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Abstract 

In the present investigation, a large number of fatigue data generated by testing welded joints 

of magnesium alloy AZ31 were post-processed based on the reference radius concept. The local 

stresses used to perform this systematic re-analysis were determined by setting the fictitious 

notch radius, 𝑟𝑓 , invariably equal to 0.3 mm. According to this strategy, local stress-based S-N 

curves were then derived for load ratios, R, equal to -1, 0 and to 0.5. This post-processing 

exercise allowed us to demonstrate that a fictitious notch radius of 0.3 mm is successful in 

modelling the fatigue strength of weldments made of magnesium alloy AZ31. In particular, 

with 𝑟𝑓 = 0.3 mm, this type of welded joints is recommended to be designed against fatigue by 

using an S-N curve having endurable local stress range, Δ𝜎𝐹𝐴𝑇, at 𝑁 = 2 × 106 cycles to failure 

equal to 40 MPa and a negative inverse slope, k, equal to 3. 
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Nomenclature 

𝑟𝑓  Fictitious notch radius 

R Load ratio 𝑡  Thickness 𝜌∗  Microstructural length 𝐾𝑡  Stress concentration factor 𝜎𝑒𝑓𝑓  Fatigue effective stress 𝐿  Material length scale 𝑟𝑟𝑒𝑎𝑙  Real notch radius 𝑠  Support factor 𝑘  Slope of S-N curves before knee point 𝑘∗  Slope of S-N curves after knee point 𝑇𝜎  Scatter value 𝜎𝑛,𝑎  Nominal stress amplitude Δ𝜎𝑙𝑜𝑐  Local equivalent stress range 𝑃𝑠  Probability of survival 𝑃𝑐   Confidence level 𝜎𝑛,𝑚  Nominal stress amplitude 𝑗𝜎   Safety factor Δ𝜎5𝐸5  Endurable stress range Δ𝜎𝐹𝐴𝑇  FAT-value Δ𝜎𝑒,𝐶  Endurable characteristic normal stress range 

 

1. Introduction 

As far as the fatigue behaviour of welded joints is concerned, the locations of highly damaged 

regions with respect to weld geometries and stress distributions indicate a clear correlation 

between fatigue damage extent and local values of stresses and strains. This explains the reason 

why local approaches have become increasingly more important in the past decade in fatigue 

studies of welded joints, especially along with the development of more powerful 
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computational tools for Finite Element (FE) analysis. Although the local concepts are not a 

recent development, owing to its flexibility and reliability, this simple design approach is 

certainly one of the most widely used in situations of practical interest for fatigue assessment 

of welded connections [1-6]. 

In addition to the notch stress concepts, which includes fictitious notch radius [7-12] used in 

the current paper, local approaches consists of many different methods which generally assume 

local parameters such as local stress and local strain to be relevant to the fatigue behaviour of 

the material and has been reported successful on many different publications with structural 

stress [13,14] and structural strain concepts [15,16], fracture mechanics concepts such as 

extended stress intensity factor (SIF) concepts [17,18] and local strain energy density (SED) 

methods [19-24]. 

Amongst the local approaches being developed and validated so far, the fictitious radius concept 

is known for its wide and straightforward applicability. Depending on the thickness of the 

welded joint and the type of material, weld toes and weld roots can be modelled by using 

different fictitious notch radii. For steel plates with thickness, t, larger than 5 mm, a fictitious 

notch radius, 𝑟𝑓, equal to 1 mm is recommended in the design guidelines of the International 

Institute of Welding (IIW) [25]. This value can also be used to assess the fatigue strength of 

aluminium welded joints [26-29]. In contrast, as demonstrated in Refs [28-30], a fictitious notch 

radius of 0.05 mm is always recommended to be used to assess steel and aluminium welded 

connections with thickness lower than 5 mm. Further, regardless of the type of welded geometry 

[31,32], 𝑟𝑓 = 1 mm and 𝑟𝑓 = 0.05 mm are used also for magnesium welded joints with 𝑡 ≥ 5 

mm and 𝑡 < 5 mm, respectively. In this context, it is worth mentioning also that the reference 

radius concept is seen to be successful also in designing welded joints against multiaxial fatigue 

[33]. 
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In recent years, a value of the reference radius equal to 0.3 mm has been introduced for steel 

and aluminium welded joints with plate thickness, t, varying in the range 3 mm-10 mm [34]. In 

this setting, several investigations [35-39] have demonstrated the applicability of the 𝑟𝑓 = 0.3 

mm approach for steel and aluminium welded joints, with these studies showing that, compared 

to the 𝑟𝑓 = 0.05 mm solution, less conservative results are obtained with thin connections.  

According to Refs [40, 41], based on the formula linking the fictitious notch radius with 

Neuber’s microstructural length 𝜌∗ [42], a reference value for 𝑟𝑓 of 0.3 mm was calculated also 

for welded joints made of magnesium alloy. This fictitious notch radius clearly coincides with 

the third possible value being recommendation to design both steel and aluminium welded 

joints with plate thickness in the range 3mm-10mm [34]. However, in Refs [40, 41] the problem 

of the fatigue assessment of magnesium welded joints based on the 𝑟𝑓 = 0.3 mm concept was 

not studied in depth not to lose the focus on the specific aims of those investigations. To fill 

this knowledge gap, the present work aims then at demonstrating the applicability of a fictitious 

notch radius, 𝑟𝑓, equal to 0.3 mm also to the fatigue assessment of magnesium welded joints. 

Accordingly, to the best of the authors’ knowledge, this paper summarises the first systematic 

attempt to model and assess the fatigue behaviour of magnesium welded joints by setting 𝑟𝑓 

equal to 0.3 mm. To this end, a large number of fatigue data were selected from the technical 

literature, with these experimental results being generated by testing welded joints made of 

magnesium alloy AZ31. The fatigue results being re-analysed were obtained by testing three 

different weld geometries (i.e., transverse full/partial penetration butt welded connections and 

joints with transversal stiffener) under three different values of the stress ratio (i.e., R=-1, R=0 

and R=0.5). The stress concentration factors (𝐾𝑡) at the weld toes were recalculated based on 𝑟𝑓 = 0.3  mm. Finally, the obtained local stresses allowed the experimental data to be 

summarised using suitable S-N design curves. 
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2. Theoretical Background 

In order to model in the presence of a notch the effect, under cyclic loading, of the stress field 

gradient - defined as 𝜎(𝑥, 𝑦, 𝑧), several methods have been proposed over the years. In this 

setting, the fatigue effective stress, 𝜎𝑒𝑓𝑓, can be evaluated from the stress field and used in non-

local fatigue assessments. Neuber’s stress averaging method [42] and the Point Method [43, 44] 

focus on calculating this effective stress which is seen to be proportional to the extent of fatigue 

damage. 

In Neuber’s stress averaging method, the effective stress is calculated by determining the stress 

distribution at the notch root over a microstructural length 𝜌∗ [42]. 

𝜎𝑒𝑓𝑓 = 1𝜌∗ ∫ 𝜎1(𝑥)𝑑𝑥𝜌∗
0  (1) 

Turning to the Point Method, a fictitious point along the stress distribution path, 𝜎(𝑥), at the 

notch root is considered. The stress at this point corresponds to the effective stress and the 

distance to this fictitious point is the critical distance “𝑎” [43, 44]. The relation between critical 

distance and effective stress can be formulised as: 

𝜎𝑒𝑓𝑓 = 𝜎1(𝑥 = 𝑎) (2) 

A schematic representation of these two methods is provided in Figure 1. As it can be deduced, 

both microstructural length 𝜌∗ and critical distance 𝑎 can be used to determine the effective 

stress as long as the stress distribution in the vicinity of the notch tip can be determined 

unambiguously. In this context, the relevant stress distributions are usually determined via 

conventional linear-elastic FE analyses. 
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Figure 1: Schematic representation of Neuber’s stress averaging method (a) and the Point 

Method (b) [41]. 

 

Both microstructural length 𝜌∗ and critical distance 𝑎 are material-dependent parameters. The 

correlation between these two lengths were also established in Ref. [44]. This allowed these 

two methods to be grouped together under a unifying umbrella, with this umbrella being named 

by our colleague Professor David Taylor as the Theory of Critical Distances (TCD). In 

particular, the TCD includes Neuber’s stress averaging method which is referred to as the Line 

Method (LM), the Point Method (PM), the Area Method and, finally, the Volume Method [45]. 

Further, it was also derived an equation to establish a link amongst material length scale 𝐿, 

microstructural length 𝜌∗, and critical distance 𝑎, i.e.: 
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𝐿 = 𝜌∗2 = 2𝑎 (3) 

The value of the fictitious notch radius is based on Neuber’s microstructural support theory [42] 

which establishes a relationship between fictitious notch radius 𝑟𝑓 and microstructural length 𝜌∗. This relationship can be expressed explicitly as follows: 

𝑟𝑓 = 𝑟𝑟𝑒𝑎𝑙 + 𝑠 ∙ 𝜌∗ (4) 

where 𝑟𝑟𝑒𝑎𝑙 is the real notch radius and 𝑠 is a support factor. The support factor 𝑠 depends on 

multitude of conditions, as reported in [9,10,11] which include loading mode 1,2,3, mixed mode 

loading, multiaxiality condition of the notch tip and applied strength criterion. Additionally, 

opening angle of the notch and shape of the notch were determined to affect the support factor 

significantly. Although this complicated dependency may seem to counteract the claimed 

simplicity of fictitious notch radius, by considering “worst-case scenarios” value of support 

factor 𝑠 can be approximated. 

The relationship between 𝑟𝑓 and 𝑟𝑟𝑒𝑎𝑙 as expressed by Eq. (4) is also shown schematically in 

Figure 2. According to Eq. (4) and Figure 2, the fictitious notch radius is expected to be larger 

than the real notch radius, resulting in lower local fictitious stresses. This allows less 

conservative fatigue assessment to be performed. However, it is worth noting that the real notch 

radius, 𝑟𝑟𝑒𝑎𝑙 , is often taken invariably equal to zero (sharp notch) in order to assume 

aforementioned the worst-case scenario in the calculations.  
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Figure 2: According to Neuber [42], relationship between real notch radius and fictitious notch 

radius [46] (modified). 

 

As far as weldments are concerned, a fictitious notch radius of 1 𝑚𝑚 was derived using Eq. (4) 

(𝑟𝑟𝑒𝑎𝑙 = 0, 𝑠 = 2.5 and 𝜌∗ = 0.4 for steel) [42] and is applicable to welded joints of steel, 

aluminium and magnesium plates with thicknesses 𝑡 ≥ 5 mm. On the other hand, 𝑟𝑓 = 0.05 

mm was derived based on fracture mechanics considerations instead of Eq. (4) [47-49] and is 

applicable to welded joints of steel, aluminium and magnesium plates with thicknesses 𝑡 < 5 

mm. 

 

3. Determination of notch stresses 

The experimental data used in this study were taken from the technical literature and were all 

generated by testing magnesium welded joints. Detailed information regarding the experimental 

procedure being adopted can be found in Ref. [50]. In order to clearly show the geometries of 

the welded specimens being consider, the corresponding technical drawings and pictures are 

reported in Figure 3. 
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Figure 3: Pictures and technical drawings of the welded specimens being considered: 

transverse full penetration butt welded (a), transverse partial penetration butt welded joint (b), 

and transversal stiffener (c) [50]. 

 

Further, in order to broaden the available data sets, laser-beam welded tube-tube specimens 

made from the same magnesium alloy [51] with a sheet thickness, t, of 1.5 mm were also 

included in the re-analyses being presented in what follows. 
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FE models of the welded geometries being considered were solved in order to determine the 

corresponding stress distributions and notch stress concentration factors. Thus, for each 

geometry being re-analysed, the local linear-elastic stresses were calculated directly from 

nominal stresses and then summarised in suitable S-N curves. 

The FE analyses were run as follows [31]: 

 2D quadratic elements with 8 nodes; 

 quadratic function for the displacement of the nodes; 

 linear stress and strain function within the elements; 

 plane strain conditions; 

 uniform displacement distribution applied at the extremity; 

 highly stressed area meshed with elements having dimensions equal to r/20, where r is 

the notch radius. 

For any considered welded geometry, 1 MPa nominal stress was used as loading boundary 

condition. Some examples of the FE models that were solved are seen in Figures 4-6. 

 

 

  

Figure 4: FE model of fully penetrated butt-welded specimen. 

r=0.3 mm 
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Figure 5: FE model of non-fully penetrated butt-welded specimen. 

 

 

 

 

 

Figure 6: FE model of transversal stiffener specimen. 

r=0.3 mm 
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In addition to the FE analyses, stress concentration factors were also calculated based on 

analytical equations suitable for assessing the specific welded geometries under investigation. 

For full penetration butt welded connections, the solutions proposed by Lawrence and Yung 

[52], Eq. (5), and by Anthes [53], Eq. (6), were used, i.e.: 

𝐾𝑡 = 1 + 0.27 ∙ (tan 𝜃)0.25 ∙ (𝑡𝜌)0.5
 (5) 

𝐾𝑡 = 1 + 0.728 ∙ (sin 𝜃)0.932 ∙ (𝑡𝜌)0.382
 (6) 

In contrast, for partial penetration butt welded joints, the solution proposed by Lehrke was 

employed [54, 55]: 

𝐾𝑡 = 1 + 2√cos (𝜋2 ∙ 𝑠𝑡) ∙ √ 𝑠2𝜌 (7) 

Finally, for welded joints with transverse stiffeners, the analytical formula, Eq. (8), derived by 

Anthes [53] was used, with the values of the relevant coefficients being reported in Table 1: 

𝐾𝑡 = 𝑚0 + (1 + 𝑚2 ∙ (𝑡𝑟)𝑝3 + 𝑚3 ∙ (sin(𝜃))𝑝4) ∙ (sin(𝜃))𝑝5 ∙ (𝑡𝑟)𝑝6
 (8) 

 

Table 1: Coefficients used in Eq. (8) for the stress concentration factor calculations of 
transversal stiffeners. 

 m0 m2 m3 p3 p4 p5 p6 

Tension 1.538 1.455 -2.933 0.208 1.213 2.086 0.207 

Bending 1.256 2.153 -3.738 0.154 0.481 1.723 0.172 

 

Comparison between the values of the stress concentration factors determined both from the FE 

analyses and from the analytical solutions are presented in Figures 7-9 for each welded 
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geometry being considered. In general, it can be observed that both methods for calculating the 

stress concentration factors resulted in markedly consistent values. In particular, for fully 

penetrated (Figure 7) and partially penetrated (Figure 8) butt welds, the stress concentration 

factors from the analytical calculations were seen to be lower than the corresponding values 

from the FE analyses. In contrast, for the transversal stiffeners, the KT values from the FE 

analyses were seen to be much higher than the corresponding values from the analytical 

calculations (Figure 9). 

 

Figure 7: Comparison of stress concentration factors of fully penetrated butt welds based on 

analytical equations and FE analysis. 
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Figure 8: Comparison of stress concentration factors of non-fully penetrated butt welds based 

on analytical equations and FE analysis. 

 

Figure 9: Comparison of stress concentration factors of transversal stiffeners based on 

analytical equations and FE analysis. 
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Based on the FE models being solved, the notch stress concentration factors for each welded 

geometry were then calculated for different values of the fictitious notch radius, with the 

obtained results being listed in Table 2.  

Table 2: FE analysis results of stress concentration factors for each welded geometry being 
investigated based on the fictitious notch radius concept. 

Fictitious notch 

radius 

rf [mm] 

Stress concentration factor Kt 

Fully 

penetrated 

Non-fully 

penetrated 

Transversal 

stiffener 

Overlapping 

tube 

0.05 3.99 19.43 4.69 61.04 

0.10 3.36 14.19 3.61 47.92 

0.20 2.82 10.57 2.82 39.78 

0.30 2.55 9.02 2.46 37.48 

 

Since overlapping tube-tube welded specimens with 𝑡 =  1.5 mm were thinner than the butt 

joints and transversal stiffeners with 𝑡 =  5.3 mm, only notch stresses up to 𝑟𝑓  =  0.3 mm 

were calculated since the calculated stresses becomes unreliable once the reference radius is 

larger than one fifth of the wall thickness (𝑟𝑓 > 0.2 ⋅ 𝑡) [36]. This is due to the fact that, given 

the cross-section wall thickness of the sample, a larger fictitious radius would weaken the cross 

section, leading to wrong estimated of the stress state in the weld. 

In addition, Figure 10 explicitly shows how the stress concentration factors vary as the value of 

the fictitious notch radius changes. 
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Figure 10: Change in stress concentration factors in relation to fictitious notch radius. 

Numerical calculations based on FE models assume a 2D-model instead of 3D. As expected, 

this difference in models create a discrepancy in results. However, difference in principal stress 

of 2D and 3D-models of sharply notched specimens are only between 1%-3%. Thus, application 

of the method using 3D-models would not create a meaningful difference that can justify the 

added complexities in modelling of the notch and calculations. 

4. Results and Discussions 

As mentioned earlier, the experimental results being re-analysed were discussed in detail in 

references [50, 51] solely in the nominal stress system. For the sake of completeness and clarity, 

a summary of these fatigue test results in terms of nominal stress amplitudes at 𝑁 = 5 × 105 

and 𝑁 = 5 × 106 is presented once again in Table 3 for each welded geometry. The negative 

inverse slope of the nominal S-N curves was seen to be equal to 3 (i.e., k=3) before and equal 

to 22 (i.e., 𝑘∗ = 22) after the knee point, with the knee point being taken at 5 × 105 cycles to 

failure. These values were determined in accordance with the expected course of the S-N curves 
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[56]. It should also be noted that all the test results in terms of nominal stresses were seen to 

fall within a uniform scatter band with a scatter value, 𝑇𝜎, of 1: 1.40. 

 

Table 3: Fatigue parameters in terms of nominal stress amplitudes for different stress ratios at 𝑁 = 5 × 105 and 𝑎𝑡 𝑁 = 5 × 106 cycles to failure. 

 
Material 

 
Stress ratio 

Fully penetrated butt weld Partially penetrated butt weld Transversal stiffener 

na(5E5)  na(5E6) na(5E5)  na(5E6) na(5E5) n,a(5E6) 

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] 

M
ag

ne
si

um
 A

Z
31

 R = -1 25 22.5 8 7.2 40 36 

R = 0 18 16.2 6 5.4 27 24.3 

R = 0.5 15 13.5 5 4.5 18 16.2 

 

For each stress ratio, the values of the local stresses calculated numerically were used to plot 

the corresponding local S-N curves which are provided in Figures 11, 12 and 13 for R=-1, R=0 

and R=0.5, respectively. In these diagrams, the results from all the welded geometries are 

summarised in the local stress system by adopting unified scatter bands having slope, k, equal 

to 3. Additionally, also the scatter values, 𝑇𝜎, are reported for each local S-N curve.  

 



18 

 

Figure 11: Local S-N curve for a fictitious notch radius, 𝑟𝑓, equal to 0.3 mm under R=-1. 

 

 

Figure 12: Local S-N curve for a fictitious notch radius, 𝑟𝑓, equal to 0.3 mm under R=0. 

 

 

Figure 13: Local S-N curve for a fictitious notch radius, 𝑟𝑓, equal to 0.3 mm under R=0.5. 
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The statistical correlation between fictitious notch radius 𝑟𝑓  and the scatter values 𝑇𝜎∗ = 1 ∶𝑇𝜎 = [𝜎(𝑃𝑠 = 10%) 𝜎(𝑃𝑠 = 90%)⁄ ] are shown in Figure 14 for stress ratios R=-1, R=0 and 

R=0.5 [31]. The minimum scatter value for each stress ratio is seen to be between 𝑟𝑓 = 0.6 mm 

and 𝑟𝑓 = 1.0 mm. In the evaluation of the scatter for R = -1, the tube-tube specimens were 

included up to a reference radius of 𝑟𝑓 = 0.3 mm and the scatter values of tube-tube specimens 

appear to agree well with the scatter of other welded specimens up to this point. For reference 

radii larger than 𝑟𝑓 = 0.3, tube-tube specimens do not return meaningful scatters due to a 

significant reduction in the specimens’ wall thickness. Outside of this area, the scatter values 

steadily increase especially below 𝑟𝑓 = 0.2 mm. Therefore, it can be deduced that for 𝑟𝑓 values 

below 0.3 mm, the local notch effect associated with the weld seams can be approximated by 

using the stress concentration factors calculated via the FE models made by introducing notch 

radius 𝑟𝑓 . Additionally, an increase in the scatter values when adopting smaller fictitious 

reference radii is a phenomenon that was observed also in aluminium [27] as well as in steel 

welded joints [36]. 

 

 



20 

 

Figure 14: Changes in scatter values based on fictitious notch radius for each stress ratio [31] 

(modified). 

 

As the fictitious notch radius 𝑟𝑓 decreases, the notch effect due to the weld seams approaches 

the sharp notch behaviour and the scatter values increase. As for very large values of 𝑟𝑓, the 

presence of the fictitious rounded notch weakens the specimen, with this leading to simulations 

that do not capture accurately the mechanical behaviour being modelled (Figure 10). 

Additionally, the correlation between geometry of the weld and variations in stress 

concentration factor values is worth being mentioning. In particular, for welded geometries with 

higher stress concentration factors, a decrease in 𝑟𝑓 causes a more significant increase in the 

stress concentration factor. 

As far as the scatter values are concerned, another aspect to be considered is the effect of the 

stress ratios. In order to explain the marked increase in scatter values for R=-1, Haigh diagrams 

of the weld geometries should be observed, which are provided in Figure 15. Scatter increases 

as a result of minor imperfections caused by the welding process and this effect is observed to 

be more prominent under fully-reversed loading (R=-1) compared to the other loading ratios 

(R=0 and R=0.5). The secondary stresses created by the welding imperfections are superposed 

during fatigue loading. Under fully-reversed loading, these secondary stresses create a wider 

range of variation in the local stresses, with this resulting also in a variation of the local stress 

ratios in the range -2÷0 [31]. Therefore, fully-reversed loading causes higher mean-stress 

sensitivity. This can also be observed from the steeper slope of the Haigh curves under R=-1 in 

comparison to the Haigh curves under R=0 and under R=0.5. However, it should be noted that 

individual scatters of different stress ratios do not influence the reference S-N curves 

significantly.  
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Figure 15: Haigh diagram for weld geometries [40]. 

 

As recommended by the IIW [25,57], in order to present design S-N curves for magnesium 

welded joints making use of a fictitious notch radius equal to 0.3 mm, the local stress values 

were derived for a probability of survival 𝑃𝑠 equal to 97.7%, a confidence level 𝑃𝑐  equal to 95%, and stress ratio, R, equal to 0.5. Based on these assumptions, Δ𝜎𝐹𝐴𝑇 = 40 MPa was 

calculated at 𝑁 = 2 × 106 cycles to failure. 

By considering a scatter value of 𝑇𝜎 = 1: 1.50 and a Gaussian log-normal distribution, values 

for 𝑃𝑠 = 97.7%  were obtained by reduction of the experimental values with 𝑃𝑠 = 50%  by 

safety factor 𝑗𝜎 = 1.37  [31]. For each stress ratio, the resulting reference S-N curves are 

provided in Figure 16. In addition, local stress ranges are provided in Table 4 for 𝑃𝑠 = 50% 

and 𝑃𝑠 = 97.7%. The latter can be used as design S-N curve for welded magnesium structures. 

It should be noted that 𝑟𝑓 = 0.3 mm is not yet part of the IIW-Recommendations. Considering 

the worst-case scenario, the S-N curve presented in Figure 17 is proposed and can be summed 
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up as follows. S-N curves should be plotted with endurable local stress range of Δ𝜎5𝐸5 = 61 

MPa for R=0.5 at 𝑁 = 5 × 105  with 𝑃𝑠 = 97.7% and slope of 𝑘 = 3.0  up to 𝑁 = 1 × 107 

cycles. The stress range of Δ𝜎𝐹𝐴𝑇 = 40 MPa at 𝑁 = 2 × 106 can be used as FAT-value. For 

cycles higher than 𝑁 = 1 × 107, a local stress range of Δ𝜎1𝐸7 = 22 MPa, where, after the knee 

point, a slope of 𝑘∗ = 22.0 and of 𝑘 = 5.0 should be used for constant amplitude loading and 

for variable amplitude loading, respectively. 

 

Table 4: Endurable local stress ranges for magnesium welded joints based on 𝑟𝑓 = 0.3 mm at 𝑁 = 5 × 105. 

Stress ratio 

R 

Local stress range 

(𝑷𝒔 = 𝟓𝟎%) 

[MPa] 

Endurable local stress range 

(𝑷𝒔 = 𝟗𝟕. 𝟕%) 

[MPa] 

-1 158 115 

0 110 80 

0.5 84 61 
 

 

Figure 16: Reference S-N curves for fictitious notch radius 𝑟𝑓 = 0.3 mm (𝑃𝑠 = 97.7%). 
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Figure 17: Suggested S-N curve for the IIW-Recommendations based on fictitious notch radius 𝑟𝑓 = 0.3 mm. 

In a recent work [31], FAT-values for magnesium alloys have been recommended for the 

reference radii 𝑟𝑟𝑒𝑓 = 1  mm (FAT28) and 𝑟𝑟𝑒𝑓 = 0.05  mm (FAT73). In the current 

investigations, a FAT-value of FAT40 has been identified. Based on empirical data and 

theoretical considerations [39]39] a power function between the radius and the (endurable) 

notch stress is expected. This is also the result for magnesium welded joints, Figure 18. 

Theoretically [39], there should be a difference in the endurable stress between weld toe and 

weld root failure. For weld root failures, higher endurable stresses are expected since the stress 

gradients at notches with a weld opening angle smaller than 90° are comparatively steep. This 

leads to a high gradient-based support effects. When maximum notch stresses are evaluated, 

these support effects are not going to be considered directly, e.g. by the stress averaging or 

critical distance approach, but lead to higher endurable stresses in the case of sharp notches. 

However, this expectation cannot be met since the partial penetration butt joint with the sharp 

root notch has the highest stress concentration (and subsequently the highest stress gradients) 

but lies in the middle of the scatter band for the evaluation with 𝑟𝑟𝑒𝑓 = 1.0 mm [31] and 𝑟𝑟𝑒𝑓 =
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0.05 mm [41][41]. Also, for the evaluation with the radius 𝑟𝑟𝑒𝑓 = 0.3 mm no such tendency 

can be identified, Figure 14.  

A reason for this unexpected behaviour might be the quality of the joints. From the 

metallographic investigations a comparatively steep flank angle can be identified for both 

specimen types, the fully penetration butt joint and the transverse stiffener. In addition, other 

individual specimen-characteristic influences such as an unconsidered angular misalignment 

might influence the fatigue life. In order to derive a reliable correlation between FAT-values 

and notch severity, further experiments should be performed with specimens with a low flank 

angle to broaden the data base. 

 

Figure 18: FAT-values for welded magnesium joints in dependence on the reference radius 

and the notch opening angle compared to data derived for aluminium and steel. 

5. Conclusions 
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The present paper demonstrates the applicability of a fictitious notch radius, 𝑟𝑓, of 0.3 mm in 

local stress calculations for magnesium welded joints. 𝑟𝑓 = 0.3 mm cannot be considered a 

definitive replacement for other fictitious notch radii (i.e., 𝑟𝑓 = 0.05 mm and 𝑟𝑓 = 1.0 mm). 

However, as demonstrated, 𝑟𝑓 = 0.3 mm can be applied for specimens with thickness values 

between 3 ≤ 𝑡 ≤ 10  mm, with this allowing an adequate level of safety to be reached 

systematically. Additionally, based on the calculated local stresses, reference S-N curves are 

proposed for stress ratios R=-1, R=0 and R=0.5 which allowed us to identify appropriate FAT 

values according to the approach suggested in the IIW Recommendations. Based on the 

fictitious notch radius 𝑟𝑓 = 0.3 mm, a FAT value was calculated as Δ𝜎𝐹𝐴𝑇 = 40 MPa at 𝑁 =2 × 106. 
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