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Topological Robot Localization in a Pipe Network

Rob Worley, Sean Anderson

Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
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Abstract—Topological localization is advantageous for robots
with limited sensing ability in pipe networks, where localization is
made difficult if a robot incorrectly executes an action and arrives
at an unknown junction. Novel incorporation of measurement
of distance travelled is used in a Hidden Markov Model based
localization method, which is shown to improve accuracy.

Index Terms—Robot Localization, Topological Localization,
Pipe Inspection Robots.

I. INTRODUCTION

Water pipe infrastructure is in regular need of maintenance,

the cost of which may be reduced by precisely locating

faults using robots for autonomous, persistent monitoring of

a network. A principal challenge for this robotic system is

to localize itself and faults in the network. This work is on

topological localization for a single robot in a network of

pipes. While metric information would be required for precise

localization of a fault, topological localization to a single

discrete pipe or junction would be sufficient for navigation

and for localizing a fault to a part of the network. Metric

localization is poorly suited to pipes, as parametric methods

like Kalman filters poorly describe the multimodal probability

distribution of robot position, and non-parametric methods like

particle filters require high computational power from the robot

with limited power and size.

Early work in robot localization was done in a topological

map [1], as was early work on localization in a pipe network

[2]. Recent work on topological localization incorporates some

geometric information [3], and recent work on localization in

pipes also uses both metric and topological information [4].

This work investigates challenges to localization by the

possibility of the robot incorrectly executing an action, and

presents the incorporation of measurement of distance into

the localization method. The rest of the paper will describe

the model of uncertainty in robot motion, and describe the

novel addition to the typical localization method. Simulation

has been used to evaluate the method, and to investigate the

effect of uncertainty parameters on the localization accuracy.

II. PROBLEM DEFINITION

The robot moves in a network of pipes shown in Fig. 1.

The network has a range of topologies at smaller scales. It

is assumed that the topology and approximate geometry of

the network are known. At a junction, the robot chooses a

direction at random relative to its own unknown orientation.
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Fig. 1. The example network of pipes used in simulation, consisting of 63
nodes, each connected to 1, 3, or 4 other nodes. Inset is a smaller part of the
network with labelled junction indices. The further inset shows the labelled
pipes in blue, where each pipe with two labels, one for each node.

This action could be chosen to best inspect the network,

however this would not affect localization so is neglected.

The robot state is defined by three components. The first

component is the robot’s discrete position, which is the junc-

tion index. The second component is the robot’s discrete direc-

tion which is the index of the pipe which it has arrived from,

allowing use of information about the robot’s choice of action.

The third component is the robot’s previous position, allowing

information about the length of the journey between junctions

to be used, as described later. The latter two components are

distinct when there are multiple paths between two positions.

The robot state is only updated at junctions or at ends of pipes,
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Fig. 2. (a) An example of the discrete probability distribution for robot
motion, in this case from node 7 in a 12 node network. Shown is the motion
model used to simulate the robot motion, the estimate of this distribution used
for localization, and the full localization model considering the probability
of missing a node. (b) An example continuous probability distribution over
possible measurements of distance between a pair of nodes.



1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5

Time step index

(b)

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5

Time step index

 1
24
25
27
29
30
31
32
58
59
60

S
ta

te
 i
n

d
e

x

(a)

Fig. 3. An example of the use of the localization method in the map in Fig.
1. Each column shows the belief vector over a subset of the discrete states
at that time step, where each value represents the probability of being in the
corresponding state. The darkness of the colour corresponds to the value of
belief in the state. The largest belief value is highlighted in blue if it is correct
and red otherwise, where the correct value is shown in orange. (a) The result
found without using the measured distance between states, (b) The improved
result found when using the distance.

and the robot’s position and orientation are not considered in

transitions between these states.

There are four sources of uncertainty in the robot motion:

Incorrect action execution, return to the previous junction,

not detecting a junction and missing it without updating the

state, and normally distributed noise in the time taken to

travel between junctions. The three discrete components of this

model are illustrated as a discrete probability distribution in

Fig. 2(a). As the state transition model is difficult to compute

exactly, for a given network a Monte Carlo method is used to

approximate the transition probability between each state.

The robot makes two observations: the number of exits

from a junction, and the distance moved since its last state

update. For a given state transition there are a number of routes

and corresponding distances. The probability distribution over

possible noisy distance measurements is given by a sum of

Gaussian distributions, shown in Fig. 2(b). Odometry used to

observe this distance could be done using wheel encoders,

vision, or simply using the control input and time taken.

III. METHODS

The discrete probability distribution, or belief, over the

possible robot states is desired. The belief is a vector summing

to one where each value represents the probability of being

in the corresponding state. The forward algorithm is used

to compute the belief as a Hidden Markov Model (HMM).

Using the given state definition, this is equivalent to a second

order HMM. The localization model parameters are set to

be somewhat incorrect estimates of the values in the motion

model described previously, so that the robot does not have

exact knowledge of the true motion model. The typical form

in Equation 1 computes the updated belief b
′ over states s

′,

based on the belief b over states s, the observation o, action

a, transition and observation models T and O, and a new term

for incorporating measured distance m, M .

b
′(s′) = M(m|s′)O(o|s′)T (s′|s, a)b(s) (1)

TABLE I
EFFECT OF EACH PARAMETER ON THE LOCALIZATION ERROR METRICS.

incorrect return miss noise
action probability probability magnitude

Error Metric ρ
a gb ρ g ρ g ρ g

Total Error -0.41 0.00 -0.20 -0.04 0.98 0.83 0.99 1.96

Mislocalization -0.46 0.00 -0.61 -0.05 0.98 0.37 0.99 0.66

Relocalization Time -0.01 0.00 0.69 1.50 0.95 7.47 0.96 13.4
aThe correlation coefficient ρ between the metric and the parameter.
bThe linear fit gradient g is the magnitude of the effect of the parameter.

IV. RESULTS

An example of the localization performance is shown in Fig

3. This illustrates the improvement found when incorporating

measured distance between junctions. The robot is simulated

moving 1000 times between junctions in the network shown

in Fig. 1 using the robot definitions given previously, and

the state is estimated after each move. The total error is

measured as the proportion of steps at which the estimation is

incorrect. The effect of the four parameters is investigated by

performing the simulation for different values of each, giving

256 sets of measurements in total. Over the 16 parameter sets

representing lower uncertainty, the median total error without

use of measured distance is 0.60 (with an interquartile range

of 0.17). This is reduced to 0.18 (with an interquartile range

of 0.11) with the use of measured distance.

The total error can be decomposed into two parts: the

proportion of steps where an initial mislocalization occurs,

and the mean number of steps before successfully relocalizing.

Table I shows two measures of the effect of each parameter on

the result for these metrics: the correlation coefficient and the

gradient of a linear fit. The probability of missing a junction

and measurement noise have a strong effect on all metrics, and

the probability of incorrectly returning to the previous node

has an effect on the relocalization. The probability of correctly

executing an action does not affect the accuracy. These results

give a measure of the hardware requirements for localization.

V. CONCLUSION

Simulations show that a Hidden Markov Model based

method is able to effectively localize a robot in a discrete

network where there is a possibility of the robot missing nodes

in the network, using noisy measurements of distance travelled

between nodes. Variation in the measurement noise and the

probability of missing a node is shown to have a large effect

on the localization effectiveness.

REFERENCES

[1] D. Kortenkamp and T. Weymouth, “Topological mapping for mobile
robots using a combination of sonar and vision sensing,” Proceedings of

the National Conference on Artificial Intelligence, vol. 2, pp. 979–984,
1994.

[2] J. Hertzberg and F. Kirchner, “Landmark-based autonomous navigation
in sewerage pipes,” Proceedings of the 1st Euromicro Workshop on

Advanced Mobile Robots, EUROBOT 1996, pp. 68–73, 1996.
[3] C. Gomez, A. C. Hernandez, L. Moreno, and R. Barber, “Qualitative

Geometrical Uncertainty in a Topological Robot Localization System,”
Proceedings - 2018 International Conference on Control, Artificial Intel-

ligence, Robotics and Optimization, ICCAIRO 2018, pp. 183–188, 2018.
[4] D. Alejo, F. Caballero, and L. Merino, “A robust localization system

for inspection robots in sewer networks,” Sensors (Switzerland), vol. 19,
no. 22, pp. 1–28, 2019.


