B. The granite erratic surfaces are weathered due to granular disintegration
(~1-3 mm) and spallation on the flanks (~5-20 mm). Moderate lichen growth also is evident. C. The three ages (BH01-03) obtained from this site
are all significantly different (Table 1); the oldest age is BH02 at 16.8+1.4 ka.

inner continental shelf. This estimate concurs with
geomorphic evidence from the Connemara mountains
to the north (transposed in Fig. 11A) that suggests the
summits (~650-700 m a.s.l.) were buried by ice during the
LGM (Ballantyne et al. 2008).

The cosmogenic *°Cl TCN ages of 20.942.7 and
20.34+1.9 ka from Galway Bay and Loop Head, respec-
tively (Bowen et al. 2002), may also support early
deglaciation (despite their large uncertainties). However,
given the overwhelming evidence derived from this study
for near-synchronous ice retreat from the coast at ~17.5—
17.0 ka (Table 3) these single ages appear anomalous.
Furthermore, the substantial moraine complex on the
sea floor just to the west of the Aran Islands (the GLM,
Peters et al. 2016; Figs 3, 11A) implies offshore ice-
margin stability between ~21 and ~19 cal. ka BP, before
ice retreated to the Aran Islands. Hence, awindow of 19.5
to 18.5 ka for the deglaciation of the Aran Islands fits
broadly with both the offshore geomorphology and

chronology, and pre-dates the much younger ages
obtained from the mainland.

The timing of ice retreat onshore

It is clear from the TCN ages that the ice around the
Connemara and Galway coasts began to retreat inland
between ~18.0 and 17.0 ka. On the outer coast at
Claddaghduff the ice began to retreat at 17.34+0.8 ka,
moving back into the western upland areas of the
Connemara mountains (Fig. 11A). This is matched by
ice retreat from the coast between Kilkieran and Ileon
East (17.1£0.9 to 18.6+1.1 ka) and at Rossaveel at
18.2+1.0 ka. Ice flow in this area would have been
partially guided by topography as it thinned back
towards the southern edge of the central Connemara
mountains, and this is supported by regional striae
patterns (Fig. 2A). The ages from Black Head and
Moycullen suggest a slightly later retreat of ice into inner
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Fig. 8. Carboniferous limestone pavement on Inis Medin. Perched granite erratics on the pavement were transported from the Galway mainland.
Both photographs (A, B) show sample IM02. Note the limestone pavement is completely devoid of sediment and vegetation cover. Ages for this site
range from 17.0to 22.3 ka. Using the two most consistent ages (IM02+04) yieldsan UWM of 19.5+1.1 ka. However, the youngest three ages have an

acceptable y*r value (2.20) and give an UWM of 18.5+1.0 ka.

Galway Bay, the mean age from Moycullen being well
constrained at 16.5+1.9 ka by five TCN ages and giving
some credence to the single Black Head age of 16.8+1.4
ka (Table 3). At this point the ice sheet would have been
grounded and terrestrially based. Edwards et al. (2017)
demonstrate that under most modelled scenarios relative
sea level remained below present between 20 and 10 ka,
although it is worth noting that under a ‘kuchar max’
GIA scenario areas deglaciated at ~20 ka would have
been inundated by up to 20 m a.s.l. (the hypothetical
marine limit). However, the coastal areas of Connemara
and inner Galway remained glaciated until ~17 ka and,
hence, glaciomarine conditions cannot have developed
above present sea level around the coast between 20 and
17 ka (Fig. 11C).

With respect to regional deglacial ice-sheet dynamics
there is some support for ice having retreated to the coast

further north of Clew Bay prior to 20.0 cal. ka BP with
deglaciation of outer Donegal Bay (e.g. Belderg and
Fiddauntawnanoneen; McCabeer al. 1986,2005 and see
O Cofaigh et al. 2019). Two cosmogenic ages from the
Nephin Beg mountains north of Clew Bay also show ice
thinning north of Clew Bay at ~19.1 ka (Ballantyne et al.
2008). The timing of deglaciation through Clew Bay is
similar to the chronology presented here (for Connemara
and Galway Bay), with ice-free conditions in the inner
part of Clew Bay between 18.8—16.9 ka (Ballantyne et al.
2008; Clark et al. 2009b). However, it should be noted
that the deglaciation of Clew Bay was influenced by ice
margin re-advances during final deglaciation (Clark
et al. 2009b; see below). This also fits with evidence for
ice thinning from Mweelrea to the north of Killary
Harbour where terrain between 305 and 650 m a.s.l.
became ice-free at ~16.9 ka (Ballantyne ez al. 2008;

Fig. 9. A. A geomorphic overview of southwest County Clare and the Shannon estuary showing the Kilkee—Kilrush moraine complex and the
Scattery Island Moraine. B. Distinctive elongated and circular ridges forming a moraine complex in the area between Kilkee and Kilrush.
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Fig 10. A. Three sedimentary logs showing the glacial stratigraphy exposed at Portacarron (PO), Pynes Pit (PP) and Scattery Island (SC),
respectively. B The glacial stratigraphy at Pynes Pit showing crudely bedded gravels overlain by rhythmically laminated fines and rippled sands with
overlying planar stratified gravels. C. The glacial stratigraphy at Scattery Island with lower deformed laminated clays overlain by stratified sands and
gravels that have been compressed and thrust.
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Fig 11. A.lIce-sheetretreat chronology and isochrones (black dashed lines) from the Connemara, Galway and County Clare region based on new
(black) and existing (red) cosmogenic exposures ages, OSL and C ages. The white dotted line represents the modelled flowline for the ice-sheet
surface profiles shown in (B). B. Modelled ice surface cross profiles of the Galway Bay Ice Lobe as it retreated from the mid-shelf to onshore. Note
that maximum ice thickness at the LGM is estimated to have been in excess of 700 m (Ballantyne et al. 2008). Relative sea levelisshown at() ma.s.l.,
with the wave symbols broadly indicating RSL when the ice margin was situated at GLGZW, GLM and the Aran Islands. C. Four possible sea-level
curves (model output) from this region suggest that RSL rose to a maximum marine limit of ~20 ma.s.l. at ~20 ka. Thereafter, sea level fell until ~15

ka during deglaciation due to glacio-isostatic’ uplift (Edwards et al. 2017). Green triangles are terrestrial limiting dates. Note L. Fhada is situated
close to Kilkieran; Rossadillisk close to Claddaghduft.
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Fig. 12. Regional flow dynamics during peak LGM flow conditions were dominated by flowset Fs6 (based on regional bedform mapping;
Greenwood & Clark 2009a, b). However, during deglaciation the trajectory of regional ice flow across County Clare and the River Shannon corridor
is hypothesized to have shifted to a more southerly orientation (Fs5; Greenwood & Clark 2009a, b). Flowset Fs5 is clearly related to the Fedamore
moraine complex, but determining which flow set, Fs5 or Fs6, was responsible for the formation of the Scattery Island and Kilkee—Kilrush moraines

remains unresolved; as does the timing of this event.

Fig. 11A). This consistent pattern of retreat onto the
coast and thinning in the Connemara mountains
between ~18-17 ka suggests that both the ice sheet and
local ice caps were responding synchronously to regional
forcing mechanisms at the time.

Greenwood & Clark (2009a) mapped an extensive
zone of ‘terminal’ moraine demarcating a late phase re-
organization of flowset Fs6 into south County Clare
(Fig. 2B) and this may be coincident with the Kilkee—
Kilrush Moraine Complex and Scattery Island moraine
(Fig. 12). The three OSL ages from this area suggest this
isapossible later phase of ice re-advance in the region. At
Portacarron, the glacifluvial outwash is dated to
14.1+£3.6 ka, while the outwash associated with the
Scattery Island moraine dates to 13.743.0 ka (Table 5).
This fits well with Pynes Pit slightly further north, which
dates to ~13.34+2.7 ka. If correct, these ages would infer
the presence of ice in southwest Ireland during the
Lateglacial. This seems very unlikely and, more feasibly,
the large errors associated with these OSL ages (caused
by the very dim OSL signal-intensities emitted by the
quartz grains) imply this re-advance phase is older
(errors would push the outer age range of these samples
to 17.7-16.0 ka; Table 5). Clark et al. (2009b) inferred
the Clew Bay re-advance to the north was linked to the

Killard Point Stadial (McCabe et al. 1998). However,
Ballantyne & O Cofaigh (2017) noted that the cosmo-
genic exposure age population from eastern Clew Bay
could range from 18.4 ka (max.) to 15.7 ka (min.) (as a
result of split populations of old and young samples).
Hence, inferring regional (a)synchroneity between
retreat/re-advance limits (and common external forcing
mechanisms) is fraught with uncertainty. During the
final phases of ice-sheet activity along the west coast of
Ireland internal ice-sheet dynamics, ice divide migration,
topography and a warming climate would have all been
key controls on ice-margin behaviour asice down-wasted
and withdrew into central Ireland and local dispersal
centres.

Conclusions

During the LGM ice from the IIS flowed offshore
through Clew Bay, Galway Bay and County Clare
sourced from the main ice sheet to the west. There is
also clear evidence that Connemara and Mayo moun-
tains fed local ice offshore that was confluent with the
main ice sheet. The imprints of these distinct lobes are
clear in sea-floor geomorphology. Maximum ice-sheet
extent on to the outer western continental shelf was
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reached at ~26-24 cal. ka BP. The initial retreat of the ice
from the shelf edge was marked by marginal oscillations
and the production of grounding-zone wedges between
23-21.1 cal. ka BP as individual flow lobes advected
subglacial material offshore.

The first clear evidence of deglaciation of the near
coast comes from the Aran Islands where exposure ages
suggest ice-free conditions by ~19.5-18.5 ka. This infers
ice retreated rapidly from the mid-shelf after 21 ka BP,
but the combined effects of bathymetric shallowing and
pinning acted to stabilize the ice margin at the Aran
Islands. From Clew Bay to southern Connemara, mul-
tiple coastal sites infer retreat inland between 18.2 and
17.1 ka with ice flow inland being guided by topography
as it thinned landward towards its source areas. Cosmo-
genic exposure ages from Moycullen and Black Head,
which fringe inner Galway Bay, show ice continuing to
recede eastward by 16.5 ka.

The Kilkee—Kilrush Moraine Complex and Scattery
Island moraines point to a late stage re-advance of the I1S
into County Clare and along the Shannon estuary at
~14.1to 13.3ka, but thelarge errors associated with those
OSL ages make correlation with other regional re-
advances difficult. It seems more likely that these
moraines are the product of regional ice lobes re-
adjusting to changes in internal ice-sheet dynamics, ice
divide migration and topography in the window 17-16 ka
as ice down-wasted and receded into central Ireland.
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